International Journal of Computer Vision
https://doi.org/10.1007/511263-024-02138-z

®

Check for
updates

Incremental Model Enhancement via Memory-based Contrastive
Learning

Shiyu Xuan' - Ming Yang? - Shiliang Zhang'-3

Received: 6 July 2023 / Accepted: 31 May 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

Training data of many vision tasks may be sequentially arrived in practice, e.g., the vision tasks in autonomous driving or video
surveillance applications. This raises a fundamental challenge that, how to keep improving the performance on a specific task
by learning from sequentially available training splits. This paper investigates this task as Incremental Model Enhancement
(IME). IME is distinct from the conventional Incremental Learning (IL), where each training split typically corresponds to a
set of independent classes, domains, or tasks. In IME, each training split may only cover part of the entire data distribution
for the target vision task. Consequently, the IME model should be optimized towards the joint distribution of all available
training splits, instead of optimizing towards each newly arrived one like IL methods. To deal with above issues, our method
stores feature vectors of previously observed training data in the memory bank, which preserves compressed knowledge of
the previous training data. We hence adopt the memorized features and each newly arrived training split for training via
Memory-based Contrastive Learning (MCL). A new Contrastive Relation Preserving (CRP) scheme updates the memory
bank to prevent obsoleteness of the preserved features and works with MCL simultaneously to boost the model performance.
Experiments on several large-scale image classification benchmarks demonstrate the effectiveness of our method. Our method
also works well on semantic segmentation, showing strong generalization ability on diverse vision tasks.

Keywords Incremental learning - Contrastive loss - Memory bank - Knowledge distillation

1 Introduction

Training data of many vision tasks may not be acquired at
once. Instead, they may be collected gradually and become
available sequentially in practice. For instance, new anno-
tations can be iteratively collected by Active Learning
models (Kovashka et al., 2016; Vijayanarasimhan and Grau-

Communicated by Nicu Sebe.

B Shiliang Zhang
slzhang.jdl@pku.edu.cn

Shiyu Xuan
shiyu_xuan@stu.pku.edu.cn

Ming Yang
m-yang4 @u.northwestern.edu

State Key Laboratory of Multimedia Information Processing,
School of Computer Science, Peking University,
Beijing 100871, China

2 Multimodality Cognition, Ant Group, Seattle, WA, USA
3 Peng Cheng Laboratory, Shenzhen 518055, China

Published online: 20 July 2024

man, 2011). More importantly, most of vision tasks in serious
real-word applications, such as autonomous driving or video
surveillance, require a humongous amount of training data
collected in diverse geo-locations and weather conditions.
These data may be collected in years and available for train-
ing over time. This raises a fundamental challenge that how
to improve the performance on a vision task by learning from
sequentially arrived training data. A straightforward solution
is training from scratch repeatedly, i.e., combining all data
and training the model whenever the new training data is
available. However, this strategy suffers from the high com-
putation and storage complexity. Relying on all existing raw
data also leads to other limitations, e.g., some previous data
might be not accessible due to privacy protection. Efficient
algorithms that can gradually improve the performance with
the new incoming training data are highly preferred. We for-
malize this task as Incremental Model Enhancement (IME).

The setup of IME is quite common in real applications
but has not been fully explored. Conventional Incremental
Learning (IL), also known as lifelong learning or continual
learning, includes class incremental learning (CIL) (Rebuffi

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-024-02138-z&domain=pdf
http://orcid.org/0000-0001-9053-9314

International Journal of Computer Vision

etal., 2017; Yu et al., 2020; Tao et al., 2020; Buzzega et al.,
2020; Belouadah and Popescu, 2019), domain incremental
learning (DIL) (Pu et al., 2021; Bobu et al., 2018; Mancini et
al., 2019), and task incremental learning (TIL) (Dhar et al.,
2019; Li and Hoiem, 2017; Lopez-Paz and Ranzato, 2017).
Those IL methods aim to continuously learn new classes,
domains, or tasks without forgetting the knowledge of previ-
ously learned classes, domains, or tasks. As shown in Fig. 1a,
each newly arrived data of IL corresponds to a set of new
classes, domains or tasks, with its own training and testing
sets. The training and testing sets have the identical label
space and similar feature distributions. Therefore, each train-
ing split can be treated as an independent task (Kim et al.,
2023). An unbiased model for these new classes, domains or
tasks can be trained directly with the corresponding training
set. Based on the theory proposed in Kim et al. (2023), an
IL model can be learned by minimizing the loss on the new

Training Pipeline

training set, meanwhile avoiding forgetting the previously
learned tasks.

Asillustrated in Fig. 1b, the training data for a given vision
task can be available gradually in IME. Each training split of
IME shares the same label space of the target task, but may
just cover part of the data distribution for the target vision
task because of its limited data scale. As more training splits
become available, the distribution of the combined training
set can be better aligned with the corresponding vision task as
shown in Fig. 1b. As training splits are related to each other,
IME needs to consider the joint distribution of the entire
training set. The challenge of IME lies in how to learn from
each biased new training split without accessing all previous
training data.

To seek an efficient solution to IME, this paper stores fea-
tures of previous training samples in a memory bank, and
incrementally updates the model with new training data and
memorized features. In other words, we introduce a mem-

Feature Distribution

Base task feature distribution

N
‘. New task feature
Ve
distribution
1

(a) Incremental Learning

Base task
training set

,Training Split 2

R >- Model-1

Training
data 1

Task feature distribution _

Training data 2

Training data 3

(b) Incremental Model Enhancement

Fig. 1 Illustration of the task setups and training pipelines of Incre-
mental Learning (IL) and Incremental Model Enhancement (IME),
respectively, using animal recognition as an example. Both IL and IME
are trained with sequentially arrived data. After learning to recognize
“fish” and “chicken”, IL aims to optimize on a new task, e.g., recogniz-
ing “dog” and “elephant”. Differently, IME aims to gradually improve

@ Springer

the performance on a specific vision task, e.g., recognizing “chicken”
and “fish”. Each training split of IME shares the same label space but
may only covers part of the task feature distribution, making either direct
fine-tuning or existing IL. methods cannot obtain satisfying results (best
viewed in color pdf)

International Journal of Computer Vision

ory bank to approximate the optimization on the combined
training set. Different from most IL methods (Belouadah and
Popescu, 2019; Buzzega et al., 2020; Rebuffi et al., 2017;
Prabhu and Torr, 2020; Bang et al., 2021) that store raw
samples in the memory bank, our method stores sample fea-
tures to achieve better memory efficiency. Note that, features
in the memory bank cannot propagate gradients to the back-
bone due to the missing of original input images. They thus
cannot be directly used to update the model. Moreover, after
the model is updated, there is a mismatch between mem-
orized features extracted by the previous model and those
freshly extracted by the updated model, leading to the obso-
leteness issue of the features in the memory bank. Since the
raw images of the previous training data are not stored, it
is impossible to re-extract those features using the updated
model. Dedicated approaches are required to optimize the
backbone based on the memory bank and to address the mem-
ory obsoleteness issue.

We propose a memory-based contrastive learning frame-
work, where a new Memory-based Contrastive Learning
(MCL) optimizes the model with a memory bank. Mean-
while, we employ Contrastive Relation Preserving (CRP) to
deal with the feature obsoleteness issue in the memory bank.
MCL spots samples with the same label in both new training
split and previous training splits, then computes contrastive
loss on them, i.e., to pull samples with the same label together
and push apart those with different labels. As images in previ-
ous training set are not available, MCL adopts feature vectors
stored in the memory bank as their representations. MCL
works with memory bank to approximate the optimization
on the set combining previous and new training data.

CRP is proposed to mitigate the feature obsoleteness issue
in the memory bank with two intuitions, i.e., regularizing
the model update to constrain the mismatch of memorized
features against the updated model, and updating the mem-
orized features accordingly, on the fly. The regularization is
achieved by preserving the similarity relationship between
training samples and memorized features in the previous
training stage. A feature adaptation method is proposed to
estimate the changes of memorized features, which facili-
tates updating the obsolete features.

We conduct experiments on TinylmageNet (Stanford,
2015), minilmageNet (Vinyals et al., 2016), ImageNet1K
(Russakovsky et al., 2015), and CUB (Wah et al., 2011).
Experimental results show that existing IL algorithms do
not work well on this IME setup. For instance, the recent
RM (Bangetal.,2021) achieves marginal improvements over
the directly fine-tuning baseline, e.g., it even decreases the
baseline accuracy from 55.49 to 55.12% on ImageNetlK.
Our method achieves the best performance among com-
petitors and improves the baseline accuracy from 55.49 to
61.05% on ImageNet1K. Our method also shows promising
performance on semantic segmentation task on Cityscapes

(Cordts et al., 2016). It consistently outperforms the fine-
tuning baseline and recent methods like LwF (Li and Hoiem,
2017) and DER (Buzzega et al., 2020).

IME is practical and meaningful for many open-world
vision applications due to its capability of continuously
boosting the model performance with sequentially arrived
training data. As an under-explored task, it differs from exist-
ing IL in task setup and optimization objective as illustrated
inFig. 1. To the best of our knowledge, this is an original work
clarifying the formulation of IME and defining its testing pro-
tocols. The proposed method enjoys superior performance,
low computational complexity, and the advantage of privacy
protection because it does not access previous raw training
samples. It has the potential to benefit CV tasks that obtain
training samples sequentially. Code of our method will be
released.

2 Related Work

This work is closely related to Incremental Learning and
Contrastive Learning. This section briefly reviews those two
lines of research and discusses our differences with them.

2.1 Incremental Learning

Existing IL algorithms can be summarized into four cat-
egories, i.e., regularization-based, knowledge distillation-
based, parameter isolation-based, and memory-based meth-
ods, respectively.

Regularization-based methods employ certain regular-
ization to restrict the update of model parameters, hyper-
parameters or the direction of gradients (Kirkpatrick et al.,
2017; Lee et al., 2017; Farajtabar et al., 2020; Saha et al.,
2021; Wangetal.,2021). EWC (Kirkpatrick et al., 2017) adds
an extra quadratic penalty term into the loss function to penal-
ize the change of weights that are important for the previously
learned tasks. OGD (Farajtabar et al., 2020), GPM (Saha et
al., 2021), and Adam-NSCL (Wang et al., 2021) project the
gradient steps in the orthogonal direction to the gradient sub-
spaces that are deemed critical for the previous tasks.

Knowledge distillation-based methods integrate knowl-
edge distillation (Hinton et al., 2015) to preserve the knowl-
edge of previously learned tasks (Li and Hoiem, 2017,
Buzzega et al., 2020). LwF (Li and Hoiem, 2017) prevents
from forgetting the learned knowledge using outputs of pre-
vious model to distill the updated model. Inspired by the
LwF, PODNet (Douillard et al., 2020) distills not only final
outputs but also the outputs of intermediate layers through
Pooled Outputs Distillation.

Parameter isolation-based methods allocate different model
parameters or parts to different tasks (Mallya and Lazeb-
nik, 2018; Yan et al., 2021). PackNet (Mallya and Lazebnik,

@ Springer

International Journal of Computer Vision

2018) leverages network pruning to add multiple tasks to a
single deep neural network. DEN (Yoonetal., 2017) proposes
a dynamically expandable network, that can dynamically
expand network capacity. Those methods commonly train
large networks or require task-ID during inference, thus
present limited flexibility and cannot deal with class or
domain incremental learning. Additional treatments like net-
work pruning (He et al., 2017) could be leveraged to speed
up the inference.

Memory-based methods use a fixed-size buffer to record
cues of previous samples to avoid catastrophic forget-
ting (Belouadah and Popescu, 2019; Buzzega et al., 2020;
Rebuffi et al., 2017; Prabhu and Torr, 2020; Bang et al.,
2021). These methods can also be called as rehearsal-based
methods. Most of those methods directly preserve a subset
of training data. Many methods are proposed to select the
mostrepresentative training data. iCaRL (Rebuffietal.,2017)
selects samples closest to the mean feature of each class.
GSS (Aljundi et al., 2019) proposes a gradient based sample
selection method to select examples in the memory buffer.
RM (Bang et al., 2021) increases the diversity of samples in
the memory buffer by considering per-sample classification
uncertainty and data augmentation. Another line of works
focuses on how to train the model with the preserved training
samples. RM (Bang et al., 2021) involves previous samples
and current data in training batches. iCaRL (Rebuffi et al.,
2017) and DER (Buzzega et al., 2020) mix rehearsal with
knowledge distillation and regularization.

Although memory-based methods achieve superior per-
formance, directly preserving previous training samples
breaks the rule of privacy protection and may have a
prohibitive memory requirement in practice. One possible
solution is to preserve features of the previous training sam-
ples in the memory bank. However, the preserved features
cannot directly provide gradient to update the backbone and
suffer the obsoleteness issue. Those issues have not been well
addressed in previous methods, e.g., MEIL (Iscen etal., 2020)
only uses memorized features to train the classifier layer, and
does not adopt them to update other layers of the backbone.
SDC (Yu et al., 2020) proposes a feature adaptation method
to update the prototype of each category after the training of
each task. This method only considers the semantic drift of
the prototypes. The preserved features are not used to train
the model. Moreover, the feature adaptation method cannot
be performed on-the-fly after each training iteration. This
issue limits its applicability in addressing the obsoleteness
issue of the preserved features when using them to supervise
the model training. REMIND (Hayes et al., 2020) extracts
the preserved features using a backbone with several frozen
layers. These layers are frozen to prevent the obsoleteness
issue of the preserved features. However, this design limits
the ability to update the entire model, which in turn restricts
the performance in IME task.

@ Springer

2.2 Contrastive Learning

Contrastive Learning is commonly used to learn an embed-
ding space. With the powerful contrastive loss (Hadsell et al.,
2006), self-supervised representation learning has achieved
remarkable progress (He et al., 2020; Chen et al., 2020a;
Chen and He, 2021). Those methods follow a similar intu-
ition to pull together an anchor and its data augmentation
in the embedding space, and push apart it from negative
samples. Some methods focus on how to involve more
negative samples into the training, e.g., MoCo (He et al.,
2020) introduces a memory queue to store more negative
samples. SIMCLR (Chen et al., 2020a) directly leverages a
large training batch. The construction of the positive and
negative samples is also critical for contrastive learning.
VFT (Zhu et al.,, 2021) proposes Positive Extrapolation
and Negative Interpolation to generate more difficult posi-
tive and negative samples, respectively. MoCHi (Kalantidis
et al., 2020) proposes hard negative mixing at the feature
level to introduce harder negative samples into the learning.
Besides self-supervised learning, SEED (Fang et al., 2021)
integrates contrastive learning into knowledge distillation.
SupCon (Khosla et al., 2020) extends contrastive learning
into the fully-supervised setup.

Due to its powerful capability in learning representations,
contrastive loss is also used in many other tasks. PCL (Yao
et al., 2022) uses contrastive loss to mine rich semantic rela-
tionship from different domains and learn domain-invariant
features for the domain generalization task. Based on the
contrastive loss, KCL (Kang et al., 2020) designs balanced k-
positive sampling strategy to prevent from learning the biased
model from the long-tailed training data.

2.3 Differences with Other Methods

This paper studies a new IME setup that aims to use sequen-
tially arrived data to enhance the performance on a specific
vision task. It works with a small training split at each training
step, and has a different training objective compared against
IL. As shown in Fig. 1, each task can be treated as an inde-
pendent problem in IL (Kim et al., 2023). As an unbiased
model for new classes, domains or tasks can be trained by
optimizing towards each new training set. IL can be achieved
by learning new task while avoiding forgetting the previously
learned tasks. Differently, the joint distribution of a combined
training set should be adopted for the optimization of IME
model. Experiments in Sect. 5 show that IL methods do not
perform well in this IME setting.

Similar to IME, the label space in DIL is also the same.
Each newly arrived domain of DIL has its own training
and testing sets, which follow a similar feature distribution.
Therefore, an unbiased model to each new domain can be
trained by optimizing towards the newly arrived training

International Journal of Computer Vision

data. Most of IL tasks follow the above assumption, mak-
ing many CIL methods can deal with DIL (Buzzega et al.,
2020; Li and Hoiem, 2017). Besides the standard DIL setup,
some other settings have been proposed. General Incremen-
tal Learning (Xie et al., 2022) considers the case where both
the class distribution and class-specific domain distribution
change over time. CoTTA (Wang et al., 2022b) continually
adapts the model to a target domain with several unlabeled
data during inference time. The domain of each newly arrived
data in these settings remains independent with others. The
difference between IME and DIL lies in that, each training
split of IME is a subset of the training set, and shows biased
feature distribution w.rz. the testing set. The IME model thus
should be trained by optimizing towards the joint distribution
of all available training splits.

In online learning (Hoi et al., 2021), training samples
are arrived sequentially and each training sample can only
be used once. With only one training sample at each
training iteration, existing optimization methods, e.g., gra-
dient descending, suffer from convergence problems. Recent
online learning methods mainly focus on the effective model
optimization in an online manner, thus face different chal-
lenges with IME. Online incremental learning trains the
model with an online stream of data and tasks, where tasks
may include new classes (class incremental setting) or new
domains (domain incremental setting). It presents a similar
challenge of IL. Most IL methods can also deal with online
incremental learning, e.g., LWF, DER.

Our method and IL algorithms also present different ways
of using the memory bank. IL methods often preserve the raw
training data in the memory bank, and use those samples to
perform rehearsal to prevent forgetting learned knowledge in
previous tasks. Our method preserves features in the mem-
ory bank, thus presents better efficiency and alleviates the
limitation of accessing the previous training data.

The proposed MCL works with memory bank and effec-
tively tackles the issue that features cannot provide gradients
to update the backbone. Some methods like MoCo (He et
al., 2020) also use memory bank to perform the contrastive
learning. The aim of their memory bank is to integrate more
negative samples into training. Different from them, we intro-
duce the memory bank to approximate the optimization on
the combined training set. A new CRP is further proposed
to address the feature obsoleteness issue. Extensive exper-
iments also demonstrate the superior performance of our
method over previous works.

3 Overview

We denote the entire training set D as T splits that arrive
sequentially, i.e., D = {D’}trzl. The ¢-th training split is

D' = {x;,y };’zl, where x;, y; denote the i-th image and
its label. Let 7 denotes the test set that shares the same
label space and similar data distribution with D. IME aims
to improve the performance on 7 through sequentially train-
ing on new splits from D' to DT. When being trained on
D', IME assumes that previous training splits { D'}; _, are no
longer accessible.

Each D' can be regarded as a sampled subset of D, and
it may only cover part of the data distribution for the target
vision task as illustrated in Fig. 1b. To improve the model
performance, the model should be trained on all available
training splits Zf: 1 D'. The training objective at the 7-th
training split can be conceptually denoted as,

t—1
9’*,a)t*:arg;rtlglzﬁ(Dt;ZD';Ol;w’), (1)
’ i=1

where L is the loss function, 8 and o' are parameters learned
at the 7-th training split. 8’ denotes parameters of feature
extraction backbone h(9, -) and ' are parameters of the clas-
sifier g(w, -). The model maps an image x to K classification
scores,

f=h(b,x), g(w, f) > RK,)

where f is the feature of x.

Equation (1) is supposed to train on the entire dataset. An
approximation can be preserving old samples in the mem-
ory bank like IL methods Buzzega et al. (2020), and training
on the memory bank and each new training split. To pur-
sue a more efficient approximation, we introduce a memory
bank M to preserve feature vectors and labels of previously
observed training samples. M is constructed by randomly
selecting p% samples of each training split, then adding their
features and labels to M. The parameter p controls the size of
M. Using M as an alternative to Zi;i D', the optimization
of Eq. (1) can be denoted as,

-1
0", @™ = arg min |:£(D’; M: 6" a)’)+diff(/\/l, E D">i|,
0!, wt
' i=1

3

where diff (M, Zf;} D') regularizes the difference between
memorized features in M and freshly extracted features from
SI~1 D'. diff(-) is minimized to ensure the features in M
are up-to-date.

Equation (3) can be optimized by decreasing the training
loss on D' and M, as well as maintaining an updated M.
We propose Memory-based Contrastive Learning (MCL) to
pull samples in the same category together, and push samples
from different categories apart. MCL computes a construc-
tiveloss L 7¢ 1 on D' and M to approximate the optimization

@ Springer

International Journal of Computer Vision

The Training Iteration

Output

Classifiers

Updated
Memory Bank

Input
Standard Update
Backbone ft
Memory Bank \l
MovinglAverage |
Training Split D*

i

Training
Images

Momentum Update f
Backbone

o] #e

Memory Bank

Feature
Adaptation

Updated

» Lcrp

Model

v

Fixed Previous Backbone

Fig. 2 Overview of the proposed IME framework. The training step
starts as a new training split D' arrives, and finally outputs the updated
memory bank and model parameters 6’. At each training iteration,
training images are fed into the standard update backbone, momen-
tum update backbone and fixed backbone from previous iteration to

on Y i_, D Itis defined as,

Lyuce =Y loss(xi, yi, M). “)

X,‘ED’

M stores the features extracted by previous models. As
the model is being updated on the new training splits, the
features in M have a mismatch with the current model.
In another word, M becomes outdated over time, which is
harmful to £y;¢; computation. We propose the Contrastive
Relation Preserving (CRP) to decrease diff(-) through esti-
mating the changes of memorized features, and regularizing
the model update, respectively. The similarity relationship
between training images and M represents the structure of
the learned embedding space. We preserve this relationship
during the model training to constrain the mismatch of mem-
orized features against the updated model.

For training split D, we use ¥ (f}, M) to compute the
relationship between a feature vector f! of image x; extracted
with parameters ' and features in M. CRP maintains a sim-
ilarity relationship between two adjacent training splits. A
regularization loss Lcg p can be represented as,

Lerp =Y dis(y(E, M), v (™", M), (5)

i=1

where n is the size of current training split, ff ~1is the feature
vector extracted with parameters 6/~ ! trained at the previous
training split, i.e., fffl = h(0'"!, x;), and dis(-) measures
the differences between two relationships.

@ Springer

I
i
i
i
i
1
i
i
i
» Lyct !
I
i
i
1
I
I
i
i
i

generate features £, f, and f'~!, respectively. Together with features
in the memory bank, f and ~' are used to calculate Lcgp. f and £
are used to calculate £yscr. The cross entropy loss Lcg is computed
with feature f' in Eq. (7). Details of £y and Lcgp are presented in
Sects. 4.2 and 4.1, respectively

Our overall training loss for the 7-th training split con-
sists of Lcrp, Lycr, as well as the cross entropy loss Lo g
computed on D', respectively. It is summarized as,

Loverati = Lce +MLcrp + A2 Lyce, (6)

where 1| and A, denote the loss weights. Lcg is computed
at each training split D’ by comparing ground-truth labels
and the labels predicted by classifiers o' with features . We
also classify f' using the classifiers learned in previous train-
ing splits, and compute cross entropy loss on those labels.
As discussed in a previous work (Jung et al., 2018), this
helps to maintain the previously learned decision boundaries
and preserve the prototypes of corresponding classes in the
embedding space. The L¢g can be denoted as,

n

1 t—1)
Log=)_ [E(g(w’, o+ — PIRZCIEN A yi)}’)
j=1

i

where ff = h(0', x;) and £(-) computes the cross-entropy
loss. w/ denotes classifier parameters learned in the j-th
training split. Note that, the first and the second items of
Eq. (7) both use standard cross-entropy loss. The difference
of them lies in that the second item uses the logits predicted
by classifiers learned at previous training splits. Equation (7)
updates ' and o'. @/="""1 is used as a fixed parameter.
As shown in Sect. 5.4, enforcing the loss computed with w/
boosts the performance.

Figure 2 illustrates the framework of our method, where
each training step outputs an updated model and an updated

International Journal of Computer Vision

memory bank. The following parts proceed to present the
details of CRP and MCL.

4 Proposed Method
4.1 Contrastive Relation Preserving

CPR incorporates Feature Adaptation (FA) and L¢c g p, which
work jointly from different aspects to handle the feature
obsoleteness issue. Lcgrp regularizes the model change to
constrain the mismatch between memorized features against
those freshly extracted ones. The FA method is used to esti-
mate the differences between memorized features and freshly
extracted ones. It hence uses those estimated differences to
update obsolete features, making them get similar to freshly
extracted ones.

Feature adaptation in CRP updates features in M. As
the images of previous training splits are not accessible,
it is not feasible to extract their features with the updated
model. We hence denote the change of the k-th feature
m; € M as A(mg) and compute the updated feature as
my; = my + A(my). We use the changes of sample features
A(f;) in the current training split to estimate A (my), if f; and
m; are similar with each other. With x; € D', A(f;) can be
computed by extracting its features with new and previous
models. A(myg) is estimated by the weighted sum of A(f;),
ie.,

Amy) =) wirAdf), ®)

i=1

where the w;y is the weight. Because my, is updated on the
training split D'~!, we use the similarity between my; and
f;‘l to calculate wig, i.e.,

1(5k = yi) es(my, £
> i1 LGk = yj) es(my, f;_l)’
eS(Ilflk,f,'-*l) = exp(sim(my, fﬁ*‘)/f),)

Wik =

where ff ~lis extracted by the model trained on D'~ 1 Y and
y; denote the labels of my and x;, respectively. 1(-) is the
indicator function, sim(-, -) computes the cosine similarity,
and 7 is a predefined temperature parameter. w;; can be pre-
calculated at the beginning of each training split for better
efficiency.

A(f;) can be efficiently computed by comparing ff with
ﬁ_ ! if x; is in the current training batch. For the images out-
side the training batch, repetitively extracting their features
after each training iteration is time consuming. Simply ignor-
ing them leads to inconsistency of A(f;) because the model
is continuously updated. We leverage momentum update to

slow down the model change to mitigate the inconsistency
of A(fy), i.e.,

0 =ad+0—a),
®=ad+ (1 —a), (10)

where 6 and @ are parameters of the momentum update
model, 6" and o' are parameters updated at each training
iteration. « € [0, 1) is the momentum coefficient, which
slows down the changes to theta and omega. Based on the
momentum update model, only when x; is in the training
batch, A(f;) is updated using,

Af) =h(@,x;) —h@" ", x;). an

The regularization loss Lc g p is computed to constrain the
mismatch of memorized features against the updated model
on each training split. Knowledge distillation methods are
widely used to constrain the model update (Romero et al.,
2014; Hinton et al., 2015; Zagoruyko and Komodakis, 2016;
Gou et al., 2021). The relationship between samples in each
training split and features in M provides the structure of the
learned embedding space. Therefore, the increase of diff(-)
can be regularized by preserving this relationship. Due to the
limitation of GPU memory, we randomly sample z feature
vectors and their labels from M to construct the memory
training batch B at each iteration. The relationship between
x; € D' and features in BB can be represented as a similarity
distribution, i.e.,

w(f;vM):[ptha pél’vpgl]v (12)

where pj; is the normalized similarity between f; and ri1;, in
B. It is computed as

es(f!, fiy)

S e, 49

o
Dri =

Similarly, we compute the relationship at the previous train-
ing split D'~ as,

L M) =1p0 sl (14)

where p,’ﬂ._1 is computed by comparing fi ~! with ria in sim-
ilar way of Eq. (13),

o es(f) as)
joresd™!)’

@ Springer

International Journal of Computer Vision

minilmageNet TinyImageNet
09 " 93 —~
‘2\‘0‘8 0.88
507 ’
é 06 --CRP w/FA
2 SCRPWEA 0.83 g cRPwoFA
05 #-CRP w/o FA w0 both
-&-w/o both k’m“_‘_‘_‘_‘/‘
0.4 0.78
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Training Split Training Split

Fig. 3 Visualization of cosine similarity between memorized features
and freshly extracted features on TinyImageNet and minilmageNet

The regularization loss Lcgp is hence computed as the KL-
divergence between two similarity distributions, i.e.,

n Zz
Lerp =YY —pii log(phy)- (16)

i=1 k=1

Our regularization loss uses feature relationship to perform
distillation, which is different from the previous meth-
ods that leverage soft targets (Hinton et al., 2015), feature
maps (Romeroetal., 2014) or attention maps (Zagoruyko and
Komodakis, 2016). These methods only consider applying
regularization on individual training samples. Regularization
on feature relationship is more effective in leveraging useful
cues encoded in M.

Visualization of CRP is shown in Fig. 3. It illustrates the
similarity between memorized features and those freshly
extracted by the updated model after each training split.
Note that, similarity close to 1 means memorized features
are similar to those freshly extracted ones, hence shows less
mismatch between two features. The figure shows that both
Lcrp and Feature Adaption (FA) are effective. Combining
Lcrp and FA ensures up-to-date features in the memory,
hence keeps a low diff () in Eq. (3). More extensive experi-
ments will be presented in Sect. 5.4.

4.2 Memory-based Contrastive Learning

MCL is expected to optimize the first term in Eq. (3), through
pulling together feature vectors in the same category, while
pushing apart vectors from different categories. Suppose the
sampled memory training batch is B. For an image and its
label {x;, y;} € D', we divide its positive and negative sam-
ples in B into two sets P; = {rilj}‘jl.}:)’i” and N; = {Ifla}gi]’i”
according to the label. The MCL is conducted to optimize
the distance between ff and P;, N;, respectively.

Besides optimizing the distance between f; and 3, we pull
f! and f; together to ensure the effectiveness of the momentum
update. Note that, f; is extracted by the momentum update
backbone, i.e., f; = h(@, x;). This is equivalent to adding f;
into the positive feature set, i.e., P = [P;, f;1, and comput-

@ Springer

ing the Lyc on P and N; as,

Lycr
n A
-1 es(fl, m;)
= E fr— log ~ ! — . (17)
prlllg jz,, es(fy, i) + 3 es(l; o)
1 ae .

where || P*|| is the cardinality of P.

Visualization to the features learned by the MCL and base-
line is shown in Fig. 4a—e, where t-SNE (Maaten and Hinton,
2008) is used to visualize the feature distribution optimized
by different methods in training split 1 (D), training split 2
(D?), the last training split (D), and the test set, respectively.
Different colors indicate different categories.

In Fig. 4a, the base model is trained on D'. It learns a
good representation for D!, but shows poor discriminative
power for samples in D2, i.e., overlapped distributions among
different categories. In Fig. 4b, directly fine-tuning the model
on D? leads to a good embedding space for D2, but degrades
the discriminative ability on D!. As shown in Fig. 4c, our
method learns a good embedding space for both D! and D?.

After training the model on all the training splits, our
method learns a good embedding space as shown in Fig. 4e.
It is clear that, the learned model preserves a good discrim-
inative ability on the oldest training split D', showing the
effectiveness of optimizing Eq. (3). On the contrary, although
is trained on all training splits, FT baseline shows limited dis-
criminative power on the target task. The visualization shows
that our MCL and CRP can achieve the goal of incrementally
boosting the performance on a fixed target vision task with
sequentially arrived training data.

Our method can be flexibly applied to dense prediction
tasks like semantic segmentation. We illustrate the semantic
segmentation results in Fig. 5. Similar to image classifica-
tion, FT baseline cannot gradually improve the result with
sequentially arrived training splits, e.g., as marked in yellow
rectangles, the unclear boundary and incorrect segmentation
have not been corrected. Our method can improve seg-
mentation boundaries and correct some pixels with wrong
classification labels with sequentially arrived training splits,
validating the effectiveness of our method on other vision
tasks.

5 Experiments
5.1 Experimental Setup

Datasets We use TinylmageNet (Stanford, 2015), minilm-
ageNet (Vinyals et al., 2016), ImageNetlK (Russakovsky
et al., 2015), and CUB (Wah et al., 2011) to perform image
classification, and Cityscapes (Cordts et al., 2016) to perform
semantic segmentation.

International Journal of Computer Vision

TinylmageNet

Test set

minilmageNet
Training Split 1 (D")

Training Split 2 (D?) Test set

e

Training Split 1 (D') Training Split 2 (D?) Test set

(a) Base model trained at D!

Training Split 1 (D') Training Split 2 (D?)

PR LA,
:}2’.“) . W
B
2
A s il
+ M o‘
,.1 v ‘.’%{\“

s

Y-S

g

AR SN ";'.:
. "*v&;o"."
Eahe W

(b) Model trained after D2 using FT

Training Split 1 (D') Training Split 2 (D?) Test set Training Split 1 (D') Training Split 2 (D?)
A, Hedine . .". 5, 1 e N
N P 5 .
: e, we 3

b/
[+34 . + -
s‘!?»,.. " ::;ﬁ‘é\? :t}‘ |

Test set

(c) Model trained after D? using our method

Training Split 1 (D') Training Split 9 (D°)

(d) Model trained after D using FT

Test set Training Split 1 (D') Training Split 9 (D%)
", S e
e, . - PR ¥ P xad
i ‘2‘3 «‘,o"iﬁw‘” SN “;a:.. .!:2:‘3333‘?
PR % o e

(e) Model trained after D° using our method

Fig.4 T-SNE (Maaten and Hinton, 2008) visualization of learned features on randomly sampled categories from TinyImageNet and minilmageNet,
respectively. “FT” denotes directly fine-tuning the previous model on the new training split

TinyImageNet contains 200 classes with 500 images per
class in the training set and 100 images per class in the test
set. minilmageNet contains 100 classes with 600 images in
each class. We randomly select 100 images from each class
to construct the test set. For ImageNet1K and CUB, we use
the original training/testing split, which have 1281,167/5,994
images for training and 50,000/5,794 for testing, respectively.
Cityscapes is used for urban scene understanding. We follow
the original data splits which divided the 5000 high-quality
pixel-level annotated images into 2975/500/1525 images for
training, validation and testing.

To simulate the sequentially arrived data, we randomly
divide the training set into 10 independent subsets with equal
size. Each subset has the same label space. We randomly
select 2 subsets to construct D! and select one subset each
time to simulate the remaining D?>—D°. As the training sets of
CUB are small, we randomly select 4 subsets to construct D'

and select 2 subsets each time to construct training splits D?—
D*. The size of the first training split is larger than the other
training splits to simulate the situation that the base model is
first trained with a larger dataset. In addition, we further val-
idate the influence of the base model on the performance
in Sect. 5.4. Similar to CUB, for the Cityscapes dataset,
we randomly select 4 subsets to construct D! and select 2
subsets each time to construct training splits D>~D*. The
image number of D! for TinyImageNet, minilmageNet, Ima-
geNet1K, CUB, and Cityscapes is 20,000, 10,000, 256,233,
2398 and 1190, respectively.

Evaluation Metrics Classification accuracy (Acc’) is
adopted to evaluate our methods, where the superscript ¢
denotes the performance after the training on the #-th training
split. Since the model is sequentially trained, we also report
mean classification accuracy mAcc. We compute mAcc by
averaging the performance after training splits D>~D° (D?—

@ Springer

International Journal of Computer Vision

Training split 2

Training split 3

Training split 4

Fig.5 Visualization of semantic segmentation results after each training split. DeepLabV3 is used as the segmentation head. In each example, the
first and second row shows the result of fine-tunning baseline and our method, respectively

TinyImageNet minilmageNet
53 65
o
S 64
3]
<51 63
&
50 62
0 2 4 6 8 10 0 2 4 6 8 10
A 2
53 65
~_
) 64
8 63
<51 62
=
50 61
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Ay 2y

Fig.6 Effects of the loss weights A and A, in Eq. (6)

D* for CUB). We apply the same base model trained at
D' to different algorithms for a fair comparison. The mIoU
which measures the Intersection-over-Union (IOU) for each
foreground class and averages over all the classes is used to
evaluate our methods on semantic segmentation. Similar to
image classification, the average mIoU on D?-D* is reported.

@ Springer

5.2 Implementation Details

All models are implemented with PyTorch (Paszke et al.,
2019). SGD is used for the optimization. ResNet-12 (Sun
et al., 2019), modified ResNet-18, ResNet-18 (He et al.,
2016), and ResNet-50 (He et al., 2016) are used as the back-
bone on minilmageNet, TinyImageNet, ImageNet1K and
CUB respectively. Since the TinyImageNet has a much lower
image resolution (64 x 64), we modify the first convolutional
layer to 3 x 3 with stride 1 and remove the first Maxpooling
layer. The training images are resized to 84 x 84, 64 x 64 on
minilmageNet and TinylmageNet, and 224 x 244 on other
datasets. Randomly cropping and flipping are used as data
augmentation. We train the model for 100 epochs at each
training split with a mini-batch size of 64 (expect for Ima-
geNet1K where the mini-batch size is set as 256). Model is
trained with cross-entropy loss at the first training split D'.
The learning rate starts at 0.05 and decreases by 1/10 after
every 30 epochs. The parameter z, i.e., the number of feature
vectors in the memory training batch is set as 2048. 1| and

International Journal of Computer Vision

TinyImageNet minilmageNet

52.5 64.0
&
S
g 52.0 63.5
<
&

51.5 63.0

1% 10% 50% 100% 1% 10% 50% 100%
p P

Fig.7 Effects of the size of memory bank controlled by p

TinylmageNet minilmageNet
e\i
g 52
<
'§
256 1024 2048 4096 3 256 1024 2048 4096
z z

Fig. 8 Effects of the batch size z sampled from the memory bank at
each training iteration

Az in Eq. (6) are set as 8 and 1, respectively. The sample rate
p ranges between 1 and 100%. The temperature parameter T
in Eq. (9) is set as 0.07. The momentum « in Eq. (10) is set
as 0.9997. Those parameters will be studied in Sect. 5.4.

For the semantic segmentation, two well-known methods
DeepLabV3 (Chen et al., 2017) and OCRNet (Yuan et al.,
2020) are used with ResNet-50 and ResNet101 as backbone,
respectively. The learning rate starts at 0.1 and decreases with
polynomial learning rate decay with factor as 0.9. The train-
ing images are randomly cropped from the original images
with size 769. We train the model for 140 epochs at each
training split with a mini-batch size of 8.

5.3 Parameter Analysis

The Impact of the Loss Weights is first studied in Fig. 6. To
test loss weights A1 and A, we fix A to 1 when A is being
tested, hence fix A1 to 8 when A; is being tested. It can be
observed that, setting either of them to 0 leads to a substantial
performance drop, indicating the impact of Ly;cr and Logrp.
Setting too large A1 and A, degrades the weight of Lc kg, hence
degrades the performance.

The Impact of the Size of Memory Bank is studied in Fig. 7.
Larger p stores more sample features, hence is beneficial
for the performance enhancement. Smaller memory size also
achieves reasonably good performance. p = 10% leads to a
compact memory bank size and only degrades the mAcc by
about 0.5%. p hence can be flexibly adjusted according to
memory capacity.

The Impact of the Batch Size z sampled from the memory
bank at each training iteration is also tested. Larger memory
training batch size z samples more features from M, thus
involves more positive and negative samples for each training
image. As shown in Fig. 8, larger z boosts the performance.

TinyImageNet minilmageNet

53 4 & 64.1 g
X
<32 63.9
g 51
<§ 50 63.7

49 63.5

0 9 .99 1999 .9997.9999

1999 .9997.9999 0 9 .99
[a

Fig.9 Effects of the parameter « in Eq. (10)

However, too large z, e.g., 4096, leads to a degradation of per-
formance. One possible explanation may be that introducing
too many positive and negative samples posts more strict
constraints on the optimization, making the convergence dif-
ficult.

The parameter « in Eq. (10) determines the update speed
of the momentum update model. Setting &« = 1 stops the
momentum update and setting « = 0 removes the momen-
tum update model. Figure 9 shows that, a reasonably large o
enhances the performance. This result indicates that momen-
tum update model is beneficial to the IME task.

These tuned parameters are applied on other datasets and
tasks, where they generalize well as shown in following
experiments.

5.4 Ablation Study

The Impact of Individual Component is studied to show the
effectiveness of each component in our method. Experimen-
tal results are summarized in Table 1. It can be observed
that, only applying £y cr does not improve the direct fine-
tuning baseline on two datasets. This is because only applying
Lycr leads to outdated features in M, which degrade the
effectiveness of Lscr. Adding either the regularization loss
Lcgrp or feature adaptation to Lyscy substantially boosts
the performance on both datasets. This shows the effective-
ness of CRP, which combines Lcgp and feature adaptation
to maintain the memorized features in M. The combination
of Lycr, Lcrp, and feature adaption achieves the best per-
formance.

Lyucr is the key to update the model with the super-
vision of the features preserved in the memory bank. To
validate its importance, we further conduct an experiment
by removing Lscr and only using CE, Lcrp and FA. This
setting degrades the performance from 52.38% to 50.84%
on TinyImageNet. Table 1 also indicates the importance of
momentum update model, e.g., removing it degrades the
mAcc from 52.38 t0 49.69% on TinylmageNet. The momen-
tum update model is also a strong technique to improve the
performance of a model. To validate that the performance
gains are not brought by the momentum update model, we
further conduct the experiment. Although the momentum
update model improves the m Acc of FT baseline from 44.87

@ Springer

International Journal of Computer Vision

Table 1 Ablation study on individual component

Table2 Comparison with other methods that preserve features

Dataset Tiny Mini Dataset Tiny Mini

Settings mAcc mAcc Settings mAcc mAcc

FT 44.87 56.67 Lycr + FA 50.71 62.89

LycL 43.97 57.90 Lycr +SDC 46.76 59.43

Lycr + FA 50.71 62.89 Lycr + Lcrp +SDC 50.21 62.36

Lycr + Lorp 49.76 63.48 REMIND 47.23 59.87

Lcrp + FA 50.84 61.92 Lycr + Lcrp +FA 52.38 63.97

Lmcr +KD +FA 51.30 63.66 Bold value indicates the best performance result

Luycr + Lcrp + FAT 52.24 63.00 “SDC” denotes the feature adaptation method proposed in SDC (Yu

FT + EMA 46.47 60.14 et al., 2020). “REMIND” denotes that using method proposed in
REMIND (Hayes et al., 2020) trains the model

L"MCL + ﬁCRp + FA* 49.69 63.52

EMCL + ECRP + FA 52.38 63.97

Bold value indicates the best performance result

“Tiny” and “mini” denote the TinylmageNet and minilmageNet, respec-
tively. “FT” denotes fine-tuning on new data. £yc; and Lcgp are
losses in Eq. (17) and Eq. (16), respectively. “FA” denotes feature adap-
tation. “KD” denotes the standard knowledge distillation loss in (Hinton
etal., 2015). “EMA” denotes the momentum update model

* denotes setting « as 0 to remove the momentum update model

+ removes the loss computed with w’ from Lcg in Eq. (7)

to 46.47% on TinylmageNet, this result still falls behind our
method. The further performance improvement is mainly
from our proposed components. Replacing Lcrp with the
knowledge distillation loss (Hinton et al., 2015) also leads
to a worse performance showing that preserving relationship
between samples and memorized features is a more reason-
able choice as the regularization loss. Table 1 also indicates
that removing the loss computed with @/ in £¢ g degrades the
performance. We hence could conclude that each component
in our method is effective in boosting the model performance
for IME.

Comparison with other methods preserving features:
some methods also preserve features in the memory bank (Yu
etal., 2020; Hayes et al., 2020). To validate that our method is
more effectiveness for IME, we compare with these methods
in Table 2. SDC (Yu et al., 2020) proposes a feature adaptation
method to update the prototype of each category. It can also
be used to update the preserved features. Replacing CRP with
SDC decreases the mAcc from 52.38 to 46.76% on TinyIm-
ageNet. Combining SDC with our Lcgp, also degrades the
performance of our method. REMIND (Hayes et al., 2020)
preserves the features extracted by a backbone with several
frozen shallow layers. These preserved features are used to
update the other deep layers. Following its setting, we freeze
the first 3 blocks of the backbone after the first training split to
extract preserved features, and tune the last block. The perfor-
mance of REMIND is also inferior to the one of our method.
REMIND limits the ability to update the entire model, which
hence restricts its performance in IME task. These results can
further validate the effectiveness of our CRP.

@ Springer

Effects of the initial training set size: We divide the training
set into 10 subsets. In the above experiments, we randomly
select 2 subsets to construct D'. Here we further evaluate
the impact of a stronger base model trained by a larger initial
training split containing 4 subsets. Results are summarized
in Table 3. Similar to the results in Table 1, each proposed
component works well with a stronger base model. Lycr,
Lcrp,and feature adaption are beneficial to the final perfor-
mance. Removing any of them leads to a clear degradation
of the performance. The impact of initial training split size is
shown in Fig. 10. The performance is boosted as we increase
the size of the first training split. Including more training
data in the first training split can improve the performance
of the base model. A better base model provides a stronger
initialization and benefits subsequent optimizations in each
training split, finally leading to a better overall mACC as
shown in Table 3 and Fig. 10.

Discussions on the challenge of IME: Deep SLDA (Hayes
and Kanan, 2020) emphasizes the importance of learning
classifiers in CIL. By freezing the backbone after the first
task and solely updating the classifier, substantial perfor-
mance improvements can be achieved. To validate whether
the classifier plays an equally critical role in tackle the chal-
lenge of IME as it does in CIL, we test the performance of
three settings: (a) linear Probing, which freezes the backbone
after the first training split and only updates the classifier
with newly arrived training splits; (b) deep SLDA, which
utilizes a covariance matrix to update the classifier; (c) clas-
sifier Upper-Bound, which freezes the backbone after the
first training split and trains the classifier with all training
splits merged together. Setting (a) serves as the baseline.
Setting (c) learns an unbiased classifier since it is trained
using merged training splits. If the classifier performance is
the bottleneck of IME, substantial performance gains should
be observed between settings (a) and (c). The results are
shown in Table 4, where Linear Probing and Classifier Upper-
Bound achieve similar performance. Training the classifier
with merged training splits also fail to enhance performance.

International Journal of Computer Vision

Table 3 Effectiveness of each proposed component with a stronger
base model

Dataset Tiny Mini

Settings mAcc mAcc
FT 51.71 62.33
Lycr 52.99 63.00
Lycr +FA 56.12 67.46
Lycr + Lcrp 54.21 66.91
Lcrp +FA 57.06 67.45
Lycr + KD +FA 56.46 67.68
Luct + Lcrp +FAT 57.46 68.16
FT + EMA 53.35 64.79
Lycr + Lcrp + FAx 54.21 67.10
Lycr + Lcrp +FA 57.56 68.30

Bold value indicates the best performance result

The base model is trained with 40% training data. Notations are con-
sistent with those in Table 1

* denotes setting « as 0 to remove the momentum update model

T removes the loss computed with ! from Lcg in Eq. (7)

TinylmageNet minilmageNet
__60 71
sg 69
3 56 67
N 54 65
52 63

20% 30% 40% 50% 60% 20% 30% 40% 50% 60%
Percentage of the first training split

Fig. 10 Effects of the initial training split size

It indicates that, only tuning classifiers with newly arrived
training splits cannot bring substantially performance gains.
These results demonstrate that the classifier is not the bot-
tleneck in the performance of IME, which poses different
challenges with CIL.

Kim et al. (2023) demonstrate that IL can be tackled
through a combination of (a) a method capable of learn-
ing each sub-task in IL without forgetting them, and (b)
an out-of-distribution detection method to assign each test
instance to the correct sub-task model. To assess the suitabil-
ity of this theory for IME, we implement different methods
in Table 5 to satisfy the criteria (a): “Independent” denotes
different models are trained independently for each training
split; “PackNet” denotes the models are trained by perform-
ing iterative pruning and network re-training as in Mallya and
Lazebnik (2018). “Expand” denotes the previously learned
parameters are frozen and some additional feature dimen-
sions are added for each new training split as in Yan et al.
(2021). To satisfy criteria (b) during inference, each sam-
ple is simultaneously passed to multiple models trained by
different training splits. We consider the final prediction as
correct, if any of those model could provide a correct predic-
tion. Results are summarized in Table 5, where those methods

Table 4 Ablation study on different training settings for the classifier

Dataset Tiny Mini
Settings mAcc mAcc
Linear Probing 39.82 56.93
Deep SLDA 39.77 57.21
Classifier Upper-Bound 40.21 57.38
Ours 52.38 63.97
Bold value indicates the best performance result
I theory proponcd by i, DAL Ty M
(2023) on the IME task
Independent ~ 42.47 54.61
PackNet 45.05 56.32
Expand 47.89 58.37
Ours 5238 6397

Bold value indicates the best per-
formance result

getlower performance than our proposed method. It indicates
that, the theory presented by Kim et al. (2023) is not suitable
for IME. This is because each training split in IME cannot
be regarded as an independent task like TIL, CIL or DIL. To
improve the IME performance, it is crucial to consider the
joint distribution of all training splits. This new challenge
makes current IL methods do not work well on IME.

Performance on semantic segmentation: to further val-
idate our method, we conduct experiments on semantic
segmentation. The well-known method DeepLabV3 (Chen et
al., 2017) is employed as the segmentation head. The results
are shown in Table 6. Similar to the result in the image classi-
fication, the proposed components are effective in semantic
segmentation. For example, without Lcgp or feature adap-
tation, the performance improvement of Lycy is limited.
The combination of Lycr, Locrp and feature adaptation
achieves the best performance, validating the generalization
ability of our method on other task. To verify our approach is
applicable to different semantic segmentation methods, the
experiments with OCRNet (Yuan et al., 2020) are also con-
ducted. Our method still outperforms the fine-tuning baseline
with a clear margin.

5.5 Comparison with Other Methods

Image classification: As IL is closely related to the IME,
we compare our method with several recent IL methods
on TinylmageNet, minilmageNet, ImageNetl1K and CUB
respectively. Those IL methods follow similar intuition to
avoid forgetting of learned knowledge and learn new tasks
or domains from new data. Table 7 and Fig. 11 summarize
the results.

@ Springer

International Journal of Computer Vision

Table 6 Ablation studies of each component on Cityscapes

Settings Avg. mloU
FT 73.18
Lycr 73.37
Lycr +FA 73.70
Lycr + Lcrp 74.78
Lcrp + FA 74.62
Lycr + Lorp +FAT 74.72
FT + EMA 73.47
Lycr + Lcrp + FAx 73.86
L"MCL + LCRP + FA 75.06
FT % 74.39
Luycr + Lcrp + FA¥ 76.26

Bold value indicates the best performance result

“FT” denotes fine-tuning on new data. Ly ¢y and Lcgrp are losses
in Eq. (17) and Eq. (16), respectively. “KD” denotes the standard
knowledge distillation loss in (Hinton et al., 2015). “EMA” denotes
the momentum update model. Superscript * denotes setting « as 0 to
remove the momentum update model, and T removes the loss computed
with @’ from Lcg in Eq. (7). # denotes using OCRNet as segmentation
head

Table 7 Performance comparison with other IL methods on 4 datasets

As shown in Table 7, the fine-tuning baseline marginally
improves the initial model trained on D'. The distillation-
based method LwF (Li and Hoiem, 2017) improves the
baseline performance, showing that memorizing previously
learned cues is beneficial for the model enhancement. We find
that, the regularization-based method EWC (Kirkpatrick et
al.,2017) does not improve the baseline. Perhaps EWC penal-
izes the change of parameters that are useful for the previous
training set. This setup is reasonable for IL, because it needs
to maintain the performance of previous tasks when learning
a new task. EWC reasonably preserves critical parameters
to ensure the performance of previous tasks. For IME, each
training split only covers part of the feature distribution for
the target vision task. Applying too strict regularization on
previous parameters in EWC limits the optimization on avail-
able training data.

Memory-based methods GEM (Lopez-Paz and Ranzato,
2017), DER (Buzzega et al., 2020), RM (Bang et al., 2021),
Co2L (Chaetal., 2021), FOSTER (Wang et al., 2022a), and
CSCCT (Ashok et al., 2022) perform better than the baseline
by preserving 10% training images in the memory. However,
reducing the percentage of preserved images from 10 to 2%
substantially degrades their performance to a level similar to
the baseline. It is clear that these methods are more sensitive

Dataset TinyImageNet minilmageNet ImageNet1K CUB

Methods mAcc Acc* O mAcc Acc* O mAcc Acc* (@) mAcc Acc* O
FT 44.87 48.93 0 56.67 59.91 0 55.49 56.69 0 71.70 73.30 0
Upper 56.50 63.25 1180 68.36 75.09 1010 66.27 69.60 183,980 76.55 78.58 860
LwF 49.17 52.99 0 60.18 64.46 0 60.03 61.51 0 72.85 75.16 0
EWC 45.03 48.73 0 56.59 58.89 0 57.48 58.85 0 72.41 73.97 0
GEM 10% 45.58 499 118 59.62 63.88 101 56.76 58.5 18,398 69.45 70.94 86
GEM 2% 44.74 48.54 24 57.23 60.03 20 - - - 69.25 70.79 17
DER 10% 49.76 53.82 118 62.35 66.32 101 58.10 59.47 18,398 71.92 74.09 86
DER 2% 47.47 50.66 24 60.83 64.59 20 - - - 71.32 73.87 17
RM 10% 46.69 50.34 118 59.76 63.81 101 55.12 56.99 18,398 72.97 74.92 86
RM 2% 45.02 48.02 24 57.53 60.26 20 - - - 72.04 74.02 17
Co2L 10% 49.81 53.78 118 61.95 65.94 101 58.18 59.64 18,398 71.67 73.78 86
Co2L 2% 45.26 48.14 24 60.06 63.26 20 - - - 70.87 7291 17
FOSTER 10% 49.98 54.03 118 62.04 66.03 101 57.50 58.85 18,398 70.60 73.67 86
FOSTER 2% 46.24 49.28 24 61.28 63.88 20 - - - 69.97 72.45 17
CSCCT 10% 48.82 53.11 118 61.67 65.89 101 57.61 58.56 18,398 71.42 74.51 86
CSCCT 2% 45.43 47.96 24 60.12 63.38 20 - - - 70.25 72.67 17
Ours 100% 52.38 56.15 195 63.97 67.59 98 61.05 62.32 2,498 75.11 76.72 46
Ours 10% 52.21 55.92 20 63.66 67.55 10 60.83 62.02 250 74.63 76.63 5
Ours 1% 51.70 55.09 2 63.20 67.14 1 60.66 61.94 25 74.07 76.15 0.5

Bold value indicates the best performance result

The left column shows the percentage of preserved training data of many methods. “FT” denotes fine-tuning on the newly added data. “Upper”
denotes the performance upper bound that trains the model from scratch on the fused training set. “*” denotes the accuracy of final training split.
“0O” denotes the memory overhead (in MB) caused by preserved images or features

@ Springer

International Journal of Computer Vision

TinyIlmageNet minilmageNet
60 70
55 65
S
2
s 50 60
=
3
<
45 55
40 A 50
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7
Training Split Training Split
FT -Upper —LwF — EWC -GEM 10% —DER 10% RM 10% -

ImageNet1 K CUB
67 80

52 65
9 1 2 3 4 5 6 7 8 9 1 2 3 4
Training Split Training Split
Co2L 10% ~-~FOSTER 10% — CSCCT 10% -=Ours 100% = Ours 10% = Ours 1%

Fig. 11 Performance comparison at each training split on TinyImageNet, minilmageNet, ImageNet1K, and CUB, respectively. The proposed

method substantially outperforms other IL methods

75

mloU

73

71

Training split

Fig. 12 Performance comparison at each training split on Cityscapes.
DeepLabV3 is used as the segmentation head. The “Upper” denotes the
performance upper bound of training from scratch repeatedly

to the number of preserved images, and need to consume a
large memory overhead to ensure a good performance. Co2LL
leverages contrastive loss and introduces Instance-wise Rela-
tion Distillation (IRD) to regulate the changes in the feature
relationship between batch samples. It only focuses on the
relationship between samples within the current training task.
In contrast, Lcgp regulates the relationship between sam-
ples in each training split and preserved features in M. Our
method achieves better performance compared with Co2L.
FOSTER dynamically expands new modules to learn new
categories in CIL. However, in IME, the joint distribution of
all training splits must be considered. Freezing most param-
eters and introducing only new tunable modules with limited
tunable parameters do not perform well. Compared with
those works, our method performs substantially better. Our
work is also less sensitive to the size of memory bank, e.g.,
similar performance is achieved by preserving 10 and 1%
features, respectively. Our work hence mitigates the memory
overhead and achieves significantly better accuracy. Storing
features instead of original images is also friendly to privacy
protection.

To show the scalability of our method, we further test it on
the large-scale ImageNet1K, where the training set contains
about 1 M images. On this large-scale dataset, our method
achieves the mAcc of 61.05%, also outperforms the compet-

ing methods. Upon all these experiments, we could conclude
that our method achieves promising performance on the IME
task.

Image classification on other network architectures and
pre-training methods: Transformer (Dosovitskiy et al., 2020)
shows better capability to capture long-range dependencies
than CNN, and is getting more popular in vision tasks. In
addition, recent self-supervised methods (He et al., 2020;
Li et al., 2020; Chen et al., 2020b) also achieve impressive
representation learning performance. We further validate the
effectiveness of our method on Transformers, as well as back-
bones trained with self-supervised methods. The experiments
are conducted on CUB, Cars196 (Krause et al., 2013), and
OfficeHome (Venkateswara et al., 2017).

Cars196 is a widely used dataset for fine-grained image
recognition to recognize different cars. OfficeHome is con-
structed for object recognition in office and home environ-
ments with four domains, which are Art, Clipart, Product,
and Real World. We follow the same training setting as CUB.
We randomly divide the training sets of Cars196 and Office-
Home into 10 independent subsets with equal size. D! is
constructed with 4 subsets. Each of remaining training splits
D?-D* is constructed with 2 subsets. Results are shown in
Table 8, where our method also exhibits the best performance
when using ViT-small or ResNet-50 trained with MoCoV2
as the backbone. We also compare our method with prompt
learning-based methods (Wang et al., 2022, d) that learn sev-
eral prompt tokens based on a powerful frozen Transformer.
These methods do not perform well on IME because learning
prompt tokens is not sufficient to enhance the representation
ability of the backbone for a fixed vision task. These results
highlight the effectiveness of our method across different
types of backbones.

Scalability of our method: To demonstrate the scalabil-
ity of our method on large-scale datasets and a stronger
backbone, we conduct experiments on ImageNet-1K and
iNaturalist2018 (Van Horn et al., 2018) using ResNet-50

@ Springer

International Journal of Computer Vision

Table 8 Performance comparison on CUB, Cars196, and OfficeHome with ViT-small (Dosovitskiy et al., 2020) and ResNet-50 trained by

MoCoV2 (Chen et al., 2020b) as the backbone

Datasets CUB Cars196 OfficeHome

Backbone ViT-small MoCoV2 ViT-small MoCoV2 ViT-small MoCoV2
Methods mAcc Acc* mAcc Acc* mAcc Acc* mAcc Acc* mAcc Acc* mAcc Acc*
FT 77.53 77.71 60.78 63.65 81.04 83.25 76.72 79.47 78.60 78.99 73.15 74.46
Upper 82.86 83.91 69.80 73.85 87.77 90.23 82.89 85.97 81.72 82.79 78.22 79.71
LwF 78.22 80.43 62.87 66.67 81.16 84.44 76.22 79.34 78.77 79.24 72.89 74.34
EWC 76.89 77.65 61.17 63.55 81.62 83.48 77.13 79.77 78.16 78.50 73.24 74.40
GEM 10% 75.98 78.23 60.15 64.26 80.99 84.12 67.42 71.67 70.19 72.34 71.20 72.46
DER 10% 78.24 79.65 61.97 66.22 82.72 85.95 79.27 82.28 79.21 79.78 73.87 75.63
RM 10% 78.73 80.52 62.52 65.81 82.39 84.82 77.60 80.28 78.82 79.83 73.95 75.54
Co2L 10% 77.89 79.47 61.82 65.88 81.79 84.03 78.26 80.64 79.01 80.29 73.92 75.27
FOSTER 10% 77.62 79.28 61.28 65.03 81.46 83.26 77.43 79.48 78.79 79.11 73.09 74.79
CSCCT 10% 78.02 79.32 61.79 66.25 81.50 83.45 77.07 79.25 78.46 78.87 73.79 75.03
S-Prompt 76.67 77.10 - - 81.24 83.24 - - 79.35 80.47 - -
L2P 76.53 77.27 - - 81.31 83.46 - - 79.67 81.24 - -
Ours 100% 82.29 83.64 67.27 72.57 86.79 89.36 81.99 85.06 81.48 81.94 77.62 78.50
Ours 10% 81.67 83.28 66.82 72.19 86.36 88.92 81.87 84.79 81.14 81.66 77.20 77.81
Ours 1% 81.03 82.83 66.36 71.92 85.84 88.48 81.13 84.34 80.91 81.35 76.89 77.53

Bold value indicates the best performance result

“Upper” denotes the performance upper bound that trains the model from scratch on the fused training set. “*”” denotes the accuracy of final training

split

Table 9 Performance comparison on ImageNet-1K and iNatural-
ist2018 with ResNet-50 as the backbone

Datasets ImageNetlK iNaturalist2018

Methods mAcc Acc* mAcc Acc*
FT 60.38 61.23 61.42 66.03
Upper 72.58 76.01 76.89 84.33
LwF 64.79 66.53 62.91 68.13
EWC 62.04 64.07 61.17 65.73
GEM 10% 61.63 63.78 60.82 63.23
DER 10% 63.28 64.89 64.61 69.63
RM 10% 61.27 61.92 61.33 68.70
Co2L 10% 63.80 64.42 64.74 70.28
FOSTER 10% 62.93 63.18 63.55 69.23
CSCCT 10% 62.53 62.77 63.06 68.27
Ours 100% 67.24 68.28 68.56 73.73
Ours 10% 66.91 68.04 67.78 73.03
Ours 1% 66.27 67.48 67.02 72.43

Bold value indicates the best performance result

“Upper” denotes the performance upper bound that trains the model
from scratch on the fused training set. “*”” denotes the accuracy of final
training split

as the backbone. Results are presented in Table 9. We fol-
low a similar setting in Petit et al. (2023) to get a subset
of iNaturalist2018 with 1000 classes. When leveraging the
more powerful ResNet-50 architecture, our method achieves

@ Springer

amAcc of 67.24% on ImageNet1K. Notably, this presents an
appreciable performance increase of approximately 6.31%
towards the theoretical upper bound compared with the
results in Table 7. Those compared methods show less perfor-
mance improvements, e.g., LWF only improves mAcc from
60.03 to 64.79%. In iNaturalist2018, our method outperforms
other methods by a clear margin, e.g., surpassing LwF by
about 5.65%. The substantial performance enhancement of
our method indicates its impressive scalability and efficacy
when integrated with a powerful backbone. We conclude that
our method presents reasonably good scalability, and also
works well with strong backbones.

Domain incremental setting: The domain incremental
learning aims to learn from different domains sequentially
while retaining the performance on learned domains. It thus
can be regarded as a special case of IME by splitting each
training split into different domains. To validate the effective-
ness of the proposed method under this setting, we conduct
experiments on OfficeHome under the domain incremental
setting. The training set is divided into four training splits,
each containing one domain. The order of the domains is Art,
Clipart, Product, and Real World, respectively. The results are
summarized in Table 10, where our method achieves 80.80%
mAcc, outperforming all compared incremental learning
methods. This validates that our method can also deal with
the domain shift between different training splits.

International Journal of Computer Vision

Table 10 Performance comparison on OfficeHome under domain
incremental setting with ResNet-50 as the backbone. “Upper” denotes
the performance upper bound that trains the model from scratch on the
fused training set. “*” denotes the accuracy of final training split

Datasets OfficeHome

methods mAcc Acc*
FT 71.67 73.43
Upper 81.79 84.06
LwF 77.02 79.45
EWC 76.28 78.50
GEM 10% 72.67 74.70
DER 10% 78.75 80.07
RM 10% 77.17 78.32
Co2L 10% 78.94 80.85
FOSTER 10% 78.43 79.12
CSCCT 10% 78.86 79.98
Ours 100% 80.80 82.73
Ours 10% 80.57 82.64
Ours 1% 80.13 82.06

Bold value indicates the best performance result

Semantic segmentation: In addition to visualizations in
Fig. 5, more results on dense prediction task semantic seg-
mentation are shown in Fig. 12. Compared with direct
fine-tuning, our method consistently improves the perfor-
mance with the sequentially arrived data. After three new
training splits, our method improves the mIOU by about 5%.
The last training split brings about 1.9% gains. With 10%
samples in the memory bank, our method also outperforms
the incremental learning methods LwF (Li and Hoiem, 2017)
and DER (Buzzega et al., 2020) by 1.2 and 1.8% mIOU at the
last training split, respectively. In addition, storing features
in the memory bank also leads to less memory requirement
of our method. These results can further validate the gener-
alization ability of our method on different vision tasks.

6 Conclusion

This paper studies a new task coined as Incremental Model
Enhancement (IME). It aims to enhance the model perfor-
mance on a specific vision task using sequentially arrived
training data. Our method adopts a memory bank to store
features of previous training data, which serves to preserve
previously learned knowledge, and then learn from new train-
ing data via Contrastive Relation Preserving (CRP) and the
Memory-based Contrastive Learning (MCL), respectively.
CRP and MCL work iteratively to accumulate meaningful
cues in previous data and evolve with new data. Experiments
on several large-scale image classification and semantic seg-
mentation benchmarks demonstrate the effectiveness of CRP

and MCL. Comparisons with recent IL methods show the
promising performance of our method in aspects of accuracy
and memory efficiency. Table 7 and Fig. 11 show a substan-
tial gap between current method and the performance upper
bound. Therefore, more efforts are still needed to explore this
challenging task.

Acknowledgements This work is supported in part by the Natural Sci-
ence Foundation of China under Grant No. U20B2052, 61936011, in
part by the Okawa Foundation Research Award.

Data Availability This paper uses public datasets to conduct exper-
iments. Those datasets are available in following URLs. Tinylma-
geNet (Stanford, 2015): http://tiny-imagenet.herokuapp.com/. minilm-
ageNet (Vinyals etal.,2016): https://goo.gl/e3orz6/. ImageNet1K (Rus-
sakovsky et al., 2015): https://www.image-net.org/. CUB (Wah et al.,
2011): http://www.vision.caltech.edu/datasets/cub_200_2011/.
Cityscapes (Cordts et al., 2016): https://www.cityscapes-dataset.com/.
OfficeHome (Krause et al., 2013): https://www.hemanthdv.org/office
HomeDataset.html/. iNaturalist2018 (Van Horn et al., 2018): https://
github.com/visipedia/inat_comp/tree/master/2018.

References

Aljundi, R., Lin, M., Goujaud, B., & Bengio, Y. (2019). Gradient based
sample selection for online continual learning. arXiv preprint
arXiv:1903.08671.

Ashok, A., Joseph, K., Balasubramanian, V. N. (2022). Class-
incremental learning with cross-space clustering and controlled
transfer. In ECCV (pp. 105-122). Springer.

Bang, J., Kim, H., Yoo, Y., Ha, J. W., & Choi, J. (2021). Rainbow
memory: Continual learning with a memory of diverse samples.
In CVPR (pp. 8218-8227).

Belouadah, E., & Popescu, A. (2019). I12m: Class incremental learning
with dual memory. In /CCV (pp. 583-592).

Bobu, A., Tzeng, E., Hoffman, J., & Darrell, T. (2018). Adapting to
continuously shifting domains. In /CLR workshop.

Buzzega, P., Boschini, M., Porrello, A., Abati, D., & Calderara, S.
(2020). Dark experience for general continual learning: A strong,
simple baseline. arXiv preprint arXiv:2004.07211.

Cha, H., Lee, J., & Shin, J. (2021). Co2l: Contrastive continual learning.
In ICCV (pp. 9516-9525).

Chen, LC., Papandreou, G., Schroff, F, & Adam, H. (2017).
Rethinking atrous convolution for semantic image segmentation.
arXiv:1706.05587.

Chen, X., & He, K. (2021). Exploring simple siamese representation
learning. In CVPR (pp. 15750-15758).

Chen, X., Fan, H., Girshick, R., & He, K. (2020b). Improved
baselines with momentum contrastive learning. arXiv preprint
arXiv:2003.04297.

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020a). A simple
framework for contrastive learning of visual representations. In
ICML, PMLR (pp. 1597-1607).

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benen-
son, R., Franke, U., Roth, S., & Schiele, B. (2016). The cityscapes
dataset for semantic urban scene understanding. In CVPR.

Dhar, P, Singh, R. V., Peng, K. C., Wu, Z., & Chellappa, R. (2019).
Learning without memorizing. In CVPR (pp. 5138-5146).

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai,
X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G.,
Gelly, S., & Uszkoreit, J. (2020). An image is worth 16 x 16
words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929.

@ Springer

http://tiny-imagenet.herokuapp.com/
https://goo.gl/e3orz6/
https://www.image-net.org/
http://www.vision.caltech.edu/datasets/cub_200_2011/
https://www.cityscapes-dataset.com/
https://www.hemanthdv.org/officeHomeDataset.html/
https://www.hemanthdv.org/officeHomeDataset.html/
https://github.com/visipedia/inat_comp/tree/master/2018
https://github.com/visipedia/inat_comp/tree/master/2018
http://arxiv.org/abs/1903.08671
http://arxiv.org/abs/2004.07211
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/2003.04297
http://arxiv.org/abs/2010.11929

International Journal of Computer Vision

Douillard, A., Cord, M., Ollion, C., Robert, T., & Valle, E. (2020).
Podnet: Pooled outputs distillation for small-tasks incremental
learning. In ECCV (pp. 86—102). Springer.

Fang, Z., Wang, J., Wang, L., Zhang, L., Yang, Y., & Liu, Z. (2021).
Seed: Self-supervised distillation for visual representation. arXiv
preprint arXiv:2101.04731.

Farajtabar, M., Azizan, N., Mott, A., & Li, A. (2020). Orthogonal gra-
dient descent for continual learning. In International conference
on artificial intelligence and statistics (pp. 3762-3773). PMLR.

Gou, J., Yu, B., Maybank, S.J., & Tao, D. (2021). Knowledge distilla-
tion: A survey. IJCV, 129, 1789-1819.

Hadsell, R., Chopra, S., & LeCun, Y. (2006). Dimensionality reduction
by learning an invariant mapping. In 2006 IEEE computer society
conference on computer vision and pattern recognition (CVPR’06)
(pp. 1735-1742). IEEE.

Hayes, TL., Kafle, K., Shrestha, R., Acharya, M., & Kanan, C. (2020).
Remind your neural network to prevent catastrophic forgetting. In
ECCV (pp. 466-483). Springer.

Hayes, T. L., & Kanan, C. (2020). Lifelong machine learning with deep
streaming linear discriminant analysis. In CVPRW (pp. 220-221).

He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum
contrast for unsupervised visual representation learning. In CVPR
(pp. 9729-9738).

He, Y., Zhang, X., & Sun, J. (2017). Channel pruning for accelerating
very deep neural networks. In /ICCV (pp. 1389-1397).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for
image recognition. In CVPR (pp. 770-778).

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531.

Hoi, S. C., Sahoo, D., Lu, J., & Zhao, P. (2021). Online learning: A
comprehensive survey. Neurocomputing, 459, 249-289.

Iscen, A., Zhang, J., Lazebnik, S., & Schmid, C. (2020). Memory-
efficient incremental learning through feature adaptation. In ECCV
(pp. 699-715). Springer.

Jung, H., Ju, J., Jung, M., & Kim, J. (2018). Less-forgetful learning for
domain expansion in deep neural networks. In AAAL.

Kalantidis, Y., Sariyildiz, M. B., Pion, N., Weinzaepfel, P., & Larlus,
D. (2020). Hard negative mixing for contrastive learning. NeulPS,
33,21798-21809.

Kang, B.,Li, Y., Xie, S., Yuan, Z., & Feng, J. (2020). Exploring balanced
feature spaces for representation learning. In /CLR.

Khosla, P., Teterwak, P, Wang, C., Sarna, A., Tian, Y., Isola, P,
Maschinot, A., Liu, C., & Krishnan, D. (2020). Supervised con-
trastive learning. arXiv preprint arXiv:2004.11362.

Kim, G., Xiao, C., Konishi, T., & Liu, B. (2023) Learnability and algo-
rithm for continual learning. arXiv preprint arXiv:2306.12646.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G.,
Rusu, A. A.,Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska,
A., & Hassabis, D. (2017). Overcoming catastrophic forgetting in
neural networks. Proceedings of the National Academy of Sci-
ences, 114(13), 3521-3526.

Kovashka, A., Russakovsky, O., Fei-Fei, L., & Grauman, K. (2016).
Crowdsourcing in computer vision. Foundations and Trends ® in
Computer Graphics and Vision, 10(3), 177-243.

Krause, J., Stark, M., Deng, J., & Fei-Fei, L. (2013). 3d object represen-
tations for fine-grained categorization. In /ICCVW (pp. 554-561).

Lee, S. W., Kim, J. H., Jun, J., Ha, J. W, & Zhang, B. T. (2017). Over-
coming catastrophic forgetting by incremental moment matching.
arXiv preprint arXiv:1703.08475.

Li J., Zhou, P, Xiong, C., & Hoi, S. C. (2020). Prototypical con-
trastive learning of unsupervised representations. arXiv preprint
arXiv:2005.04966.

Li, Z., & Hoiem, D. (2017). Learning without forgetting. TPAMI,
40(12), 2935-2947.

Lopez-Paz, D., & Ranzato, M. (2017). Gradient episodic memory for
continual learning. NeurlPS, 30, 6467-6476.

@ Springer

Mallya, A., & Lazebnik, S .(2018). Packnet: Adding multiple tasks to
a single network by iterative pruning. In CVPR (pp. 7765-7773).

Mancini, M., Bulo, S. R., Caputo, B., & Ricci, E. (2019). Adagraph:
Unifying predictive and continuous domain adaptation through
graphs. In CVPR (pp. 6568-6577).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., & Desmaison,
A. (2019). Pytorch: An imperative style, high-performance deep
learning library. NeurIPS, 32, 8026-8037.

Petit, G., Popescu, A., Belouadah, E., Picard, D., & Delezoide, B.
(2023). Plastil: Plastic and stable exemplar-free class-incremental
learning. In Conference on lifelong learning agents (pp. 399-414).
PMLR.

Prabhu, A., Torr, P. H., & Dokania, P. K. (2020). Gdumb: A sim-
ple approach that questions our progress in continual learning.
In ECCV (pp. 524-540). Springer.

Pu, N., Chen, W,, Liu, Y., Bakker, E. M., & Lew, M. S. (2021). Lifelong
person re-identification via adaptive knowledge accumulation. In
CVPR (pp. 7901-7910).

Rebuffi, S. A., Kolesnikov, A., Sperl, G., & Lampert, C. H. (2017). icarl:
Incremental classifier and representation learning. In CVPR (pp.
2001-2010).

Romero, A., Ballas, N., & Kahou, S. E.(2014). Fitnets: Hints for thin
deep nets. arXiv preprint arXiv:1412.6550.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., & Berg, A. C.
(2015). Imagenet large scale visual recognition challenge. IJCV,
115(3),211-252.

Saha, G., Garg, 1., & Roy, K. (2021). Gradient projection memory for
continual learning. arXiv preprint arXiv:2103.09762.

Stanford. (2015). Tiny ImageNet Challenge (CS231n). http://tiny-
imagenet.herokuapp.com/

Sun, Q., Liu, Y., Chua, T. S., & Schiele, B. (2019). Meta-transfer learn-
ing for few-shot learning. In CVPR (pp. 403—412).

Tao, X., Chang, X., Hong, X., Wei, X., & Gong, Y. (2020). Topology-
preserving class-incremental learning. In ECCV (pp. 254-270).
Springer.

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE.
Journal of Machine Learning Research, 9, 2579-2605.

Van Horn, G., Mac Aodha, O., Song, Y., Cui, Y., Sun, C., Shepard,
A., Adam, H., Perona, P., & Belongie, S. (2018). The inaturalist
species classification and detection dataset. In CVPR (pp. 8769—
8778).

Venkateswara, H., Eusebio, J., Chakraborty, S., & Panchanathan, S.
(2017). Deep hashing network for unsupervised domain adapta-
tion. In CVPR (pp. 5018-5027).

Vijayanarasimhan, S., & Grauman, K. (2011). Cost-sensitive active
visual category learning. IJCV, 91, 24—44.

Vinyals, O., Blundell, C., Lillicrap, T., & Wierstra, D. (2016). Matching
networks for one shot learning. NeurIPS, 29, 3630-3638.

Wah, C., Branson, S., Welinder, P., Perona, P., & Belongie, S. (2011).
The caltech-ucsd birds-200-2011 dataset. California Institute of
Technology.

Wang, Q., Fink, O., Van Gool, L., & Dai, D. (2022b). Continual test-time
domain adaptation. In CVPR (pp. 7201-7211).

Wang, S., Li, X., Sun, J., & Xu, Z. (2021). Training networks in null
space of feature covariance for continual learning. In CVPR (pp.
184-193).

Wang, Z., Zhang, Z., Lee, C. Y., Zhang, H., Sun, R., Ren, X., Su, G.,
Perot, V., Dy, J., & Pfister, T. (2022d). Learning to prompt for
continual learning. In CVPR (pp. 139-149).

Wang, F. Y., Zhou, D. W,, Ye, H. J., & Zhan, D. C. (2022a). Foster:
Feature boosting and compression for class-incremental learning.
In ECCV (pp. 398-414). Springer.

http://arxiv.org/abs/2101.04731
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/2004.11362
http://arxiv.org/abs/2306.12646
http://arxiv.org/abs/1703.08475
http://arxiv.org/abs/2005.04966
http://arxiv.org/abs/1412.6550
http://arxiv.org/abs/2103.09762
http://tiny-imagenet.herokuapp.com/
http://tiny-imagenet.herokuapp.com/

International Journal of Computer Vision

Wang, Y., Huang, Z., & Hong, X. (2022). S-prompts learning with pre-
trained transformers: An Occam’s razor for domain incremental
learning. NeurIPS, 35, 5682-5695.

Xie, J., Yan, S., & He, X. (2022). General incremental learning with
domain-aware categorical representations. In CVPR (pp. 14351-
14360).

Yan, S., Xie, J., & He, X. (2021). Der: Dynamically expandable repre-
sentation for class incremental learning. In CVPR (pp. 3014-3023).

Yao, X., Bai, Y., Zhang, X., Zhang, Y., Sun, Q., Chen, R., Li, R. &
Yu, B. (2022). Pcl: Proxy-based contrastive learning for domain
generalization. In CVPR (pp. 7097-7107).

Yoon, J., Yang, E., Lee, J., & Hwang, S. J. (2017). Lifelong
learning with dynamically expandable networks. arXiv preprint
arXiv:1708.01547.

Yu, L., Twardowski, B., Liu, X., Herranz, L., Wang, K., Cheng, Y.,
Jui, S., & Weijer, J. V. D. (2020). Semantic drift compensation for
class-incremental learning. In CVPR (pp. 6982-6991).

Yuan, Y., Chen, X., & Wang, J. (2020). Object-contextual repre-
sentations for semantic segmentation. In ECCV (pp. 173-190).
Springer.

Zagoruyko, S., & Komodakis, N. (2016). Paying more attention to atten-
tion: Improving the performance of convolutional neural networks
via attention transfer. arXiv preprint arXiv:1612.03928.

Zhu, R., Zhao, B., Liu, J., Sun, Z., & Chen, C. W. (2021). Improving
contrastive learning by visualizing feature transformation. In /CCV
(pp. 10306-10315).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

@ Springer

http://arxiv.org/abs/1708.01547
http://arxiv.org/abs/1612.03928

	Incremental Model Enhancement via Memory-based Contrastive Learning
	Abstract
	1 Introduction
	2 Related Work
	2.1 Incremental Learning
	2.2 Contrastive Learning
	2.3 Differences with Other Methods

	3 Overview
	4 Proposed Method
	4.1 Contrastive Relation Preserving
	4.2 Memory-based Contrastive Learning

	5 Experiments
	5.1 Experimental Setup
	5.2 Implementation Details
	5.3 Parameter Analysis
	5.4 Ablation Study
	5.5 Comparison with Other Methods

	6 Conclusion
	Acknowledgements
	References

