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Abstract
Person re-identification (ReID), aiming at retrieving persons of the same identity across non-overlapping cameras, holds
immense practical significance for security and surveillance applications. In pursuit of a more general and practical solution,
recent research attention has gradually shifted from the traditional single-domain ReID to the domain generalizable person re-
identification (DG-ReID). However, the DG-ReID landscape lacks a meticulously designed and all-encompassing benchmark
to provide a common ground for competing approaches. To this end, in this paper, we first delve into the intricate challenges
of DG-ReID and introduce a comprehensive and large-scale benchmark with enhanced distributional variety and shifts to
facilitate the research progress. Furthermore, in response to the highlighted challenges, a novel DG-ReID framework based on
diverse feature space learning with domain factorization is proposed to effectively learn rich domain-adaptive discriminative
features through the two designed blocks with fairly limited additional cost in both memory and computation. Firstly, the
feature diversification block promotes a diverse feature space capable of learning domain-specific characteristics under the
rich distributional variety. Secondly, the domain-adaptive shielding block applies channel-wise shielding operations based
on subspace-based domain factorization in order to prevent the model from prediction bias caused by distributional shifts.
Our extensive experiments demonstrate the effectiveness of the proposed framework, surpassing the performance of current
state-of-the-art methods under various evaluation protocols.

Keywords Person re-identification · Domain generalization · Benchmark establish · Feature diversification · Subspace
learning

1 Introduction

Person re-identification (dubbed as ReID) has drawn exten-
sive research attention in recent years, which aims at retriev-
ing persons of the same identity across non-overlapping
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cameras. Along with the success of the deep learning tech-
nique, a large amount of sophisticated ReID methods (Liu
et al., 2016; Su et al., 2017; Yin et al., 2020; Zhang et al.,
2020c; Ye et al., 2021; Zhu et al., 2021) have been proposed
and achieved promising performances under the assumption
that the training set and testing set are collected from the same
domain. However, this ideal hypothesis is hardly satisfied in
real applications owing to the limitation of data collection
and intricacy of the scenarios. Consequently, recent efforts
have been devoted to the domain generalizable person re-
identification (dubbed as DG-ReID), which aims at training
models using multiple source domains to enable effective
generalization to unseen target domains without requiring
model updates (Song et al., 2019; Jin et al., 2020; Zhao et
al., 2021).

In the purpose of driving research progress and foster-
ing innovation, it is necessary to provide a common ground
for fair and rational comparisons among methods by devel-
oping well-designed benchmarks (Li et al., 2021; Zhong et
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Fig. 1 a To provide different distributions for emulating different
domains, the proposed benchmark EDVARS collects twelve diverse
datasets captured in various environments. b To simulate different dis-
tribution shifts with these datasets, we first characterize the collected

datasets with three representative properties, ie., location, weather, real-
ity, and design evaluation protocols across the two separations on each
property

al., 2023). Different from the traditional DG paradigm, DG-
ReID is a open-set image retrieval task that has different
label spaces between source and target domains. Therefore,
benchmarks for DG-ReID are methodologically constructed
with two basic components: (1) Collecting ReID datasets
that emulate various domains to provide different distribu-
tions. (2) Designing evaluation protocols that specify which
datasets will act as source domains for training or target
domains for testing to simulate distributional shifts in real
scenarios. To this end, an advanced benchmark should con-
tain a sufficient variety of distributions and deliver rational
distributional shifts specified by the evaluation protocols to
comprehensively evaluate DG-ReID methods.

However, existing benchmarks either exhibit a shortage of
diverse domainswithin their composing datasets or prove dif-
ficult to simulate significant distribution shifts due to overly
simplistic evaluation protocols (He et al., 2021). Specifi-
cally, the first DG-ReID benchmark (Song et al., 2019),
referred asBenchmark-1 in the following, predominantly uti-
lizes datasets collected in a single campus scene as source
domains, with target domains too small-scale to fully assess
the model’s generalization ability (Dai et al., 2021; Xu et al.,
2022). To tackle these limitations, the second benchmark,
referred as Benchmark-2, is proposed, which is composed of
the same collection of fourmedium-scale source datasets, but
conducts a leave-one-out protocol that selects one domain
from four large datasets for testing and all the remaining
domains for training (Dai et al., 2021; Zhao et al., 2021).Nev-
ertheless, it is still not ideal for generalization but more like a
compromise to the limited domains, since the model is tested
only on one specific distribution instead of multiple unseen

distributions after training (Zhang et al., 2023). Additionally,
ongoing inconsistencies in experimental settings have arisen
due to ethical issues with some datasets being retracted from
previous benchmarks. This underscores the need for a fair
and common ground for competing DG-ReID approaches to
drive research progress and innovation.

In order to evaluate DG-ReID methods more compre-
hensively by covering the mentioned shortage in existing
benchmarks, we construct a new benchmark with Enhanced
DistributionalVARiety and Shift (dubbed as EDVARS),with
two key improvements. (1) Diverse collected datasets. As
presented in Fig. 1a, we collected a total of twelve exist-
ing datasets, covering three quantities levels, eight collected
scenes and even three synthetic datasets. The abundant diver-
sity supports flexible assignments for training and testing,
controllable degree of distributional shifts, and extensive
evaluation on multiple target domains. (2) Rational evalu-
ation protocols. We first characterize the collected datasets
with three representative properties, ie., location,weather and
reality, as shown in Fig. 1b. For each property, we group two
disjoint sets of datasets having complementary traits on this
property (e.g., ‘indoor’ versus ‘outdoor’) and design a pair
of evaluation protocols across the two separations. In this
way, we build up the artificial distinction between source
domains and target domains to better deliver practical chal-
lenges where a trained model may encounter any possible
test data. A detailed comparison between the previous bench-
marks and our EDVARS is shown in Table 1.

When evaluating on the comprehensive benchmark, cur-
rent DG-ReID models are either challenged by the great
distributional variety to learn the domain-invariant features
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Table 1 Comparison between previous benchmarks and the proposed benchmark EDVARS

Benchmark # Images # Identities # Cameras # Scenes # Synthetic datasets # Evaluation protocols Elaborate distribution shifts

Benchmark-1 89,300 19,424 19 4 0 1 No

Benchmark-2 204,531 19,903 24 3 0 3 No

EDVARS 763,728 22,983 98 8 3 5 Yes

Best statistics are highlighted in bold

or trapped in the domain-level composition caused by the
significant distribution shifts. In detail, existing DG-ReID
methods can be mainly divided into two categories: sin-
gle model methods (Choi et al., 2021; Jia et al., 2019;
Zhuang et al., 2020; Jin et al., 2020; Choi et al., 2021) and
ensemble learning based methods (Xu et al., 2022; Dai et
al., 2021). The former collects all source domain data and
trains a single model on them to extract the shared domain-
invariant representations, which is limited when confronted
with diverse distributions. Besides, thesemethods discard the
diverse domain-specific characteristics, which can provide
discriminative and meaningful information, thus resulting in
unsatisfactory generalization capability (Dai et al., 2021; Xu
et al., 2022). The latter train domain-specific models (e.g.,
branches, classifiers, or experts) for each source domain
and combine these domain-specific models to enhance the
generalization ability. However, the coarse-grained domain-
level composition limits the flexibility in modeling target
domains, and the per-domain network as well as the meta-
learned combination strategies increase unscalable memory
and computation cost proportional to the number of source
domains. Therefore, it still remains challenging for ReID
models to deal with both distributional variety and distribu-
tional shift.

In correspondence to the unique challenges identified by
EDVARS,wepropose a novelDiverseFeature space learning
with Domain Factorization approach (dubbed as DF2) for a
more effective and efficient DG-ReID system,which belongs
to the single model based methods but is capable of captur-
ing domain-adaptive feature by exploiting domain-specific
characteristics. It improves the existing approaches men-
tioned above from the following two perspectives. First of all,
considering that diverse distributional variety brings diverse
domain-related information, DF2 promotes the diversity of
the common feature space to cover as much discriminative
information as possible for all domains. Second, to make
the feature adaptive to heterogeneous domain characteris-
tics caused by distributional shift, DF2 models each domain
with underlying factors and builds the relationship between
the feature discriminativeness with factors. In this way, DF2

can accurately perceive the inconsistency between the target
domain and the source domains on the same factors, so as to
extract domain-adaptive discriminative representations.

In detail, to promote the diversity of the feature space,
the Feature Diversification Block (dubbed as FDB) is
designed, which drives the independence and complemen-
tarity between feature channels so as to learn more diverse
useful information. Specifically, we propose the Instance-
Batch Whitening (dubbed as IBW) operation to conduct
channel decorrelationwithmerely small computational over-
head. Besides, a diversity loss is designed to encourage
different channels focusing on diverse spatial locations. To
prevent the model from extracting inconsistent domain-
related information due to characteristic discrepancy, we
establish a systematic bias shielding mechanism by propos-
ing the Domain-adaptive Shielding Block (dubbed as DSB).
Instead of dealing with domains individually at a coarse-
grained level, we break them into underlying domain-aware
factors with subspace-based learning technique. Each source
domain is factorized into a low-dimensional subspace in the
common feature space, which is spanned by orthogonal basis
vectors trained via sophisticated losses. The projection dis-
tances of a feature map on the bases reflect how each channel
reacts on specific underlying domain-aware factors. Along
this line, we design a channel-wise shielding strategy to dis-
able those channels that have inconsistent activation. The
proposed FDB andDSB together make up all the innovations
of our DF2 framework. Compared to previous methods (Dai
et al., 2021; Choi et al., 2021; Xu et al., 2022), DF2 keeps a
good balance of generalization ability and model complexity
because it does not need to train multiple expert models or
conduct meta-learning strategy, reducing both memory and
computation cost to a large extent. Extensive experiments
have demonstrated the effectiveness of the proposed method.
Our contributions can be summarized as follows:

• To facilitate the progressive research for DG-ReID, we
propose a large-scale benchmarknamedEDVARS,which
highlights the challenges from the distributional variety
and the distributional shifts in DG-ReIDwith diverse col-
lected datasets and rational evaluation protocols.

• We propose a novel Diverse Feature space learning with
Domain Factorization approach (DF2) to learn a well-
generalized ReID model with low additional cost on
memory and computation.

123



International Journal of Computer Vision

• Wedesign a FeatureDiversification Block (FDB) to drive
the independence and complementarity between feature
channels for promoting more diverse and discriminative
feature learning.

• We design a Domain-adaptive Shielding Block (DSB),
which factorizes each domain as a subspace in the com-
mon feature space and achieves channel-wise inconsis-
tency shielding based on the projection on each subspace.

• Extensive experiments demonstrate the effectiveness of
our framework, which surpasses state-of-the-art methods
under various evaluation protocols.

2 RelatedWork

2.1 Benchmarks for DG-ReID

Benchmarks drive research progress by providing a common
ground for competing approaches, fostering innovation and
enabling fair comparisons amongmethods. Song et al. (2019)
proposed the first large-scaleDG-ReIDbenchmark that using
existing large-scaleReIDdatasets, ie., CUHK02 (Li&Wang,
2013), CUHK03 (Li et al., 2014), Market-1501 (Zheng et al.,
2015a), DukeMTMC-ReID (Zheng et al., 2017) and CUHK-
SYSU (Xiao et al., 2016) to form the source domains, and the
smaller ones, ie., VIPeR (Gray & Tao, 2008), PRID (Hirzer
et al., 2011), GRID (Loy et al., 2013) and i-LIDS (Cai et al.,
2010) as target domains. Later, arguing that the image qual-
ity of the small-scale Re-ID datasets is quite poor, Zhao et
al. (2021) and Dai et al. (2021) proposed a new benchmark,
which conducted the leave-one-out setting on four large-scale
datasets, ie., CUHK03, Market-1501, DukeMTMC-ReID
and MSMT17 (Wei et al., 2018). However, DukeMTMC-
ReID has been withdrawn by its creators due to its privacy
issues, which is widely used in the previous benchmarks.
Thus Xu et al. (2022) and Zhang et al. (2022) revised the
benchmarks by deleting it in the first benchmark with four
source datasets left and replacing it with CUHK-SYSU in the
second benchmark. As the CUHK-SYSU dataset only con-
tains 1 camera, it is not used for testing. Most of the datasets
in existing benchmarks are collected on the campus, which
are not enough to cover the complexity in reality. Besides, the
rationale behind designed evaluation protocols is not clear,
lacking comprehensive evaluations of DG-ReID methods.

2.2 Methods for DG-ReID

Generalization capability to unseen domains is crucial for
ReIDmodelswhendeploying to practical applications (Wang
et al., 2018; Liu et al., 2019a; Huang et al., 2021). To address
this problem, several tailored methods (Jin et al., 2020; Choi

et al., 2021; Zhao et al., 2021; Jia et al., 2019; Zhuang et al.,
2020; Zhao et al., 2021) have been proposed. To deal with
the domain discrepancy, batch normalization (BN) (Ioffe &
Szegedy, 2015) and instance normalization (IN) (Ulyanov
et al., 2016) have been widely explored to improve gener-
alization capability by statistical feature regularization. For
example, Jin et al. (2020) proposed a style normalization and
restitution module, which utilizes the IN layers to filter out
style variations and compensates for the identity-relevant fea-
tures discarded by IN layers. Zhuang et al. (2020) proposed
camera-based batch normalization (CBN) to force the images
of all cameras to fall onto the same subspace and to shrink
the distribution gap between any camera pair. However, they
have ignored that individual domains’ discriminative charac-
teristics are able to provide complementary information for
better generalization on target domains in the open-set DG-
ReID task. Consequently, recent methods (Dai et al., 2021;
Jiao et al., 2022; Zhang et al., 2022; Xu et al., 2022) focus
more on modeling domain-specific features. Typically, these
methods are usually implemented by designing a specific
network for each domain and then aggregating them through
modeling the relevance between seen source domains and
unseen target domains by a domain-aware voting network or
adapter. For example, Dai et al. (2021) proposed to train an
expert for each source domain, anddesigned a voting network
for integrating multiple experts. Xu et al. (2022) designed
specific BN layers for each domain and aggregated them
by calculating the similarity between the IN/BN statistics of
different domains. However, the representation capacity is
bounded by the number of source domains, thus constraining
its capacity for generalization, particularly when confronted
with substantial distribution shifts. Besides, due to the lack of
target training data, thesemethods are optimized by themeta-
learning strategy,which requires twice forward andbackward
passes for each update step, resulting in expensive computa-
tion and doubled training time.

In addition, recent works begin to investigate the gen-
eralization ability of the vision transformer (Dosovitskiy et
al., 2021). TransMatcher (Liao & Shao, 2021) employs hard
attention to cross-matching similarity computing, which is
more efficient for imagematching.However, it still usesCNN
as the main feature extractor, and the role of the transformer
ismainly reflected in imagematching. PAT (Ni et al., 2023) is
the first to investigate the generalization ability of pure trans-
former inDG-ReID,which designs a proxy task tomine local
visual information shared by different IDs. Besides, the lat-
est transformer-based foundation model (Chen et al., 2023)
utilizes large-scale unsupervised training, which serves as
a stronger pre-trained model for ReID methods. Conse-
quently, in addition to adopting the ResNet-50 pre-trained on
ImageNet-1K as the backbone, we also includes these recent
pre-trained models to facilitate future research efforts.
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3 Proposed Benchmark

In thefield of computer vision, benchmarks play a critical role
in promoting the advance of research (Deng et al., 2009). On
the one hand, it is necessary to provide a common ground for
comparing the performance of various proposed methods.
On the other hand, there is a close relationship between the
construction process of the benchmark and the goal of the
studied problem. Specifically, a benchmark should directly
reflect the most attractive challenges we expect the evalu-
ated methods to overcome in real-world applications, so that
the evaluated methods can be reliably put into practice. For
example, miniImageNet (Vinyals et al., 2016) was purpose-
built from the full ImageNet (Deng et al., 2009) for promoting
the image classification models to overcome the challenges
of real-life few-shot scenarios. Therefore, rationally designed
benchmarks can actually drive research progress and foster
innovation. In this section,we first give a thorough discussion
on the construction principles of benchmarks in theDG-ReID
task. Then, we give a detailed description of the proposed
benchmark.

3.1 Construction Principles

A general principle to construct benchmarks is to simulate
the paradigm of real-world applications as closely as possi-
ble. For the DG-ReID task, there are two key points. First,
theremust exist a variety of available domains, each of which
has a unique data distribution and label space. Second, the
training and testing of models are typically set upon two dis-
joint groups of domains, namely source domains and target
domains, respectively. Consequently, DG-ReID benchmarks
should meet the following requirements: (1) Diverse distri-
butional variety. A large group of existing ReID datasets
are collected to act as different domains, which should con-

tain diverse distribution to cover typical potential scenarios.
(2) Rational evaluation protocols. Evaluation protocols are
designed to specifywhich datasets will act as source domains
during training or target domains for testing. The simulated
distribution shifts shouldmeet the needs of various real-world
applications where a trained model may encounter any pos-
sible test data.

3.2 The EDVARS Benchmark

To promote the advance of DG-ReID research, we propose a
new benchmark with Enhanced Distributional VARiety and
Shift, namelyEDVARS for short. The key point is that, in the
purpose of having more elaborate control over the data dis-
tribution, we need to characterize each domain (ie., dataset)
via some properties so that we can artificially judge whether
the data distribution between different domains varies sig-
nificantly. For ReID datasets, it is the properties of the data
collection environment that greatly influence the underlying
data distribution. Specifically, we select three representative
properties that generally exist in current ReID datasets and
have an explicit influence on data distribution.

• Location. Existing ReID datasets are captured in dif-
ferent locations, including airport (Cai et al., 2010),
campus (Zheng et al., 2015a), buildings (Bialkowski et
al., 2012), etc., which in turn influence the data distri-
bution. On the whole, we divide them by whether the
shooting location is indoor or outdoor, where the main
variations depend on the lighting conditions. As shown in
Fig. 2a, we give the comparison between some identities
all wearing black clothes in the outdoor datasets (above)
and indoor datasets (below). We can find that it is harder
to isolate individuals from the background in the indoor
environments.

Fig. 2 Comparisons between the images taken in different environments. a The images above are taken in the outdoor locations and the below
are taken in the indoor locations. b The images above are taken in Winter and the below are in Summer. c The above are synthetic images and the
below are real images
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• Weather.After carefully analyzing the existing datasets,
we found that they were all collected in a certain period
of season, resulting in significant differences in the cloth-
ing of pedestrians photographed due to different weather
conditions. As illustrated in Fig. 2b, pedestrians in winter
wear heavier clothing, which results in more obstruction
of the pedestrian’s posture as well as rougher outlines.
Besides, in winter, people often wear hats, scarves and
other accessories, which are discriminative clues for per-
son re-identification (Liu et al., 2019b; Lin et al., 2019;
Zhang et al., 2020).

• Reality. Since data annotation in ReID is difficult and
costly, there is a series of research on trainingmodelswith
images of synthetic identities instead of real people (Sun
& Zheng, 2019; Zhang et al., 2021). Consequently, it is
worth taking the reality property of datasets into consid-
eration, which obviously influences the overall style of
the samples as shown in Fig. 2c.

Along this line, our improvements towards existing bench-
marks are two-folds. To enhance distributional variety, we
adopt more diverse datasets with various collection envi-
ronment properties, ie., location, weather and reality. To
make proper distributional drift, we design several evalu-
ation protocols in which the properties of source domains
have deliberate distinction from those of target domains. The
rest of this section gives a thorough description towards the
proposed EDVARS benchmark, and more analysis and dis-
cussion will be presented in Sect. 5.

3.2.1 Diverse Collected Datasets

For the purpose of providing sufficient distributional vari-
ety, EDVARS is comprised of 12 diverse datasets as shown
in Table 2, which are carefully collected with the follow-
ing rules. First of all, to minimize the impact of dataset size
on generalization evaluation, EDVARS encompass datasets
across three scales for each property: small-scale (<10K),
medium-scale (≈30K), and large-scale (>100K) image
quantities. Furthermore, to cover the variety of reality,
EDVARS makes the first incorporation of synthetic datasets,
ie., SOMAset (Barbosa et al., 2018), Unreal (Zhang et al.,
2021) and PersonX (Sun & Zheng, 2019), whose scales are
of the same order of magnitude as the real-world dataset,
ie., MSMT17 (Wei et al., 2018). Then, EDVARS includes a
range of real-world datasets captured in various locations and
periods of seasons. Themain rules to select these datasets are
listed below.

• Collecting places are distinct and diverse. For example,
PRID (Hirzer et al., 2011) and VIPeR (Gray & Tao,
2008) were usually utilized in the previous benchmarks,

while they were not selected by the proposed benchmark
because of their unknown collection places.

• Collection locations are as diverse as possible. Unlike
previous benchmarks (Dai et al., 2021; Zhao et al.,
2021), which predominantly featured campus scenes,
the selected datasets encompass a wide range of scenes
including campuses, streets, open areas, airports, under-
ground stations, etc.

• The camera information is clear and complete. For
instance, CUHK-SYSU (Xiao et al., 2016) were not
included, because its images were taken from two
sources, i.e., street and movie, which makes it difficult
to divide as real or virtual dataset. It is precisely because
of this that it does not have clear camera information,
which prevents it from dividing the training and testing
set (Zhang et al., 2022; Xu et al., 2022).

• Images are normal and complete.Aerial imagerydatasets,
eg., PRAI (Zhang et al., 2020) and partial datasets,
eg., PartialReID (Zheng et al., 2015b) and Occlude-
dReID (Miao et al., 2019) were not included, which will
bemore useful for studying specific challenged problems
in futureworks, such as generalizing fromgeneral images
to aerial images.

• Datasets have not been retracted due to the privacy issues,
such as DukeMTMC-ReID (Zheng et al., 2017).

In summary, the proposed benchmark incorporates diverse
dataset properties by location, weather and reality, offering
adequate distributional variety and enabling flexible evalua-
tion protocol design in the following section.

3.2.2 Elaborate Evaluation Protocols

Despite the fact that the widely adopted evaluation meth-
ods in DG-ReID effectively show the generalization ability
of models to the unseen target domain, they fail to suffi-
ciently simulate real scenarios in application. For example,
the most popular evaluation method, namely leave-one-out
evaluation conducted in Benchmark-2 (Dai et al., 2021; Xu
et al., 2022), tests models on a single target domain for
each training process, while in real applications, a trained
model is required to be reliable under any possible scenar-
ios with various data distributions. The compromise on the
limitation of domain numbers in current benchmarks can be
addressed by EDVARS with sufficient domains. The superi-
ority supports designing more realistic evaluation metrics to
test models’ generalization ability comprehensively. In addi-
tion, little attention has been paid to making a deliberate
distinction between the designated source domains and tar-
get domains which is likely to appear in real applications.

To overcome these limitations, we have devised three
kinds of distinct evaluation protocols, each aligned with
the key properties of the datasets discussed above: loca-
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Table 2 Collected datasets in the proposed benchmark for DG-ReID

Datasets Collected scenes # Identities # Cameras # Total Images

Small-scale iLIDS (Cai et al., 2010) Airport arrival hall 119 2 476

GRID (Loy et al., 2013) Underground station 1025 8 1275

PKU (Ma et al., 2016) Campus 114 2 1824

SAIVT (Bialkowski et al., 2012) Buildings 152 8 7150

Medium-scale Market-1501 (Zheng et al., 2015a) Campus 1501 6 29,419

LPW (Song et al., 2018) Street 2731 4 30,678

WildTrack (Chavdarova et al., 2018) An open area 313 7 33,979

Airport (Gou et al., 2018) Airport 9651 6 39,902

Large-scale SOMAset (Barbosa et al., 2018) Synthetic 50 – 100,000

Unreal (Zhang et al., 2021) Synthetic 1960 34 119,128

MSMT17 (Wei et al., 2018) Indoor and outdoor 4101 15 126,441

PersonX (Sun & Zheng, 2019) Synthetic 1266 6 273,456

tion, weather, and reality. Each of them simulates the specific
real-world generalization situation and provides amore com-
prehensive assessment of model performance together.

• Generalization across location. We first separate the
real-world datasets into two opposite groups, ie., Indoor
(GRID, SAIVT, iLIDS, Airport) and Outdoor (PKU,
Market1501, LPW, WildTrack). Then we designate
one group as source domains and the other as target
domains (e.g., Indoor→Outdoor), vice versa (e.g., Out-
door→Indoor).

• Generalizationacrossweather.Weselect the real-world
datasets that have obvious seasonal attributes and divide
them into two group, ie., Summer (SAIVT, Market1501)
and Winter (WildTrack, MSMT17). Next we designate
one group as source domains and the other as target
domains (e.g., Summer→Winter), and vice versa (e.g.,
Winter→Summer)

• Generalization across reality.Last but no least,we build
the protocols to evaluate the generalization ability from
synthetic to real-world datasets. To be more compre-
hensive, the selected target domains cover small-scale,
medium-scale and large-scale datasets simultaneously.

In summary, we design five evaluation protocols covering
three types of distribution drifts in the proposed EDVARS
benchmark for comprehensively evaluating the competing
approaches. The detailed training/testing information is pre-
sented in Table 3. In this way, we can not only artificially
construct distribution shifts between source domains and tar-
get domains, but also observe the impact of specific dataset
properties onmodel generalization to someextent,whichwill
be detailed in Sect. 5. As far as we know, it is the first time
to explore specific challenges posed by different distribution
shifts.

4 ProposedMethodology

The proposed benchmark sets up a reasonable target for
designing DG-ReID methods. Especially, the highlighted
challenges lie in how to learn effective domain-specific
characteristics under diverse distributional variety while pre-
venting from extracting inconsistent domain-related infor-
mation due to unforeseen distributional shifts. Moreover,
the solution should be efficient and scalable as the num-
ber of domains grows. To achieve these goals, we propose
a novel Diverse Feature space learning with Domain Fac-
torization approach (DF2) as depicted in Fig. 3. The overall
innovation of DF2 involves two types of designed blocks, ie.,
the Feature Diversification Block (FDB) and the Domain-
adaptive Shielding Block (DSB). Firstly, the FDBs, plugged
among the backbone blocks, aim at diversifying the feature
space and promoting rich representation capacity for cover-
ing as much discriminative information as possible for all
domains. Secondly, the DSB factorizes each source domain
into a low-dimensional subspace spanned by learned basis
vectors, which are supposed to represent underlying factors
embedded with information about domain-specific charac-
teristics. Then, given a fully diversified feature map, its
projection distances on the factorized bases indicate how
each channel reacts to specific underlying domain-aware fac-
tors. Finally, DSB outputs a channel-wise mask through a
designed domain-adaptive strategy to shield the channels
having inconsistent activation between the target domain and
the source domains on the factors. In the rest of this sec-
tion, we will introduce the components of DF2 framework
in detail, ie., the Feature Diversification Block and Domain-
adaptive Shielding Block.
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Table 3 Details of the proposed evaluation protocols

Source Target

Dataset # Train ID # Train images Dataset # Pr. IDs # Ga. IDs # Pr. imgs # Ga. Imgs

Generalization across location

Protocol-1 iLIDS 119 368 PKU 57 57 57 855

SAIVT 152 7150 LPW 756 756 3013 4277

GRID 1025 1275 WildTrack 157 152 157 15,862

Airport 9652 39,902 Market1501 750 751 3368 15,913

Protocol-2 PKU 114 1824 iLIDS 60 60 60 60

Market1501 1501 29,419 GRID 125 900 125 900

LPW 2731 30,678 SAIVT 76 76 76 3525

WildTrack 313 33,979 Airport 1003 1382 2264 6400

Generalization across weather

Protocol-3 SAIVT 152 7150 WildTrack 157 152 157 15,862

Market1501 1501 29,419 MSMT17 3060 3060 11,659 82,161

Protocol-4 WildTrack 313 33,979 SAIVT 76 76 76 3525

MSMT17 4101 126,441 Market1501 750 751 3368 15,913

Generalization across reality

Protocol-5 SOMAset 50 100,000 iLIDS 60 60 60 60

Unreal 1960 119,128 GRID 125 900 125 900

PersonX 1266 273,456 Market1501 750 751 3368 15,913

MSMT17 3060 3060 11,659 82,161

4.1 Feature Diversification Block

Wefirst introduce the design of FeatureDiversificationBlock
(FDB), which aims at maximizing the utilization of the
model’s representation capacity and promoting a diverse
feature space for learning various domain-specific charac-
teristics. Our motivation lies in the observation that existing
single model based methods are prone to output highly cor-
related features when forced to be compatible with multiple
source domains. The highly correlated features focus on the
small local areas, such as the most frequent shapes or col-
ors in the training data. However, when the limited areas are
not discriminative characteristics for the target domain, the
highly correlated featuresmay result in incorrect predictions.
As shown in Fig. 4, the training images are from three source
domains that all carry a ‘backpack’. We visualize the fea-
ture map extracted by the strong baseline MetaBIN (Choi
et al., 2021) and find that the model only focuses on the
‘backpack’. However, when testing on the target domain,
if ‘backpack’ is not a discriminative characteristic, the pre-
diction will be incorrect. In a nutshell, the high correlation
between feature channels is prone to lead the model to rely
on limited knowledge and impede its generalization ability.
Moreover, the correlation also inhibits the channels’ poten-
tial to learn more domain-aware factors. Consequently, we

design the Feature Diversification Block (FDB) to promote
feature decorrelation and encourage the model to capture
diverse factors, avoiding being biased to limited knowledge.
The core design of FDB is the Instance-Batch Whitening
(IBW) together with a diversity loss.
Feature channels decorrelation.Whitening transformation
is a well-adopted technique that aims to transform the input
features to have zero means and unit variances, and remove
the correlation between channels (Huang et al., 2018; Siaro-
hin et al., 2018; Pan et al., 2019; Cho et al., 2021). Motivated
by the success of a mixture of batch normalization (BN)
and instance normalization (IN) in the DG-ReID field, we
propose a novel Instance-Batch Whitening (IBW) module,
which combines the Batch Whitening (BW) and Instance
Whitening (IW) with a learnable balancing parameter to
decorrelate the feature channels based on the statistics of
channel dependency with respect to both the mini-batch and
each sample. Formally, let X ∈ R

C×NHW be the data matrix
of a mini-batch, where N , C , H , W indicate the mini-batch
size, number of channels, height, andwidth, respectively. The
n-th sample in the mini-batch is denoted as Xn ∈ R

C×HW ,
where n ∈ {1, 2, . . . , N }. The designed IBW module can be
formulated as follows:

I BW (Xn) = ρBW (Xn) + (1 − ρ)IW (Xn), (1)
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Fig. 3 a Overall flowchart of the proposed diverse feature space
learning with domain factorization framework. The proposed frame-
work consists of the b Feature Diversification Block (FDB) and c
Domain-adaptive Shielding Block (DSB), which are plugged between
the backbone blocks and after the last block, respectively. The pro-

posed FDB conducts feature channel decorrelation with a diversity loss
to enhance the model representation capacity. And the proposed DSB
builds a subspace for each domain and projects the diverse feature map
into each subspace to obtain the channel-wise shielding weights, which
in turn are multiplied on the original feature map

Fig. 4 Existing single-model based methods tend to lean highly-
correlated features that focus on the most frequent local areas, such
as the ‘backpack’ shown in the figure, resulting in limited predictions

where:

BW (Xn) = �
− 1

2
B · (X − μB · 1T ), (2)

IW (Xn) = �
− 1

2
I · (X − μI · 1T ), (3)

where ρ is a learnable balancing parameter, 1 represents
a column vector of ones, ��� and μ are the covariance

matrix and mean of the input mini-batch/sample, respec-
tively, ie.,

μB = 1

NHW
X · 1, (4)

�B = 1

NHW
(X − μB · 1T )(X − μB · 1T )T + ε I, (5)

μI = 1

HW
Xn · 1, (6)

� I = 1

HW
(Xn − μI · 1T )(Xn − μI · 1T )T + ε I, (7)

where ε > 0 is a small positive number to prevent singu-

lar covariance. The decorrelation requires computing �− 1
2 ,

which usually employs eigen-decomposition or SVD involv-
ing heavy computations (Huang et al., 2018; Siarohin et al.,
2018). To reduce the complexity and ease the inefficiency
problem, we conduct two strategies from the following two
aspects.

On the one hand, we leverage approximate calculation to
accelerate the computation procedure. Specifically, follow-
ing the previous methods (Huang et al., 2019; Pan et al.,
2019), we use Newton’s Iteration (Bini et al., 2005) to obtain
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�− 1
2 . Given a covariance matrix �, Newton’s Iteration cal-

culates �− 1
2 by following the iterations:

�− 1
2 = �T√

tr(�)
, (8)

where T is the iteration number and set as 3 in our work, and
�T is calculated iteratively as:

{
�0 = I,

�k = 1
2 (3�k−1 − �3

k−1�), k = 1, 2, . . . , T .
(9)

Note that the convergence of Eq. (9) is guaranteed if ||I −
�|| < 1 (Bini et al., 2005). To satisfy the condition, � is
normalized by � = �/tr(�) (Huang et al., 2019).

On the other hand, we attempt to reduce the overall com-
putation task by grouping operations. Similar to the previous
methods (Huang et al., 2018; Cho et al., 2019), we divide the
feature channels into groups and perform IBW within each
group. Particularly, we add a shuffle operation to reduce the
impact of group division. In detail, the channels of the input
feature are first randomly shuffled and then evenly grouped
into several average groups along the channel dimension.
Next the proposed instance-batch whitening operation is per-
formed within each group of feature. After that, the inverse
grouping operation and inverse shuffling operation are con-
ducted to restore channel arrangement. To sum up, the total
process of the feature channels decorrelation is described as
follows:

Shuffled Grouping: {X i
n}Gi=1 = G(S(Xn)), (10)

Instance-Batch Whitening: X̃
i
n = I BW (X i

n), (11)

Inverse Grouping: X̃n = S−1(G−1({X̃ i
n}Gi=1)), (12)

where S : RC×HW → R
C×HW denotes the randomly shuf-

fling operation. G : R
C×HW → R

G×g×HW denotes the
grouping operation, where C = Gg, G is the number of
groups and g is the number of channels in each group, i.e.,
group size. X i

n ∈ R
g×HW is the i-th group of feature. G−1

and S−1 are the inverse grouping and shuffling operations.
Diversity loss.Alongwith the feature channels decorrelation
module mentioned above, we further propose a diversity loss
for encouraging different channels focusing on diverse spa-
tial locations. First of all, we conduct the spatial softmax to
normalize each channel:

SMc(X̃n) = exp(X̃
hw

n )∑HW
hw=1 exp(X̃

hw

n )
, (13)

where c ∈ {1, 2, . . . ,C}. By fixing the maximum sum of
all feature maps within each channel as 1, we establish

a consistent and controlled distribution of attention across
spatial locations. This method enhances the magnitudes of
selected pixels while suppressing the influence of pixels in
other locations, effectively transforming each channel into
an ‘expert’ for the selected pixel. Subsequently, we calculate
the activation degree of each pixel by averaging its Top-K
representative channels:

AD(X̃n) = 1

K

K∑
k=1

Top-k
c=1,2,...,C

(SMc(X̃n)) (14)

Finally, the diversity loss is designed to tomaximize the aver-
age magnitude, a strategic step aimed at encouraging a more
diverse focus on spatial locations. This approach enables us
to optimize the attention and magnitudes assigned to pixels,
ultimately contributing to forcing different channels to pay
their most salient attention to different spatial locations:

Ldiv = −λdiv
1

HW

HW∑
hw=1

AD(X̃n), (15)

where λdiv is the hyper-parameter to balance the loss.

4.2 Domain-Adaptive Shielding Block

After feature diversification, a common feature space capa-
ble of extracting rich information from all source domains
has been constructed so that we can utilize domain-specific
characteristics for prediction. However, due to the existence
of distributional shifts in DG-ReID, directly utilizing all the
domain-specific characteristics is prone to suffer from incon-
sistency between source domains and target domains. To
tackle this issue, we design the Domain-adaptive Shielding
Block (DSB) comprised of a project layer and a shield layer,
which can be formalized as follows.
Input. Let X ∈ R

C×HW be a sample of a mini-batch, where
C , H ,W indicate the number of channels, height, and width,
respectively. For convenience, we denote X[c] ∈ R

HW as
the c-th channel in the feature map, c ∈ {1, . . . ,C}.
Project layer. The project layer consists of D subspaces,
each of which is spanned by M basis vectors, ie., B ∈
R

D×M×L , where D equals to the number of source domains,
the hyperparameter M indicates the number of hidden fac-
tors, and length of basis vectors L is the same as the length of
channels HW . Given X as input, the project layer calculates
the channel-wise projection distance to each subspace, ie.,
P ∈ R

C×D×M as follows:

P[c, d,m] = X[c]T · B[d,m], (16)

where P[c, d,m] indicates the projection distance of the c-th
channel on the m-th basis of the d-th subspace.
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Shield layer. The shield layer takes the projection results
as input and generates channel-wise weights by a designed
domain-adaptive strategy, ie., W = {wc}Cc=1 ∈ R

C .

W = φ(P), (17)

where theweight generation function φ(·)will be thoroughly
discussed later.
Output. Finally, the output feature map of DSB, X̂ , is
obtained by re-weighting the original feature map X , along
the channel dimension, ie.,

X̂[c] = wcX[c], c ∈ {1, 2, . . . ,C}. (18)

In the following, we will describe (1) how to construct the
domain subspace (ie., how to train the basis vectors B) and (2)
how to obtain the channel-wise weights to achieve domain-
adaptive shielding (ie., how to design the weight generation
function φ(·)).

4.2.1 Subspace Construction

The whole procudure of subspace constrcution is shown in
(Fig. 5). When learning the basis vectors for domain-specific
subspaces, several key points should be satisfied. Firstly, the
basis vectors within the same subspace should be orthogo-
nal to guarantee non-overlapping semantics. Furthermore,
different subspaces are supposed to be well separated in
the common feature space to distinguish each other. Finally
and most importantly, we target at building relationship
between the basis vectors and the underlying factors reflect-
ing domain-specific characteristics. To achieve these goals,
the following losses are designed to supervise the learning
of basis.
Orthogonality within each subspace. The basis for each
subspace should focus on different aspects and cover non-
overlapping clues. Consequently, the orthogonality loss is
designed to push the basis within each subspace apart from
each other:

Lorth =
D∑

d=1

∥∥∥B[d]B[d]T − IM
∥∥∥2
F

, (19)

Fig. 5 The procedure of subspace construction

where B[d] ∈ R
M×L denotes the basis matrix of the d-

th subspace, ‖·‖2F represents Frobenius norm and IM is an
M × M identity matrix.
Separation between subspaces. To make sure different
domains distinctive, their corresponding subspaces should
be far away from each other. Therefore, we need a way
of measuring the distance between subspaces. According
to the basic Riemannian geometry (Edelman et al., 1998),
the set of M-dimensional linear subspaces of the space RC

(0 < M ≤ C) makes up a Grassmann manifold, which is
a M(C − M) compact Riemannian manifold. In this sense,
each domain-specific subspace can be taken as a point on the
Grassmannmanifold in the common feature space. As a con-
sequence, the distance between subspaces can be naturally
quantified with the popular ProjectionMetric (Harandi et al.,
2013) which can be formulated as:

d
(
B[di ], B[d j ]

) = 1√
2

∥∥∥B[di ]T B[di ] − B[d j ]T B[d j ]
∥∥∥
F

. (20)

Finally, the metric can be used to form the following separa-
tion loss to push subspaces away from each other:

Lsep = −1√
2

D−1∑
di=1

D∑
d j=di+1

∥∥∥B[di ]T B[di ] − B[d j ]T B[d j ]
∥∥∥
F

. (21)

Domain identification. To make the basis embed the under-
lying factors for each corresponding domain, we utilize the
domain classification loss to supervise the projection distance
on each subspace. Firstly, we utilize the MaxPool operation
along the channel dimension to obtain the global projection
distance on each subspace:

P̃ = MaxPool(P) ∈ R
D×M (22)

Then a linear domain classifier Cdom : R
D×M → R

D is
designed for domain label prediction, which is implemented
with a weight matrix G ∈ R

(D×M)×D . The domain classifi-
cation loss can be formulated as:

Ldom = −
D∑
i=1

y[i] log
(

exp( P̃G[i])∑D
i=1 exp( P̃G[i])

)

+ (1 − y[i]) log
(
1 − exp( P̃G[i])∑D

i=1 exp( P̃G[i])

)
,

(23)

where P̃G ∈ R
D is the classification logits and y ∈ {0, 1}D

denotes the one-hot representation for the domain label.
Monotonicity constraint. Instead of training the weights
of the domain classifier, G, we fix the weights when learn-
ing the basis vectors. In specific, for j ∈ {1, 2, . . . , DM}
and d ∈ {1, 2, . . . , D} G[ j, d] = 1 if � j/D	 = d, and
otherwise G[ j, d] = −μ where μ ∈ (0,∞) is the penalty
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parameter set as 0.5. The key point is to guaranteemonotonic
semantic for the projection distance P . To be more concrete,
consider the projection on the j-th basis of subspace d, ie.,
P[d, j]. With the classifier frozen as above, P[d, j] has a
strict monotonic positive correlation with the classification
logit of domain d, and a strict monotonic negative correlation
with the other domains. Such monotonicity is critical in the
shield layer which will be discussed later. Besides, freezing
classifier can also reduce the difficulty of optimization.

Summarily, the total objection function for learning the
subspace basis is:

Lbasis = λorth Lorth + λsepLsep + λdomLdom, (24)

where λorth , λsep and λdom are the hyper-parameters to bal-
ance the losses.

4.2.2 Channel-Wise Shielding

Having factorized the source domains with a group of
domain-aware basis vectors, we now discuss how to apply
domain-adaptive feature shielding to prevent the model from
being biased on target domains due to distributional shifts.
Recall that given the feature map of a sample X ∈ R

C×HW ,
we project it onto all the basis vectors in the project layer
and obtain P ∈ R

D×C×M (Eq. (16)), based on which we
aim to acquire channel-wise weights W (Eq. (17)) to mask
the output feature map (Eq. (18)).

In general, theweight generation functionφ(·) is designed
based on the following assumptions: (1) Channel inde-
pendence. The channel decorrelation in FDB inspires an
independent weight generation for each channel based on
its own projection distances, which significantly reduces the
complexity. (2)Projectionmonotonicity.As discussed above,
the fixed domain identification classifier during subspace
construction guarantees monotonic semantic for projection
distances, such that larger elements in P directly indicate
larger channel activation on specific domain-aware factors.
(3) Factor sharing. With a tractable distributional shift, the
target domain is supposed to have similar characteristics
with the source domains, which further results in partly
shared underlying factors between the target domain and
source domains. The channels that effectively react on the
co-occurring factors can be treated as domain-adaptive dis-
criminative feature. On the contrary, low activation on all the
underlying factors indicates inconsistency inside the channel
between the target domain and the source domains. Based on
this observation, we can selectively shield the inconsistent
channels with a heuristic channel-wise mask formulated as
follows:

wc = φc(P[c]) = GM p

d=1,...,D
m=1,...,M

σ(P[c, d,m]). (25)

φc(P[c]) denotes the c-th independent component of φ(·)
induced by channel independence. σ(·) is an activation
function mapping the original projection distance to (0, 1)
utilizing projection monotonicity. We use the Sigmoid func-
tion for simplicity. GM p(·) denotes the generalized mean
operation, ie.,

GM p(x1, . . . , xn) =
(
1

n
·

n∑
i=1

x p
i

) 1
p

, (26)

which prefers the channels having high activation on some
part of shared underlying factors. Note that the hyper-
parameter p plays a role in the tolerance degree for filtering
out a channel. For example,when p → ∞,GM p(·)degrades
to max(·), which means that the channel will be filtered only
if it does not have any activation on all the factors.

4.3 Overall Objective Function

In a nutshell, the overall objective function of the propose
method can be formulated as follows:

L = Lreid + Ldiv + Lbasis, (27)

whereLreid consists of the cross-entropy lossLce, triplet loss
Ltr i and center lossLcntr following the standard formulation
in previous works (Ye et al., 2021; Zhang et al., 2022).

5 Experiments

5.1 Experimental Setup

ImplementationDetails. Following themost of current DG-
ReID methods, we adopt the wily-used ResNet-50 (He et
al., 2016) pre-trained on ImageNet-1K (Deng et al., 2009)
as the backbone. Moreover, since the vision transformer
presents great potential in various vision task, we further
conduct transformer-based experiments to make thorough
comparisons. Following the state-of-the-art transformer-
based methods (Ni et al., 2023; Chen et al., 2023), vanilla
vision transformer (Dosovitskiy et al., 2021) and Swim-
transformer (Liu et al., 2021) are both included in our
extensive experiments. The main results in Tables 4, 5, 6, 7
and 8 are based on the ViT-B/16 and Swim-B. When adopt-
ing the ResNet-50 as the backbone, the last residual layer’s
stride size is set to 1 following the previous method (Luo et
al., 2019). Images are resized to 256 × 128, and the training
batch size of each domain is set to 64. For data augmentation,
we use random flipping, random cropping and color jitter-
ing. We optimize the model using the SGD optimizer with a
momentum of 0.9 and weight decay of 5e−4 for 60 epochs,
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and the warmup strategy is used in the first 10 epochs. The
initial learning rate is set to 4e−2, which is cosine decayed
to 4e−5 at the final iteration. The selected channel number
K in the designed diversity loss is set as 5 and the tolerance
degree p in the channel-wise shielding block is set as 3 as
default. Besides, the group size g and the number of bases
for each subspace are both set as 16 for the reported results.
The baseline is based on the vanilla ResNet50 and trained
without any designed blocks under the same training setting
as ours. We conduct all the experiments with PyTorch on
four 1080Ti GPUs. Datasets and codes will be available at:
https://github.com/Xiaofu233/DG-ReID.

Compared DG-ReID methods. The compared meth-
ods can be categoried into three categories based on the
backbone, ie., resnet-based, vit-based and swim-transformer-
based.

For the first category, with the ResNet-50 as the back-
bone, we re-implement state-of-the-art DG-ReID methods
with their public codes for fair comparisons. These meth-
ods cover various techniques that are popular in DG-ReID,
including the normalization, like SNR (Jin et al., 2020),
DualNorm(Jia et al., 2019),CBN(Zhuanget al., 2020),meta-
learning, such as M3L (Zhao et al., 2021), MetaBIN (Choi
et al., 2021), IL (Tan et al., 2023), distribution align-
ment, like DDAN (Chen et al., 2021), image matching,
like QAConv (Liao & Shao, 2020), ensemble learning,
like META (Xu et al., 2022) and dynamic network, like
ACL (Zhang et al., 2022), etc..

For the second category, we compare to the recent
transformer-basedmethods, ie., TransMatcher (Liao&Shao,
2021) and PAT (Ni et al., 2023), where TransMatcher use the
ResNet-50 together with ViT-B and PAT use the pure ViT-B
as the backbone. We utilize the same ViT-B as our backbone
for fair comparison.

For the third category, recent pre-training model, ie.,
SOLIDER (Chen et al., 2023) that conducts large-scale unsu-
pervised learning with larger pre-training datasets based on
the swim transformer (Liu et al., 2021), ie., LUPerson (Fu
et al., 2021), is included. In detailed, we first evaluate its
zero-shot performance, denoted as SOIDER-ZS, where the
pre-trained model is testing on the target domains directly.
Next, we evaluate its fintuning performance, where the pre-
trained model is fine-tuning on the source domains and then
testing on the target domains. For fair comparison, the pro-
posed model loads the pre-trained weights and is fine-tuned
in the same way to show the effectiveness of the proposed
modules.

Evaluation Metrics. We employ the standard metrics in
the literature, ie., the Cumulative Matching Characteristics
(CMC) at Rank-1, Rank-5, Rank-10 and the mean Average
Precision (mAP), to evaluate the performance.

5.2 Results on Proposed Benchmark

Generalization across location. In order to evaluate the gen-
eralization ability across different locations of the existing
methods and the proposed method, we conduct the experi-
ments under the protocol-1 and protocol-2. The results are
shown in Tables 4 and 5, respectively.

Among the ResNet-based methods, we can find that
ACL (Zhang et al., 2022) reveals superiority among previ-
ous approaches under this type of distribution shift, which
designs a static branch to learn domain-invariant features
and a dynamic branch to learn domain-specific features. It
achieves 52.3% on Rank-1 accuracy and 35.4% mAP on
the average, proving the effectiveness of building a com-
mon space for domain-invariant and domain-specific feature.
Compared to it, the proposed DF2 focuses on capturing
the discriminative feature for each domain in one single
branch, promoting the feature diversity and adaptability
simultaneously. It performs best compared with all the base-
lines, outperforming ACL by 4.2% on Rank-1 accuracy and
0.4% mAP, respectively. Besides, the performance of all
approaches generalizing from outdoor to indoor datasets are
shown in Table 5. We can find similar results as the protocol-
1, where the DF2 still performs best and ACL follows.

Among the ViT-based methods, the proposed model out-
performs the recent state-of-the-art method, ie., PAT (Ni
et al., 2023) by a large margin. For example, under the
protocol-1, the proposed model achieves 41.4% and 28.4%
on the average Rank-1 accuracy and mAP, surpassing PAT
by 3.7% and 2.9%.Moreover, it becomes clear that under the
protocol-1, where the training datasets are relatively limited
in size, the performance of ViT-based methods significantly
trails behind that of ResNet-based approaches. Additionally,
the proposed model, employing ResNet as its backbone,
demonstrates superior performance in comparison to the
TransMatcher (Liao& Shao, 2021), which integrates ResNet
and ViT within its architecture. This performance gap can
plausibly be ascribed to the inherent characteristics of ViTs,
which typically demand larger training data to effectively
learn visual representations. Consequently, when subjected
to smaller datasets, they are more prone to overfitting.

Last but not the least, by comparing the performance of
SOLIDER (Chen et al., 2023) and ours, we can find a signif-
icant performance increase of our DF2, which demonstrate
the effectiveness of the deisnged methods. Furthermore, the
results of SOLIDER-ZS are not as satisfactory as anticipated,
indicating that solely employing large-scale unsupervised
pre-trainingmay not readily address domain gaps, although it
remains a promising direction. In conclusion, these findings
underscore the efficacy of our DF2, positioning it as a robust
choice for applications that require seamless generalization
across outdoor and indoor scenarios.
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Table 6 Performance (%) comparison with the state-of-the-art methods under Protocol-3

Method Backbone Target: WildTrack Target: MSMT Average

Rank-1 mAP Rank-1 mAP Rank-1 mAP

IL (Tan et al., 2023) ResNet 13.0 3.2 17.3 5.8 15.2 4.5

DDAN (Chen et al., 2021) 16.5 4.1 16.5 5.2 16.5 4.6

SNR (Jin et al., 2020) 20.7 5.1 14.8 4.7 17.7 4.9

M3L (Zhao et al., 2021) 17.1 4.0 21.2 7.1 19.6 5.6

DualNorm (Jia et al., 2019) 24.8 7.0 19.0 6.3 21.9 6.7

ACL (Zhang et al., 2022) 24.1 7.1 27.0 9.2 25.5 8.1

QAConv50 (Liao & Shao, 2020) 23.5 6.5 40.7 12.0 32.1 9.3

META (Xu et al., 2022) 29.7 8.6 32.8 12.0 31.2 10.3

MetaBIN (Choi et al., 2021) 28.3 8.1 35.3 13.5 31.8 10.8

CBN (Zhuang et al., 2020) 30.3 11.9 44.4 17.9 37.4 14.9

Ours 29.0 11.5 48.1 20.7 38.5 16.3

TransMatcher (Liao & Shao, 2021) Res+ViT 26.2 8.5 43.6 15.6 34.9 12.0

PAT (Ni et al., 2023) ViT 24.1 10.3 41.9 17.9 33.0 14.1

Ours 24.8 10.7 41.6 18.1 33.2 14.4

SOLIDER-ZS (Chen et al., 2023) Swim 17.9 3.8 15.4 3.4 16.7 3.6

SOLIDER (Chen et al., 2023) 44.1 19.8 49.7 23.3 46.9 21.6

Ours 45.2 19.9 50.0 24.0 47.6 22.0

The ResNet-based best results are highlighted in bold, and the ViT-based best results are underlined.

Generalization across weather. Generalizing across
weather presents a formidable task due to substantial vari-
ations in appearance differences, like clothes, attributes,
shapes, etc.. The performance under this type of distribution
shift of the previous methods and ours are shown in Tables 6
and 7, respectively.

Among the ResNet-based methods, we can find that
CBN (Zhuang et al., 2020) outperforms others to some extent
which confirms the camera information as the important fac-
tor to bridge the data distribution across different domains.
In detail, stead of modeling the distributions of different
domains, CBN estimates the raw distribution of each camera
fromamore nuanced perspective,which benefits to exploring
subtle appearance differences. Compared to it, we forward a
step to learn more diverse underlying factors that influence
the distribution of a domain. As s result, the proposed DF2

achieves 38.5% under the protocol-3 and 62.9% under the
protocol-4 on Rank-1 accuracy, surpassing CBN by 1.1%
and 2.6%, respectively.

Among the ViT-based methods, the proposed model
demonstrates a substantial performance advantage over the
state-of-the-art method, ie., PAT, as evidenced by its achieve-
ments under protocol-3 and protocol-4. Specifically, the pro-
posedmodel attains an average Rank-1 accuracy andmAP of
33.2% and 14.4%, respectively, outperforming PAT by 0.2%
and0.3%under the protocol-3.Besides, under the protocol-4,
the proposed model exhibits a marked improvement, achiev-
ing a 3.6% and 2.6% increase in Rank-1 accuracy and mAP.

Moreover, the proposedmodel is superior than TransMatcher
with less parameters, especially under the protocol-4. In
details, the proposedmodel surpasses TransMatcher by 2.4%
and 4.8% on mAP under the protocol-3 and protocol-4,
respectively. Finally, the similar results as the generaliza-
tion scene across location can be found in the generalization
scene across weather, where the proposed DF2 outperformed
SOLIDER to a certain degree, which demonstrates the great
adaptability of the proposed method. This adaptability is
crucial for applications where robust performance across
changing seasons is paramount, such as an all-year round
identification system.

Generalization across reality. Comparing our proposed
DF2 to existing techniques in the context of generalizing from
synthetic to real datasets reveals a notable breakthrough and
effective solutions to inherent challenges. Generalizing from
synthetic domains to real domains presents substantial diffi-
culties due to differences in image style. As shown in Table 8,
most existing methods reveal suboptimal performance when
confronted with real-world data. MetaBIN (Choi et al.,
2021) is superior than others in the context of this type
of distribution shift, which utilizes the batch-instance nor-
malization with meta learning to prevent the model from
overfitting to the given source styles effectively. In particular,
DDAN (Chen et al., 2021), that conducts domain-wise adver-
sarial feature learning scheme to align domains withminimal
distributional shift, achieves surprising performance. Since
there is a clear difference between the synthetic datasets and
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Table 7 Performance (%) comparison with the state-of-the-art methods under Protocol-4

Method Backbone Target: Market Target: SAIVT Average

Rank-1 mAP Rank-1 mAP Rank-1 mAP

SNR (Jin et al., 2020) ResNet 50.7 24.8 24.0 11.1 37.3 18.0

QAConv50 (Liao & Shao, 2020) 68.0 23.8 41.7 15.6 54.9 19.7

DDAN (Chen et al., 2021) 56.9 29.1 34.7 12.2 45.8 20.6

IL (Tan et al., 2023) 55.0 27.8 29.3 14.3 42.2 21.1

DualNorm (Jia et al., 2019) 60.0 30.8 40.0 16.7 50.0 23.7

M3L (Zhao et al., 2021) 61.3 32.4 46.7 20.7 54.0 26.6

MetaBIN (Choi et al., 2021) 69.0 39.5 40.0 20.2 54.5 29.9

META (Xu et al., 2022) 68.8 39.0 41.3 21.4 55.1 30.2

ACL (Zhang et al., 2022) 73.7 47.2 46.7 20.1 60.2 33.7

CBN (Zhuang et al., 2020) 76.6 47.2 44.0 20.8 60.3 34.0

Ours 69.7 40.0 56.0 25.6 62.9 32.8

TransMatcher (Liao & Shao, 2021) Res+ViT 79.6 51.2 62.7 29.8 71.1 40.5

PAT (Ni et al., 2023) ViT 69.7 43.3 70.7 42.0 70.2 42.7

Ours 76.0 44.6 71.6 45.9 73.8 45.3

SOLIDER-ZS (Chen et al., 2023) Swim 52.3 11.0 42.7 15.6 37.6 13.3

SOLIDER (Chen et al., 2023) 87.4 68.0 70.7 49.7 79.1 58.9

Ours 87.9 68.4 71.6 50.8 79.8 59.6

The ResNet-based best results are highlighted in bold, and the ViT-based best results are underlined.

the real-world datasets in the overall image style, such a fea-
ture alignment using domain-wise adversarial learning can
effectively reduce the influence of the style variants. In con-
trast, the proposed DF2 employs feature diversification to
promote the model for capturing diverse discriminative clues
and utilizes domain-adaptive shielding to explore the under-
lying relations between source and target domains, enabling
the model to adapt to different styles. By addressing the
domain shifts intelligently, our approach consistently out-
performs other pure ResNet-based or ViT-based methods,
providing more accurate and applicable results in practi-
cal scenarios. Specially, TransMatcher achieves wonderful
performance under this distribution shift, which reveals the
effectiveness of the image matching and metric learning.
However, its distinct combination of ResNet and ViT results
in a more complex architecture, which may pose challenges
for deployment in real-world applications due to its substan-
tial computational requirements.

5.3 Results on Previous Benchmarks

In order to demonstrate the robustness of the proposed
method, we further conduct the experiments on the previ-
ous benchmarks. Following the recent researches (Song et
al., 2019; Zhang et al., 2022; Xu et al., 2022), the detailed
evaluation protocols of the previous benchmarks are shown
in Table 9. Benchmark-1 utilized Market1501 (M), CUHK-
SYSU (CS), CUHK02 (C2) and CUHK03 (C3) as the source

domains, while VIPeR, PRID, GRID and i-LIDS as tar-
get domains. Benchmark-2 used CUHK03, Market-1501,
CUHK-SYSU andMSMT17 (MT) and conducted the leave-
one-out strategy to design the evaluation protocols. ‘Com’
denotes adopting both training and testing sets of the datasets
for model training. As shown in Tables 10 and 11, we report
the experimental results of the proposed method on the pre-
vious open benchmarks, respectively.

First of all, the proposed method obtains the best average
performance on both previous benchmarks, which proves the
robustness of DF2. Specifically, on benchmark-1, the mean
performance of the proposed DF2 outperforms ACL (Zhang
et al., 2022) by 1.2% on Rank-1 accuracy and 1.2% on mAP,
respectively. Besides, under the two protocols on benchmark-
2, the results in Table 11 show that DF2 outperforms the
performances of previous methods by a large margin. To
be specific, among the ResNet-based methods, the proposed
DF2 improves the second-best ACL by 1.5% Rank-1 accu-
racy, 1.2% mAP and 3.1% Rank-1 accuracy, 3.1% mAP on
average under the two protocols, respectively. Besides, the
proposed DF2 surpasses TransMatcher (Liao & Shao, 2021)
which uses more heavy backbone on all open benchmarks.
Moreover, the proposed DF2 still outperforms the state-of-
the-art ViT-based method, i.e., PAT (Ni et al., 2023), and the
similar results as the comparison to the PAT can be found
in the comparison to the SOLIDER (Chen et al., 2023),
where the proposed DF2 surpasses SOLIDER to a certain
degree with the same pre-trained weights. These evaluations
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Table 9 Details of the previous
benchmarks

Setting Training data Testing data

Benchmark-1 Com-(M+C2+C3+CS) PRID, GRID, VIPeR, iLIDs

Benchmark-2 CS+C3+MT M

M+CS+MT C3

M+CS+C3 MT

Com-(CS+C3+MT) M

Com-(M+CS+MT) C3

Com-(M+CS+C3) MT

Table 10 Performance (%) comparison with the state-of-the-art methods on the previous benchmark-1

Method Backbone Target: VIPeR Target: PRID Target: GRID Target: iLIDS Average

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

SNR (Jin et al., 2020) ResNet 26.6 36.4 18.0 26.3 15.2 23.7 48.3 56.1 27.0 35.6

DualNorm (Jia et al., 2019) 32.9 43.7 49.0 59.0 23.2 33.7 58.3 66.5 40.9 50.7

DDAN (Chen et al., 2021) 41.1 52.4 44.0 54.0 39.2 49.2 63.3 70.8 46.9 56.6

CBN (Zhuang et al., 2020) 46.5 55.2 47.0 57.0 44.0 52.0 71.7 76.1 52.3 60.1

IL (Tan et al., 2023) 60.4 68.1 65.0 73.7 32.8 44.5 62.0 71.6 55.1 64.5

M3L (Zhao et al., 2021) 60.8 68.2 55.0 65.3 40.0 50.5 65.0 74.3 55.2 64.6

QAConv50 (Liao & Shao, 2020) 57.0 66.3 52.3 62.2 48.6 57.4 75.0 81.9 58.2 67.0

MetaBIN (Choi et al., 2021) 55.9 64.3 61.2 70.8 50.2 57.9 74.7 82.7 60.5 68.9

META (Xu et al., 2022) 61.5 68.4 61.9 71.7 52.4 60.1 79.2 83.5 63.8 70.9

ACL (Zhang et al., 2022) 66.4 75.1 63.0 73.4 55.2 65.7 81.8 86.5 66.6 75.2

Ours 66.5 75.2 71.0 78.1 55.4 65.0 78.3 85.7 67.8 76.0

TransMatcher (Liao & Shao, 2021) Res+ViT 53.5 63.3 64.0 73.0 48.8 56.7 71.7 79.2 59.5 68.0

PAT (Ni et al., 2023) ViT 58.5 67.7 48.0 59.7 40.8 52.6 63.3 74.8 52.7 63.7

Ours 58.9 68.1 58.0 68.3 44.0 54.5 64.3 75.7 56.3 66.7

SOLIDER-ZS (Chen et al., 2023) Swim 12.3 20.3 12.0 19.5 17.6 24.7 45.0 55.7 21.7 30.1

SOLIDER (Chen et al., 2023) 74.1 80.6 76.0 83.5 71.2 80.1 86.7 91.1 77.0 83.8

Ours 75.1 81.2 77.0 83.2 72.8 80.7 87.7 92.0 78.2 84.3

The ResNet-based best results are highlighted in bold, and the ViT-based best results are underlined.
MS denotes the multiple source domains, including Market1501, CUHK-SYSU (Xiao et al., 2016), CUHK02 (Li &Wang, 2013) and CUHK03 (Li
et al., 2014). The best results under MS setting are highlighted in bold

using open benchmarks, beyond pre-defined protocols, can
demonstrate the transparent and universal effectiveness of
the proposed method.

Secondly, we can observe that the state-of-the-art meth-
ods on previous benchmarks are not guaranteed to perform
well on the new benchmark, where there aremore challenged
and specific distribution shifts. For instance, META (Xu et
al., 2022) and ACL (Zhang et al., 2022) perform well on
the previous benchmarks while their performance on the
new benchmark are not satisfactory under some circum-
stances. META is based on the model ensemble learning,
which is bounded by the quantity of the source domains.
ACL maintains a common space for both domain-invariant
and domain-specific features but ignores the representation
capacity of the learned feature, which limits the generaliza-
tion ability when faced with significant distribution shifts.
Moreover, the performance of ViT-based models doesn’t

meet expectations, underscoring the necessity for further
exploration to unlock the full potential of ViT. We hope
the extensive experiments can provide valuable insights for
researchers to advance the development of this field.

5.4 Ablation Study

Effectiveness of designed components. To demonstrate the
effectiveness of our custom-designed Feature Diversification
Block (FDB) and Domain-adaptive Shielding Block (DSB),
we incorporate them separately into the baseline model and
conduct a performance comparison, as detailed in Table 12.
This evaluation pertains to the model’s generalization capa-
bilities across outdoor and indoor domains under protocol-1.
When we refer to ‘w/ DSB’, we mean the model equipped
solely with the DSB block, whereas ‘w/ FDB’ signifies the
model equipped solely with the FDB block. Notably, our
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Table 12 Contribution of each component to generalization perfor-
mance (%) from indoor domains to outdoor domains under protocol-1

Rank-1 Rank-5 Rank-10 mAP

PKU

Baseline 62.5 80.4 87.5 46.3

w/ DeepMOE 63.4 80.9 86.1 47.3

w/ DSB 67.9 83.9 89.3 50.9

w/ FDB 68.3 84.5 90.0 51.7

DF2 71.4 85.7 90.5 52.2

LPW

Baseline 40.8 53.6 59.2 25.2

w/ DeepMOE 41.0 54.2 60.7 26.3

w/ DSB 42.8 59.5 62.4 29.0

w/ FDB 47.3 63.1 69.3 33.8

DF2 52.4 70.5 77.0 37.7

WildTrack

Baseline 20.7 31.3 37.7 5.0

w/ DeepMOE 22.8 35.5 40.9 6.3

w/ DSB 25.3 39.0 42.2 7.2

w/ FDB 27.0 40.3 44.2 8.0

DF2 27.5 41.4 45.5 8.3

Market1501

Baseline 62.9 78.6 84.1 32.4

w/ DeepMOE 63.9 81.3 86.5 33.7

w/ DSB 66.6 82.5 87.9 38.8

w/ FDB 70.7 84.1 89.0 41.4

DF2 74.4 87.1 90.8 44.8

Best results are highlighted in bold
DeepMoE (Wang et al., 2020) is the similar method to DSB that also
conducts the selection and scaling of channels for each input. Bold
values indicate the best results among all compared methods

analysis reveals that both the DSB and FDB substantially
enhance the model’s generalization abilities. For instance,
when considering the PKU dataset, the introduced DSB
exhibits a notable improvement of 5.4% on Rank-1 accuracy
and 2.6%onmAPcompared to the baseline. The contribution
of the FDB is even more remarkable, resulting in a substan-
tial performance increase of 6.2% in Rank-1 accuracy and
5.4% in mAP. These enhancements consistently hold true
across all datasets. Besides, in order to assess the exclusivity
compared to similar modules, we make the comparison to
the DeepMoE (Wang et al., 2020), which also conducts the
selection and scaling of channels for each input. We can find
the designed DSB outperforms DeepMoE to a large extent,
whichdemonstrates the effectiveness and exclusivity ofDSB.

Effectiveness of designed whitening. Our designed
instance-batch whiteningmethod comprises two key compo-
nents: instance whitening (IW) and batch whitening (BW).
To thoroughly assess the effectiveness of each component,we
conduct a performance comparison by equipping the model

Table 13 Contribution of each whitening technique to generalization
performance (%) under protocol-1

Rank-1 Rank-5 Rank-10 mAP

PKU

Baseline 62.5 80.4 87.5 46.3

IBN 64.0 81.4 88.4 47.8

DSBN 68.9 82.6 88.7 50.0

Ours (IW) 69.0 82.7 88.9 50.5

Ours (BW) 70.1 83.8 89.1 51.1

Ours (IBW) 71.4 85.7 90.5 52.2

LPW

Baseline 40.8 53.6 59.2 25.2

IBN 45.4 65.1 74.1 32.8

DSBN 47.9 66.0 75.4 34.8

Ours (IW) 49.0 66.1 75.3 34.9

Ours (BW) 50.1 68.1 76.2 36.9

Ours (IBW) 52.4 70.5 77.0 37.7

WildTrack

Baseline 20.7 31.3 37.7 5.0

IBN 25.9 36.8 38.4 6.3

DSBN 26.0 37.0 39.5 6.9

Ours (IW) 26.4 38.0 40.9 7.0

Ours (BW) 28.1 39.5 42.6 7.6

Ours (IBW) 27.5 41.4 45.5 8.3

Market1501

Baseline 62.9 78.6 84.1 32.4

IBN 68.0 83.1 87.1 36.8

DSBN 69.8 84.1 88.7 37.8

Ours (IW) 70.5 84.8 89.3 38.5

Ours (BW) 71.1 86.2 90.0 40.8

Ours (IBW) 74.4 87.1 90.8 44.8

Best results are highlighted in bold
Bold values indicate the best results among all compared methods for
the current dataset

with differentwhitening techniqueswithin the channel decor-
relation block. Additionally, we further consider the popular
feature regularization methods IBN (Pan et al., 2018) and
DSBN (Chang et al., 2019), which have been extensively
studied in prior works (Jin et al., 2020; Choi et al., 2021;
Xu et al., 2022), to provide a comprehensive evaluation. As
indicated in Table 13, the incorporation of normalization and
whitening techniques consistently enhances model perfor-
mance. Notably, the improvements attributed to whitening
techniques surpass those of normalization, underscoring their
significant potential. For instance, the introduction of DSBN
yields a modest performance boost, such as a 6.4% increase
in Rank-1 accuracy on the PKU dataset. However, when we
employ IBW, the gain is more substantial, amounting to a
8.9% improvement in Rank-1 accuracy on PKU. Further-
more, it’s worth noting that batch whitening, which operates
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Table 14 Ablation study on different losses

Method Target: PKU Target: LPW Target: WildTrack Target: Market1501 Average

Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

w All 71.4 52.2 52.4 37.7 27.6 8.3 74.4 44.8 56.5 35.8

w/o Ldiv − 4.0 − 3.6 − 2.0 − 0.8 − 1.2 − 0.9 − 2.2 − 1.6 − 2.4 − 1.7

w/o Lorth − 1.2 − 1.0 − 1.1 − 0.9 − 2.7 − 1.5 − 1.6 − 1.0 − 1.7 − 1.1

w/o Lsep − 2.8 − 2.6 − 0.9 − 0.7 − 0.8 − 0.4 − 1.0 − 0.7 − 1.4 − 1.1

w/o Ldom − 1.8 − 1.3 − 3.9 − 2.2 − 2.3 − 1.0 − 4.9 − 4.1 − 3.2 − 2.2

on the mini-batch level to decorrelate features, outperforms
instance whitening on a per-example basis. Nevertheless, the
most favorable results are achieved when combining both
techniques.

Effectiveness of each loss term. We conduct ablation
studies to investigate the effectiveness of the each loss in
the proposed DF2. As shown in Table 14, ‘w ALL’ denotes
the results of the proposed DF2 with all losses, and ‘w/o Li ’
denotes the results of the proposed DF2 under the supervi-
sion without Li . We can observe that removing every loss
term consistently degrades the performance on Rank-1 accu-
racy and mAP. Specifically, when removing the Ldiv , which
is designed to maximize the activation of all spatial loca-
tions, the performance degrades 2.4% on Rank-1 accuracy
and 1.7%onmAP. Besides, there are similar impacts ofLorth

and Lsep, which are proposed to promote the orthogonal-
ity and separation between the subspace bases. Compared to
them, the supervision ofLdom can bringmore improvements.
This phenomenon demonstrates the significant of modeling
the domain characteristics.

5.5 Hyper-parameter Analysis

Influence of the group size in FDB. To understand the
parameter selection of the proposed DF2, we make the anal-
ysis from both the model performance and computation
efficiency aspects. Regarding the influence on model perfor-
mance, we train it under protocol-2 with different parameter
configurations to the defaults as shown in Fig. 6a. It presents
the comparison of the average performance with different
group sizes in FDB. First of all, we observe a gradual
enhancement in performance as we increased the group size
(g).

Regarding the computation cost, from the theoretical
aspects, a convolutional layer with a batch input N ×
C × H × W input, and C filters of size Fh × Fw costs
C2NHWFhFw. Adding FDB with a group size g incurs an
overhead of 4gCNHW + 6 g2C . The relative overhead is

6 g2

CNHWFgFw
+ 4 g

CFh Fw
, which is negligible when g is small

(e.g. 16). This demonstrates the computation cost of the pro-
posed FDB is comparable to the convolution operation. From
the empirical aspect, we compare the FLOPs and the training

time for each iteration of the proposed model with different
group sizes to the baseline model that is not equipped with
any designed modules. The results are presented in Table 15
below. When the g is small (<= 32), the additional cost
is blow 10% compared to the baseline. With larger group
sizes, the training time for each iteration also increases signif-
icantly. Consequently, to strike a balance between accuracy
and computational efficiency, it is set as 16.

Influence of the number of bases. Figure6b presents the
comparison of the average performance and the training time
per iteration with different number of bases M in each sub-
space. First of all, we can find that the number of bases had a
less pronounced impact on the training time. Besides, the per-
formance is slightly influenced by the number of bases,where
relatively small numbers may lead to inadequate modeling
of domain information. Consequently, we set it to M = 16
for optimal results.

Influence of the balanced weights of each loss. In this
section, we evaluate the sensitivity of the four balanced
weights of losses. The default balanced weights λdiv , λorth ,
λsep and λdom are 1.0, 0.01, 0.1 and 1.0, respectively. We
conduct the thorough experiments with different values of
each balanced weight. As shown in Fig. 7, the proposed DF2

achieves competitive performances robustly under a wide
range of their values. Taking the Market1501 as an example,
whenλdiv increases from0.1 to 2.0, the range of performance
changes is within 1.6%. Furthermore, different weight values
do not cause drastic fluctuations in the performance, indicat-
ing that most of these weights are insensitive to numerical
changes.

5.6 More Analysis

Computational cost analysis. In this experiment,wedemon-
strate that DF2 not only achieves superior performance in
terms of DG-ReID accuracy, but is also advantageous in
terms of time and space complexities. To facilitate a fair com-
parison, we utilize the same batch size and the sameNVIDIA
1080Ti GPU for all methods in Table 16 and the inference
time is averaged over 500 trials. First of all, the compu-
tation cost of ViT-based methods is notably higher than
ResNet-based methods, especially on the network param-
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Fig. 6 Results of hyper-parameter analysis under protocol-2. a Present the comparison of the average performance with different group size in
FDB. b Presents the comparison of the average performance with different number of basis per subspace in DSB

Table 15 Analysis of computational complexity with different group
sizes g in FDB block

Group size 8 16 32 64 128 Baseline

FLOPs (G) 8.40 8.50 8.70 9.12 10.10 8.26

� Cost 1.7% 2.9% 5.3% 10.4% 22.2% –

Time (s/iter) 0.43 0.49 0.56 0.68 0.75 0.30

� Cost denotes the additional flops compared to the baseline model,
ie., ResNet50

eters. Furthermore, it’s evident that the computational cost
of our proposed method is notably lower during the train-
ing stage when compared to recent methods. This reduction
in computational cost can be attributed to DF2’s indepen-
dence from the meta-learning training strategy compared to
theM3L,which typically involves a high computational over-
head due to the necessity of two backward propagations. In
comparison to IL (Tan et al., 2023), our approach introduces
only a marginal increase in computational requirements
while delivering a substantial performance boost. Addition-
ally, DF2 maintains a rapid inference speed, on par with that
of the IL. To sum up, our findings reveal that the additional
computation cost introduced by our designed blocks aremin-
imal.

Comparison of covariance matrices. To illustrate the
effectiveness of the feature decorrelation, we employ a visu-
alization technique to examine the correlation coefficients
of intermediate feature maps generated by the model both
with and without feature diversification block (FDB). This
analysis is depicted in Fig. 8, wherein the correlation coef-
ficients are computed based on the feature output from the
second convolution layer. The presented pairs of visualiza-
tions offer insights into two aspects of correlation. The above
pairs show the overall correlation, which demonstrates the
global correlation among all channels. The pairs below show
detailed correlation, focusing on the specific correlations

Fig. 7 Influence of the balanced weights of each loss

within the first 16 channels, enhancing clarity in our presen-
tation. It’s noteworthy that domain-specific style information
is inherently embedded within the features, as established in
prior research (Tishby & Zaslavsky, 2015; Pan et al., 2018).
Consequently, feature maps with high correlations tend to
encapsulate limited style information, potentially resulting
in overfitting to the source domains. By comparing these cor-
relation coefficients, we can observe a significant distinction:
feature channels generated by the model with FDB exhibit
considerably lower correlations than those without FDB.
This observation underscores the effectiveness of the pro-
posed FDB in the process of decorrelating learned features,
thereby encouraging the emergence of diverse representa-
tions.

Subspaces analysis. To demonstrate the DSB’s ability
to construct these subspaces, we visualize the orthogonal-
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Table 16 Comparison of
computational cost to the
state-of-the-art methods

Model # of Params (M) Train (s/iter) Inference (ms/img)

ResNet M3L (Zhao et al., 2021) 23.5 1.974 0.21

MetaBIN (Choi et al., 2021) 23.6 0.585 0.32

ACL (Zhang et al., 2022) 29.6 0.588 0.36

IL (Tan et al., 2023) 23.5 0.352 0.21

Ours 23.6 0.488 0.21

ViT PAT (Ni et al., 2023) 93.1 1.016 0.51

Ours 88.4 0.908 0.44

Fig. 8 Visualization of correlation coefficients extracted from from
two distinct models: one without the proposed channel decorrelation
block (referred to as w/o FDB) and the other euipped with the channel
decorrelation block (referred to as w FDB)

ity loss and the separation loss, as derived from Eqs. (19)
and (21), during the training process under all protocols. The
values of these losses are averaged across each epoch. As
shown in Fig. 9a, there is a clear trend where the orthog-
onality of subspaces progressively improves, reaching an
optimal state of absolute orthogonality, where the orthogo-
nality loss converges to zero. Besides, to make sure different
domains distinctive, different subspaces are supposed to be
well separated in the common feature space. To this end, we
visualize the separation loss, where a lower value signifies
greater subspace separation. As depicted in Fig. 9b, despite
initial fluctuations, the separation loss demonstrates a declin-
ing trend, eventually stabilizing at a minimized value. Such
outcomes affirm the subspace construction’s efficacy facili-
tated by the DSB block.

Failure cases analysis. To better understand the proposed
method, we present some failure cases in Fig. 10. Taking
the results under protocol-1 as an example, we selected the
cases that most retrieved images of the in the top-10 ranking

Fig. 9 Visualization of the orthogonality loss and the separation loss
during the training process

Fig. 10 Failure cases analysis

list are wrong. We plot the query image and corresponding
retrieved gallery images in the first and subsequent columns
of these figures respectively, where the blue box indicates
that the retrieved result is incorrect, and the red box indicates
that the retrieved result is correct. Our observation reveals
that the proposed DF2 faces challenges in extreme scenar-
ios, where the cross-class similarity significantly outweighs
the in-class similarity. For example, as demonstrated in the
first row, the incorrectly retrieved images appear more sim-
ilar than the actual ones due to light variation. Addressing
these challenging samples with greater precision is one of
our future research directions.

6 Conclusion

In this paper, we conducted a comprehensive study on the
domain generalizable person re-identification (DG-ReID)
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problem. Firstly, we gave a focused discussion on the
construction of benchmarks in DG-ReID, especially point-
ing out the highlighted challenges worth being reflected
in benchmarks. In the hope of promoting more advanced
DG-ReID research, we proposed a large-scale benchmark
withEnhancedDistributionalVARiety andShifts (EDVARS)
comprised of diverse collected datasets and rational evalua-
tion protocols. Taking a step further, we designed a novel
DG-ReID framework based on Diver spacE Learning with
domain FActorization (DF2) in response to the highlighted
challenges. In pursuit of generalization ability with scal-
able additional memory and computation costs, DF2 consists
of two types of proposed blocks, ie., the Feature Diversi-
fication Block (FDB) and the Domain-adaptive Shielding
Block (DSB). FDB promotes a diverse feature space capa-
ble of learning domain-specific characteristics under rich
distributional variety, whose core design is composed of
the instance-batch whitening together with a diversity loss.
DSB, consisting of a project layer and a shield layer, applies
channel-wise shielding operations based on subspace-based
domain factorization in order to prevent the model from
prediction bias caused by distributional shifts. Finally, we
conducted extensive experiments to demonstrate the effec-
tiveness of the proposed DF2 framework.

Funding This work was supported by National Natural Science Foun-
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