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Abstract
Open-world visual recognition aims to empower models to identify objects in real-world settings, particularly when they
encounter domains or categories that are not included in the training dataset. This paper proposes a specific open-world visual
recognition task, i.e. Pattern-Expandable Image Copy Detection (PE-ICD). In realistic scenarios, the continuous emergence
of novel tampering patterns necessitates fast upgrades to the ICD system to prevent confusion in already-trained models.
Therefore, our PE-ICD focuses on two aspects, i.e., rehearsal-free upgrade and backward-compatible deployment: (1) The
rehearsal-free upgrade utilizes only the new patterns to save time, as re-training on the old patterns can be very time-
consuming. (2) The backward-compatible deployment allows for comparing the updated query features against the outdated
gallery features, thereby avoiding the need to re-extract features for the extensively large gallery. To lay the foundation
for PE-ICD research, we construct the first regulated pattern set, CrossPattern, and propose Pattern Stripping (P-Strip).
CrossPattern regulates both base and novel patterns during the initial training and subsequent upgrades. Given a query, our
P-Strip separates the tamper patterns by decomposing it into an image feature and multiple pattern features. The advantage
of P-Strip is that we can easily introduce new pattern features with minimal impact on the image feature and previously seen
pattern features. Experimental results show that P-Strip supports both rehearsal-free upgrading and backward compatibility.
Our code is publicly available at https://github.com/WangWenhao0716/PEICD.
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1 Introduction

The goal of open-world visual recognition is to equip models
with the ability to deal with domains or categories in real-
world scenarios that are not present in the training dataset.
This paper focuses on a specific aspect of open-world visual
recognition, i.e., Image Copy Detection (ICD) with particu-
lar attention to the realistic concern of novel tamper patterns.
Basically, ICD aims to identify whether a query image is
copied from the gallery after tampering with. This technique
is crucial for improving the quality of content on the internet,
preventing copyright infringement, and identifying pirated
images. Although ICD methods try to employ a wide range
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of patterns for training, it is still infeasible to enumerate all
possibilities. New tamper patterns are continuously emerg-
ing and can easily confuse an already-trained ICD model.
Therefore, it is crucial to promptly update the ICD system
whenever a novel pattern is detected.

A key challenge for the ICD system upgrading is the
efficiency/latency problem because the fast reaction abil-
ity is critical (Zhong et al., 2022; Wang et al., 2023b). If
we ignore the latency problem, a thorough solution should
be retraining the ICD model with “seen + novel” patterns
and then extracting all the “gallery + query” features. In
this pipeline, two factors are particularly time-consuming:
training with already-seen patterns and re-extracting gallery
features. This is because the already-seen patterns are rela-
tively abundant (compared with the novel patterns), and the
gallery is tremendously large. If these two factors can be
removed from the upgrading process, the latency problem
would be well addressed.

In this paper, we formally introduce Pattern-Expandable
Image Copy Detection (PE-ICD), aiming at efficiently
upgrading an already-trained ICD model for newly-merged
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Fig. 1 Comparisonbetween the standard ICDpipeline and the proposed
PE-ICD pipeline with a corresponding solution. PE-ICD is featured for
rehearsal-free upgrade and the backward-compatible matching. When
novel tamper pattern emerges, PE-ICD only uses the novel patterns (no
base patterns) to upgrade the ICD model. Moreover, PE-ICD only re-

extracts the query features and compares the updated query features
against the out-of-date gallery features. Rehearsal-free upgrade and
backward compatibility avoid the cost of training on old patterns and
inference on gallery features, respectively

tamper patterns. As shown in Fig. 1, compared with the
standard ICD, PE-ICD has two emphases, i.e., rehearsal-
free upgrade and backward-compatible deployment. (1)
Rehearsal-free upgrade uses only the new patterns (NO old
patterns) for upgrading the ICD models, because reusing the
massive old patterns is very time-consuming. (2) Backward-
compatible deploymentmeans that features from the updated
model are compatible to features from the out-of-date model.
It enables direct comparison between the updated query fea-
ture and the outdated gallery feature, thereby avoiding the
need to re-extract features for the significantly large gallery.
Combining these two characteristics, PE-ICD removes the
two most time-consuming factors for upgrading an ICD
model and thus facilitates fast reaction against newly-merged
tamper patterns.

To pave the way for PE-ICD research, we contribute
the first regulated pattern set CrossPattern. This pattern
set divides the tamper patterns into two sub-sets, one for
base training and the other one for upgrade. Specifically,
the base training only uses the base patterns, resulting in
a base model that performs poorly on the novel patterns.
Then the upgrading stage uses only the novel patterns to
fine-tune the base model. During the inference, we use the
out-of-date/upgraded model to extract the gallery/query fea-
tures, respectively. We expect this upgrade (1) improves the
ICD accuracy on the novel patterns (compared with base
training) and (2) maintains the ICD accuracy on the base
patterns. Specifically, we observe that the upper bound for

ICD accuracy on novel patterns can be assessed through a
standard upgrade (Fig. 1a), which is significantly more time-
consuming than our PE-ICD (Fig. 1b). An effective PE-ICD
should aim to narrow the gap toward this upper bound.

Moreover, we propose Pattern Stripping (P-Strip). Previ-
ous ICDmethods, which learn a single feature for each image
and make feature invariant to tamper patterns, are empir-
ically found to lack rehearsal-free ability and backward-
compatibility. In contrast, our P-Strip learns a image feature
plus multiple tamper features. When comparing a query
image (which might have been tampered with) against a
gallery image, P-Strip first subtracts the tamper features from
the query image feature and then compares the remaining
feature against the gallery feature. In P-Strip, the impact
of tampers is removed by the feature subtraction, yielding
the so-called pattern stripping. As shown in Fig. 1c, we
implement P-Strip with a Vision Transformer (ViT) (Doso-
vitskiy et al., 2020) backbone and use different queries for
extracting different features from the shared backbone fea-
ture. The advantage of P-Strip is: it can easily incorporate
features of novel patterns by adding new queries, while
keeping the already-learned image feature and base pattern
features unchanged. Our method is backward-compatible
because: The gallery does not contain any patterns, result-
ing in minimal interaction with newly added pattern queries.
Consequently, the gallery features remain nearly unchanged
during the upgrade process. As a result, the updated query
features, which are compatible with the updated gallery
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features, are also compatible with the out-of-date gallery fea-
tures. Experimental results also prove that P-Strip facilitates
both rehearsal-free upgrading and backward compatibility.

To sum up, this paper makes the following contributions:

1. We propose a new ICD task called Pattern-Expandable
Image Copy Detection (PE-ICD), which focuses on effi-
ciently upgrading an already-trained ICDmodel for novel
tamper patterns.

2. We build the first regulated pattern set, CrossPattern,
and contribute Pattern Stripping (P-Strip) as a baseline
method. P-Strip strips pattern features from an image fea-
ture and can be easily expanded for novel patterns based
on the query mechanism of the transformer.

3. Extensive experimental results demonstrate the practical-
ity of the proposed PE-ICD benchmark, as well as the
rehearsal-free upgrading capability and backward com-
patibility of the proposed P-Strip method.

2 RelatedWorks

2.1 Existing Image Copy DetectionMethods

Past research has explored the problem of identifying copies
or similar images through deepmetric learning. For example,
Multigrain (Berman et al., 2019) uses joint training to create
image embeddings atmultiple levels (i.e., class, instance, and
copy). BoT (Wang et al., 2021b) provides a strong baseline
for ICD with product-level matching accuracy using a 256-
dimensional embedding. Another approach, called SSCD
(Pizzi et al., 2022), adapts SimCLR (Chen et al., 2020) to
the copy detection task by modifying the architecture and
training objective. Recently, a study (Wang et al., 2023a) has
focused on the hard-negative problem in ICD.However, these
works employ various complex training patterns to cover all
possible test scenarios, which may lead to overly optimistic
results in their benchmarks. In contrast, this paper carefully
regulates the patterns used for training and testing, taking the
pattern-expansion problem seriously.

2.2 Image Retrieval

Image retrieval aims to return images that are similar or
relevant to the query using various techniques, such as
content-based image retrieval (Chaoyu et al., 2024; Rao et
al., 2024; Zhu et al., 2023) and text-based image retrieval
(Wang et al., 2023c; Choudhury et al., 2024;Wu et al., 2024).
Our PE-ICD belongs to the category of content-based image
retrieval. Beyond the general tasks of content-based image
retrieval, we make some novel explorations: (1) The ICD
task focuses on finer granularity: instead of considering the
same object (Flusser et al., 2023) or instance (Chaoyu et al.,

2024; Rao et al., 2024) as the true match, the true match in
ICD is defined as edited copies or near-exact duplicates. (2)
Unlike traditional image retrieval approaches that are gen-
eralizable or domain adaptive (Zhou et al., 2023; Li et al.,
2023), we emphasize generalization across different patterns
rather than images.

2.3 Compatible Representation Learning

Generally, compatible representation learning aims to gener-
ate new features compatible with existing ones. Some works,
such as AML (Budnik & Avrithis, 2021), RBT (Wang et
al., 2020) and CMP-NAS (Duggal et al., 2021), focus on
the compatibility of features among different-sized models.
BCT (Shen et al., 2020) proposes an influence loss that incor-
porates the learned classifier of the old embedding model
into the training of the new embedding model to achieve
backward compatibility in representation learning. Our PE-
ICD demands backward compatibility and is thus closely
related to compatible representation learning.However, there
is a notable difference in terms of training. PE-ICD only
allows the upgrading of training data to only novel samples
(rehearsal-free setting), whereas compatible representation
learning typically allows the use of old data.

2.4 Incremental Learning

Incremental learning involves training amodel on a small ini-
tial dataset and then continuously updating the model as new
data becomes available. This allows the model to learn and
adapt to changes in the data distribution over time without
the need to retrain on the entire dataset (Lao et al., 2023; Pu
et al., 2023). Based on regularization techniques, LwF (Li &
Hoiem, 2017) and EWC (Kirkpatrick et al., 2017) aim to pre-
vent catastrophic forgetting by constraining the changes to
themodel’s parameters during training. The iCaRLalgorithm
(Rebuffi et al., 2017) uses a combination of distillation and
replay-based methods to retain previously learned informa-
tion while training on new data. The updated model trained
with incremental learning typically requires the gallery and
query features update and thus does not consider backward
compatibility. Therefore, these methods cannot be directly
applied to the PE-ICD task.

3 Benchmark

This section first provides a brief overview of the publicly
available ICD benchmarks and then elaborates on our PE-
ICD benchmark.
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3.1 Available Benchmarks

Currently, there are three publicly available ICDbenchmarks,
i.e. CopyDays (Douze et al., 2009), DISC21 (Douze et al.,
2021), and NDEC (Wang et al., 2023a).

CopyDays (Douze et al., 2009) was introduced in 2009.
It only provides 157 query images and 3,000 gallery images
without training data. The tamper patterns are relatively sim-
ple, e.g., contrast changes and blurring.

DISC21 (Douze et al., 2021) is a comprehensive ICD
benchmark proposed in 2021. It is designed for large-scale
data, featuring one million training images and one million
gallery images, and complex tamper patterns. Moreover, it
includesmany distractor queries, which have no truematches
in the gallery.

NDEC (Wang et al., 2023a) considers the hard negative
problem in ICD, i.e., some references are inherently similar
to a query, but they are not copy-paste pairs. By featuring the
hard-negative problem, NDEC makes ICD evaluation more
realistic.

3.2 The Proposed PE-ICD Benchmark

We construct the first PE-ICD benchmark based on DISC21
images. Different from the original DISC21 dataset, our PE-
ICD benchmark simulates the realistic scenario that new
tamper patterns are emerging so that requires upgrading the
out-of-date ICD system. Specifically, PE-ICD only allows
1) using base patterns for base training, and then 2) using
novel patterns for upgrade. The test samples (query) have
both “base + novel” patterns.

Definition and Evaluation Metric for PE-ICD. For-
mally, in the base training stage, the objective is to train
a model g using only the base pattern set Pb. We denote
the trained model at this stage as gb. In the rehearsal-free
upgrade, the PE-ICD allows upgrading the trained model gbτ
with only the novel pattern set Pn . The updated model is
denoted as gb→n and is not allowed to extract reference fea-
tures.

The query sets generated by the base and novel patterns
are denoted as Qb and Qn , respectively. The reference set is
denoted as R. PE-ICD is interested in (1) the extent to which
the model forgets the base patterns after being trained on
the novel one, i.e., the performance decline from gb (Qb) ∼
gb (R) to gb→n (Qb) ∼ gb (R); and (2) the extent to which
the model’s performance improves on novel patterns after
the upgrading stage, i.e., the performance improvement from
gb (Qn) ∼ gb (R) to gb→n (Qn) ∼ gb (R) .

Therefore, in addition to the commonly used μAP metric
(Douze et al., 2021), we introduce a new metric specifically

for PE-ICD called pattern gain:

(
μAPQn

gb→n
− μAPQn

gb

)
−

(
μAPQb

gb − μAPQb
gb→n

)
, (1)

where μAPQ
g is the μAP of model g tested on query set Q.

This protocol thoroughly evaluates both the performance
decline on the base set of patterns and the performance
enhancement on the novel set of patterns after upgrading.

Details of Our Benchmark. In PE-ICD, the model is first
trained on base patterns are then upgraded on novel patterns.
Correspondingly, the PE-ICD benchmark pre-defines a pat-
tern set, CrossPattern, including two sets of training pat-
terns. Specifically, the training set is divided into two groups
with 11 base patterns and 11 novel patterns. The testing set
uses all the 22 patterns to generate the query images. The base
patterns include RandomCrop, RandomRotate, HoriFlip,
RandomBright, RandomContrast, RandomContrast, Ran-
domOpacity, RandomEmoji, RandomImage, RandomPad,
RandomPers, RandomPixel, and RandomShuffle. The novel
patterns include RandomBlur, RandomSatur, RandomText,
GrayScale, RandomMeme, RandomStripe, RandomNoise,
RandomSharp, RandomSkew, VertFlip, and OverlayScreen.
See the details of all 22 patterns in the Appendix.

The original images (without tamper) are from the
DISC21 dataset. Concretely, the training dataset is the same
as the DISC21 training dataset, which contains 1 million
unlabeled images and provides a sufficient source for adding
patterns. The gallery dataset is also the same as the DISC21
gallery dataset. Finally, we build two query datasets using
the two sets of patterns and evaluate models performance on
these datasets to assess howwellmodels perform on different
patterns.

4 Method

In this section, we first present the preliminary and then intro-
duce the proposed Pattern Stripping (P-Strip) method for the
PE-ICD task.

4.1 Preliminary

4.1.1 The ICD Baseline

The ICD baseline (Wang et al., 2021a, b, 2023a) usually con-
sists of two steps, i.e., generating copy-paste pairs and deep
metric learning. Although these two steps can be merged by
instantly generating copy-paste pairs for each training mini-
batch, the online generation can lead to lowerGPUutilization
and training inefficiency. Therefore, we follow the popular
two-step pipeline (Wang et al., 2021a, b, 2023a).
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Fig. 2 The proposed PE-ICD benchmark. The images on the left and right are generated by different pattern sets. Therefore, there is a pattern gap
between the two sets. The benchmark emphasizes the rehearsal-free upgrading and backward compatibility of models

Fig. 3 The illustration of
Pattern Stripping (P-Strip). The
process involves removing
patterns from the feature level of
an image. In this approach,
pattern queries are trained as
deep representations of patterns,
and a class token is used to
subtract the weighted sum of
these queries to strip the patterns
from the image. This method
results in more efficient training
and improved performance
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Generating Copy-Paste Training Pairs. Given the un-
edited images, we use pre-defined patterns to generate a
training dataset. Specifically, we randomly select several pat-
terns from the holistic pattern set, use them to transform the
image into some edited copies. As such, each edited copy
and the original image form a positive copy-paste pair and
thus share a “labeled” training class. In practice, for each un-
edited image, we generate multiple positive edited copies.

Deep Metric Learning on the Copy-Paste Pairs. After
generating “labeled" training classes using various patterns,
deep metric learning is performed on these classes to train
a model for ICD tasks. This can be done using pairwise
training, classification training, or a combination of both.
Common loss functions for pairwise training include triplet
loss (Hermans et al., 2017) and N-pair loss (Sohn, 2016).
Classification training can be performed using loss functions
such as Large-margin Softmax loss (Liu et al., 2016), Cir-
cle loss (Sun et al., 2020), and CosFace (Wang et al., 2018).
In this study, we choose the popular CosFace (Wang et al.,
2018), considering its effectiveness and simplicity.

4.1.2 Rehearsal-Free Upgrade

Definition and Mechanism. Rehearsal-free upgrade is a
technique used in incremental learning or continual learn-
ing, where a model is required to learn new information or
tasks over timewhile retaining its performance on previously
learned tasks without explicit retraining on the old data. The
rehearsal-free upgrade aims to efficiently adapt deep learn-
ing models to new information or tasks without the need
for extensive retraining on old data, thereby overcoming the
challenge of catastrophic forgetting.

Realization in ICD. In the context of ICD, the system is
designed to learn new tampering patterns without the need
to retrain on old patterns. This is achieved by introducing
a mechanism that allows the model to adapt to new pat-
terns efficientlywhile retaining its ability to detect previously
learned patterns. This approach saves time and computational
resources, as retraining on old patterns can be very time-
consuming.

4.1.3 Backward-Compatible Deployment

Definition and Mechanism. Backward-compatible deploy-
ment ensures that an updated model can still function
correctly andproduce consistent results in an existing system,
even if the system was designed for an older version of the
model. This concept is crucial in scenarios where models are
continuously updated or improved, but the systems relying
on them cannot be updated simultaneously or frequently.

Realization in ICD. In the context of ICD, the updated
model can compare new query features against outdated
gallery features without the need to re-extract features for

the entire gallery. This ensures that the system remains com-
patible with existing features, even after it has been updated
to detect new tampering patterns.

4.2 Pattern Stripping (P-Strip)

The Intuition of P-Strip. Our method is featured for explic-
itly stripping pattern features from query features, so that
novel tamper patterns can be easily added. We first explain
the intuition of P-Strip in detail as below:

We note that popular methods (Berman et al., 2019;Wang
et al., 2021b; Pizzi et al., 2022; Chen et al., 2020; Wang et
al., 2023a) try to suppress / eliminate the impact of tamper
patterns: Let us assume that an image x is transformed into
an edited copy through A(x). A popular ICD method learns
a feature extractor f and tries to learn the pattern invariance
with the below objective:

f (A (x)) �→ f (x) , (2)

where �→ denotes approximating.
When updating f for novel tamper patterns, the train-

ing is prone to forgetting the already-learned knowledge on
base tamper patterns (since we do not use base patterns dur-
ing upgrading). In contrast, our P-Strip does not use feature
extractor f for eliminating the variation caused by patterns.
It disentangles the image feature and the pattern features and
uses explicit feature subtraction operation to strip the impact
of patterns, which is formulated as:

f (A (x)) −
M∑
i=1

1(i)gi (A(x)) �→ f (x) , (3)

where gi extracts the i-th pattern feature, M is the number of
base patterns, 1(i) indicates whether the i-th pattern exists
in A(x). In practice, we use predicted soft probability scores
to replace 1(i).

The advantage of P-Strip in Eq. 3 is: it can be expanded
to accommodate novel patterns with little impact on the
already learned image feature f and pattern feature gi . That is
because: In the absence of P-Strip, image features inevitably
contain pattern information. When novel patterns are intro-
duced, the models struggle to adapt due to the existing gap
between patterns. Consequently, these novel pattern features
interfere with the feature extraction process, leading to less
representative image features.

We formulate the upgrade training as:

f (A (x)) −
M+N∑
i=1

1(i)gi (A(x)) �→ f (x) , (4)

123



International Journal of Computer Vision

where N is the number of novel patterns. It can be seen that
learning novel pattern features gi (i = M + 1, · · · , M + N )

is independent from the already learned features.
Implementing P-Strip with ViT and Query Mecha-

nism. We use Vision Transformer (ViT) (Dosovitskiy et al.,
2020) to implement the concept of P-Strip (Eqs. 3 and 4).
The structure is illustrated in Fig. 3. For an input image,
we follow ViT by tokenizing it and then feeding the tokens
(class token + patch tokens) into the transformer.Meanwhile,
we concatenate some multiple pattern queries (M for base
training and M + N for upgrading) as the context of the
input tokens. These pattern queries pass throughmultipleViT
blocks,where they interactwith image patch tokens via atten-
tion and detect the potential patterns present in the image.

In the base training stage, as shown in Fig. 3 (upper), we
use thepattern queries in the last output layer as thepatten fea-
tures, i.e.,G = [

g1, g2, . . . , gM
]
.G are then fed into a linear

classifier parameterized with W = [w1,w2, . . . ,wM ]. By
comparing gi to wi , we predict the probability score indicat-
ing whether the i-th pattern exists in the input image, which
is formulated as:

pi = sigmoid(wT
i · gi ) = 1

1 + e−wT
i ·gi

. (5)

The probability scores are supervised through the popular
BCE loss as below:

Lbce =
M∑
i=1

−(1 − yi ) log(1 − pi ) − yi log(pi ), (6)

where yi is the ground-truth label (yi = 1 if the i-th pattern
exists).

We use the final class token cls as the image feature. Cor-
respondingly, the P-Strip operation in Eq. 3 is implemented
by:

cls −
M∑
i=1

pigi . (7)

During upgrading, as shown in Fig. 3 (lower), the pattern
features are expanded to Ĝ = [

g1, g2, . . . , gM+N
]
, and the

parameterized linear classifier is expanded to

Ŵ = [
w1,w2, . . . ,wM+N

]
. (8)

Corresponding, we have the expanded BCE loss:

ˆLbce =
M+N∑
i=1

−(1 − yi ) log(1 − pi ) − yi log(pi ), (9)

and the new P-Strip operation:

cls −
M+N∑
i=1

pigi . (10)

Training and Test Process. Considering that the PE-ICD
benchmark requires the base training and upgrading stages,
in the base training stage, only M (the number of patterns
in the base pattern set) pattern queries are prepended. We
add N new pattern queries to the trained model during the
upgrading stage.

In the base training stage, all the parameters can be opti-
mized and the training objective is

L = Lmtr + λ · Lbce, (11)

where Lmtr is the metric learning loss (we use CosFace
(Wang et al., 2018) here) and λ is the balance parameter.

In the upgrading stage, we use the same training objec-
tive, but to fulfill the backward compatibility,only the newly
added N pattern queries and the classification head are train-
able. This design avoids the destruction of the original
trainedmodel, leading to compatible features. However, hav-
ing fewer trainable parameters makes training more difficult.
Fortunately, our proposed P-Strip helps alleviate this prob-
lem, ultimately improving performance. Another advantage
of this design is that when updating the embedding models
stored in millions of computing nodes for testing, we only
need to distribute the newly learned pattern queries, which
results in a fast model upgrade process.

In the test stage, the model trained in the base training
stage is used for the feature extraction of gallery images
in two stages. The features of images in the two query
sets are extracted by the models trained after the upgrad-
ing stage. The patterns contained in the query are predicted
and stripped automatically. The rationales behind the design
of re-extracting query features when reusing gallery features
are: (1) The query may contain novel patterns that are not
learned by the outdated model. However, the galleries con-
sist of original images without tamper patterns. Therefore,
we use an updated model to extract more discriminative fea-
tures from the queries. This is the reason for updating our
model. (2) In simulating a real-world scenario, we replace
the original model with an updated one. In this situation, the
outdatedmodel is no longer used. For any new query (regard-
less of whether it contains base or novel patterns), we use the
updated model to extract its features and compare them with
the features of the outdated gallery.
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5 Experiments

5.1 Training Details

We use PyTorch (Paszke et al., 2019) to implement our P-
Stripmethod. It is trained on fourNvidiaA100GPUs. Unless
otherwise stated, the backbone is ViT-B/16 (Dosovitskiy et
al., 2020) that was pre-trained on the ImageNet dataset (Deng
et al., 2009) usingDeiT (Touvron et al., 2021). The images are
resized to 224×224 pixels before training. We use a balance
parameter λ of 0.5 and a batch size of 128. The standard PK
sampling method is used in each batch, with 32 classes and
4 images per class. The number of epochs is 25, and we use
a cosine-decreasing learning rate.

5.2 The Challenge fromNovel Patterns

This section shows that a pattern gap exists and causes
significant performance issues. We reimplement five state-
of-the-art ICD algorithms (DINO (Caron et al., 2021),
MultiGrain (Berman et al., 2019), SSCD (Pizzi et al., 2022),
BoT (Wang et al., 2021b), and ASL (Wang et al., 2023a))
plus the baseline in this paper by regulating the patterns they
are trained on to the base pattern set in the PE-ICD bench-
mark and evaluating them on the query sets generated by the
two pattern sets.We also unify their backbones intoViT-B/16
to enable a fair comparison across different methods. From
Table 1, we draw three observations: (1) Most methods per-
form well (around 90%μAP) when trained and tested on the
base pattern set, indicating that they successfully learn invari-
ance relative to patterns and generalize well to new images.
(2) All methods experience a significant drop in performance
(around −50% μAP) when tested in a novel-pattern setting,
showing that all methods struggle in this practice setting,
and the pattern gap remains an unsolved problem. (3) Our
ICD baseline is strong enough without bells and whistles:
in the base-pattern setting, we only perform −0.54% μAP
compared to the strongest competitor (BoT); in the novel-
pattern setting, we outperform all state-of-the-art methods.
By proposing the PE-ICD benchmark to challenge the state-
of-the-art methods, we call for more research efforts on the
pattern-expansion problem.

5.3 PE-ICD Increases the Upgrade and Deployment
Efficiency

As shown in Table 2, our PE-ICD significantly reduces
the costs associated with both upgrading models and re-
extracting the gallery. (1) Training: assume there are nb base
and nn novel patterns. Compared with the complete update
(rehearsal), PE-ICD is rehearsal-free and only requires nn

nn+nb
training time. In our experiments (nb = nn = 11), a com-
plete update requires about 61 GPU hours, while PE-ICD

Table 1 Evaluation in the base-pattern and novel-pattern settings.
While most models perform well in the base-pattern setting, they all
experience a significant drop in accuracy when tested on novel patterns

Method μAP (%) (Base) ↑ μAP (%) (Novel) ↑
DINO 46.95 13.69

MultiGrain 73.35 24.01

SSCD 84.65 30.47

BoT 93.56 36.29

ASL 90.62 39.69

Our baseline 93.02 39.87

requires only 31 GPU hours. (2) Test: due to the backward
compatibility, PE-ICD does not re-extract the gallery fea-
tures and saves 0.82 GPU hour for one million images with
one A100 GPU. Our computational economy will be more
significant for realistic large-scale datasets.

5.4 The Effectiveness of P-Strip

Our P-Strip Outperforms Other Plausible Approaches.
As shown in Table 2 and Fig. 4, P-Strip is compared with
two common strategies: fine-tuning and incremental learn-
ing. Notably, previous backward-compatible methods such
as BCT (Shen et al., 2020) lack the capability to operate
without old data and fail to converge in our PE-ICD context.
In the fine-tuning approach, amodel initially trained on a base
pattern set is subsequently tuned with all parameters being
trainable on a novel pattern set. For incremental learning,
we adapt Learning without Forgetting (LwF) (Li & Hoiem,
2017) by using both updated and old models to extract fea-
tures from the novel training set images and regulate the
L2 distance between these feature sets to prevent forgetting.
Both fine-tuning and incremental learning are proved to be
ineffective, showing a decrease in pattern gain by −44.53%
and −26.89% respectively, due to significant model shifts.
Furthermore, these methods require more time for updates
compared to our P-Strip. Our approach effectively narrows
the performance gap towards the upper benchmark set by a
standard upgrade.

P-Strip Achieves Good Backward Compatibility. We
evaluate the backward compatibility of P-Strip by com-
paring it with a backfilling counterpart in Table 3. Recall
that P-Strip is free of backfilling: the upgraded model is
used only to extract the query features, leaving the gallery
features outdated. In contrast, the backfilling counterpart
updates both the query and gallery features, which is time-
consuming but ideally resolves the backward compatibility
issue. We observe that: (1) On the base pattern test images,
maintaining unchanged gallery features shows slightly better
performance (about 1%). We speculate that this is because
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Table 2 A comparison of our method to fine-tuning and incremental learning under a backfilling-free setting

Method μAP (%) (Base) ↑ μAP (%) (Novel) ↑ Pattern gain (%) ↑ Upgrading cost Re-extracting cost

Basl. (before upgrade) 93.02 39.87 − − −
Fine-tuning 30.94 57.42 −44.53 40h 0

Incremental learning 51.36 54.64 −26.89 63h 0

P-Strip 90.68 73.32 31.11 31h 0

Upper bound 92.91 93.81 53.83 61h 0.82h

Fig. 4 Visual comparison between our proposed P-Strip and other methods. The original image (true match) is highlighted in green. Our P-Strip
accurately identifies the original image, regardless of whether the query is generated by base or novel patterns

Table 3 The comparison between backfilling-free and backfilling settings

Methods μAP (%) on base patterns μAP (%) on novel patterns Pattern gain
Before upgrade After upgrade Before upgrade After upgrade

P-Strip (Backfilling-free) 93.02 90.68 39.87 73.32 31.11

P-Strip (Backfilling) 93.02 88.99 39.87 77.26 33.36
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Fig. 5 The t-SNE (Van der Maaten & Hinton, 2008) visualization of
feature distributions of image and pattern features. From the distribu-
tion, we conclude that the image and pattern features are different

the gallery (true-original image) features extracted by the
tuned model are slightly inferior. (2) On the novel pattern
test images, the backfilling-free setting leads to only about a
4%μAP performance drop. This is reasonable because, even
though we minimize changes to the model, the outdated fea-
tures are still somewhat incompatible with the updated ones.
(3) Overall, the performance gains in the two settings are
comparable, indicating that our method is feasible by only
updating the query features.

Direct Evidence of the Separability Between Image
and Pattern Features. Remember that we denote an image
as x and its edited copy as A(x), and thus their images fea-
tures are f(x) and f(A(x)), respectively. The pattern feature
of A(x) is

∑M
i=1 pigi (A(x)) (as shown in Eq. 7). If the image

and pattern features are separable, we should have:

f (A (x)) ≈ f (x) +
M∑
i=1

pigi (A(x)) , (12)

which means the image feature of edited copy A(x) can be
represented by the sum of the image feature of image x and
the pattern feature of pattern A.

To provide the direct evidence of the separability between
image and pattern features, we calculate the cosine similarity
s between the subtracted feature and the weighted sum of
pattern features, i.e.,

sb =< f (Ab (x)) − f (x) ,

M∑
i=1

pigi (Ab(x)) >, (13)

and

sn =< f (An (x)) − f (x) ,

M+N∑
i=1

pigi (An(x)) >, (14)

Fig. 6 The learned probability scores for queries generated by applying
base and novel patterns, respectively

where Ab and An represent the base and novel patterns,
respectively; M and N denote the number of base and novel
patterns, respectively.

Experimentally, the average values of sb and sn across the
test set are 0.77 and 0.69, respectively. It thus (1) validates
the separability of image and pattern features and (2) explains
why μAP on novel patterns is relatively lower.

In addition to this evidence, we visualize the distribution
of image and pattern features using t-SNE (Van der Maaten
& Hinton, 2008), as illustrated in Fig. 5. From this analysis,
we also conclude that the image and pattern features are sep-
arable (different) regardless of whether they are in the base
or novel set.

Our Method Resists Error Accumulation Strongly in
the Continuous Update Setting.We show that the proposed
method resists error accumulation strongly by setting up a
continuous update. Specifically,wepartition the 11novel pat-
terns into 3 groups (3+4+4) for continuousmodel upgrades.
The μAP on the base and first three novel patterns undergo
93.0% → 88.7% → 90.7% → 90.4% and 48.1% → 76.9%
→ 72.7% → 73.0%, respectively. We observe that: (1) For
the base patterns, though the first updating (93.0%→ 88.7%)
brings unavoidable performance drop, the upcoming updat-
ing (88.7%→ 90.7%→ 90.4%) does not further damage the
performance. (2) For the first three novel patterns, the first
updating improves the performance significantly (48.1% →
76.9%). Similar to the base patterns, the next updating (with 4
different novel patterns) brings a little performance drop and
continuous updating does not further damage performance
(76.9% → 72.7% → 73.0%).

Visualization of the Learned Probability Scores. In
Fig. 6, we visualize the learned probability scores, i.e. pi in
Eq. 5, for queries generated by base and novel patterns. The
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Table 4 The ablation studies of
our proposed P-Strip

Method μAP (%) (Base) ↑ μAP (%) (Novel) ↑ pattern gain (%) ↑
Baseline (before upgrade) 93.02 39.87 −
Without BCE 90.48 58.74 16.33

With BCE 90.53 63.79 21.43

Meaningless stripping 90.80 64.12 22.03

Gallery without stripping 90.94 66.72 24.77

Pattern stripping 90.94 66.73 24.78

The best performance is indicated in bold

Fig. 7 The performance (left) and efficiency (right) analysis of using more vectors to represent a pattern query. More vectors lead to improved
performance within a certain range, but the inference speed slows down, and the GPU memory usage increases

patterns with the top three highest scores are noted in the bar
charts. We observe that: (1) Our method accurately predicts
both base and novel patterns, demonstrating the effectiveness
of the pattern stripping method in subtracting the expected
pattern features. (2) The predictions for the base patterns are
generally more accurate than those for the novel ones. In the
second bar chart, for the 2nd novel pattern (RandText),
the prediction probability score is near 0.3, even though it is
evident that the query contains no text; while in the first bar
chart, all of the probability scores for negative patterns are
lower than 0.2.

5.5 Ablation Studies and Parameter Analysis

In this section, we first evaluate the effectiveness of using
BCE loss and the performance improvement resulting from
the stripping operation in Table 4. Then, in Fig. 7, we use
more vectors to represent a pattern query and analyze the per-
formance improvement and efficiency burden of this variant
of our model.

The Effectiveness of Using BCE Loss. In Table 4, we
show the effectiveness of using BCE loss by comparing the
performance of the “WithoutBCE" and “WithBCE" settings.
In the “Without BCE" setting, we simply prepend M pattern
queries to the input of ViT during training. These queries
are trained or fine-tuned in the base training or upgrading
stage, but without supervision, they are essentially meaning-

less. In the “With BCE" setting, we add the BCE loss to the
training process but still omit the subtraction operation. From
Table 4, we can see that: (1) Compared to the baseline (before
upgrade), the naive approach of adding queries (“Without
BCE”) still leads to improved performance (+18.87% μAP)
on the novel pattern set. This is because the added queries
can be considered extra parameters that help the model fit
the novel training set. (2) Compared to the naive approach,
using the BCE loss for supervision (evenwithout the subtrac-
tion operation) leads to much better performance (+5.05%
μAP and+5.10% pattern gain). This is because allowing the
transformer blocks to identify the patterns in an image helps
guide the training process, resulting in a better fit.

The Performance Improvement Resulting from the
Stripping Operation. We consider two variants of the pat-
tern stripping: “meaningless stripping" and “gallery without
stripping". “Pattern meaningless stripping" refers to when
stripping the pattern feature from the image feature, we do
not use theweighted sum (Eq. 7); instead,we subtract the sum
of all pattern queries (

∑M
i=1 gi ). The setting is used to prove

that it is the “stripping the pattern feature of an image" rather
than the “stripping operation itself" that works. Compared
to Line 3 with Line 4 of Table 4, this variant barely brings
any performance improvement. “Gallery without stripping"
refers to when we extract the feature of galley images, we
use the class token rather than the stripped class token as the
deep representation. It is reasonable that this variant has no
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performance difference from the “pattern stripping" because
no pattern exists in the gallery images, proving our method’s
correctness.

UsingMoreVectors toRepresent a PatternQuery Fur-
ther Improves Performance. In themethod section,we only
use one vector to represent a pattern query. However, there
are other choices, such as using several vectors as one pattern
query, and each vector is supervised as before. More vectors
mean more trainable parameters in the upgrading stage. We
show the performance and efficiency in Fig. 7. We draw the
following conclusions: (1) Within a certain range (1 ∼ 4
vectors), more vectors bring better performance: theμAP on
the novel pattern is improved from 66.73% to 73.32%, and
the pattern gain is improved from 24.78% to 31.11%. How-
ever, when the number of vectors exceeds 4, more vectors
are useless, and the μAP and pattern gain fluctuate with-
out increasing. This is because a greater number of vectors
introduce more learnable parameters, which can better fit the
training images generated by novel patterns. However, there
is a limitation: beyond a certain point, performance begins
to fluctuate, and no further improvement is observed. (2)
More vectors increase the computing burden.When using the
upgraded model, the occupied GPUmemory of 15 vectors is
about twice as much as using 1 vector. Also, the memory gap
between usingmodels trained on different stages increases as
the number of vectors grows. The inference speed is also up to
twice slower. Combining these two figures, we suggest that if
more performance is needed and lower efficiency is bearable,
using 4 vectors to represent a pattern query is a good choice.
(3) The results on the base set always degrade. The reason is
that although our method only learns new pattern queries and
keeps the backbone frozen, during the feed-forward process,
the class token and patch tokens of images generated by the
base patterns inevitably attend to the new pattern queries and
are thus disturbed.

6 Conclusion

This paper introduces the Pattern-Expandable Image Copy
Detection (PE-ICD) task. Compared with the basic ICD,
PE-ICD focuses on efficiently upgrading an out-of-date ICD
system for additional novel tamper patterns. Two prerequi-
sites for PE-ICD are using only the novel patterns (NO base
patterns) for upgrade and backward compatibility, which are
critical for fast reaction against novel tamper patterns. We
contribute the first PE-ICD task, benchmark it with pop-
ular ICD methods, and proposes a strong baseline named
Pattern-Stripping (P-Strip) method. P-Strip uses the vision
transformer to stripe the pattern features from the query fea-
ture. Using the transformer query mechanism, P-Strip can
learn to add novel pattern features with little impact on the
query feature and already-seen pattern features. It thus facil-
itates efficient upgrading and good backward compatibility.
We hope this work will draw research attention to a critical
realistic problem, i.e., a fast reaction against novel tamper
patterns, for the ICD system. In the future, we plan to explore
more efficient ICDupgradingmethods andmulti-modal large
language models for ICD.
Limitations andSocial Impacts.PE-ICD is a very challeng-
ing new task.Using the proposed P-Strip, the ICD accuracy is
significantly improved but is still much lower than the accu-
racy on base patterns. It indicates that the upgrading effect
still has a large gap toward realistic application. Our research
has positive social impacts because ICD is valuable for pre-
venting copyright infringement.

Appendix A Demonstration of the Base and
Novel Patterns

Tables 5, 6, and 7 display the names, detailed elaborations,
and demonstrations of base and novel patterns. Although we
use four samples to illustrate, in our PEICD, the query images
have no overlapwith the training images, a basic requirement
for image retrieval tasks.
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Table 5 The demonstration of the base and novel patterns (part 1) in our CrossPattern
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Table 6 The demonstration of the base and novel patterns (part 2) in our CrossPattern
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Table 7 The demonstration of the base and novel patterns (part 3) in our CrossPattern
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