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Abstract
Addressing Lidar Panoptic Segmentation (LPS) is crucial for safe deployment of autnomous vehicles. LPS aims to recognize
and segment lidar points w.r.t. a pre-defined vocabulary of semantic classes, including thing classes of countable objects
(e.g., pedestrians and vehicles) and stuff classes of amorphous regions (e.g., vegetation and road). Importantly, LPS requires
segmenting individual thing instances (e.g., every single vehicle). Current LPS methods make an unrealistic assumption
that the semantic class vocabulary is fixed in the real open world, but in fact, class ontologies usually evolve over time as robots
encounter instances of novel classes that are considered to be unknowns w.r.t. thepre-defined class vocabulary. To address this
unrealistic assumption, we study LPS in the OpenWorld (LiPSOW): we train models on a dataset with a pre-defined semantic
class vocabulary and study their generalization to a larger dataset where novel instances of thing and stuff classes can
appear. This experimental setting leads to interesting conclusions. While prior art train class-specific instance segmentation
methods and obtain state-of-the-art results on known classes, methods based on class-agnostic bottom-up grouping perform
favorably on classes outside of the initial class vocabulary (i.e., unknown classes). Unfortunately, thesemethods do not perform
on-par with fully data-driven methods on known classes. Our work suggests a middle ground: we perform class-agnostic point
clustering and over-segment the input cloud in a hierarchical fashion, followed by binary point segment classification, akin
to Region Proposal Network (Ren et al. NeurIPS, 2015). We obtain the final point cloud segmentation by computing a cut in
the weighted hierarchical tree of point segments, independently of semantic classification. Remarkably, this unified approach
leads to strong performance on both known and unknown classes.
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1 Introduction

Lidar Panoptic Segmentation (LPS) (Behley et al., 2021;
Fong et al., 2021) unifies lidar point classification and seg-
mentation, both important for autonomous agents to interact
with the open environment. In LPS, each point must be clas-
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Fig. 1 We study Lidar Panoptic Segmentation (LPS) in an Open
World (LiPSOW ). In each of the 2×3 subfigure, left panel visualizes
segmented points colored different w.r.t semantic classes, where red
encodes unknown; right panel visualizes segmented thing instances
of known and unknown. For autonomous navigation, one should eval-
uate LPS methods in the presence of novel thing object instances
and stuff regions, which are usually termed as unknown. We call

this setting LiPSOW, wheremethods should particularly segment points
into unknown object instances that are outside of the K -way semantic
classes in the predefined vocabulary. For example, given the predefined
vocabulary by SemanticKITTI (Behley et al., 2019), the unknown
objects can be trailers, containers, signaling structures, highway bridge
foundations, and buses, as visualized in this figure (Color figure online)

sified as one of pre-defined K semantic classes. LPS also
defines the notion of stuff and thing: thing classes are
countable (e.g., pedestrian and car classes) and must
be assigned unique instance identities. Amorphous regions,
such as vegetation and road, are defined as stuff.

1.1 Motivation

Solving LPS attracts increasing attention owing to its practi-
cal value for robotic applications, but the current setup fails
to consider the realistic open-world testing environments,
where robots must know when they observe regions that do
not fit in the predefined vocabulary of K known classes
(e.g., fallen-tree-trunk or overturned-truck)
and recognize these regions as unknown obstacles.

1.2 Lidar Panoptic Segmentation the OpenWorld

WestudyLPS in the open-world (LiPSOW, Fig. 1),motivated
by real-world challenges: AV companies have already oper-
ated autonomous fleets in different geo-locations, and these
vehicles constantly observe new or previously unknown
semantic classes over time. To study such situations, we
introduce the LiPSOW evaluation protocol. For example,
LiPSOW allows one to train models on the SemanticKITTI
(Behley et al., 2019) by using its K common semantic
classes for K -way classification of predicted segments, and
importantly, gathering all the remaining rare classes as a
catch-all other class (Hendrycks et al., 2019; Kong &

Ramanan, 2021) to better detect unknown objects. Fur-
ther, it performs evaluation on the KITTI360 (Liao et
al., 2021) dataset, recorded in the same city with the
same sensors but labeling more classes (Lin et al., 2022).
This effectively expands the class vocabulary to include
instances of unknown classes. The main challenge in
LiPSOW is to recognize and segment K known classes
as defined in the SemanticKITTI vocabulary, and recog-
nize unknown classes that appear in the testing set, i.e.,
KITTI360.

1.3 Technical Insights

Prior efforts in LPS (Aygün et al., 2021; Gasperini et al.,
2021;Hong et al., 2021; Li et al., 2022) learn to groupknown
classes but fail to generalize to unknown classes. Based on
this observation, Wong et al. (2020) suggests to learn to seg-
ment known classes and lean on bottom-up point clustering
methods (Teichman et al., 2011; Nunes et al., 2022; Wong
et al., 2020; Moosmann et al., 2009) to segment unknown
instances. Our findings, derived from our publicly available
LiPSOW benchmark, suggest unified treatment of known
and unknown classes: (i) we learn which points do not cor-
respond to K -known classes via outlier exposure (Hendrycks
et al., 2019;Kong&Ramanan, 2021), (ii) segment unknown
and thing classes using class-agnostic bottom-up methods
at multiple hierarchies, and (iii) learn which segments in the
segmentation tree likely are objects by using labeled data,
akin to class-agnostic training of Region Proposal Network
(Ren et al., 2015). Surprisingly, this approach not only is
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effective for segmenting novel instances with high fidelity
but also outperforms learned point-grouping-based methods
for known thing classes, suggesting a unified treatment of
known and unknown classes.

1.4 Contributions

We make three major contributions: (i) We introduce LiP-
SOW, a new problem setting that extends LPS to the
open-world, and establish an evaluation protocol to study
LiPSOW. (ii) We repurpose existing LPS methods to address
LiPSOW and comprehensively analyze their performance.
(iii), drawing insights from in-depth analysis of existing LPS
methods,we propose an approach that combines lidar seman-
tic segmentation and a non-learned clustering algorithmwith
a learned scoring function. Our method effectively segments
objects in a class-agnostic fashion, from both known and
unknown classes during testing. To foster future research,
we make our code publicly available.

2 RelatedWork

2.1 Lidar Semantic and Panoptic Segmentation

Recent Lidar Semantic Segmentation (LSS) and Lidar
Panoptic Segmentation (LPS) methods are data-driven and
fueled by the developments in learning representations from
point sets (Qi et al., 2016, 2017; Thomas et al., 2019)
and publicly available densely labeled datasets (Behley et
al., 2019, 2021; Fong et al., 2021). LSS methods classify
points into K classes, for which dense supervision is avail-
able during training. Prior works focus on developing strong
encoder-decoder-based architectures for sparse 3D data (Qi
et al., 2016, 2017; Thomas et al., 2019;Yan et al., 2018; Choy
et al., 2019; Tang et al., 2020; Zhu et al., 2021; Loiseau et
al., 2022; Ye et al., 2021), the fusion of information obtained
from different 3D representations (Alonso et al., 2020; Xu et
al., 2021; Li et al., 2022) or neural architecture search (Tang
et al., 2020). On the other hand, LPS methods (Behley et al.,
2021; Sirohi et al., 2021; Gasperini et al., 2021) must addi-
tionally segment instances of thing classes. Early methods
combine Lidar semantic segmentation networks with 3D
object detectors, with a heuristic fusion of both sources of
information (Behley et al., 2021). Efficient-LPS (Sirohi et al.,
2021) follows two-stage image-based object detection archi-
tectures using a range-image-based convolutional backbone.
Several methods focus on end-to-end learning using point-
based (Thomas et al., 2019; Hong et al., 2021, 2024; Li et al.,
2023) or sparse voxel (Zhu et al., 2021) backbones. Recent
efforts focus on additional modalities such as camera-lidar
fusion (Marcuzzi et al., 2023; Zhang et al., 2023) or different
views of Lidar data, such as range-view map (Li et al., 2023)

to improve model performance. In addition to learning to
classify points, these methods learn to group points in space
(Gasperini et al., 2021; Hong et al., 2021; Zhou et al., 2021;
Razani et al., 2021; Li et al., 2022), space and time (Aygün
et al., 2021; Kreuzberg et al., 2022), or resort to bottom-up
geometric clustering to segment instances (Zhao et al., 2022,
2021). Unlike our work, these methods do not consider the
open-world environment, in which a pre-fixed class vocab-
ulary is insufficient to capture all semantic classes that are
encountered during the autonomous operation.

2.2 Bottom-Up Lidar Instance Segmentation

Bottom-up grouping based on Euclidean distance has been
used to isolate object instances in Lidar scans in a class-
agnostic manner since the dawn of Lidar-based perception
(Thorpe et al., 1991). Existing methods employ techniques
such as flood-filling (Douillard et al., 2011; Teichman et al.,
2011) and connected components (Klasing et al., 2008), esti-
mated in the rasterized bird’s-eye view, bottom-up grouping
(Moosmann et al., 2009; Behley et al., 2013; McInnes et al.,
2017) using density-based clustering methods (Ester et al.,
1996) or graph-based clusteringmethods (Wang et al., 2012).
Nunes et al. (2022) propose to segment object instances with
DBSCAN and refine segments using GraphCuts (Boykov &
Funka-Lea, 2006). Since one-fits-all clustering parameters
are difficult to obtain, Hu et al. (2020) propose constructing
a hierarchical tree of several plausible Lidar segmentations,
obtained using a density-based clustering method (Ester et
al., 1996). These regions are then scored using a learned
objectness regressor, and optimal instance segmentation
(w.r.t. the regressed objectness function) can then be obtained
via a cut in this tree. In this paper, we demonstrate that a data-
driven Lidar Panoptic Segmentation network, in conjunction
with hierarchical tree construction, forms a strong baseline
for Lidar Panoptic Segmentation in an Open World.

2.3 Domain Adaption for Lidar Segmentation

Domain adaptation aims to improve the generalization abil-
ity of segmentation models, trained on the source domain,
by adapting models to the (unlabeled) target domain. Prior
works focus on adapting 3D representations (Langer et al.,
2020; Yi et al., 2021), feature representations (Rist et al.,
2019; Jiang & Saripalli, 2021; Wu et al., 2019; Shaban et al.,
2023;Kong et al., 2023).While our paper focuses on identify-
ing unseen novel objects (unknown’s) under similar sensor
distributions and geographical regions, these methods focus
on adapting to target distributions under significant sensor
configuration shifts or environments.
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2.4 Open-Set Recognition (OSR)

OSR requires training on data from K known classes and
recognizing examples from unknown classes encountered
during testing (Scheirer et al., 2012). Many OSR approaches
train a K -way classification network and then exploit the
trained model for OSR (Yoshihashi et al., 2019; Oza &
Patel, 2019). Recent work shows that a more realistic setup
is to allow access to some outlier examples during train-
ing (Hendrycks et al., 2019; Kong & Ramanan, 2021). Such
outliers are used as instances of other class (i.e., held-out
samples that do not correspond to pre-definedK-classes) dur-
ing training, significantly boosting OSR performance. In the
context of (lidar) semantic segmentation,Kong andRamanan
(2021); Cen et al. (2022) approximate the distribution of
novel objects by synthesizing instances of novel classes. Dif-
ferent from the aforementioned, we tackle OSR through the
lens of lidar panoptic segmentation.

2.5 Open-Vocabulary Object Detection

Recent efforts utilize such bottom-up segmentation, com-
bined with Kalman-filter-based object trackers (c.f., (Teich-
man & Thrun, 2012; Dewan et al., 2015; Osep et al., 2018,
2020)) to pseudo-label instances of moving objects in Lidar
Najibi et al. (2022), Zhang et al. (2023) or stereo video
streams (Osep et al., 2019, 2018) and use these instances to
train object detectors for moving object instances. Moreover,
Najibi et al. (2023) demonstrate that detectedmoving objects
can also be classified in a zero-shot manner by distilling
CLIP (Radford et al., 2021) features to Lidar. Different from
the aforementioned, we tackle LPS, which entails dense seg-
mentation and recognition of thing and stuff classes for
moving, as well as stationary objects. Segmented instances
that our method classifies as unknown class could be fur-
ther classified in a similar fashion as proposed in Najibi et
al. (2023) to obtain a fine-grained semantic interpretation of
segmented regions.

2.6 Open-Set (Lidar) Segmentation

Early works by Teichman et al. (2011), Moosmann et al.
(2009), Moosmann and Stiller (2013), Held et al. (2016)
can be understood as early attempts towards open-set Lidar
instance segmentation. In Teichman et al. (2011) after
bottom-up segmentation of individual point clouds, objects
are tracked across time, and classified as car, cyclist,
pedestrian or other. The most similar works to ours
are Wong et al. (2020), Hwang et al. (2021), which study
OSR in lidar point clouds and images, respectively. Their
setup assumes complete annotations for stuff classes,
i.e., assume stuff classes exhaustively labeled. This is
an unrealistic assumption since new stuff classes (e.g.,

bridges and tunnels) may also be encountered at test time
and must be recognized as novel classes. Differently, our
setup assumes novel classes (i.e., unknown’s classes) can
appear in both stuff and thing classes. This is a real-
istic setup, further justified by the ontology change from
SemanticKITTI to KITTI360 (Lin et al., 2022) where sev-
eral new stuff classes are encountered (e.g., Fig. 3: gate,
wall, tunnel, bridge, garage, stop, rail track). This subtle
yet crucial distinction separates LiPSOW from previous set-
tings. Prior works (Wong et al., 2020; Hwang et al., 2021;
Cen et al., 2022) build their methods and evaluation on the
assumption that the unknown consists of only thing, i.e.,
assuming complete annotations for stuff. Our experimen-
tal validation (Sect. 5.3) confirms that the open-set semantic
segmentationmethod (Cen et al., 2022), which assumes com-
plete annotation for stuff classes, does not perform well
in our proposed setup. While Wong et al. (2020) is the first
work investigating LPS in open-set conditions, it conducts
experiments on a proprietary dataset, and does not release
the code or data. We repurpose publicly available datasets
to foster future research on LiPSOW. Finally, we suggest a
different approach for LiPSOW that unifies instance segmen-
tation of known and unknown classes in a class-agnostic
manner, by contrast to Wong et al. (2020) that learns to seg-
ment known classes and only segment instances of novel
classes via DBSCAN.

3 OpenWorld Lidar Panoptic Segmentation

In this section, we review the problem of Lidar Panoptic
Segmentation (LPS) and discuss the limitations of its setup
from the perspective of open-world deployment in Sect. 3.1.
To address the limitations, we introduce LPS in an Open
World setting (LiPSOW) in Sect. 3.2.

3.1 Lidar Panoptic Segmentation

Definition. LPS takes a Lidar point cloudP = {pi ∈ R
3}Ni=1

as input, and aims to classify points w.r.t. a predefined
vocabularyK = {1, . . . , K } of K categorical labels and seg-
ment object instances. Categorical labels are divided into
(1) thing classes, covering countable objects such as cars
and persons, and (2) stuff classes that cover uncountable
amorphous regions such as road and vegetation. For thing
points, LPS methods must segment object instances (e.g.,
every car). Mathematically, LPS methods learn a function
f (·; θ) parameterized by θ , mapping an input point pi to a
semantic label k and object instance IDi , i.e., f (pi ; θ) →
(k, IDi ), where k ∈ K, IDi is a unique ID for the object
instance pi belongs to, and particularly, IDi = 0 means
that pi belongs to one of the stuff classes (i.e., class-k is
stuff). LPS measures the per-point classification accuracy
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(i.e., Lidar semantic segmentation) and per-instance segmen-
tation accuracy.

Remarks.LPS does not properly formulate the real-world
case that there exist points belonging to an unknown
catch-all superclass, which contain various unknown classes
encountered only during testing. For example, a vocabulary
in AVs probably does not have labels such as sliding-
unattended- stroller and fallen- tree-
trunk, butAVsmust segment them into individual instances
for safe maneuver such as “stop”, “yield” or “change-lane”.
We are motivated to address this in detail below.

3.2 LPS in an OpenWorld

Definition. Extending LPS, Lidar Panoptic Segmentation
in the Open World (LiPSOW) further requires classifying
points into an unknown class if the points do not belong
to any of the predefined K semantic classes, and segment
them as unknown instances. That said, unknown covers
all classes that do not correspond to any of the K prede-
fined classes and might contain unannotated instances that,
without prior knowledge, cannot be treated as a stuff or
thing class. Formally, we define the unknown class as
the (K + 1)th class, so LiPSOW methods learn a function
f (·; θ) parameterized by θ , mapping input points pi to a
semantic label k and instance IDi , i.e., f (pi ; θ) → (k, IDi ),
where k ∈ {1, . . . , K , K + 1}. As before, IDi is a unique ID
for point-i and IDi = 0 implies that class-k is stuff.

3.2.1 Significance

By definition, LiPSOW algorithms should be able to dis-
tinguish unknown objects from the predefined K classes
and to segment corresponding object instances. This ability
is useful for many applications. First, recognizing unknown
objects is crucial for safety-critical robotic operations,
e.g., AVs should recognize a never-before-seen sliding-
unattended-stroller to avoid collision and casualty.
Second, unknown instances could be used in conjunction
with active learning (Ren et al., 2021; Zhan et al., 2022) to
help select more valuable examples that are recognized as
unknown to reduce data collection and annotation costs.

Remark I. Can unknowns be seen during train-
ing? Related to LiPSOW is open-set recognition, the task of
recognizing unknown examples during test-time. A con-
ventional setup is that all the training data is labeled w.r.t.
the K predefined classes, and test-time examples may orig-
inate from any of the K known classes, or the (K+1)th

unknown (Scheirer et al., 2012; Bendale & Boult, 2016;
Yoshihashi et al., 2019;Oza&Patel, 2019) class.While these
works suggest that unknown examples should not be part
of the training set, recent work has comprehensively demon-
strated that a more reasonable setup is to explicitly exploit

outlier data or diverse other examples during training.
In particular, Hendrycks et al. (2019); Kong and Ramanan
(2021) show that such models effectively generalize to real
unseen examples. To improve the real-world AV application,
we consider the latter setup, i.e., the training set contains
instances of known classes, labeled as other. Instances
of these classes are available during the training, but, impor-
tantly, do not overlap with the K known classes. These
classes are presented as possible instances of the unknown,
(K+1)th class. Note that the other class is often named
void or unlabeled in many contemporary benchmarks
(Cordts et al., 2016; Neuhold et al., 2017).

Remark II.Howtodefine unknown semantic classes?
Strictly defining all objects that could appear in the open-
world would be difficult. Instead, inspired by the image
segmentation literature (Martin et al., 2001; Fomenko et al.,
2022), which suggests that humans have a consensus on
which image regions constitute object instances, we define
unknown instances as those that were (i) not annotated w.r.t.
a categorical label in the train-set but (ii) labeled as objects
by human annotators in the test-set.

Remark III Can only novel thing classes be regarded
asunknown’s? Prior efforts tackling open-set in images and
point clouds (Wong et al., 2020; Hwang et al., 2021) assume
stuff classes exhaustively labeled. This is an unrealistic
assumption since new stuff classes (e.g., Fig. 3: tunnel,
bridge, rail track, etc.) may also be encountered at test time
and must be recognized as novel classes. This subtle yet cru-
cial distinction separates LiPSOW from prior work.

4 Methodology

Existingmethods forLPS (Aygün et al., 2021;Gasperini et
al., 2021; Zhou et al., 2021; Razani et al., 2021) learn to clas-
sify points, and learn to group points that represent thing
classes. These methods work under the LPS setting, where
semantic and instance-level supervisions are given for all
classes. For LiPSOW, we need to rethink existing method-
ology: LiPSOW methods must (just as in LPS) recognize
predefined semantic classes and segment instances of thing
classes. Additionally, they need to cope with the inherent dif-
ficulty of recognizing and segmenting the unknown class
that mixes stuff and things. Unfortunately, for this
catch-all class, exhaustive semantic and instance-level super-
vision is not available.

To design a LiPSOW method, named Open-World Lidar
Panoptic Segmentor (OWL), we draw inspiration from two-
stage object detectors (Ren et al., 2015). It was shown in
literature that such networks can be repurposed for image-
based open-set (Dhamija et al., 2018) and open-world object
detection (Hwang et al., 2021; Weng et al., 2021; Liu et
al., 2022; Joseph et al., 2021; Fomenko et al., 2022). Two-
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Fig. 2 Open-World Lidar Panoptic Segmentation (OWL): We first
perform K + 1 semantic segmentation network on a point cloud (a, b)
and classify points as stuff, things, and unknown (point color
encodes semantic classes, red points represent unknown’s). Then we

construct a hierarchical tree of “all possible” segments for thing and
unknown points (c) and train a segment-scoring function to cut the
tree (d), finally producing instance and semantic segmentation results
(e) (Color figure online)

stage networks were also adopted for 3D object detection
(Shi et al., 2019; Chen et al., 2015). However, a 3D anal-
ogy of the region proposal network (RPN), a key component
that allows us to recognize instances of novel classes, is not
trivial due to the large 3D search space (Shi et al., 2019;
Chen et al., 2015). For this reason, prior works constrain the
set of anchor boxes to the mean size of each semantic class
(e.g., car and pedestrian sized boxes). This approach
is not scalable to the large variety of object instances that
may appear in the other class. Instead, we rely on the
observations of early work on Lidar perception (Teichman
et al., 2011; Teichman & Thrun, 2012; Held et al., 2016;
Behley et al., 2013), which shows that simple bottom-up
grouping of points yields a compact set of class-agnostic
object candidates. In the following sections, we outline a
simple and effective method for LiPSOW, based on data-
driven approaches (Thomas et al., 2019; Aygün et al., 2021)
and perceptual grouping (Klasing et al., 2008; Douillard et
al., 2011; Hu et al., 2020; Behley et al., 2013) basedmethods,
as well as recent findings in open-set recognition (Kong &
Ramanan, 2021).

4.1 High-Level Overview

We propose a two-stage network for LiPSOW, which is
trained sequentially. We adopt an encoder-decoder point-
based backbone (Thomas et al., 2019) to learn to classify
points in K+1 fashion.We explicitly train our network to dis-
tinguish points from K known classes from theother class,
that is considered to be a representative of the unknown
class during the model training (Fig. 2b). This network esti-
mates label predictions that belong to stuff, things,
and the mixed other class. In the second stage, we run
a non-learned clustering algorithm on points recognized
as thing or other (Fig. 2c) and apply a learned
scoring function to derive the final instance segmentation.
To this end, we produce a hierarchical segmentation tree
(c.f., Hu et al. (2020)), and train the second-stage network
that learns to estimate how likely a point segment is an
object, and run a min-cut algorithm Hu et al. (2020) to
obtain a unique, globally optimal point-to-instance assign-

ment (Fig. 2d). Importantly, this method treats the thing
and other classes in a unified manner, producing instance
segmentation for both. We present individual components of
our Open-World Lidar Panoptic Segmentor (OWL) baseline
below.

4.2 Semantic Segmentation Network

We train an encoder-decoder architecture that operates
directly on point cloud P ∈ R

N×3. In particular, we train
a well-consolidated KPConv (Thomas et al., 2019) network
with deformable convolutions; however, we note that a vari-
ety of backbones suitable for learning representations from
unstructured point sets could be used (Qi et al., 2016; Yan et
al., 2018). We use the KPConv-based LPS network (Aygün
et al., 2021) due to its (i) open-source implementation and
(ii) point-based backbone, that directly learns fine-grained
per-point features, as opposed to 3D sparse-convolutional
networks (Choy et al., 2019) that estimate per-voxel features.
We attach a semantic classifier on top of the decoder fea-
ture representation F ∈ R

N×D that outputs a semantic map
S ∈ R

N×(K+1). Finally, we train this network head using
the cross-entropy loss. The difference from conventional
(lidar) semantic segmentation training is that we explicitly
introduce an additional catch-all class by holding out rare
(other) classes during the model training (Sect 5.1.2). This
class is analogous to the catch-all background class (Ren et
al., 2015), a common practice in training two-stage object
detectors. The final (K+1)-way softmax provides a smooth
distribution that indicates the likelihood of a point being one
of K classes or theother class. Classes classified asother
during test time are considered to be unknown’s.

Such a catch-all other class is not common practice
in training semantic segmentation networks, as it is usually
assumed that points (or pixels) are densely and exhaustively
labeled. However, in LiPSOW, this assumption is no longer
valid. Without it, we would incentivize the network to label
each point as one of the K classes.
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4.3 Segmenting any Object

Using a proximity-based point groupingmethod,we can con-
struct combinatorially many possible point segments from
a point cloud of size N . We learn a function f (p) →
[0, 1], p ⊂ P ∈ R

N×3 that scores objectness of a sub-
set of points in a data-driven manner to indicate how likely
a point segment encapsulates an object. This is analogous to
image-based object proposal generation methods (Alexe et
al., 2012; Zitnick & Dollár, 2014) that adopt sliding window
search and learn an objectness score to rank windows. The
advantage of such methods over recent work on data-driven
pixel/point grouping (Kong & Fowlkes, 2018; Aygün et al.,
2021; Razani et al., 2021; Zhou et al., 2021) is that the set of
possible objects should naturally cover all objects, irrespec-
tive of class labels.

To understand if our segmentation tree covers most of the
relevant objects, we measure recall using labeled instances.
To this end, we follow (Hu et al., 2020) and construct a
hierarchical segmentation tree T by applying Euclidean clus-
tering recursively with decreasing distance threshold using
DBSCAN (Ester et al., 1996) and parameters recommended
by Hu et al. (2020). Our experiments show that with this
approach we can recall 97.2% of instances labeled in the
SemanticKITTI dataset (Behley et al., 2019, 2021) valida-
tion set (see Sect. 5.2). This shows that not only can this
approach segment a large variety of objects, but also it does
not need to learn how to group instances of known classes.
These instances are already included in the segmentation
tree.

4.4 Learning an Objectness Function

There are several ways to learn such a function f (p) →
[0, 1] that estimates how likely a subset of points represents
an object. One approach is to estimate a per-point objectness
score. Following (Aygün et al., 2021), this can be learned
by regressing a truncated distance O ∈ R

N×1 to the nearest
point center of a labeled instance (Aygün et al., 2021) atop
of decoder features F ∈ R

N×D . The objectness value can
then be averaged over the segment p ⊂ P . Alternatively, we
can train a holistic classifier as a second-stage network by
pooling point segment features, followed by fully-connected
layers, similar to the PointNet (Qi et al., 2016) classification
network. In this case, we pre-built hierarchical segmentation
trees Ti for each point cloud i in the training set andminimize
the training loss based on the signal we obtain frommatched
segments between the segmentation trees and set of labeled
instances,GTi . One possibility is to use binary cross-entropy
loss (similar to how the RPN is trained); alternatively, we can
directly regress the objectness value to be proportional to
the point-set intersection-over-union. We detail the network
architecture and training recipes in the appendix (“B Imple-

mentation Details Section”) and discuss design choices on
how to train such a network in Sect. 5.2.

4.5 Unique Point-to-Instance Assignment

Segmentation tree T provides a hierarchy of pairs of point
segments and their corresponding scores. However, for
LiPSOW, we need to assign points to instances uniquely.
Intuitively, this property will be satisfied with any “cut” in
this tree; we could simply output leaf nodes in a tree after
the cut is performed. The question then boils down to where
to cut such that the overall segmentation score is as good
as possible according to some criterion. It was shown in Hu
et al. (2020) that we can compute optimal worst-case seg-
mentation efficiently by simply traversing the tree, as long
as we have strictly smaller segments at each tree-level. Opti-
mal worse-case segmentation is the segmentation that yields
an overall (global) segmentation score when the overall seg-
mentation score is defined as the worst objectness among its
local segments (this can be efficiently evaluated by looking
at the tree leaf nodes). This approach ensures a unique point-
to-segment assignment i.e. no overlap. This algorithm is not
the contribution of this paper. However, for completeness,
we provide the algorithm with a detailed explanation in the
appendix (“C.1 Segmentation Tree Generation” Section).

4.6 Inference

At inference time, we first make a forward pass through our
network, construct the segmentation tree on points classi-
fied as thing or other (i.e. unknown) class, and run
our objectness classifier for each segment in the tree. After
such construction, we run the tree-cut algorithm to obtain
unique point-to-instance assignments. Finally, as semantic
labels within segments may be inconsistent, we assign a
majority vote to each segmented instance.

5 Experiments

In this section, we first outline our experimental setup for
LiPSOW (Sect. 5.1). Then, we discuss and ablate our Open-
World Lidar Panoptic Segmentor (OWL) (Sect. 5.2) on
a standard lidar panoptic segmentation (LPS) benchmark,
SemanticKITTI (Behley et al., 2019, 2021). Finally, we
demonstrate the generality of our approachwith cross-dataset
evaluation (Sect. 5.3).

5.1 Evaluation Protocol of LiPSOW

We set up an evaluation protocol to simulate the conditions
that occur when a robot within a certain geographic region
(i.e., city), e.g., a robot taxi fleet. Here, data is recorded by the
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(a) (b)

Fig. 3 We base LiPSOW setup on SemanticKITTI (Behley et al., 2019,
2021) and KITTI360 (Liao et al., 2021) datasets. We train and validate
models using SemanticKITTI, and re-purposeKITTI360 dataset, which

contains classes, not labeled in SemanticKITTI (i.e., unknown) as a
test set. A detailed list of our taxonomy is provided in the appendix
(Table 5) (Color figure online)

same sensor type (cross-sensor domain generalization is out-
of-scope of this paper), which is reasonable in practice when
deploying robot taxis of the same type. Importantly, however,
even though we focus on a certain geographic region, source
and target data must be recorded at disjunct locations (i.e.,
sequences that appear in the test set should not be recorded
in precisely same city districts). In such a setting, domain
shifts are often gradual e.g., we record more data over time,
and therefore observe a larger variety of known regions and
more other objects that appear in the long-tail of the object
class distribution.

5.1.1 Open-World Lidar Panoptic KITTI

To study LiPSOW in such a setting, we base our experi-
mental setup on SemanticKITTI (Behley et al., 2019) and
KITTI360 (Liao et al., 2021) datasets. They were recorded
in distinct regions of Karlsruhe, Germany (Table 3a). We
use SemanticKITTI for model training and validation, and
KITTI360 sequences only for testing.

5.1.2 Source (Train/Val) Domain

In Fig. 3b (blue “known” set) we visualize the
SemanticKITTI classes (Behley et al., 2019). The dashed
inner circle (pink) denotes the rarer classes, which we merge
into a single other class. Those are examples of regions,
different from K known classes, i.e., (K + 1)th catch-all
class. This allows evaluating how well the model learns to
separate known classes from other by measuring IoU for
the other class and mIoU for all classes within the source
domain. We call this taxonomy Vocabulary 1. However, by
this construction of Vocabulary 1, classes such as bicycle
and motorcycle, which belong to other, are important
for autonomous driving and commonly observed in urban
environments. Therefore, we also construct Vocabulary 2,
which holds out only the rarest categories as other. We
provide further details on vocabulary construction and tax-

onomy in the appendix (“A LiDAR Panoptic Segmentation
in Open-World” Section and Table 5).

5.1.3 Target (Test) Domain

We evaluate models on KITTI360, which encompasses
all SemanticKITTI classes, and importantly, additional 10
thing (with instance labels) and 7 stuff classes, which
are used as novel classes in experiments. We discuss vocab-
ulary changes that ensure SemanticKITTI and KITTI360
vocabularies are consistent in the appendix (“A LiDAR
Panoptic Segmentation inOpen-World”Section andTable 5).

5.1.4 Metrics

We repurpose evaluation metrics proposed in the context
of semantic segmentation (mean intersection-over-union,
mIoU (Everingham et al., 2010)) and panoptic segmentation
(panoptic quality, PQ (Kirillov et al., 2019)). To quantify
the point classification performance (mIoU), we simply treat
other class as “just one more class”. To quantify panoptic
segmentation, we split the evaluation for known classes and
other classes.We evaluateknown using PQ = SQ×RQ,
as defined by Kirillov et al. (2019). The segmentation (SQ)
term averages instance-level IoU for each true positive (TP),

while the recognition quality

(
RQ = TPc

|TPc|+ 1
2 |FPc|+ 1

2 |FNc|

)

is evaluated as F1 score (harmonic mean of precision and
recall). For other classes, the task definition does not
specify which semantic classes are thing classes, nor spec-
ifies the vocabulary of target instance classes. As we cannot
annotate every possible semantic class, it is important to
not penalize false positives, FPs, as these cannot be clearly
defined. Therefore, we follow Wong et al. (2020); Liu et al.

(2022), and replace the RQ term with recall
(

TPc|TPc|+|FNc|
)
,

which we call UQ (unknown quality). Note that our UQ is
computed slightly differently from the UQ introduced by
Wong et al. (2020) because we do not penalize segment
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predictions that overlap unlabeled stuff in the other
class.

5.2 Lidar Panoptic Segmentation

A pre-requisite for good performance on LIPSOW is good
performance on known classes. Therefore, first, we present a
comparison of our methodwith state-of-the-art LPSmethods
on SemanticKITTI Behley et al. (2019) in Table 1. The top
performing method on the val-set for known classes is GP-
S3Net Razani et al. (2021). Due to its strong Transformer-
based backbone, GP-S3Net obtains 73.0% mIoU and the
highest PQ of 63.3%. The remaining methods are in the
ballpark of 60–65% mIoU and 55–59% PQ. We note that
methods such as CPGNet (Li et al., 2022) and LCPS
(Zhang et al., 2023) are also highly performant, however,
these utilize multi-modal inputs (range-views and images,
respectively). We base our OWL on well-consolidated and
easily-extendable KPConv (Thomas et al., 2019), similar to
4D-PLS.1

5.2.1 Semantic Oracle

With the semantic oracle experiment, we aim to answer the
question: how far we can get in LPS with our baseline? To
answer this, we replace our learned classification network
with ground-truth semantic maps (GT semantic map), avail-
able in the validation set, but retain our instance branch. This
yields a near-perfect PQ of 98.3%. As evident, we can recall
97.2% of thing objects with 99.4% precision. This experi-
ment raises questions of whether point-to-instance grouping
needs to be learned; nearly all labeled instances are already
included in our segmentation tree.Moreover, this experiment
suggests that future efforts should focus on driving further
the point-classification performance and that semantic label-
ing may be sufficient – near-perfect instance labels can be
obtained via hierarchical clustering.

5.2.2 Objectness Oracle

Given aKPConv-based semantic network,what performance
can we obtain with perfect objectness scoring function? To
answer this, we use GT instance labels to score all segments
as IoU between a segment and its best-matching GT segment
(obj. oracle). With this approach, we obtain 59.2% PQ. By
propagating semanticmajority votewithin each segment, we
can further improve precision and recall and, consequently,
PQ (+0.5%). This is an upper bound that we can obtain with
the KPConv semantic backbone.

1 GP-S3Net (Razani et al., 2021), DSNetv2 (Hong et al., 2024),
Panoptic-PHNet (Li et al., 2022) do not provide source code.

5.2.3 Ablations

We start with a variant of our network with semantic and
objectness heads (c.f., (Aygün et al., 2021)). In this case,
we compute per-segment objectness by averaging per-point
objectness scores (see Sect. 4). The class-specific variant
builds the segmentation tree separately for each seman-
tic class, while class-agnostic variant builds it upon all
thing and other points, effectively dropping fine-grained
semantic information. With both, we obtain a PQ of 58.7%,
+2.2% improvement over 4D-PLS, which uses identical
segmentation and objectness networks for inference. In the
class-agnostic variant, we observe improvement of +0.2%
in terms of precision (79.9%). We conclude this approach is
more accurate because it is less sensitive to errors in semantic
classification (e.g., a truck, part classified as truck and part
as car, cannot be holistically segmented with class-specific
variant). That said, we can safely treat thing and other
classes in a unified manner. Next, instead of averaging per-
point objectness, we train a holistic second-stage objectness
classifier using cross-entropy loss (see Sect. 4) and observe
PQ improvement (58.8%,+0.1%). Thiswaywegain an addi-
tional +0.1% in PQ. We hypothesize that by training our
network using regression loss, we obtain smoother object-
ness scores compared to sharp-peaked (and overconfident)
binary classification scores, which is beneficial for the tree-
cut algorithm.

5.3 Open-World Lidar Panoptic Segmentation

We now study within-dataset performance on
SemanticKITTI and cross-dataset performance on
SemanticKITTI → KITTI360 for two different source-
domain vocabularies in Tab 3. Vocabulary 1 merges rarer
classes into a catch-all other class (as discussed in
Sect. 5.1) while Vocabulary 2 closely follows the original
SemanticKITTI class definitions. We provide further details
on the construction of these vocabularies in Appendix “A
LiDAR Panoptic Segmentation in Open-World” Section. We
report results of known thing and stuff classes using
PanopticQuality andmean-IoU, and for unknown class (i.e.
points classified as other during inference on KITTI360),
we report Unknown Quality (UQ), Recall, and IoU. We
analyze open-world generalization based on cross-dataset
performance (i.e. unknown) and not on within-dataset per-
formance.

5.3.1 Baselines

We compare our OWL to vanilla 4D-PLS (Aygün et al.,
2021), trained in a single-scan setting. This network uses
the same KPConv backbone (Thomas et al., 2019). We
also train PolarSeg-Panoptic (Zhou et al., 2021), one of
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Table 2 Results of Lidar
Semantic Segmentation.
Methods are trained on
SemanticKITTI under the
specified vocabulary, and
evaluated on the SemanticKITTI
validation set. Experiments
indicate that OSeg (Cen et al.,
2022)) struggles to generalize to
held-out other classes

Vocabulary Method known mIoU other IoU

Vocabulary 1 4DPLS (Aygün et al., 2021) 79.8 56.9

PolarSeg-Panoptic (Zhou et al., 2021) 74.2 47.3

OSeg (Cen et al., 2022) 67.3 1.5

Vocabulary 2 4DPLS (Aygün et al., 2021) 70.5 50.8

PolarSeg-Panoptic (Zhou et al., 2021) 63.7 40.0

OSeg (Cen et al., 2022) 57.6 0.5

the top-performers on standard LPS (see Table 3.1) for
which source code is available. 4D-PLS† modifies the infer-
ence procedure: for points classified as other, we lower
the center-objectness threshold. We provide details in the
appendix (“B Implementation Details” Section). This is
based on the intuition that the objectness head of 4D-PLS
should be able to generalize to novel classes, but with lower
confidence. Finally, OWL ‡ is a modified variant of OWL
that uses a learned point-grouping mechanism (c.f., Aygün
et al. (2021)) for thing classes, and hierarchical segmentor
for the other class (i.e., does not treat instance segmenta-
tion of thing and other classes in a unifiedmanner). This
baseline is inspired by Wong et al. (2020). However, we use
4D-PLS as a backbone network and bottom-up grouping as
described in Sect. 4.

5.3.2 Lidar Semantic Segmentation

We compare our approach to OSeg (Cen et al., 2022), a state-
of-the-art method for open-set Lidar Semantic Segmentation
(LSS) in Table 2. OSeg only tackles the semantic point clas-
sification of Lidar scans and does not address the instance
segmentation aspect of Lidar Panoptic Segmentation. OSeg
consists of two stages: (i) Open-set semantic segmentation,
where each point is classified into one of K known or a catch-
all class using redundant classifiers, and (ii) Incremental
learning, where the catch-all categories are incorporated into
the model. For a fair comparison with our setting, we report
the performance of the first stage of OSeg, without perform-
ing incremental learning. We validate performance using our
proposed vocabulary splits on SemanticKITTI using pub-
licly available implementation (details in the appendix). As
OSeg performs only point classification (i.e., semantic seg-
mentation), we can compare to OSeg only in terms of mean
intersection-over-union with our base network for point clas-
sification (4DPLS). Results show thatOSeg (Cen et al., 2022)
significantly underperforms compared to our base 4DPLS
network on both known and unknown. OSeg performance
on the unknown class performances may be caused by the
object synthesis, which implicitly assumes the other category
consists of onlything and not stuff classes, violating the

spirit of LiPSOW.As can be seen, our 4DPLS-based network
additionally outperforms OSeg on known classes.

5.3.3 Lidar Panoptic Segmentation

Vocabulary 1 In Table 3, OWL is top-performer for known
classes (+1.6% w.r.t. 4D-PLS and +0.8% w.r.t. PolarSeg-
Panoptic). Similarly for other, OWL recalls 48.4% of
objects, compared to 10.8% recalled by 4D-PLS and 14.7%
by PolarSeg-Panoptic. Note that the only other objects
with instance labels in SemanticKITTI are bicycle and
motorcycle. For the unknown class in the cross-domain
section ( KITTI360), we observe 4D-PLS recalls only 2.0%
of instances (1.3% UQ). By changing the inference, 4D-
PLS† recalls 6.0% of objects. OWL recalls 45.1% of objects,
leading to 36.3% UQ. This suggests there is a significant
potential to improve further without modifying our instance
segmentor: the bottleneck seems to be the point-level classi-
fier (see low IoU of 11.4%). This result also highlights that
SemanticKITTI by itself is not sufficient for studying open-
world LPS methods due to a limited number of classes with
instance labels. In KITTI360 we have a significantly larger
number of instances in the unknown class, exposing the
poor generalization of methods trained to segment only the
K -known classes.

In SemanticKITTI→ KITTI360, we observe a perfor-
mance drop in cross-domain evaluation, including known
classes. 4D-PLS performance drops from 67.8%
(SemanticKITTI) to 56.1% PQ (KITTI360) and 79.8% →
65.3%mIoU. PolarSeg-Panoptic works well when evaluated
in awithin-domain setting but fails to generalize toKITTI360
(0.7% PQ). This suggests that existing models are very sen-
sitive to data distribution shifts. Future efforts should aim
not only to improve point classification performance within-
domain but also in cross-domain settings.

Vocabulary 2 This setting follows more closely the official
SemanticKITTI vocabulary and exposes a smaller number
of semantic classes as instances of the other class during
training.We observe thatVocabulary 1 generalizesmuch bet-
ter across datasets, suggesting that grouping rare classes in a
catch-all other class leads to better generalization.
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SemanticKITTI→KITTI360gap Whydoes performance drop
from SemanticKITTI to KITTI360, even though both were
recorded in the same city, with the same sensor? To answer
this question, we analyze per-class performance in Table 4
(Vocabulary 2) and confusion tables (Fig. 5). For com-
mon thing classes, there is a minimal performance drop
(90.6 → 88.3 PQ for car). Indeed cars should look identi-
cal in different regions of the city. As expected, we observe
a performance drop for rarer thing classes (65.4 → 45.8
for motorcycle, 40.3 → 23.2 for bicycle), as only
a handful of instances of these classes are observed in
the (dominantly static) SemanticKITTI. We observe larger
performance drops for stuff classes (e.g., building,
vegetation,fence,terrain). The reason for this drop
is two-fold. Firstly, KITTI360 covers a larger area of the
city that does not overlap with SemanticKITTI. Therefore,
in KITTI360, we observe a larger diversity of these classes,
which confuses the semantic classifier. Second, these classes
are often confused with stuff classes, labeled only in
KITTI360. For example, building is commonly confused
with KITTI360 classes garage and wall, and fence
is confused with wall and gate. Class thrash bin is
often confused with a stuff class sidewalk, likely due
to context: thrash bins are usually seen on sidewalks. Outlier
synthesis (Cen et al., 2022; Kong & Ramanan, 2021) could
be used to minimize this confusion in the future.

5.4 Confusion Analysis

To further analyze the per-class semantic segmentation per-
formance, we plot extended confusion matrices, similar to
those reported in open-set object detection (Dhamija et
al., 2020). The horizontal axis represents the ground-truth
classes, and the vertical axis represents OWL predictions.
We extend the other class into its fine-grained split on the
horizontal axis. SinceVocabulary 1 consists ofmore held-out
classes, we visualize the matrices for this setting.

5.4.1 SemanticKITTI

In Fig. 4, we show the confusion ofOWLon SemanticKITTI.
Among known classes, we observe that the terrain class
ismost confusedwith thevegetation class. In theother
class, we observe significant confusion with the known
classes. For example, other-vehicle is often misclas-
sified as car or truck. Furthermore, other-ground
and parking are often misclassified as sidewalk and
road. Confusion most commonly arises between classes
with super-classes.
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Fig. 4 The extended confusion matrix for OWL trained on
SemanticKITTI and evaluated in-domain (on SemanticKITTI), using
Vocabulary 1. On the left side, we see the confusion among known
classes. On the right, we can see which known classes are con-
fused with classes that form the other class. For known classes,
we observe a confusion between (related) terrain and vegetation. We

also observe that several other points are misclassified as known.
Class other-vehicle is often misclassified as car or truck,
while other-ground and parking are commonly misclassified
as sidewalk and road classes. This explains the low IoU, observed
in Table 2 (main paper) on other in SemanticKITTI (Color figure
online)

Fig. 5 The extended confusion matrix for OWL trained on
SemanticKITTI and evaluated in cross-domain setting (on KITTI-360),
usingVocabulary 1.On the left side,we see the confusion amongknown
classes.On the right,we can seewhichknown classes are confusedwith
classes that form theother class. Contrary to the in-domain confusion,
we observe more confusion within known classes. For instance, car
and truck classes are often confused. The class sidewalk is often
misclassified as terrain, while almost all known classes are con-

fused with vegetation. As can be seen, there is confusion between
known and unknown classes. Ground and parking are often pre-
dicted as road and sidewalk. Class wall (a novel other-stuff
class) is confused with fence, building, and vegetation, presumably
due to their geometric similarity.Classtrailer is frequently confused
with class car. As demonstrated, cross-domain semantic segmentation
is a challenging problem (Color figure online)

5.4.2 KITTI360

In Fig. 5, we visualize the extended confusion matrix for
OWL on KITTI360. In the known classes, we observe con-

fusion between the car and truck classes. Furthermore,
fence and terrain are also frequently misclassified as
vegetation. Next, we analyze confusion between known
andother classes.Weobserve that ground andparking
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Fig. 6 Qualitative results on KITTI360 dataset. OWL successfully segments several other objects (left, shown in red; right: segmented instances).
Issues and challenges: we observe OWL occasionally under-segments other instances (see, e.g., top row) (Color figure online)
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are often misclassified as road and sidewalk. Walls are
confused with the fence, building, and vegetation,
while trailer is commonly confused with car. This
demonstrates the challenge of open-world generalization
of semantic segmentation, indicating the need for future
research on this front.

5.5 Qualitative Results

In Fig. 6, we show several visual examples for OWL in
the KITTI360 dataset (Vocabulary 1), focusing on instances
of unknown classes. As can be seen, OWL performs well
in challenging cases with several unknown objects in the
same scene. For example, in sixth-row-middle and eighth-
row-left, our method segments common objects, such as
trunk, sign board, and pole. Moreover, OWL seg-
ments several rarer objects. For example, in first-row-left,
OWL segments a wheelbarrow. In first-row-right, OWL
segments a bus stop. In fifth-row-left, fifth-row-middle
and sixth-row-left, OWL segments a swing, stoller, and
a motorcycle.

However, we also observe failure cases. In the top row
of Fig 6, OWL sometimes under-segment nearby objects.
For example, on first-row-mid and,first-row-right neighbor-
ing poles and signs are clustered as a single instance.

To further showcase the performance of our method, we
provide a video with OWL inference on SemanticKITTI and
KITTI360 lidar sweeps.

6 Discussion and Conclusion

We investigate Lidar Panoptic Segmentation in an Open
World setting (LiPSOW), for which we set up baselines and
an evaluation protocol. We demonstrate that our OWL per-
forms significantly better than prior work for in-domain and
cross-domain evaluations. In addition to better generalization
across domains, OWL segments a large number of instances
in the other class. Finally, we observed that grouping rare
classes into a catch-all other class leads to significantly
better cross-domain generalization. We hope our insights
spark future investigation and help build perception models
that can generalize to novel environments.

We envision LiPSOW as a first stage towards an end-
to-end continual learning paradigm where unknown objects
from lidar scans are discovered online and clustered offline.
Based on discovered object clusters (with human-in-the-
loop annotations to provide further categorical refinement),
the network can be updated using incremental/continual
learning. Such signals can be incorporated into trajectory
prediction or motion planning algorithms to enable safe
maneuvers.

A LiDAR Panoptic Segmentation in
Open-World

A.1 Vocabulary Splits

We detail our vocabulary split for SemanticKITTI (Behley
et al., 2019, 2021) and KITTI360 (Liao et al., 2021) in
Table 5. The categorization of stuff and thing follows
from the KITTI360 ontology. Vocabulary 1 is constructed
by sorting SemanticKITTI superclasses by the number of
instances in a superclass and holding-out tail classes as
other. Vocabulary 2 is constructed by holding out only the
rarest object instances that do not correspond to any semantic
class, labeled in SemanticKITTI (e.g., other-vehicle,
other-object, etc.)

A.2 Vocabulary Consistency

Inconsistent labeling policies across datasets cause label
shifts. For this reason, we base our evaluation set-up on
SemanticKITTI and KITTI360. The two datasets adopt
largely consistent labeling policies and the same sensor;
therefore, the shift in data distribution can be thought of as a
result of new classes emerging across datasets. To ensure we
have a consistent class vocabulary, we perform the following
measures:

• We merge rider and bicyclist (SemanticKITTI)
with human and rider (KITTI360) into a single
human class to ensure consistency.

• Classes pole and traffic sign are commonly
treated as thing classes. However, in SemanticKITTI,
they are treated asstuff classes becausewe do not have
instance-level annotations for them. As instance labels
for these classes are available inKITTI360, we treat them
as other thing classes in KITTI360. Therefore, indi-
vidual instances of these classesmust be segmented. This
is consistent with the overall goal of LiPSOW: methods
must segment all instances, including those not labeled
in SemanticKITTI.

• Wetreatbuilding as astuff class inSemanticKITTI
and KITTI360 (i.e., we do not treat the building class as
an object, a thing class).

A.3 Model Training

We train all LiPSOW methods using instance labels for
known-things and semantic labels forknown- things
and known-stuff. The instance labels for the other
classes are held out, i.e., not available during training. The
LiPSOW methods should classify these points as other
instead of performing a fine-grained semantic classification
of these points. Additionally, LiPSOWmethods need to seg-
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Table 5 LiPSOW class ontology

Known Other (SemanticKITTI) Unknown (KITTI360)

Vocab. 1 Car, truck, human
road, sidewalk, fence, vegetation,
terrain, building

Bicycle, motorcycle, other-vehicle,
trunk, pole, traffic-sign,
other-structure, other-object
other-ground, parking

Pole, pole group, traffic light, traffic sign, bus,
caravan, trailer, train, motorcycle, bicycle, garage,
stop, small pole, lamp, trash bin, vending machine,
box, unk. construction, unk. vehicle, unk. object
ground, parking, rail-track, wall, bridge,
tunnel, gate

Vocab. 2 Car, bicycle, motorcycle, truck,
human, trunk, pole, traffic-sign
road, sidewalk, fence, vegetation,
terrain, parking, building

Other-vehicle, other-structure,
other-object
other-ground

Traffic light, bus, caravan, trailer, train, garage,
stop, lamp, trash bin, vending machine, box, unk.
construction, unk. vehicle, unk. object
ground, rail-track, wall, bridge, tunnel, gate

In our experimental section, we report results using two vocabularies: Vocabulary 1& Vocabulary 2, both derived from the SemanticKITTI (Behley
et al., 2019, 2021) class ontology. We color stuff classes in bold and thing classes in italic. With bolditalic we denote classes with instance
labels available in KITTI360, but not in SemanticKITTI. LiPSOW methods have access to all labels from known classes; however, no access to
labels for other

ment novel instances from other, e.g., segment bicycles
in SemanticKITTI (Vocabulary 1) and vending machines in
KITTI360 (Vocabulary 1 & Vocabulary 2).

A.4 KITTI360 Ground-Truth

To evaluate methods on the KITTI360 dataset, we require
per-scan semantic and instance labels for Velodyne Lidar
scans. However, KITTI360 only provides multiple accumu-
lated point clouds (accumulated over approximately 200m),
recorded by the SICKLidar sensor.We use these dense accu-
mulated point clouds to retrieve per-scan labels for individual
Velodyne point clouds. Concretely, we use publicly available
scripts (Mosig, 2022) to align individualVelodyne scanswith
the accumulated point cloud based on known vehicle odom-
etry. Once aligned, we perform a nearest neighbor search for
each Velodyne point in the corresponding accumulated point
cloud. In case a match is not found within a 10cm radius, we
mark this point as unlabeled (ignored during the evaluation).
We visualize the retrieved labels for Velodyne point clouds
in Fig. 7.

B Implementation Details

B.1 4DPLS†

Our method and several baselines are based on 4D-PLS
(Aygün et al., 2021) that employs an encoder-decoder point-
based KPConv (Thomas et al., 2019) backbone for point
classification and instance segmentation. The instance seg-
mentation branch consists of three network heads. The
objectness head predicts for all points how likely they are to
represent a (modal) instance center. The embedding and vari-
ance heads are used to associate points with their respective
instance centers. During the inference, we select the point pi

with the highest objectness, evaluate all points under a Gaus-
sian (parameterized by the predicted mean and variances for
pi ), and assign points to this cluster if the point-to-center
association probability is higher than a threshold, i.e.,> 0.5.
This process is repeated until the maximum objectness is
below a certain threshold (0.1 in 4D-PLS). To ensure high-
quality segments, 4D-PLS also enforces that the highest
objectness should be > 0.7.

Since the objectness head is trained independently of the
semantic head in a class-agnostic fashion, we hypothesize
it should be able to learn a general notion of objectness
from geometric cues. Therefore, we evaluate whether it can
segment instances of novel classes with lower confidence.
Therefore, we adapt the inference procedure in 4D-PLS to
allow additional instances to be segmented. We achieve this
by reducing the minimum objectness threshold from 0.7
to 0.3 for other, while maintaining the same threshold
for known things. Our experimental evaluation con-
firms that this baseline can segment a larger number of
other instances compared to 4D-PLS.

B.2 OSeg (Cen et al., 2022)

OSeg (Cen et al., 2022) introduces a novel strategy for open-
world semantic segmentation of LiDAR Point Clouds. The
proposed framework consists of two stages: (i) Open-Set
semantic segmentation (OSeg) and (ii) Incremental Learn-
ing. For a fair comparison, we benchmark OSeg against our
baselines.

OSeg introduces redundancy classifiers on top of a closed-
set model to output scores for the unknown class. In
addition, OSeg uses unknown object synthesis to generate
pseudo-unknown objects based on real novel objects. The
OSeg formulation considers other vehicle as a novel
category for SemanticKITTI. To benchmark under our pro-
posed LiPSOW formulation, we modify OSeg to allow for
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Fig. 7 Semantic and instance labels for KITTI360 evaluation, retrieved from the dense accumulated labeled point clouds. Grey color denotes points
for which we could not retrieve labeled points within a 10cm radius to transfer labels (Color figure online)

more classes in other (based on our vocabulary splits)
and train from scratch. We use the default set of hyper-
parameters, and use 3 redundancy classifiers.

C OWL: Instance Segmentation

C.1 Segmentation Tree Generation

Given an input point cloud, we first make a network pass and
classify points into thing, stuff, and other classes.
Then, we construct a hierarchical tree segmentation tree T
by applying HDBSCAN (McInnes et al., 2017) on points.
Concretely, at each level of the hierarchy, we reduce the dis-
tance threshold ε (HDBSCAN connectivity hyperparameter)
to obtain finer point segments. Therefore, the nodes in T
contain strictly smaller and finer-grained instances in child
nodes.We followHu et al. (2020) and use distance thresholds
ε ∈ [1.2488, 0.8136, 0.6952, 0.594, 0.4353, 0.3221].

C.2 Learning Objectness-Scoring Function

Given a hierarchical tree T over the input point cloud, we
need to find a node partitioning such that each point is
assigned to a unique instance. Naturally, some nodes in
the tree would contain high-quality segments, while others
would consist of a soup of segments or overly segmented
instances. To associate a metric quality for each node, we
follow Hu et al. (2020) and learn a function to score each
segment in the node.

C.2.1 Network Architecture

Each node in the tree consists of a segment (i.e., a group of
points), where the number of points may vary. We concate-
nate all the points in a segment to get a N × 3 dimensional
tensor, where N is the number of points in the segment. There
are several ways how to learn such a function f (p) → [0, 1]
that estimates how likely a subset of points represents an
object. One approach is to estimate a per-point objectness
score. Following Aygün et al. (2021), this can be learned by
regressing a truncated distance O ∈ R

N×1 to the nearest

point center of a labeled instance (Aygün et al., 2021) on-top
of decoder features F ∈ R

N×D . The objectness value can
then be averaged over the segment p ⊂ P .

Alternatively, we can train a holistic classifier as a
second-stage network. The network comprises three major
components: a) input projection layer, b) segment embed-
ding layer, and c) objectness head. In the input projection
layer, we project the input point cloud to a higher dimension
of N × 256 by passing through two fully-connected layers.
Then, we compute a per-segment embedding of dimension
512 using the embedding layer. This consists of set abstrac-
tion layers inspired by PointNet++ (Qi et al., 2017), followed
by a reduction over the points.

C.2.2 Network Training

The objectness head predicts per-segment objectness, using
three fully-connected layers with a hidden layer of size 256.
To obtain training supervision, we pre-built hierarchical seg-
mentation trees Ti for each point cloud i in the training
set and minimize the training loss based on the signal we
obtain from matched segments between the segmentation
trees and set of labeled instances, GTi . As described in Sec
4 of the main paper, for each node in the segmentation tree,
the regressor predicts the objectness value which is super-
vised by the intersection-over-union of the segment with the
maximal matching ground-truth instance.

Alternatively, we can also formulate the network as a clas-
sifier, where the post-softmax outputs from the network can
be viewed as the quality of each segment (i.e., how good or
bad a segment is), and this is trained using a binary cross-
entropy loss. We observe that the regression formulation
empirically results in a better tree cut compared to the clas-
sifier formulation. We attribute this to the over-confident and
peaky distributions resulting from the classifier. The regres-
sor formulation benefits from a smoother distribution over
objectness scores, resulting in a better tree cut. We evaluate
the aforementioned variants in Table 1 in the main paper.
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C.3 Inference

With a score assigned to each segment, we now need to find a
global segmentation, i.e., the optimal instance segmentation
from an exponentially large space of possible segments. The
global segmentation score is defined as the worst objectness
among the individual segments in a tree cut. The optimal
partition is the one that maximizes the global segmentation
score. We outline this inference algorithm in Algorithm 1.
Each node in the tree T constitutes a segment proposal for
an object instance. For each proposal S, we score its object-
ness using the learned objectness function f . The segment
S is deemed as an optimal node to perform a tree-cut if its
objectness is greater than any of its child nodes. By design,
this tree-cut algorithm ensures that each segment is assigned
to a unique instance. For details about the algorithm and opti-
mality guarantees, we refer the reader to Hu et al. (2020).

Algorithm 1 Node Partitioning given a Hierarchical Seg-
mentation Tree
1: function Tree- Cut(S: Point Segment, T: Tree, f(·): Scoring Func-

tion)
2: FS ← f (S) � Predicted objectness for segment S
3: CS ← Set of children nodes for S in T
4: for Si in CS do
5: Ti ← subtree of T with Si as root
6: Si , Fi ← Tree- Cut(Si , Ti , f ) � Score each segment in the

child node
7: if Fi ≤ FS then return S, FS
8: end if
9: end for
10: if mini Fi > FS then
11: S ← ⋃

i Si
12: FS ← mini Fi
13: end ifreturn S, FS
14: end function

D Implementation Details

D.1 Training Encoder–Decoder Network

.To train the point-classification network on each vocabulary,
we follow the training procedure from Aygün et al. (2021).
We train the network for 1000 epochs with a batch size of 8.
We use the SGD optimizer with a learning rate of 1e− 3 and
a linear decay schedule.

D.2 Second-Stage Training

.In contrast to the encoder-decoder network, which takes an
entire point cloud as input, the second-stage network requires
positive and negative training instances (i.e., examples of
objects and non-objects) from the segmentation tree to eval-

uate the loss functions (regression or cross-entropy losses).
To generate these instances, we first generate semantic pre-
dictions. Next, we use the points classified as thing or
other to generate the segmentation tree using thresholds as
described in Sect C.1. Each node in the segmentation tree is
a training sample for the second-stage network. We use pre-
dictions from the encoder-decoder instead of ground-truth
semantic labels, since during inference the second-stage net-
work must be robust to misclassification errors within each
node in the segmentation tree.

D.3 Training Objectness Regression Function

.To train the regressor, we need to generate the corresponding
ground-truth for each segment in the generated training set.
For a given segment, the target score is computed as the
maximum intersection-over-union of the segment with all
the ground-truth instances in the dataset. Finally, we train
the network using a mean-squared error loss function with a
learning rate of 2e− 3 and batch size of 512 for 200 epochs.

D.4 Training Objectness Classification Function

Alternatively, learning an objectness function can be posed
as a classification problem, rather than a regression prob-
lem. In this case, we supervise the network via cross-
entropy loss. The target labels for training this classifier
are obtained by binarizing the regression targets using pre-
defined intersection-over-union (IoU) thresholds. A regres-
sion targetwith an IoUgreater than 0.7 is defined as a positive
segment, and a regression target with an IoU less than 0.3 is
treated as a negative segment. Since the ground-truth clas-
sification targets are generated from the hierarchical tree,
which consists of predicted known-things or other,
the generated training data is strongly biased towards positive
samples. To elaborate, since the point classification network
performs well, the segments in the tree most likely consist of
known-things or other, barringmisclassification error.
Therefore, while training this network, we observe a dispro-
portionate imbalance towards the positive class. To mitigate
this, perform a weighted resampling; We resample instances
(segments) of either positive or negative classes with a prob-
ability proportional to the inverse frequency of that class.

E Complexity Analysis

OWL requires a two-stage training process. The first stage
method, 4DPLS (Aygün et al., 2021) is not a real-time. In
addition, the second stage requires the construction of a seg-
mentation tree. Given N points, the algorithm’s (Hu et al.,
2020) time complexity and space complexity are linear in
N . In practice, we observe that N is quite large, often of the

123



International Journal of Computer Vision

order of 100,000+ points per scan. Therefore, a limitation of
OWL is that it cannot be run in real-time.
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