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Abstract
Current image-based keypoint detection methods for animal (including human) bodies and faces are generally divided into
fully supervised and few-shot class-agnostic approaches. The former typically relies on laborious and time-consumingmanual
annotations, posing considerable challenges in expanding keypoint detection to a broader range of keypoint categories and
animal species. The latter, though less dependent on extensive manual input, still requires necessary support images with
annotation for reference during testing. To realize zero-shot keypoint detection without any prior annotation, we introduce
the Open-Vocabulary Keypoint Detection (OVKD) task, which is innovatively designed to use text prompts for identifying
arbitrary keypoints across any species. In pursuit of this goal, we have developed a novel framework named Open-Vocabulary
Keypoint Detection with Semantic-feature Matching (KDSM). This framework synergistically combines vision and language
models, creating an interplay between language features and local keypoint visual features. KDSM enhances its capabilities
by integrating Domain Distribution Matrix Matching (DDMM) and other special modules, such as the V ision-Keypoint
Relational Awareness (VKRA) module, improving the framework’s generalizability and overall performance. Our compre-
hensive experiments demonstrate that KDSM significantly outperforms the baseline in terms of performance and achieves
remarkable success in the OVKD task. Impressively, our method, operating in a zero-shot fashion, still yields results compa-
rable to state-of-the-art few-shot species class-agnostic keypoint detection methods. Codes and data are available at https://
github.com/zhanghao5201/KDSM.
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1 Introduction

Animal keypoint detection, a fundamental task in computer
vision, is dedicated to identifying and localizing animals’
keypoints within images. This task is pivotal for extensive
analysis of animal (including human) bodies and faces. The
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accurate location of these keypoints plays a vital role in vari-
ous applications, ranging from in-depth behavioral studies to
automated monitoring systems, such as animal pose tracking
(Patel et al., 2023) and automatic assessment of animal pain
(Feighelstein et al., 2022; Pessanha et al., 2023).

Traditional keypoint detection methodologies have pri-
marily centered around developing complex neural network
architectures (Andriluka et al., 2014; Fang et al., 2017;
Newell et al., 2016; Tu et al., 2023; Wang et al., 2020;
Xu et al., 2024; Zhang et al., 2023, 2024) and training
them with datasets of annotated images to identify key-
points within specific species and keypoint categories. This
strategy necessitates substantial manual labeling for each
newly investigated species, often resulting in the creation
of specialized datasets for these species (Brown et al., 2020;
Khan et al., 2020; Koestinger et al., 2011; Lin et al., 2014;
Labuguen et al., 2021), a process known to be both time-
consuming and labor-intensive. For instance, compiling the
AnimalWeb dataset (Khan et al., 2020) required a substantial
manual labeling effort totaling 6,833 man-hours from both
experts and trained volunteers. Despite such extensive man-
ual efforts, the relatively limited availability and smaller size
of animal keypoint datasets, compared to those for humans,
present significant challenges in extending keypoint detec-
tion to new keypoint categories and animal species. The
AnimalWeb dataset includes fewer than 239 annotations
per species, in sharp contrast to the human-focused AFLW
dataset (Koestinger et al., 2011), which contains 25,993
annotations. Furthermore, some species in the AnimalWeb
dataset are represented by only a single annotated image,
making cross-species keypoint detection evenmore challeng-
ing, especially for species that lack annotations. Advanced
few-shot species class-agnostic keypoint detection methods,
as extensively detailed in studies like (Shi et al., 2023; Xu
et al., 2022), represent progress in reducing the reliance on
extensive manual annotations to adapt new keypoint cate-
gories and animal species. As illustrated in Fig. 1a, these
methods necessitate a small number of annotated support
images for keypoint references during testing. In this paper,
we further accomplish amore challenging task,which detects
arbitrary keypoint in a zero-shot fashion without prior anno-
tation during testing. Zero-shot keypoint detection could
facilitate more convenient in-depth behavioral studies (Patel
et al., 2023) and the development of automated monitoring
systems (Feighelstein et al., 2022; Pessanha et al., 2023) for
new species and keypoint categories.

The potential of vision-language models (VLMs) (Jia et
al., 2021; Radford et al., 2021) inspires our approach. VLMs
have shown success in jointmodeling of visual and text infor-
mation, contributing to their exceptional zero-shot learning
ability in various tasks, including object detection, semantic
segmentation, video classification, and others (Weng et al.,
2023; Xu et al., 2023; Yao et al., 2022). However, there is

a lack of research specifically addressing keypoint detection
methods within this context. Motivated by VLM advance-
ments, we introduce the language-driven Open-Vocabulary
Keypoint Detection (OVKD) task (unless otherwise spec-
ified, OVKD always refers to language-driven OVKD).
Specifically, OVKD is designed to identify a broad spec-
trum of (animal species, keypoint category) pairs, including
those not encompassed in the original training dataset. The
term {keypoint category} refers to specific categories of key-
points, such as “eyes” and “nose.” On the other hand,
{animal species} represents a combination of the “target key-
point detection task” and the corresponding animal species,
encompassing categories like “dog body,” “dog face,” “cat
face,” and “cat body.” As shown in Fig. 1b, OVKD uses the
image and text description of the keypoints to realize key-
point detection.

Building upon this concept, our initial strategy involves
adopting a baseline framework (see Fig. 2 that utilizes
language models to obtain text embeddings for the descrip-
tions of (animal species, keypoint category) pairs. Then the
baseline integrates the text embeddings with visual fea-
tures using matrix multiplication and generates keypoint
heatmaps. However, the limitation of this simple feature
aggregation becomes evident in its lack of effective inter-
action between text and local visual features, hindering
its ability to comprehend the local features of images and
accurately localize specific keypoints. To address this, we
emphasize the need for deeper interaction between text and
local visual features of the image.

To overcome the limitations of the baseline framework
in OVKD, we develop an advanced framework named
Open-VocabularyKeypointDetectionwith Semantic-feature
Matching (KDSM).KDSMintroduces aDomainDistribution
MatrixMatching (DDMM) technique and incorporates other
special modules, such as a V ision-Keypoint Relational
Awareness (VKRA) module, a keypoint encoder, a keypoint
adapter, a vision head, and a vision adapter, among others.
The VKRA module uses attention blocks to enhance the
interaction between text embeddings and local keypoint fea-
tures. This facilitates a deeper exploration and understanding
of the complex relationships between various local key-
point locations and text prompts during training. Considering
that the combinations of (animal species, keypoint category)
pairs are virtually infinite, it becomes impractical to con-
struct a heatmap channel for every pair like fully supervised
and few-shot species class-agnostic keypoint detectionmeth-
ods.Therefore,weproposeDDMM,whichutilizes clustering
techniques to group the text features of {keypoint category}. It
allows semantically similar keypoint descriptions of different
species to share a ground-truth heatmap channel represen-
tation during training. After grouping, the matching loss
between text and heatmap features can be used to further
align text features and keypoint visual features. During test-
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Fig. 1 Few-shot species class-agnostic keypoint detectionvs. language-
driven open-vocabulary keypoint detection. a Current few-shot species
class-agnostic keypoint detection needs support images for guidance
during training and testing to detect keypoints in new species. b

Language-driven OVKD aims to use text prompts that embed both
{animal species} and {keypoint category} as semantic guidance to local-
ize arbitrary keypoints of any species

ing, DDMMassigns new text descriptions to specific groups,
enabling the capability of zero-shot keypoint detection.

We conduct extensive experiments to evaluate the effi-
cacy of our proposed method. The results emphatically
demonstrate that our KDSM framework excels in OVKD,
significantly surpassing the performance of the baseline
framework. Notably, KDSM exhibits impressive zero-shot
capabilities and comparable performance to the state-of-
the-art few-shot species class-agnostic keypoint detection
methods. The primary contributions of our research are sum-
marized as follows:

– We introduce the task of OVKD, designed to utilize text
prompts for detecting a diverse range of keypoint cat-
egories across different animal species in a zero-shot
fashion.

– We propose a pioneering approach, termed KDSM, to
tackle the challenging OVKD task. DDMM technique
and VKRA module are designed to model cross-species
relationships and exchange vision-language information
respectively.

– Extensive experiments show thatKDSMexcels inOVKD,
surpassing the baseline framework substantially. Despite
operating in a zero-shot manner, KDSM achieves com-
parable results with state-of-the-art few-shot keypoint
detection methods.

2 RelatedWorks

Traditionally, the main research direction in keypoint detec-
tion has been fully supervised methods. This approach

concentrated on improving keypoint detection accuracy via
advancements in neural network architectures (Andriluka et
al., 2014; Fang et al., 2017; Newell et al., 2016; Tu et al.,
2023; Wang et al., 2020; Xu et al., 2024; Zhang et al., 2023,
2024) and the development of new species datasets (Brown et
al., 2020; Koestinger et al., 2011; Labuguen et al., 2021; Lin
et al., 2014). However, thesemethods are confined to specific
species or keypoint categories, limiting their adaptability to
new types. Emerging few-shot category-agnostic keypoint
detection techniques have started to address this, reducing
the need for extensive annotations for novel species with a
small number of annotated support images. We take this a
step further by removing the necessity for image labeling and
using language models to detect keypoints in a zero-fashion,
open-vocabulary approach. In Sect. 2.1, we will present the
few-shot category-agnostic keypoint detectionmethods. Sec-
tion2.2 will introduce related works on open-vocabulary
learning, and Sect. 2.3 will discuss the recent integration of
language models with vision tasks.

2.1 Advancements in Few-Shot Species
Class-Agnostic Keypoint Detection

Asignificant advancement in keypoint detection is the advent
of few-shot species class-agnostic techniques (Xu et al.,
2022), which can identify keypoints across various animal
species without category-specific training. However, these
techniques commonly rely on “support images” during the
training and testing phases. This reliance, characteristic of
methods like MAML (Finn et al., 2017), Fine-tune (Naka-
mura &Harada, 2019), FS-ULUS (Lu &Koniusz, 2022),
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POMNet (Xu et al., 2022), andCapeFormer (Shi et al., 2023),
limits their applicability to new species or keypoints.

Specifically, POMNet (Xu et al., 2022) initially proposed
the few-shot species class-agnostic keypoint detection task
and created the MP-100 expert dataset for it. CapeFormer
(Shi et al., 2023) presents a two-stage framework incorpo-
rating techniques like a query-support refine encoder and
a similarity-aware proposal generator for category-agnostic
detection, shifting focus from heatmap prediction to key-
point position regression. In contrast, our proposed OVKD
task moves away from reliance on support images. OVKD
leverages text prompts containing both {animal species} and
{keypoint category}, offering semantic guidance for detect-
ing any keypoint in any species. This novel approach is
aligned with zero-shot learning principles and marks a stride
towards open-world animal body and facial keypoint detec-
tion.

2.2 Exploring Open-Vocabulary Learning in
Computer Vision

Open-vocabulary learning, a burgeoning field in computer
vision, has been explored in various tasks, including object
detection (Bangalath et al., 2022; Yao et al., 2022), semantic
segmentation (Li et al., 2022; Xu et al., 2023), 3D object
recognition (Weng et al., 2023; Zhu et al., 2023) and video
classification (Ni et al., 2022; Qian et al., 2022). The advent
of vision-language models like CLIP (Radford et al., 2021)
and ALIGN (Jia et al., 2021) has underscored their potential
in tasks that require simultaneous processing of visual and
text data, ideal for open-world learning scenarios.

While existing open-vocabulary learning research excels
in image-level classification (Zhu et al., 2023), per-pixel
classification (Li et al., 2022), and mask classification (Xu
et al., 2023), keypoint detection poses a unique challenge.
It demands not only a global understanding of the image
but also precise localization of specific keypoints. To tackle
this, we propose a novel technique called “Domain Distribu-
tion Matrix Matching.” This technique transforms keypoint
detection into a task of aligning semantic-feature distribu-
tions from input text prompts with the detected heatmaps,
thereby enhancing the accuracy and efficiency of the detec-
tion process.

2.3 Leveraging LanguageModels for Vision Tasks

Leveraging language models for vision tasks has ushered
in a new era of methodologies that significantly enhance
machines’ understanding and interpretation of visual data.
Some works (Jia et al., 2021; Radford et al., 2021) utilize
contrastive learning between language features and image
features from vast collections of (image, text) pairs (e.g., 400
million in CLIP) to establish connections between language

and visuals, which have marked the rapid development of
using language models to aid in vision tasks. Specifically,
open-vocabulary learning methods (Bangalath et al., 2022;
Xu et al., 2023) employ pre-trained language and vision
models to identify objects or scenes within images, showcas-
ing extraordinary flexibility and adaptability. Furthermore,
Large Vision-LanguageModels (Chen et al., 2023; Lin et al.,
2024) integrate CLIP’s image encoder into language models,
greatly facilitating tasks like Image Captioning and Visual
Question Answering, among others. Additionally, language
models gradually play a crucial role in basic visual tasks such
as language-assisted image generation (Li et al., 2024; Rom-
bach et al., 2022) and multi-person pose estimation under
occlusion (Hu et al., 2023). Meanwhile, applying language
models to vision tasks also presents numerous ethical and
security challenges (Zhang et al., 2024b). Therefore, our
work is dedicated to sensibly utilizing language models to
assist in the open-vocabulary keypoint detection task.

3 Method

In this section, we begin by defining the Open-Vocabulary
Keypoint Detection (OVKD) task in Sect. 3.1. We then
present a baseline framework in Sect. 3.2, which offers a
straightforward solution to the task. In Sect. 3.3, we intro-
duce our proposed Open-Vocabulary Keypoint Detection
with Semantic-feature Matching (KDSM) framework, out-
lining its unique design and capability.

3.1 Problem Formulation: Open-Vocabulary
Keypoint Detection

We introduce a novel task termed OVKD for animal (includ-
ing human) body and face keypoint localization. The goal
of OVKD is to develop a framework capable of detecting
arbitrary keypoints in images, even if the animal species
or keypoint category is not present in the training data.
The advancements in vision-language models such as CLIP
(Radford et al., 2021), allow the keypoint detectors to take
advantage of powerful languagemodels to achieve language-
driven OVKD.

For OVKD, text prompts are leveraged to guide the
framework in understanding the semantic information and
locating specific keypoints. Assuming we have a training set

Dtrain and a test set Dtest, Dtrain = {(I, T (si , k j )
Ksi
j=1, G(si ,

k j )
Ksi
j=1}Si=1, Dtest = {(I, T (s′

i , k′
j )
K

′
s′i

j=1, G(s′
i , k′

j )
K

′
s′i

j=1}S
′

i=1.
Here, I represents images, T (si , k j ) denotes the text prompts
constructed based on species si and keypoint category k j ,
and G(si , k j ) denotes the ground-truth heatmaps constructed
based on the locations of the species si and keypoint cate-
gory k j in the images I. S and Ksi represent the number of
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species and the number of keypoint categories of species si

in the training set, respectively, while S
′ and K

′
s′
i
represent

the number of species and the number of keypoint categories
of species s′

i in the test set, respectively. The test set includes
(animal species, keypoint category) pairs not covered in the
training dataset, requiring the detector to identify arbitrary
keypoints as per the text prompts.

3.2 Baseline: A Simple Framework for OVKD

To tackle the challenging OVKD task, we build a baseline
framework that can predict arbitrary keypoint categories of
any animal species as shown in Fig. 2. The baseline method
constructs text prompts for the OVKD task and extracts text
embedding using a Text_Encoder. The Vision_Encoder is
applied to extract visual features of the input image simul-
taneously. Then, the visual and text features are integrated
by matrix multiplication to output heatmaps of keypoints
defined by text prompts.

3.2.1 Text Prompts Construction

In this step, we utilize the template “The {keypoint category}
of a {animal species} in the photo.” to assist language mod-
els in effectively grasping the task. For example, if “giraffe
body” is the animal species and “neck” is the keypoint cate-
gory, the prompt becomes: “The neck of a giraffe body in the
photo.” This consistent template is applied across various
animals and keypoints, with placeholders adjusted accord-
ingly. Utilizing this template enables the language model
to concentrate on the interplay between animal species and
keypoints, facilitating smooth generalization to new species
and keypoints within the open-vocabulary framework. For
the training and testing processes, the prompt construc-
tion is automatically generated using labeled datasets, i.e.,
{keypoint category} and {animal species} information. If
users are testing the system via an API, manual input of
category information is indeed necessary, which is consis-
tent with the open-vocabulary learning works mentioned in
Sect. 2.2.

3.2.2 Text Feature Extraction

Employing the pre-trained CLIP Text_Encoder (Radford et
al., 2021), we process the preprocessed text prompts T =
{T1, T2, . . . , TK } for an image with K text prompts:

T = Keypoint_Adapter(Text_Encoder(T )), (1)

where Text_Encoder(T ) ∈ R
K×C0 represents the extracted

text features. Keypoint_Adapter is a two-layer Multi-layer
Perceptron (MLP) used to refine these features and make
them compatiblewith the image feature representations. This

refinement produces a semantic feature space T ∈ R
K×C

(with K = 100, C = 64 in our setup). K represents the
maximum number of keypoint categories for each species
that can be handled, which can be adjusted as long as it is
greater than the maximum number of keypoint categories
across all species. Due to the differences in the number of
keypoints among different species, we insert K −Kvalid fixed
invalid placeholder text features, where Kvalid denotes the
number of valid text prompts. The text features of the invalid
placeholders are derived from the prompt “There is not the
keypoint we are looking for.”

3.2.3 Vision Feature Extraction

Given an input image I , we train a Vision_Encoder and a
Vision_Head to extract image features:

V = Vision_Head(Vision_Encoder(I )), (2)

where V ∈ R
C×hei.×wid. (hei. = 64, wid. = 64 in our

implementation) represents vision feature.We utilize ResNet
(He et al., 2016) as the backbone of the Vision_Encoder,
which is known to be effective in extracting hierarchical
visual features from images. The Vision_Head, inspired
by SimpleBaseline (Xiao et al., 2018), is composed of
three deconvolutional layers. These layers serve to upsam-
ple the low-resolution feature maps acquired from the image
encoder, thereby successfully recovering spatial information
and enabling accurate keypoint localization.

3.2.4 Keypoint Heatmap Prediction

The objective of this framework is to predict keypoint
localization by aggregating semantic text and spatial visual
features. To calculate the similarity between the text feature
and pixel-level visual representation, the extracted features
are combined through matrix multiplication:

H = T × V, (3)

where H ∈ R
K×hei.×wid. denotes predicted heatmaps. The

framework supports multiple text prompt inputs for detect-
ing several keypoints simultaneously. The model training is
supervised using Mean Squared Error (MSE) loss between
these predicted heatmaps H and the ground-truth heatmaps
G ∈ R

K×hei.×wid.. In the construction ofG, each valid chan-
nel of the heatmap corresponds to a specific text prompt,
which is in the form of “The {keypoint category} of a
{animal species} in the photo.”We apply a 2DGaussian with
a standard deviation of 2 pixels, centered on the ground-
truth location of the keypoint described by the prompt. The
process of generating the Gaussian kernel is consistent with
HRNet (Wang et al., 2020) and POMNet (Xu et al., 2022).
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Fig. 2 An overview of the baseline method for OVKD. The baseline
comprises a Vision_Encoder, a Text_Encoder, a Vision_Head and a
Keypoint_Adapter. The Keypoint_Adapter is applied to optimize the
relevance of text features with the image features and produce the text

feature with the shape of C × K, where C and K represent the number
of channel and text prompts, respectively. The Vision_Head produces
the visual feature with the shape of C×hei.×wid., where hei. and wid.
represent the height and width, respectively

Only the first Kvalid heatmaps are valid for G, the other
(K − Kvalid) heatmaps are set to zero matrices. During the
loss computation, only the first Kvalid channels of G and H
are used. During training, the Text_Encoder remains frozen,
while other parameters are trainable. The matrix multiplica-
tion operation conducts a transformation of visual features
to the output heatmap spaces, driven by the semantic infor-
mation contained in the text prompts.

3.3 Open-Vocabulary Keypoint Detection with
Semantic-feature Matching

In this section, we propose a novel framework, namely
KDSM, to address the limitations of the baseline OVKD
framework. The baseline framework just uses simple feature
aggregation, which fails to effectively capture the intri-
cate relationship between text and local visual features and
establish clear connections between them, leading to less
than optimal keypoint detection. Therefore, KDSMproposes
Domain Distribution Matrix Matching (DDMM) and adopts
some special modules to address the above problems, such as
a V ision-Keypoint Relational Awareness (VKRA) module,
a keypoint encoder, a keypoint adapter, a vision head, and a
vision adapter, among others.

As depicted in Fig. 3, KDSM initially constructs text
prompts and extracts text features similarly to the baseline
approach. However, it then employs the VKRA module to
facilitate a deeper exploration and understanding of the com-
plex relationships between various local keypoint locations
and text prompts during training. Finally,DDMMisproposed
to capture cross-species keypoint-level relationships to fur-

ther enhance the generalization ability of KDSM. Notably,
KDSM supports multiple text prompt inputs for detecting
several keypoints simultaneously.

3.3.1 Vision-Keypoint Relational Awareness Module

Within our framework, the VKRA module, incorporat-
ing a series of Transformer blocks inspired by Pan et al.
(2020), is an essential design. It comprises two main com-
ponents: Self-Attention (Vaswani et al., 2017) (Self_Attn.)
and Cross-Attention (Carion et al., 2020) (Cross_Attn.). The
self-attention layers are designed to enhance the interaction
among text embeddings of the given sample. They amalga-
mate keypoint features as follows:

Yt = Self_Attn.(Text_Encoder(T)). (4)

The refined keypoint features Yt elucidate the relationships
of text semantic concepts among the keypoints of a specific
species.

The cross-attention layers use the output features from
the Vision_Encoder as the query, while the refined features
Yt serve as the key and value. This mechanism facili-
tates interaction between the context-aware visual features
Vision_Encoder(I ) and the refined features Yt to enhance
the vision representation:

˜V = Cross_Attn.(Vision_Encoder(I ),Yt ) (5)

Theupdatedvisual features˜V effectively capture the relation-
ships between local visual features and keypoint text features,
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Fig. 3 An overview of KDSM. KDSM comprises a Vision_Encoder,
a Text_Encoder, a Keypoint_Adapter, a Vision_Adapter and a
Vision_Head similar to the baseline. The vision-keypoint relational
awarenessmodule adjusts visual features according to their associations
with keypoints. The Vision_Adapter is employed to modify the feature

shape so that it matches the text features’ shape. Similarity is calculated
between the adjusted features and text semantic features, resulting in a
predicted distribution matrix. The predicted distribution matrix and the
text domain distribution matrix are then utilized to compute matching
loss

bridging the gap between vision representation and the key-
point.

3.3.2 Domain Distribution Matrix Matching

To model cross-species keypoint-level relationships, we
propose a domain distributionmatrix that links keypoint cate-
gories to corresponding output heatmaps. Assuming we have
78 species and 15 keypoint categories per species, this leads
to 1170hypothetical (animal species, keypoint category) com-
binations. Directly representing each combination with a
unique heatmap channel to model the above relationships
is impractical. There exists cross-species commonality at
the keypoint category level for OVKD since the keypoints
of different animals may be similar. The similarity could
be grasped during training by dividing all the keypoint
categories into several groups and learning keypoint cat-
egories in the same group together. Therefore, we opt to
represent multiple keypoint categories of different species
using a single channel of ground-truth heatmaps. By group-
ing all keypoint categories and learning them collectively
within these groups (where each group corresponds to one
heatmap channel), we enhance the efficiency of the training
process and avoid unnecessary computational expenditure.
Notably, only keypoint categories of different species that are
clustered into the same group will share the same ground-

truth heatmap channel, and all keypoint categories of the
same species are clustered into different groups (ground-
truth heatmap channels) in our setting. During testing, a new
(animal species, keypoint category) combination is assigned
to one of the predefined groups based on the predicted distri-
bution matrix. The heatmap representation of the selected
group is then utilized to detect keypoints for that spe-
cific combination. Consequently, domain distribution matrix
matching plays a crucial role in enhancing the prediction of
new keypoint categories across various species.

Specifically, we apply K-means clustering to all training
set keypoint categories, dividing them into O groups based
on text embeddings generated by the Text_Encoder from
{keypoint category} terms, we set that all {keypoint category}
of the same species must belong to different groups in the
clustering process. We then pre-compute a binary domain
distribution matrix D ∈ R

K×O (setting O = 100) for each
training sample, based on its keypoint categories. Here, K is
a constant no smaller than any sample’s maximum keypoint
count. We set Di j = 1 when the i-th keypoint falls into the
j-th group. If a sample’s keypoint count K ′ is less than K ,
Di j = 0 for i ∈ [K ′ + 1, K ] and j ∈ [1, O].

To learn group selection, we predict the distribution
matrix. First, the updated visual features ˜V are merged
with the original features to strengthen visual representa-
tion. These features pass through the Vision_Head, identical
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to the baseline, to generate heatmaps H′ ∈ R
O×hei.×wid..

The Vision_Adapter then generates the visual features V′
from these heatmaps, and the Keypoint_Adapter adapts the
original text embeddings and generates T′. Finally, we mea-
sure the similarity between the adjusted visual features V′ ∈
R

C×O and the adjusted text embeddings T′ ∈ R
K×C to cre-

ate a predicted distribution matrix P ∈ R
K×O :

P = T′ × V′. (6)

3.3.3 Loss Function

Thematching loss Lmatch, computed as the cross-entropy loss
between the predicted distribution matrix P and the domain
distribution matrix D, aims to align keypoint categories with
heatmap channels:

Lmatch = −
K

∑

i=1

O
∑

j=1

Di j logPi j . (7)

During training, we utilize the annotated domain distri-
bution matrix D to determine the j-th heatmap position for
the i-th prompt, addressing the mismatch between predicted
heatmap ordering and prompt sequencing. During testing,
alignment is achieved using the predicted domain distri-
bution matrix P. Subsequently, heatmaps H′ produced by
Vision_Head are reorganized across channels based on D
during training or P during testing to ensure correct align-
ment with their respective prompts. This reordering involves
identifying the index o of the element 1 in the i th row
of D or P, signifying the oth channel of H′ as matching
the i th prompt. PyTorch functions like “torch.index_select”
facilitate this reordering process. The reordered heatmaps
H ∈ R

O×hei.×wid. are then evaluated against the ground-truth
heatmaps G ∈ R

O×hei.×wid. using the Mean Squared Error
(MSE) loss. The initial Kvalid channels of G correspond to
keypoint locations identified by the Kvalid text prompts,while
the remaining O − Kvalid channels are treated as invalid zero
matrices. The overall training loss for KDSM is defined as:

Ltotal = αLmatch + βMSE(H,G) (8)

where α and β are the balance weights, and they are set
to 1e−6 and 1 unless otherwise specified. The process of
generating G ∈ R

O×hei.×wid. (O = 100, hei. = 64, wid. =
64 in our implementation.) mirrors that of the baseline in
Sect. 3.2, except for the total number of channels. In KDSM,
the total number of channels O in G is predefined as the
number of clusterings, distinct from K in the baseline, which
represents the number of prompts.

3.3.4 Inference Process

During the inference phase, when presented with an input
image and corresponding text prompts, KDSM replicates
its training methodology to estimate the keypoint heatmaps
and the predicted distribution matrix. This process involves a
detailed analysis for each keypoint category k. Specifically,
we search for the maximum value in the k-th row of the pre-
dicted distribution matrix P, which identifies the index of the
corresponding heatmap channel for that particular keypoint.

Once the indexes are determined, the heatmaps are care-
fully reordered and calibrated to align with these indexes,
thus serving as the final prediction results. This step is cru-
cial in ensuring the accuracy of our keypoint localization.
Subsequently, the keypoint localization is precisely decoded
as the coordinates that correspond to the highest scoreswithin
these reordered heatmaps.

In our experiment, we simply use the maximum value
indexing asmentioned earlier.Our statistical analysis showed
no samples of different keypoints corresponding to the same
heatmap. However, variations in the test set might result in
overlapping assignments, which motivates us to develop a
fast-indexing algorithm (Algorithm 1. Algorithm 1 does not
affect the accuracy of our experimental results. Furthermore,
due to semantic similarities and pose variations, it is normal
and acceptable for multiple keypoints to occasionally map
to the same heatmap. Therefore, Algorithm 1 is offered as
an optional solution, allowing users to choose based on their
specific requirements.

Algorithm 1 Assign Heatmaps to Keypoints Based on the
Predicted Domain Distribution Matrix During Inference
Require: PredictedDomainDistributionMatrixP of size K ×O , where

K is the number of keypoints and O is the number of heatmaps.
Ensure: L: A list of heatmap indices assigned to each keypoint.
1: Initialize a priority queue Q.
2: Initialize an empty set of assigned heatmaps AO .
3: Initialize an empty set of assigned keypoints AK .
4: Initialize the assignments list L with −1 for each keypoint.
5: for i = 1 to K do
6: for j = 1 to O do
7: Add (P[i, j], i, j) to the priority queue Q.
8: end for
9: end for
10: while not Q.isEmpty() AND |AK | < K do
11: Extract the maximum score entry (score, k, o) from Q.
12: if k /∈ AK AND o /∈ AO then
13: Assign heatmap o to keypoint k: L[k] = o.
14: Add k to the set of assigned keypoints AK .
15: Add o to the set of assigned heatmaps AO .
16: end if
17: end while
18: return L
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4 Experiments

4.1 Open-Vocabulary Evaluation Protocol

4.1.1 Dataset Split

MP-100 (Xu et al., 2022) is introduced for category-agnostic
pose estimation, which contains over 20K instances cover-
ing 100 sub-categories and 8 super-categories (human hand,
human face, animal body, animal face, clothes, furniture, and
vehicle). However, some of the keypoint categories in MP-
100, such as those for clothes and furniture, lack practical
semantic information and are not suitable for language-
driven OVKD. Thus, we selected a subset of 78 animal
categories (including humans)with keypoint annotations that
have specific, meaningful semantic information. We call this
subset “MP-78”, including COCO (Lin et al., 2014), AFLW
(Koestinger et al., 2011), OneHand10K (Wang et al., 2018),
AP-10K (Yu et al., 2021), Desert Locust (Graving et al.,
2019), MascaquePose (Labuguen et al., 2021), Vinegar Fly
(Pereira et al., 2019), AnimalWeb (Khan et al., 2020), CUB-
200 (Welinder et al., 2010).

MP-78 encompasses more than 14,000 images accompa-
nied by 15,000 annotations. For keypoint types possessing
semantic meaning, albeit lacking a precise definition or
description, we employ ChatGPT to query and acquire the
names of these keypoints. For example, we use a query like
“How to anatomically describe the second joint of the index
finger?” to obtain the name of a specific keypoint. All these
queries are performedmanually, and thenwebuild the dataset
MP-78.

It is essential to clarify that in this paper, {animal species}
refers to a combination of “target keypoint detection task
+ animal species.” For instance, the face and body of a
dog are categorized as two distinct {animal species} entities
(i.e., “dog face” and “dog body”), based on the specific key-
point detection task. This means that our definition of species
extends beyond mere biological classification, encapsulating
task-specific categories within each animal.

To evaluate the generalization ability of OVKD to differ-
ent keypoint categories and animal species, we design two
settings, that is “Setting A: Diverse Keypoint Categories”
for new {keypoint category}, and “Setting B: Varied Animal
Species” for new {animal species} like (Xu et al., 2022). All
zero-shot settings strictly fall under “transductive general-
ized zero-shot learning (Pourpanah et al., 2022)”.

In Setting A, we divide the keypoint categories asso-
ciated with each of the 78 species into two parts: seen
{keypoint category} and unseen {keypoint category}. During
training, we only used the seen categories, while the unseen
categories were reserved for testing. For fair evaluation, we
randomly split seen {keypoint category} for each species to

form seen {keypoint category} sets. We form five different
train/test sets splits.

In Setting B, MP-78 is split into train/test sets, with 66
{animal species} for training, and 12 {animal species} for
testing. To ensure the generalization ability of the framework,
we evaluate the framework performance on five splits like
(Xu et al., 2022), where each {animal species} is treated as a
novel one on different splits to avoid {animal species} bias.

4.1.2 Evaluation Metrics

We employ the Probability of Correct Keypoint (PCK) and
Normalized Mean Error (NME) metrics to assess the accu-
racy of keypoint detection. To mitigate category bias, we
compute and present the average PCK and average NME
across all dataset splits. This approach ensures a balanced
and thorough evaluation of our model’s performance in key-
point detection.

PCK measures the accuracy of a predicted keypoint by
comparing its normalized distance to the actual ground-truth
location, with respect to a predefined threshold (σ ). In line
with the methodologies of POMNet (Xu et al., 2022) and
CapeFormer (Shi et al., 2023), we report PCK@0.2 results in
our experiments, setting σ to 0.2 for each category across all
dataset splits. Additionally, we report PCK@0.05, where σ

is set to 0.05, demanding more precise predictions compared
to σ = 0.02. NME is defined similarly to HRNet V2 (Wang
et al., 2020), where the normalization distance refers to the
longest side of the ground-truth bounding box.

4.2 Implementation Details

In our setup, the default Vision_Encoder is ResNet50 (He et
al., 2016), pre-trained on the ImageNet dataset (Deng et al.,
2009) by default unless otherwise specified. The Self_Attn.
module consists of three layers, each featuring a multi-
head self-attention mechanism and a feed-forward neural
network (FFN). This self-attention component is equipped
with four attention heads and an embedding dimension of
512, with a dropout rate set at 0.1. The FFN includes
two fully connected layers, an embedding dimension of
512, and 2048 feedforward channels. We employ ReLU as
the activation function and maintain a dropout rate of 0.1.
The Cross_Attn. component also comprises three layers.
Each layer incorporates a multi-head self-attention mecha-
nism, a multi-head cross-attention mechanism, and an FFN.
The FFN configuration mirrors that of the Self_Attn. For
text encoding, we default to using CLIP (Radford et al.,
2021)’s Text_Encoder, pre-trained alongside the ViT-B/32
Vision_Encoder on image-text paired data, unless an alter-
native specification is provided.

The objects of interest are extracted using their bounding
boxes and resized to dimensions of 256 × 256. To bolster
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the model’s generalization capabilities, data augmentation
techniques such as random scaling (varying from −15 to
15%) and random rotation (varying from −15◦ to 15◦) are
applied. Training is carried out across 4 GPUs, each with a
batch size of 64, for a total of 210 epochs.

4.3 Results for OVKD

4.3.1 Setting A: Diverse Keypoint Categories

Table 1 presents the performance comparison between the
baseline framework and KDSM on the MP-78 dataset for
this setting. The table highlights that KDSMconsistently sur-
passes the baseline in all five dataset splits. The quantitative
comparison of the results shows a significant performance
improvement when using the KDSM framework. The Mean
(PCK@0.2) score across all five splits increases from 42.93
for the baseline to 88.23 for the KDSM framework, result-
ing in a remarkable enhancement of 45.30 points. Similarly,
the Mean (PCK@0.05) score increases from 11.93 for the
baseline to 62.35 for the KDSM framework, indicating a
substantial enhancement of 50.42 points. In addition, the
Mean NME decreases from 29.72 for the baseline to 7.93
for the KDSM framework, showcasing an improvement of
21.79 points. This indicates that the KDSM approach is more
effective at handling the “Diverse Keypoint Categories” set-
ting in the zero-shot fashion. The superior performance of the
KDSMframework on the “DiverseKeypoint Categories” set-
ting can be attributed to its capacity to better align and match
semantic information from text promptswith local visual fea-
tures, as well as its ability to effectively transfer knowledge
to unseen (animal species, keypoint category) pairs.

4.3.2 Setting B: Varied Animal Species

Table 21 displays the performance comparison between the
baseline framework and KDSM on the MP-78 dataset for
the “Varied Animal Species” setting under a zero-shot set-
ting. Additionally, it compares the results with class-agnostic
keypoint detection methods under 1-shot and 5-shot settings.

The KDSM framework significantly outperforms the
baseline in the zero-shot setting, demonstrating its effective-
ness in handling unseen animal species without category-
specific training. The enhanced performance of the KDSM
framework is due to the efficient knowledge transfer from
seen to unseen {animal species}. Besides, recent research
(Shi et al., 2023; Xu et al., 2022) has developed few-shot
species class-agnostic keypoint detection techniques that
can identify keypoints across various animal species with-
out category-specific training. However, these techniques

1 We refer to themethod “Few-shot keypoint detectionwith uncertainty
learning for unseen species” as FS-ULUS.

Fig. 4 Comparison of the trade-off between PCK@0.2 and Speed for
Setting B. The speed is measured using Frames Per Second (FPS) on a
single NVIDIA A100-SXM-80GB card. The test is conducted using an
average of 1000 images for one species

typically rely on support images with annotations during
both the training and testing phases. In contrast, our OVKD
approach using the KDSM framework does not require sup-
port images by leveraging text prompts {animal species} and
{keypoint category} for semantic guidance.

OVKD and few-shot species class-agnostic keypoint
detection represent distinctmethodological approaches,mak-
ing direct comparisons challenging, so we primarily bench-
mark against our baseline. However, we also highlight
the performance gap contrast with few-shot species class-
agnostic keypoint detection methods at a macro level. Our
method demonstrates comparable results to these few-shot
species class-agnostic keypoint detection approaches and
outperforms the state-of-the-art 1-shot solution, CapeFormer
(Shi et al., 2023), across all three metrics. This emphasizes
the effectiveness of our approach. Furthermore, our zero-
shot OVKD even surpasses the 5-shot setting of FS-ULUS
(Lu &Koniusz, 2022), MAML (Finn et al., 2017), Fine-tune
(Nakamura &Harada, 2019), and POMNet (Xu et al., 2022)
across all three metrics. It should be noted that methods like
POMNet and CapeFormer have limitations during training
as they cannot access images of new categories and rely on
support images during testing. Hence, it is reasonable for
our zero-shot method to exhibit superior performance com-
pared to few-shot solutions. In particular, when considering
the PCK@0.05 metric, we outperform the state-of-the-art
CapeFormer by 9.25 points (56.20 vs. 46.95). It is worth
noting that PCK@0.05 requires more precise predictions of
keypoint locations compared to the less stringent PCK@0.2
metric. By evaluating keypoint detection performance using
different metrics such as PCK and NME, we provide a com-
prehensive analysis of our method’s performance.
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Table 1 Comparisons with the
baseline framework on the
MP-78 dataset for Setting A
with PCK@0.2, PCK@0.05 and
NME

Metric Framework Split1 Split2 Split3 Split4 Split5 Mean metric

PCK@0.2 ↑ Baseline 42.02 44.00 42.55 43.80 42.26 42.93

KDSM 87.93 88.50 87.64 88.28 88.82 88.23

Baseline 11.08 11.44 10.35 14.98 11.80 11.93

PCK@0.05 ↑ KDSM 62.80 63.11 61.91 62.00 61.91 62.35

Baseline 29.96 29.18 30.54 29.31 29.60 29.72

NME ↓ KDSM 8.20 7.55 8.23 7.81 7.84 7.93

Best results are indicated in bold
↑ indicates higher is better, while ↓ indicates lower is better

Table 2 Comparisons on MP-78 dataset for Setting B

Metric Framework Shot setting Split1 Split2 Split3 Split4 Split5 Mean metric

PCK@0.2 ↑ MAML (Finn et al., 2017) 5-shot 76.37 75.53 71.15 69.46 67.55 72.01

Fine-tune (Nakamura &Harada, 2019) 5-shot 77.81 76.51 72.55 71.09 69.85 73.56

FS-ULUS (Lu &Koniusz, 2022) 5-shot 78.34 79.67 76.89 81.52 75.23 78.33

POMNet (Xu et al., 2022) 5-shot 81.25 86.44 81.01 86.93 78.68 82.86

CapeFormer (Shi et al., 2023) 5-shot 91.01 90.95 87.90 91.90 87.23 89.80

MAML (Finn et al., 2017) 1-shot 75.11 74.31 69.80 68.22 67.44 70.98

Fine-tune (Nakamura &Harada, 2019) 1-shot 76.65 76.41 71.37 69.97 69.36 72.75

FS-ULUS (Lu &Koniusz, 2022) 1-shot 73.69 70.65 63.97 71.14 63.65 68.62

POMNet (Xu et al., 2022) 1-shot 73.07 77.89 71.79 78.76 70.26 74.35

CapeFormer (Shi et al., 2023) 1-shot 85.41 88.39 83.53 85.74 80.04 84.62

Baseline Zero-shot 56.06 55.36 54.35 53.07 50.66 53.90

KDSM Zero-shot 85.48 89.45 84.29 86.25 81.17 85.33

PCK@0.05 ↑ CapeFormer (Shi et al., 2023) 5-shot 46.90 51.90 44.45 52.30 39.21 46.95

CapeFormer (Shi et al., 2023) 1-shot 40.59 44.13 35.59 42.34 33.00 39.13

Baseline Zero-shot 32.40 32.20 29.37 30.67 27.13 30.35

KDSM Zero-shot 60.26 61.17 55.08 55.96 48.53 56.20

CapeFormer (Shi et al., 2023) 5-shot 8.63 7.81 9.85 8.02 10.15 8.89

NME ↓ CapeFormer (Shi et al., 2023) 1-shot 10.84 9.58 11.77 10.65 13.16 11.20

Baseline Zero-shot 23.78 25.21 25.62 25.92 26.30 25.37

KDSM Zero-shot 9.71 8.04 10.96 9.58 12.16 10.09

KDSM notably demonstrates comparable performance on par with other few-shot species class-agnostic keypoint detection approaches. We use
different colors to show the bestand second-best results respectively

4.3.3 Inference Speed

In Fig. 4, we compare the trade-off between PCK@0.2 and
Inference Speed (Frames Per Second) with state-of-the-art
few-shot solutions, namely POMNet (Xu et al., 2022) and
CapeFormer (Shi et al., 2023). The speed is reported as an
average of 1000 test images. As shown in the figure, it is
evident that ourKDSMmethod surpasses POMNet (Xu et al.,
2022) in both average speed and accuracy. Furthermore, our
approach exhibits a significant speed advantage compared to
CapeFormer (Shi et al., 2023). These findings highlight the
promising prospects of ourmethod for practical applications.

4.3.4 Long-tail Animal Species

AnimalWeb (Khan et al., 2020) is a long-tail keypoint detec-
tion dataset consisting of 350 different animal species. The
number of annotated images per species ranges from 1 to
239, reflecting the varying difficulty in data collection and
substantial species imbalance.We prepare the data of uncom-
mon animal species from AnimalWeb by first excluding the
categories that are already present in MP-78. Then, we sort
the remaining species on the AnimalWeb dataset based on
the number of annotated samples. 280 species with relatively
smaller number of samples are evenly divided into four par-
titions, denoted as W-SP1, W-SP2, W-SP3, and W-SP4, and
each partition contains 70 species. Notably, W-SP1 consists
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Fig. 5 Comparisons of the performance (PCK@0.2) between the base-
line and KSDM on long-tail species for the AnimalWeb dataset

of the most common species, while W-SP4 represents the
long-tail species with the fewest annotations. We evaluate
the baseline and KDSM in each partition using the five mod-
els trained in setting B, and report the average PCK@0.2
across the five models as the final result for each method,
respectively. As shown in Fig. 5, even on the long-tail species
set W-SP4, KDSM achieves a PCK@0.2 score of 83.43,
which is comparable with the relatively common species
set W-SP1. This demonstrates the robustness of KDSM in
handling long-tail categories. We also observe that KDSM
gets a slightly lower result for W-SP2 compared to W-SP3
(84.50 vs. 84.66), which is expected due to inherent differ-
ences between species, including variations in pose and other
factors, indicating that the detection accuracy is not solely
determined by species prevalence. Furthermore, similar to
the results shown in Table 2, there is a noticeable perfor-
mance gap between the baseline and KDSM, indicating the
superiority of KDSM in the OVKD task.

4.4 Ablation Study

In this section, we do some ablation experiments about the
hyperparameter settings of the loss function, domain distribu-
tion matrix matching, VKRA module, Vision_Encoder and
Text_Encoder. The default setting is α = 1e−3 and β = 1.

4.4.1 Discussion of the Loss Function of KDSM

We explore various hyperparameter configurations in this
section.Table 3 illustrates how these settings impactKDSM’s
performance in the OVKD Setting A evaluation. We observe
that as the value of α is reduced from 1 to 10−10, while
maintaining β at a constant 1, the Mean (PCK@0.2) shows
an increasing trend. The optimal performance is attained at
α = 10−6, resulting in a Mean (PCK@0.2) of 88.23. Con-
versely, further reducing α below 10−6, or setting it to 0,
leads to a decrease in Mean (PCK@0.2), suggesting an ideal
range for α’s value. Notably, when α is set to 0, the Mean

(PCK@0.2) falls sharply to 31.15, underscoring the signifi-
cance of domain distribution matrix matching.

4.4.2 Domain Distribution Matrix Matching

Table 4 demonstrates a significant improvement in Mean
(PCK@0.2) scores with the inclusion of DDMM. In setting
A, the Mean (PCK@0.2) is enhanced from 42.93 to 65.89,
while in setting B, Mean (PCK@0.2) is elevated from 53.90
to 73.59. This substantial increase attests to DDMM’s effec-
tiveness in promoting knowledge transfer between seen and
unseen keypoint categories. Moreover, the uniform improve-
ment across all dataset splits underscores the robustness and
adaptability of our proposed method, emphasizing its suit-
ability for diverse real-world applications.

4.4.3 Vision-Keypoint relational Awareness Module

Table 4 shows that integrating the baseline framework
with both DDMM and VKRA Module leads to a notable
increase in Mean (PCK@0.2) scores. Specifically, the Mean
(PCK@0.2) rises from 42.93 in the baseline without these
components to 76.30 in setting A and from 53.90 to 83.74 in
setting B when incorporating both DDMM and VKRAmod-
ules. This improvement underscores the critical necessity of
the VKRA module in our methodology, as it adeptly dis-
cerns the semantic connections between visual features and
text prompts, thereby enhancing generalization capabilities
for unseen keypoint categories.

4.4.4 Attention Layers in Vision-Keypoint relational
Awareness Module

Our study also delves into the optimal number of self-
attention and cross-attention layers within the VKRA mod-
ule. The findings, as depicted in Table 5, indicate that
augmenting the number of self-attention blocks from 1 to
3 leads to a marked improvement in performance (compare
row 1 with row 3). However, adding a fourth self-attention
block doesn’t contribute substantially to further gains (com-
pare row 3 with row 4). A similar pattern is observed with
the number of cross-attention blocks, leading us to imple-
ment three cross-attention blocks in our final configuration.

4.4.5 Discussion on the Choice of Vision Encoder

Following previous research (Ni et al., 2022), we deviate
from using the frozen CLIP visual encoder and instead
train a task-specific visual encoder, but we still leverage the
language model’s knowledge (that is why we can achieve
OVKD). The results of deploying various Vision Encoders
such as MobileNet V2 (Sandler et al., 2018), EfficientNet-
B0 and B3 (Tan &Le, 2019), as well as ResNet50 (He et
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Fig. 6 Visual results of KDSM on the test sets of two experiment set-
tings of OVKD. The first three rows show the heatmaps for Setting A,
and the last two rows show the results for Setting B. KDSM achieves

satisfactory results in both two settings. Due to space limitations, we
use {keypoint category} to represent the keypoint categories
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Fig. 7 Visual results of challenging KDSM on the test sets of two
experiment settings of OVKD. a Demonstrates that KDSM can handle
challenging scenarios involving body occlusion, environmental occlu-
sion, and complex poses. b Illustrates the failure cases of KDSM in
challenging keypoint detection. The points circled in red represent the

ground-truth keypoint locations corresponding to the heatmaps. The
blue circles enclose the challenging regions of keypoint detection. Due
to space limitations, we use {keypoint category} to represent the key-
point categories

Table 3 Impact of
hyperparameter settings on the
performance (PCK0.2) of
KDSM in Setting A for the
OVKD task

α β Split1 Split2 Split3 Split4 Split5 Mean (PCK@0.2 ↑)
1 1 13.57 13.22 13.26 12.80 13.78 13.32

1 × 1e−1 1 42.87 31.06 32.34 14.16 31.32 30.35

1 × 1e−3 1 79.02 71.35 76.68 79.79 74.67 76.30

1 × 1e−4 1 83.99 79.96 87.50 87.32 85.86 84.93

1 × 1e−6 1 87.93 88.50 87.64 88.28 88.82 88.23

1 × 10−7 1 87.71 89.47 87.33 86.40 89.02 87.99

1 × 1e−8 1 30.50 30.02 30.54 30.36 28.77 30.04

1 × 1e−10 1 29.28 31.38 30.61 31.48 29.69 30.49

0 1 30.02 30.63 32.64 31.31 32.17 31.35

al., 2016) within the KDSM are detailed in Table 6. Even if
the extremely lightweight models such as MobileNet V2,
EfficientNet-B0 and B3, KDSM still achieves reasonable

performance and outperforms the OVKD baseline method
(42.93 PCK@0.2 for setting A and 53.90 PCK@0.2 for set-
ting B). We choose ResNet in our implementation in order
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Table 4 Ablation study of
proposed components on MP-78
for OVKD

Baseline DDMM VKRA Split1 Split2 Split3 Split4 Split5 Mean (PCK@0.2 ↑)
Setting A

✔ ✖ ✖ 42.02 44.00 42.55 43.80 42.26 42.93

✔ ✔ ✖ 69.64 57.86 67.95 62.10 71.92 65.89

✔ ✔ ✔ 79.02 71.35 76.68 79.79 74.67 76.30

Setting B

✔ ✖ ✖ 56.06 55.36 54.35 53.07 50.66 53.90

✔ ✔ ✖ 72.96 77.66 76.63 78.26 62.43 73.59

✔ ✔ ✔ 84.02 87.99 83.22 83.20 80.25 83.74

Experiments are conducted on both Setting A and Setting B. PCK@0.2 is used as the metric

Table 5 Performance (PCK0.2)
comparison of different
attention blocks in Setting A for
the OVKD task

Self_Attention Cross_Attention Split1 Split2 Split3 Split4 Split5 Mean (PCK@0.2 ↑)
1 3 65.43 53.78 48.80 56.90 57.97 56.58

2 3 74.89 61.87 69.55 78.56 70.39 71.05

3 3 79.02 71.35 76.68 79.79 74.67 76.30

4 3 82.49 83.15 72.00 76.66 74.33 77.73

3 1 77.04 71.16 65.19 69.18 66.65 69.84

3 2 79.44 69.07 78.38 76.49 73.75 74.43

3 4 79.62 67.00 75.69 76.41 71.71 74.09

to ensure a fair comparison with state-of-the-art few-shot
keypoint detectors, i.e., POMNet and CapeFormer that use
ResNet50 as vision encoder. Besides, our attempt to uti-
lize the CLIP pre-trained Vision Transformer (Dosovitskiy
et al., 2020) (ViT-B/32) falls short of expectations. This
could be attributed to the fact that OVKDnecessitates precise
joint localization and detailed region-level feature extrac-
tion to handle diverse pose variations, which contrasts with
the global image-level features captured by the CLIP visual
encoder.

4.4.6 Discussion on the Choice of Text Encoder

Table 6 compares different Text_Encoders that have been
pre-trained in conjunction with distinct image encoders
of CLIP (Radford et al., 2021). In setting A, the Mean
(PCK@0.2) scores are 55.50, 76.30, and 78.27 for the
Text_Encoders pre-trained with ResNet50, ViT-B/32, and
ViT-B/16 image encoders, respectively. In setting B, the
Mean (PCK@0.2) scores are 79.41, 83.74, and 84.31 for
the Text_Encoders pre-trained with ResNet50, ViT-B/32,
and ViT-B/16 image encoders, respectively. Notably, the
Text_Encoder corresponding to ViT-B/16 image encoder
achieves the highest performance. The performance disparity
among the Text_Encoders indicates that using a more robust
Text_Encoder, particularly one pre-trained with amore pow-
erful image encoder, leads to improved results. Although we
utilize the Text_Encoder pre-trained with ViT-B/32 image
encoder in this study, this finding highlights the significant

potential for enhancing our method’s performance by inte-
grating a stronger Text_Encoders.

4.4.7 Discussion of OVKD Task for Different
Super-Categories

To assess KDSM’s capability in managing various super-
categories within the OVKD task, we segregated the MP-78
dataset into two distinct, non-overlapping super-categories:
Face and Body. Table 7 demonstrates KDSM’s differing per-
formance in these categories. Specifically, it achieved Mean
(PCK@0.2) scores of 81.89 for the Face category and 73.97
for the Body category, clearly showing a superior perfor-
mance in the Face category. The comparatively lower score
for the Body category likely stems from the more com-
plex and varied body poses. Despite the strong results, there
appears to be potential for further enhancement, particularly
in the Body category’s performance.

4.5 Qualitative Results

In Fig. 6, we showcase the performance of KDSM in two
experimental scenarios of OVKD. The top three rows depict
the heatmaps for novel keypoint categories in setting A, and
the bottom two rows display the actual keypoint detection
outcomes in setting B. These visualizations effectively high-
light KDSM’s capability to adeptly navigate the OVKD task
in both experimental setups.
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Table 6 Performance (PCK0.2) comparison of different Text_Encoder and different Vision_Encoder configurations

Text_Encoder Vision_Encoder (FLOPs) Split1 Split2 Split3 Split4 Split5 Mean (PCK@0.2 ↑)
Setting A

Ours: CLIP-B/32 ResNet50 (5.40G) 79.02 71.35 76.68 79.79 74.67 76.30

CLIP-Res50 ResNet50 (5.40G) 60.60 50.34 65.61 60.07 40.89 55.50

CLIP-B/16 ResNet50 (5.40G) 82.39 72.58 73.69 80.89 81.82 78.27

CLIP-B/32 MobileNet V2 (0.42G) 58.17 51.76 60.24 64.00 66.58 60.15

CLIP-B/32 EfficientNet-B0 (0.53G) 55.22 43.37 44.30 52.53 39.28 46.94

CLIP-B/32 EfficientNet-B3 (1.33G) 57.45 46.43 54.95 57.54 45.87 52.45

CLIP-B/32 ViT-B/32 (CLIP) (3.83G) 52.54 49.25 59.23 50.30 45.17 51.30

Setting B

Ours: CLIP-B/32 ResNet50 (5.40G) 84.02 87.99 83.22 83.20 80.25 83.74

CLIP-Res50 ResNet50 (5.40G) 77.22 80.70 78.81 80.85 79.46 79.41

CLIP-B/16 ResNet50 (5.40G) 83.49 89.19 83.84 83.96 81.06 84.31

CLIP-B/32 MobileNet V2 (0.42G) 73.03 65.65 60.42 59.35 55.68 62.83

CLIP-B/32 EfficientNet-B0 (0.53G) 78.25 73.49 75.93 80.16 73.26 76.22

CLIP-B/32 EfficientNet-B3 (1.33G) 80.28 87.14 79.86 82.07 75.18 80.71

CLIP-B/32 ViT-B/32 (CLIP) (3.83G) 70.74 73.90 60.68 73.75 61.55 68.12

FLOPs represents the computational complexity of the Vision_Encoder. (CLIP) represents the pre-trained image encoder from CLIP (Radford et
al., 2021). KDSM’s default configurations are indicated in bold

Table 7 Performance
(PCK@0.2) of KDSM on
different super-categories in
Setting A for the OVKD task

Super-Category Split1 Split2 Split3 Split4 Split5 Mean (PCK@0.2 ↑)
Face 85.05 77.56 83.52 87.31 76.01 81.89

Body 76.73 68.61 73.67 76.37 74.49 73.97

Face w/body 79.02 71.35 76.68 79.79 74.67 76.30

5 FutureWork

Firstly, our research focuses on achieving OVKD, a new
and promising research topic, with satisfactory performance
on regular scenes. Further improvement in challenging sce-
narios (e.g., occlusion, lighting, and resolution) will be left
for our future work. Unlike traditional methods that rely
on manual annotation, OVKD offers valuable recognition
to arbitrary keypoints without prior annotation. We include
some results of our method’s performance in occlusion sce-
narios in Fig. 7a, demonstrating its capability to handle
certain occlusion cases effectively. However, we also present
some instances where our method encounters challenges
under occlusion, as seen in Fig. 7b, indicating areas for poten-
tial improvement.

Secondly, we notice certain issues with individual pre-
dicted heatmaps in Fig. 6, such as “The left shoulder of a deer
body in the photo,” exhibiting the problem of “anisotropic
Gaussian distribution”. In future work, we can try to find
appropriate methods to address the “anisotropic Gaussian”
issue in the OVKD task by adjusting the loss function like
LUVLi (Kumar et al., 2020) and STAR Loss (Zhou et al.,
2023).

Last but not least, we plan to explore a new research direc-
tion that employs a hybrid approach utilizing both textual
and visual prompts in the future. This new direction can
leverage visual prompts to detect keypoints in the absence
of specific semantic information. For instance, the datasets,
such as WFLW (Wayne et al., 2018) (98 annotated keypoint
categories) and CatFLW (Martvel et al., 2023) (48 anno-
tated keypoint categories), are annotated with a considerable
number of non-semantic keypoint categories, which will be
effectively addressed through this new research direction.

6 Conclusion

We address the challenges inherent in traditional image-
based keypoint detection methods for animal (including
human) body and facial keypoint detection by introduc-
ing the Open-Vocabulary Keypoint Detection (OVKD) task.
This task is designed to identify keypoints in images,
regardless of whether the specific animal species and key-
point category have been encountered during training. Our
novel framework, Open-Vocabulary Keypoint Detection
with Semantic-featureMatching (KDSM), leverages the syn-
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ergy of advanced language models to effectively bridge the
gap between text and visual keypoint features. KDSM inte-
grates innovative strategies such as Domain Distribution
Matrix Matching (DDMM) and other special modules,
such as the V ision-Keypoint Relational Awareness (VKRA)
module, leading to significant performance enhancements.
Specifically, we observed a 45.30-point improvement in
detecting diverse keypoint categories and a 31.43-point
improvement for varied animal species compared to the
baseline framework. Notably, KDSM achieves comparable
results with those of state-of-the-art few-shot species class-
agnostic keypoint detectionmethods. The proposed approach
lays the groundwork for future exploration and advancements
in OVKD, driving further improvements in quantitative per-
formance metrics.
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