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Abstract
When deploying unmanned aerial vehicle (UAV) object detection networks to complex, real-world scenes, generalization
ability is often reduced due to domain shift. While most existing domain-generalized object detection methods disentangle
domain-invariant features spatially, our exploratory experiments revealed a key insight for UAV object detection (UAV-OD):
frequency domain contributions exhibit more pronounced disparities in generalization compared to generic object detection
involving larger objects, since UAV-OD detects smaller objects. Therefore, frequency domain disentanglement stands out as
a more direct, effective approach for UAV-OD. This paper proposes a novel frequency domain disentanglement method to
improve UAV-OD generalization. Specifically, our framework leverages two learnable filters extracting domain-invariant and
domain-specific spectra. Additionally, we design two contrastive losses: an image-level loss and an instance-level loss guiding
training. These losses enable the filters to focus on extracting domain-invariant and domain-specific spectra, achieving better
disentangling. Extensive experiments across multiple datasets, including UAVDT and Visdrone2019-DET, utilizing Faster
R-CNN and YOLOv5, show our approach consistently and significantly outperforms baseline and state-of-the-art domain
generalization methods. Our code is available at https://github.com/wangkunyu241/UAV-Frequency.

Keywords Unmanned aerial vehicles · Object detection · Domain generalization · Frequency domain disentanglement ·
Contrastive learning.

1 Introduction

Emerging as a crucial visual capability for unmanned aerial
vehicles (UAV), UAV Object Detection (UAV-OD) (Cao et
al., 2020; Wu et al., 2019; Chen et al., 2019; Zhang et al.,
2019; Kiefer et al., 2022; Mittal et al., 2020; Du et al.,
2018) continues to command attention from academic and
industry researchers. Its significance is underscored by an
array of intelligent applications, including civil infrastruc-
ture inspection, precision agriculture, and search and rescue
operations (Duarte et al., 2022; Lygouras et al., 2019; Ger-
aldes et al., 2019; San et al., 2018). However, due to the large
mobility of UAVs, UAV-OD networks operate in a plethora
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of outdoor environments, often with diverse weather and
illumination conditions. This creates a domain shift where
the training dataset of UAV-OD networks (source domain)
largely diverges from complex and unseen real-world scenes
(target domain), leading to suboptimal performance. Con-
sequently, enhancing the generalization ability of UAV-OD
becomes a priority.

Domain Adaptation (DA) (Cao et al., 2023; Liu et al.,
2023; Ganin & Lempitsky, 2015; Tzeng et al., 2017; Jiang
et al., 2021a) proposes a compelling solution to address the
problem by seeking aligned features between source and tar-
get domains. However, it has limitations when lacking target
data availability, a common scenario within the complex and
diverse deployment environments of UAV-OD. This hampers
the practicality of DA approaches. While Domain General-
ization (DG) (Liu et al., 2020a; Wu & Deng, 2022; Zhang
et al., 2022; Xu et al., 2023; Lin et al., 2021; Vidit et al.,
2023; Zhong et al., 2022; Zhao et al., 2023) aims to overcome
this limitation by learning from a single or multiple related
yet distinct source domains to ensure model generalization
under distribution shifts. Most existing DG methodologies
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focus on object-related features in the spatial domain. How-
ever, we propose frequency domain disentanglement as an
effectivemethod for improvingUAV-ODgeneralization. Our
experimental validation, displayed in Sect. 3, reveals that the
contributions of different frequency bands in generalization
exhibit more pronounced disparities for UAV-OD, charac-
terized by smaller-sized objects, compared to general object
detection which involves larger objects.

Drawing on these findings, we suggest enhancing UAV-
OD generalization via frequency domain disentanglement,
a more direct and efficient method. Specifically, we firstly
propose utilizing two learnable filters to extract domain-
invariant and domain-specific spectrums. Then, we introduce
two novel contrastive losses at image and instance level to
facilitate the filter training for disentangling distinctive spec-
trums.This encourages the two captured spectrums to contain
domain-invariant characteristics shared by target objects and
domain-specific characteristics that vary across different
domains. In this way, the UAV-OD network can generalize
well on unseen target domains. For experiment settings, we
focus on single-domain generalization, a notably challenging
endeavour.We perform extensive experiments to validate our
framework effectiveness, using multiple datasets UAVDT
(Du et al., 2018) and Visdrone2019-DET (Zhu et al., 2019),
with various object detectionmodels like Faster-RCNN (Gir-
shick, 2015) and YOLOv5 (Jocher et al., 2020). The results
clearly reveal our proposed method enables superior gen-
eralization in the UAV-OD network compared to baseline
and multiple state-of-the-art DG methods in unseen target
domains.

To sum up, the contributions of this work are summarized
as follows:

– Through exploratory experiments, we have gained a vital
insight in the field of UAV-OD: the contributions of
different frequency in generalization exhibit more pro-
nounced disparities within UAV-OD, which deals with
smaller-sized objects, compared to general object detec-
tion, which involves larger objects.

– Based on these findings, we make the earliest effort
to improve the UAV-OD generalization via frequency
domain disentanglement, which serves as a more direct
and efficient method, providing a novel perspective to the
field.

– We propose a novel frequency domain disentanglement
framework that utilizes two learnable filters to extract
the domain-invariant and domain-specific spectrums and
design two novel contrastive losses at image and instance
level to guide the disentangling process.

This paper expands on our previous conference version
(Wang et al., 2023a) in three key aspects. Firstly, we clarify
the motivation behind our approach and provide exploratory

experiments, justifying frequency domain disentanglement’s
suitability for enhancing UAV-OD generalization. Secondly,
we introduce a more efficient frequency domain disentan-
glement structure and new image-level contrastive loss on
the methodological level. Through ablation experiments, we
demonstrate the effectiveness of these enhancements, fur-
ther improving UAV-OD networks generalization. Lastly,
we conduct a comprehensive suite of experiments, provid-
ing extensive ablation studies, visualizations, and a thorough
analysis based on the empirical findings.

2 RelatedWork

Since this paper discusses domain adaptive object detec-
tion, domain generalized object detection, frequency-based
domain generalization, and UAV object detection, we pro-
vide a brief overview of these areas.

2.1 Domain Adaptive Object Detection

Domain adaptation strategies (Lu et al., 2023; Hsu et al.,
2020a, b; Li et al., 2016) prioritize the transference of knowl-
edge from the source domain to the target domain. Initially
designed for image categorization, these methods were sub-
sequently extended to object detection applications. For
instance,Chen et al. (2018) andSaito et al. (2019) constructed
methods to address domain shift scenarios by employing
domain classifiers, consistency regularization, adversarial
loss, and alignment of source and target image distributions.
Zheng et al. (2020) introduced an ingenious coarse-to-fine
feature adaptation approach for cross-domain object detec-
tion,which progressively and accurately aligns deep features.
Zhuang et al. (2020) aligned feature distributions on the
picture and instance levels to enhance generalization per-
formance. A unique method based on vector decomposition
was proposed by Wu et al. (2021a), to extract domain-
neutral object representations for domain adaptive object
detection. Li et al. (2022c) incorporated feature-level adver-
sarial training, weak-strong augmentation, as well as mutual
learning between teacher and student models to ensure
domain-invariant features and minimize the production of
low-quality pseudo labels. Chen et al. (2022b) employed
uncertainty-guided consistency training and a novel Entropy
Focal Loss to improve classification adaptation and local-
ization adaptation. Chen et al. (2022a) introduced graph
structures into the detection pipeline to deliberately model
the intra- and inter-domain foreground object relations in
both pixel and semantic spaces, thus extending the domain
adaptive object detection model capability for relational rea-
soning. Li et al. (2022a) modeled impartial semantics with
category knowledge, which brings semantic knowledge into
global alignment and achieves semantic-conditioned adapta-
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tion. Li et al. (2022b) utilized graph nodes and edges to set up
semantic-aware node affinity and accomplishes refined adap-
tation throughnode-to-node graphmatching. Liu et al. (2023)
carried out cross-modality graph reasoning between linguis-
tic and visual graphs to learn a generalized detector. Cao et al.
(2023) integratedmean-teacher self-trainingwith contrastive
learning to address the domain gap in object detection.

However, the applicability of these techniques can be com-
promised by the requirement for specific target domain data,
restricting their overall usability. The objective of this paper
is to address this constraint by concentrating on domain gen-
eralization.

2.2 Domain Generalized Object Detection

Domain-generalized object detection has recently surged in
popularity due to its performance superiority over domain-
adaptive object detection and its ability to operate indepen-
dently of target domain data. Liu et al. (2020a) proposed a
data augmentation method that enriches the domain diversity
of the initial small dataset, thereby heightening its generaliza-
tion performance. Lin et al. (2021) integrated a disentangled
network into Faster R-CNN. They acquired domain-invariant
representation at both image and instance levels for a more
generalizable object detection. Zhang et al. (2022) sug-
gested a comprehensive evaluation benchmark along with
a novel method termed ’region aware proposal reweight-
ing.’ This approach aids in eliminating dependence within
the features of the Region of Interest and thus enhances
the generalization capability of detectors amid varying dis-
tribution shifts. Focusing on single-domain generalization,
Wu and Deng (2022) in his paper on Single-DGOD, devel-
oped amethod known as cyclic-disentangled self-distillation.
This process extracts domain-invariant representations with-
out the necessity for domain-related annotations. Vidit et
al. (2023) utilized a self-supervised vision-language model,
CLIP, to instruct the training of an object detector for gen-
eralization to unseen target domains. He also proposed a
semantic augmentation strategy that involves textual prompts
from the pre-trained vision-language model, introducing
semantic domain concepts. Xu et al. (2023) introduced a
Multi-view Adversarial Discriminator-based domain gener-
alization model. This model eradicates non-causal factors
from standard features through multi-view adversarial train-
ing on source domains.

The above-mentioned domain-generalization methods
primarily apply to generic object detection scenarios (Sun et
al., 2021a; Zhou et al., 2023; Kajiura et al., 2021). However,
taking into account the inherent small-object characteristics
in UAV-OD, this paper proposes a domain-generalization
method explicitly designed for UAV-OD scenarios. Through
frequency domain disentanglement, we effectively disentan-

gle domain-invariant features for UAV-OD in a more direct
manner.

2.3 Frequency-Based Domain Generalization

Frequency-based domain generalization, owing to its distinc-
tive features, has seen a surge in interest and research efforts
recently. It broadly falls into two categories. One of them
delves into the integration of the frequency domain prior
into domain generalization. Xu et al. (2021), for instance,
brought forth a Fourier-based strategy for augmentation,
named amplitudemix. This strategy broadens the augmented
images using a combination of Taylor expansion and inverse
Fourier transformation. The model subsequently utilizes
these images, along with their original labels, for enhanc-
ing generalization. Yang and Soatto (2020), on the other
hand, proposed a method for unmonitored domain adapt-
ability, leveraging Fourier domain adaptation. The plan here
is to exchange the low-frequency spectrum of the source and
target distributions, reducing the discrepancy between them.
To face the challenges of federated domain generalization
in medical imagery, Liu et al. (2021) proposed a new tech-
nique: Episodic Learning in Continuous Frequency Space.
This method employs a continuous frequency space inter-
polation function to relay the distribution data across clients
while preserving privacy. Meanwhile, Jeon et al. (2021) sug-
gested an innovative feature stylization method to create
novel domains while safeguarding discriminative class infor-
mation. This process entails breaking down features into low
and high frequency components, stylizing the low-frequency
ones with novel domain styles, and preserving shape cues
in the high-frequency components. Across a similar vein,
Lee et al. (2023) addressed the issue of content variation
in normalization for domain generalization. This approach
considers amplitude and phase as style and content, respec-
tively. Their method, PCNorm, removes style while retaining
content through spectral decomposition.

The second category emphasizes learning generalization
within the frequency domain. Huang et al. (2021) proposed
image randomization in frequency space. This proposal
involves maintaining unchanged domain invariant frequency
components while randomizing only domain variant fre-
quency components. The ultimate goal is to facilitate more
controllable randomization and minimal effects on semantic
structures of images and domain invariant features. Lin et
al. (2023) introduced a method named Deep Frequency Fil-
tering to explicitly modulate the frequency components of
differing transfer difficulties during training across domains
within the latent space. The primary drive behind this initia-
tive is to boost the generalization competence ofDeepNeural
Networks. Lastly, Yang et al. (2023) proffered a novel learn-
ing strategy for multiple frequency domains. This strategy
fragments the frequency domain of each original image into
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subdomains, which forces the model to glean features from
additional samples within the specifically limited spectrum.
This augmented learning increases the chances of acquiring
domain invariant features.

Our approach aligns with the second category. Noting
the significant disparities various frequency bands contribute
to the generalization of UAV-OD, we suggest decoupling
domain-invariant features within the frequency domain to
improve the generalization.

2.4 UAV Object Detection

Unmanned aerial vehicles object detection (UAV-OD) (Sun
et al., 2021b; Mittal et al., 2020; Wu et al., 2021b) aims
to detect objects of interest within UAV-captured images.
However, in comparison to generic object detection (using
surveillance or ground-based cameras), UAV equipped with
cameras face greater challenges due to their high mobility
and flexibility. These challenges include, but are not limited
to:
Variations in object size. UAV operate across a range of
altitudes when capturing images. Shooting at lower altitudes
allows their cameras to capture finer details of objects. As
the UAV ascends to higher altitudes, the camera survey a
larger area, resulting in the capture of more objects. There-
fore, UAV-OD should exhibit the capability to detect objects
at various scales, including larger, intricately detailed objects,
as well as smaller, less distinct ones. RR-Net (Chen et al.,
2019) addressed the challenge of detecting objects of var-
ious scales in UAV-captured images by reducing bounding
box prediction to key point and size estimation. Liu et al.
(2020b) addressed the challenge of detecting small objects
by increasing convolution operation at an early layer to enrich
spatial information.
Variations in view angle. The mobility of UAVs enables
them to capture images from diverse view angles. For
instance, a UAV can observe an object from the front, side,
and bird’s-eye views within a very short period. This diver-
sity of view angles leads to arbitrary orientations and aspect
ratios of objects. Some view angles, such as the bird’s-
eye view, are rarely encountered in traditional ground-based
object detection. Consequently, UAV object detection mod-
els must address the varied visual appearances of the same
object frommultiple view angles.Wu et al. (2019) introduced
the Nuisance Disentangled Feature Transform framework,
which leverages additional metadata alongside UAV images
to acquire domain-robust features. This approach tackles the
challenges posed by UAV-specific nuisances, including fluc-
tuating flying altitudes, and dynamically shifting viewing
angles.
Real-time. UAV require sustained high real-time perfor-
mance to prevent economic losses and potential threats to
human life, such as inmilitary, search and rescue, and surveil-

lance areas. However, ensuring optimal performance and
real-time capabilities for object detection on aUAVplatform,
constrained by limited computational and storage resources,
presents a highly challenging endeavor. Zhang et al. (2019)
addressed the challenge by enforcing channel-level sparsity
of convolutional layers and pruning the less informative fea-
ture channels, thereby obtaining “slim” object detectors.
Class imbalance.Most existingUAV-ODdatasets encounter
class imbalance issue, where a small subset of frequently
occurring classes typically dominates the majority of object
instances. This leads to a long-tailed distribution, signif-
icantly impacting the detection performance of long tail
classes. Yu et al. (2021) proposed a Dual Sampler and Head
detection Network to solve the long-tail distribution problem
in UAV datasets, which consists of two integral components:
Class-Biased Samplers and Bilateral Box Heads.
Degradation.UAVoperate in uncontrolled outdoor environ-
ments, facing unpredictable weather and lighting conditions.
These conditions result in varying image degradation, signifi-
cantly affecting object detection performance. Consequently,
enhancing the generalization ability of UAV-OD is impera-
tive.

This paper tackles thefifth challenge.Throughexploratory
experiments, we observe that compared to generic object
detection, different frequency bands exhibit more pro-
nounced disparities in contributions to the generalization
of UAV-OD. Based on this insight, we introduce frequency
domain disentanglement as amore direct and efficient decou-
pling method, greatly enhancing the generalization ability of
UAV-OD.

3 Motivation

We first conduct experiments to explore how object size
influences the contributions of various frequency bands to
the network’s generalization ability. Specifically, we use the
UAVDT dataset (Du et al., 2018) as the foundational dataset
for UAV object detection (UAV-OD). Within UAVDT, we
employ the daylight scenes as the source training domain
and the nighttime and foggy portions as the unseen target test
domains to evaluate the model’s generalization performance.
In parallel, we examine generic object detection using the
BDD100k (Yu et al., 2020), Cityscape (Cordts et al., 2016),
and Foggy Cityscape (Sakaridis et al., 2018) datasets. To
assess the model’s generalization ability, we adopt the day-
light sceneswithinBDD100k andCityscapes clean images as
the source training domain and the nighttime portion within
BDD100k along with the Foggy Cityscapes foggy images as
the unseen target test domains. To provide a comprehensive
understanding, we meticulously collect statistics regarding
the absolute sizes of objects in both the UAV-OD datasets
and the generic object detection datasets, as shown in Fig. 1.
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Table 1 The contributions of
different frequency bands to the
UAV-OD network’s
generalization

Frequency band [α, β] Nighttime Foggy Average

AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP

Full [0, 1] 49.4 22.3 26.3 29.6 12.5 15.7 39.5 17.4 21.0

Low [0, 0.02] 1.4 0.5 0.7 9.1 0.3 2.8 5.3 0.4 1.7

Middle [0.02, 0.1] 25.1 10.4 12.3 22.7 9.1 11.2 23.9 9.8 11.8

High [0.1, 1] 63.3 31.6 33.8 38.2 13.7 18.5 50.7 22.6 26.2

We utilize daytime scenes from UAVDT as the source domain and the specified bands of source images are
reserved for training according to the [α, β]. For testing, we adopt the nighttime and foggy portions within
UAVDT as unseen target domains to evaluate the generalization performance. “Average” refers to the average
generalization performance across unseen target domains

Table 2 The contributions of
different frequency bands to the
generic object detection
network’s generalization

Frequency band [α, β] Nighttime Foggy Average

AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP

Full [0, 1] 63.2 29.9 31.9 48.9 31.7 29.6 56.1 30.8 30.8

Low [0, 0.02] 12.4 9.5 9.0 8.6 7.1 7.3 10.5 8.3 8.2

Middle [0.02, 0.1] 34.7 13.0 17.4 35.4 20.0 22.5 35.1 16.5 19.9

High [0.1, 1] 55.3 23.1 28.5 45.7 29.4 28.2 50.5 26.2 28.4

We utilize daytime scenes fromBDD100k and Cityscapes clean images as the source domain and the specified
bands of source images are reserved for training according to the [α, β]. For testing, we adopt the nighttime
portion within BDD100k, along with the foggy images collected from Foggy Cityscapes as unseen target
domains to evaluate the generalization performance

According to the definition inCheng et al. (2023), the average
absolute size of objects in the UAV-OD datasets falls within
the small object range, whereas in the general object detec-
tion datasets, the average absolute size of objects exceeds the
normal object range.

During training, we first convert each source domain
image x ∈ R

H×W×C into frequency space through Fast
Fourier Transform (FFT) (Nussbaumer & Nussbaumer,
1982):

F(x)(u, v) =
H−1∑

h=0

W−1∑

w=0

x(h, w)e
− j2π

(
h
H u+ w

W v
)

. (1)

The frequency space signalF(x) can be further decomposed
to an amplitude spectrum A(x) and a phase spectrum P(x),
which is expressed as:

A(x)(u, v) =
[
R2(x)(u, v) + I2(x)(u, v)

]1/2
, (2)

P(x)(u, v) = arctan

[ I(x)(u, v)

R(x)(u, v)

]
, (3)

where R(x) and I(x) represent the real and imaginary part
of F(x).

For each source image, we filter out the bands of the
amplitude spectrumA(x) outside the range of a certain upper
threshold α and lower threshold β with a band reject filter

Fig. 1 Statistical analysis of the absolute size of objects in UAV-OD
and Generic Object Detection Datasets. The highlighted numbers and
regions represent the average absolute size and their respective intervals.
For visual clarity, intervals that account for less than 0.1% of the total
object count have not been included

fs ∈ R
H×W×C and obtain the remaining amplitude spectrum

Â(x):

fs(i, j) =

⎧
⎪⎨

⎪⎩

1, i ∈ [ (1−βH)
2 ,

(1−α)H
2 ] ∪ [ (1+α)H

2 ,
(1+β)H

2 ]
j ∈ [ (1−β)W

2 ,
(1−α)W

2 ] ∪ [ (1+α)W
2 ,

(1+β)W
2 ]

0, otherwise

(4)

A(x) = Â(x) ⊗ fs, (5)

where ⊗ denotes element-wise multiplication. Â(x) is then
fed to Inverse Fast Fourier Transform (IFFT) with P(x)

to generate the image x̂ correspond to different frequency
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Fig. 2 Histograms of the average AP for Tables 1 and 2.We can clearly
observe that, in contrast to generic object detection, different frequency
bands make significantly distinct contributions to the generalization of
UAV-OD

bands, which is utilized to train the network. The quantita-
tive generalization results of different frequency bands for
UAV-OD and generic object detection are shown in Tables 1
and 2. Two visualized bar charts are shown in Fig. 2.

We can observe that for generic object detection with
larger object sizes, the most significant contribution to the
network’s generalization ability comes from high-frequency
components, followed by mid-frequency components, and
finally, low-frequency components. However, it is notewor-
thy that the generalization performance of any individual
frequency band does not surpass that achieved when using
all frequency bands together. Conversely, for UAV-OD with
smaller object sizes, the ranking of contributions across
frequency bands remains consistent, with high frequencies
contributing the most to generalization, followed by mid and
low frequencies. However, the distinctions in their contri-
butions become even more pronounced for UAV-OD, with
high-frequency components demonstrating a generalization
performance that can surpass that achieved when using all
frequency bands together. Based on these insightful obser-
vations, we can conclude that unlike generic object detection,
the different frequency bands make notably distinct con-
tributions to the generalization of UAV-OD. Specifically,
high-frequency components play a significantly more promi-
nent role in the generalization of UAV-OD compared to mid-
and low-frequency components. This motivates us to use fre-
quency domain information to improve the generalization
performance.

4 Methodology

In this section, we begin by presenting the necessary pre-
liminary knowledge in Sect. 4.1. In Sect. 4.2, we introduce
the problem formulation, covering both problem definition
and an overview of the methodology. A comprehensive
description of the framework’s architecture, including its
components and the formulation of the loss functions, will be
provided in Sect. 4.3. Moving on to Sect. 4.4, we delve into

the training strategy and the inference process. Furthermore,
we discuss the efficiency of our proposed method.

4.1 Preliminaries

Our proposed framework adopts Faster R-CNN (Girshick,
2015) and YOLOv5 (Jocher et al., 2020) as backbone detec-
tion models to substantiate the efficacy of our approach.
Hence, we briefly review the these two backbone detection
models.

Faster R-CNN, a two-stage detector, comprises of four
components: backbone network, region proposal network,
RoI pooling, and detection head. Its training loss is formu-
lated as:

Ldet = Lcls + Lreg. (6)

The Lcls term calculates the classification loss for each
RoI, employing softmax to predict the likelihood of an
RoI belonging to any object class. It quantifies the dis-
parity between predicted and ground-truth class labels
through cross-entropy. The Lreg term evaluates the differ-
ence between the predicted and actual box positions using a
smooth L1 loss.

YOLOv5, a one-stage detector, comprises of four compo-
nents: backbone network, neck network, anchor boxes, and
detection head. Its training loss is:

Ldet = Lobj + Lcls + Lreg. (7)

The Lobj term measures the model’s confidence in detecting
objects within a bounding box. It uses binary cross-entropy
loss to penalize confidence score errors. The Lcls term com-
putes the error between predicted class probabilities and
ground-truth class labels for each bounding box. It utilizes
categorical cross-entropy loss. The Lreg term is applied to
fine-tune the predicted bounding box coordinates to match
the ground-truth.

4.2 Problem Formulation

Our aim is to learn a UAV-OD network trained on a source
domain Ds that can generalize well on multiple unseen
target domains Dt . Let Xs and Xt ⊂ R

H×W×C denote
source domain Ds and target domain Dt images with height
H , width W , and number of channel C , Ys and Yt ⊂ R

denote the category labels of Xs and Xt , Bs and Bt ⊂ R
4

denote the bounding boxes of Xs and Xt . The source domain

can be formulated as Ds =
{

xi
s,

{
yi j

s , bi j
s

}Ni

j=1

}N

i=1
, which

includes N images and each image has Ni pairs of cate-
gory labels yi j

s ∈ Ys and bounding boxes bi j
s ∈ Bs . Let

Dt = {D1
t , · · · , DM

t } denote M unseen target domains.
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Fig. 3 Overview of the proposed framework. F and F−1 indicate FFT
and IFFT. The backbone network is divided into B1 and B2. Head rep-
resents the detection head of UAV-OD network. ROI-Align indicates
ROI-Alignment operation (He et al., 2017). We employ two learnable
filters ψsi and ψss to extract the domain-invariant spectrum xA

si that
contributes positively to generalization, and the domain-specific spec-

trum xA
ss that contributes negetively to generalization from the image’s

amplitude spectrum xA
s . Furthermore, we design two image-level and

instance-level contrastive loss to aid the training of two learnable fil-
ters, enabling it to concentrate on extracting the domain-invariant and
domain-specific spectrum

Each target domain Dt , for simplicity, can be formulated

as Dt =
{

xi
t ,

{
yi j

t , bi j
t

}Oi

j=1

}O

i=1
, which includes O images

and each image has Oi pairs of category labels yi j
t ∈ Yt

and bounding boxes bi j
t ∈ Bt . During training, we can only

access the source domain data. The trained network is tested
on multiple unseen target domains.

To solve the problem, we propose a unique method to
improve the UAV-OD’s generalization ability, using fre-
quency domain disentanglement. This scheme aims to segre-
gate the domain-invariant featurewithin a frequency domain.
To realize this goal, our approach uses two learnable fil-
ters tasked with extracting both the domain-invariant and
domain-specific spectral components from the input image.
The domain-invariant section of the input image then gets
used for the object detection process.Moreover, we introduce
a pair of new contrastive loss functions at the image-level
and instance-level. These functions guide the training of
the two learnable filters, focusing them on separating the
two differing spectrums. With regard to the training strat-
egy, we partition the entire framework’s learnable parameters
into two sets and utilize alternative optimization to effi-
ciently handle the frequency domain disentanglement while
simultaneously minimizing potential conflicts in UAV object
detection. An overview of our framework is provided in
Fig. 3.

4.3 Framework Architecture

Given a source domain image xs ∈ R
H×W×C , we can obtain

the frequency space signal of xs through Eq. (1):

xFs = F(xs). (8)

The frequency signal xFs can be further decomposed to an
amplitude spectrum xAs ∈ R

H×W×C and a phase spectrum
xPs ∈ R

H×W×C using Eq. (2), which is:

xAs = A(xFs ), xPs = P(xFs ). (9)

We then employ two learnable filters ψsi , ψss ∈ R
H×W×C

to identify and extract the domain-invariant amplitude spec-
trum xAsi that contribute positively to generalization, and the
domain-specific amplitude spectrum xAss that contribute neg-
atively to generalization from the amplitude spectrum xAs .
Unlike the conference version, herewe explore several poten-
tial filter structures, including the learnable tensors of shape
H × W that can be element-wise multiplied with the ampli-
tude spectrum, the learnable tensors of size H × W × C that
can be multiplied with the amplitude spectrum, and the conv
blocks performing convolution on the amplitude spectrum,
as illustrated in Fig. 4.

From the experimental observations, the superior gen-
eralization performance was associated with the second
structure.Comprehensive experimental results are elaborated
in Sect. 5.3, specifically within the “Frequency disentangle-
ment structure” subsection. Consequently, we have chosen
the second structure to design the learnable filters ψsi and
ψss . The procedure for decoupling the domain-invariant
amplitude spectrum xAsi and the domain-specific amplitude
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Fig. 4 Three potential frequencyfilter structure. aThe learnable tensors
of shape H×W that can be element-wise multiplied with the amplitude
spectrum,b the learnable tensors of sizeH×W×C that can bemultiplied
with the amplitude spectrum, c the conv blocks performing 1x1 conv
on the amplitude spectrum

spectrum xAss is:

xAsi = xAs ⊗ ψsi , xAss = xAs ⊗ ψss, (10)

where ⊗ denotes element-wise multiplication. Then, the
domain-invariant amplitude spectrum xAsi and the domain-
specific amplitude spectrum xAss are fed to IFFT with xPs to
generate the domain-invariant component xsi and domain-
specific component xss .

Furthermore,wedesign twonovel image-level and instance-
level contrastive loss to facilitate the learnable filters to focus
on extracting domain-invariant and domain-specific spec-
trums. Specifically, we first divide the backbone network of
detectionmodels into two sections (i.e., B1 and B2) according
to its depth and original structure.Given the domain-invariant
component xsi and the domain-specific component xss , we
use B1 to obtain the domain-invariant feature fsi ∈ R

h×w×c

and the domain-specific feature fss ∈ R
h×w×c, where h, w,

and c respectively denote the height, width and number of
channels:

fsi = B1(xsi ), fss = B1(xss) (11)

Let sim(u, v) = u�v/‖u‖‖v‖ denote the dot product
between L2 normalized u and v, τ denotes the temperature
hyper-parameter (He et al., 2020). Based on the fsi and fss ,
the image-level contrastive lossLimg

con is calculated as follows:

Limg
con =

∑

fss∈Fss

−1

Bs

∑

f̂ss∈Fss

fss �= f̂ss

log
exp

(
sim

(
fss, f̂ss

)
/τ

)

∑
fs∈Fs
fss �= fs

exp (sim ( fss, fs))

+
∑

fsi ∈Fsi

−1

Bs

∑

f̂si ∈Fsi

fsi �= f̂si

log
exp

(
sim

(
fsi , f̂si

)
/τ

)

∑
fs∈Fs
fsi �= fs

exp (sim ( fsi , fs))
,

(12)

where Bs is the training batch size, Fsi = { f j
si }Bsj=1 denotes

the set of fsi for each sample in a batch of source training
data, Fss = { f j

ss}Bsj=1 denotes the set of fss for each sample
in a batch of source training data, Fs = Fsi ∪ Fss denotes
the intersection of Fsi and Fss .

After that, according to the localization labels bs of xs and
the dimension scale between {xsi , xss} and { fsi , fss}, we clip
the domain-invariant instance-level features {o1si , · · · , on

si }
from xsi and the domain-specific instance-level features
{o1ss, · · · , on

ss} from xss , n represents the total number of the
object in xs . As different instance-level features have dif-
ferent spatial size, we utilize the RoI-Alignment operation
(He et al., 2017) to align the spatial size of all instance-level
features:

osi = {ô1si , · · · , ôn
si } = RoIAlign({o1si , · · · , on

si }), (13)

oss = {ô1ss, · · · , ôn
ss} = RoIAlign({o1ss, · · · , on

ss}), (14)

where ô j
si , ô j

ss ∈ R
s×s×c, j ∈ {1, · · · , n}, s indicates the

output size of RoI-Alignment. Based on the osi and oss , the
instance-level contrastive loss Lins

con is fomulated as:

Lins
con =

∑

ôss∈Oss

−1

Bs × n

∑

oss∈Oss
ôss �=oss
ŷss �=yss

log
exp

(
sim

(
ôss, oss

)
/τ

)
∑

os∈Os
ôss �=os

exp
(
sim

(
ôss, os

))

+
∑

ôsi ∈Osi

−1

Bs × n

∑

osi ∈Osi
ôsi �=osi
ŷsi �=ysi

log
exp

(
sim

(
ôsi , osi

)
/τ

)
∑

os∈Os
ôsi �=os

exp
(
sim

(
ôsi , os

)) ,

(15)

where Osi = o1si ∪, · · · ,∪ oBssi denotes the intersection of
osi for each sample in a batch a source training data, Oss =
o1ss ∪, · · · ,∪ oBsss denotes the intersection of oss for each
sample in a batch a source training data, Os = Osi ∪ Oss

denotes the intersection of Osi and Oss . Note that “Bs × n”
assumes that each sample within a batch of training data
contains n objects. If this assumption is not met, it should be
the sum of objects in each sample.

In the context of image-level contrastive loss, domain-
invariant image-level features within a training data batch
are considered positive samples for each other, as are
domain-specific image-level features. Conversely, domain-
invariant image-level features are treated as negative samples
compared to domain-specific image-level features. For the
instance-level contrastive loss, domain-invariant instance-
level features of the same class within a training data batch
form positive pairs, as do domain-specific instance-level
features of the same class. Conversely, instance-level fea-
tures from different classes or from domain-invariant and
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Fig. 5 Inference stage of the proposed framework. The domain-invariant learnable filter is utilized for prediction, while the domain-specific
learnable filter is not used in the inference process

domain-specific categories respectively are regarded as neg-
ative pairs. By optimizing Limg

con and Lins
con, we bring positive

pairs closer together while pushing negative pairs apart.
This assists the two learnable filters in extracting domain-
invariant and domain-specific features separately from both
a global, image-level perspective and a local, instance-level
perspective. As a result, frequency domain disentanglement
is achieved.

4.4 Training and Inference

For the training stage, let us first denote the total loss function
of our framework as:

Ltotal = Ldet + λ × (Limg
con + Lins

con), (16)

where Ldet denotes the loss function of detection models, as
discussed in Sect. 4.1, λ is the hyper-parameter for balancing
detection loss and contrastive loss. As shown in Fig. 2, the
whole learnable parameters consist of two learnable filters
ψsi and ψss , backbone B1 and B2 and detection head H . For
training, we adopt the alternating strategy, which fixes one
set of parameters and solving for the other set. Specifically,
we divide the whole learnable parameters into two groups:

θ = {ψsi , ψss}, η = {B1, B2, H}. (17)

At the first step, we fix η and optimize θ using Lcon:

θ t ← argmin
θ

λ(Limg
con (θ, ηt−1) + Lins

con(θ, ηt−1)). (18)

At the second step, we fix θ and optimize η using Ldet:

ηt ← argmin
η

Ldet
(
θ t , η

)
, (19)

where t is the index of alternation and ← means assigning.
The purpose of alternating optimization is to avoid frequency
domain disentanglement and UAV-OD conflicts. Therefore,

we divide the entire learnable parameters into two groups: θ
for frequency domain disentanglement and η for UAV-OD.

For the inference stage, as shown in Fig. 5, the domain-
invariant learnable filterψsi is utilized to extract the domain-
invariant amplitude spectrum, subsequently used to con-
struct the domain-invariant component. We employ the
domain-invariant component directly for prediction, while
the domain-specific component is not used in the reference
process.

5 Experiments

5.1 Experimental Setup

Datasets. We evaluate the proposed method using popu-
lar UAV-OD benchmarks: UAVDT (Du et al., 2018) and
Visdrone2019-DET (Zhu et al., 2019). UAVDT consists of
41k frames with 840k bounding boxes, divided into three
classifications; cars, trucks, and buses. Given that the distri-
bution in UAVDT is disproportionately skewed with the last
two classes constituting less than 5% of bounding boxes, we
consolidate them into a unified class abiding by the authors’
convention in Du et al. (2018). To set apart the source and tar-
get domains, we handpicked 20,891 daylight images, 11,489
images taken at night, and 5,179 foggy images fromUAVDT
based on the weather tags. The 5,179 UAVDT foggy images
have encompassed both daytime and nighttime foggy con-
ditions, consisting of 2,492 and 2,627 images, respectively.
VisDrone2019-DET, on the other hand, contains 8,629 static
images, inclusive of its training, validation, and testing sets.
These snapshots are records from various drone platforms at
different locations and heights. They are meticulously anno-
tated with bounding boxes tagging objects falling into ten set
classes like pedestrian, person, and vehicles like bicycles,
cars, and tricycles.

To facilitate cross-dataset generalization experiments, we
adopt the category settings fromUAVDT.We exclusively uti-
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Fig. 6 Comparisons of the detection results of the baseline, the top-
performing three comparative methods, the conference version, and our
method. The images in the first group to the third group originate from

UAVDT Nighttime, UAVDT Foggy, and Visdrone Nighttime, respec-
tively. We employ Faster-RCNN as the detection model, with UAVDT
Daylight as the source domain
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Fig. 7 Comparisons of the detection results of the baseline, the top-
performing three comparative methods, the conference version, and
our method. The images in the first group to the third group origi-

nate fromUAVDTNighttime, UAVDT Foggy, and Visdrone Nighttime,
respectively.We employYOLOv5 as the detectionmodel, withUAVDT
Daylight as the source domain
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Fig. 8 The visual charts of the ablation study of hyper-parameter λ and plug-in layer to improve readability

lize labels corresponding to the car, van, bus, and truck classes
in the Visdrone2019-DET dataset and treat them as a single
class.Given the lack ofweather labels inVisdrone2019-DET,
we manually picked segments with dim lighting to com-
pile a dataset comprising 5,709 daylight and 1,698 nighttime
images.

Ultimately, we treat the daylight portion from both
UAVDT and Visdrone2019-DET as the source domain,
respectively. Meanwhile, we considered the nighttime and
foggy portions from UAVDT, along with the nighttime
portion from Visdrone2019-DET, as three distinct unseen
target domains for conducting experiments on both intra-
dataset and cross-dataset generalization validations. For the
exploratory experiments in the introduction, we utilize the
daylight portion of UAVDT as the source domain for UAV-
OD scenarios and the nighttime and foggy portions of
UAVDT are considered as unseen target domains. In the case
of generic object detection scenarios,we selected26,798day-
light images from the BDD100k dataset (Yu et al., 2020) and
2,950Cityscapes dataset daylight images (Cordts et al., 2016)
as the source domain. Additionally, we choose 14,702 night-
time images from the BDD100k dataset and 2,950 foggy
images from the Foggy Cityscapes dataset (Sakaridis et al.,
2018) as unseen target domains.
Implementation Details.We evaluate the proposed method
on the most popular detection networks, including Faster-
RCNN (Girshick, 2015) with ResNet50 (He et al., 2016) as
the backbone network andYOLOv5 (Jocher et al., 2020).Our
framework is implemented in Pytorch with eight NVIDIA
1080ti GPUs. When training with Faster-RCNN, we train
the framework for 30 epochs with a batch size of 16. We
employ the SGD optimizer with a learning rate of 10−4, a
momentum of 0.9, and step learning rate decay. In the case
of YOLOv5, the training is conducted for 300 epochs with
a learning rate of 10−3, a momentum of 0.9, lambda learn-

ing rate decay, and linear warmup for the initial five epochs.
Regarding the learnable filters within our framework, these
filters are optimized using SGD with a learning rate of 10−3,
a momentum of 0.9, and step learning rate decay. The tem-
perature parameter τ is set to 0.7, while the hyper-parameter
λ takes on a value of 0.1. For the evaluation protocol, we use
the widely accepted criteria, including AP, AP50, and AP75.

5.2 Comparison with State-of-the-Arts

This section involves evaluating ourmethod by drawing com-
parisons with other advanced Domain Generalization (DG)
approaches. Beyond established domain-generalized object
detection techniques such as DIDN (Lin et al., 2021), Single-
DGOD (Wu & Deng, 2022) and MAD (Xu et al., 2023),
we adopt and enhance various model-agnostic domain-
generalization strategies to construct a unified domain-
generalized object detection network for comparative anal-
ysis. Techniques like IBN-Net (Pan et al., 2018), Iternorm
(Huang et al., 2019), and SW (Pan et al., 2019) aspire to aug-
ment network generalization using innovative normalization
methods. We incorporated their proposed structures into the
core network of UAV-OD and utilized the pretrained weights
they provided for each approach. Jigen Carlucci et al. (2019)
is a strategy designed to enhance DG representative depic-
tion in a self-directed way. Following the scheme put forth
in their research, we supplemented a supportive jigsaw clas-
sifier to UAV-OD networks, seeking to minimize the overall
jigsaw loss at the image level. RSC Huang et al. (2020) is
a dropout-based DG method that progressively eliminates
dominant features activated during the training data cycle.
StableNet Zhang et al. (2021) proposes sample reweight-
ing to enhance generalization under distribution shifts. We
directly compute RFF for image representations and imple-
ment image-wise reweighting.
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Wecommence a series of comparative experiments engag-
ing Faster R-CNN as our detection model. Separately, we
utilize UAVDTDaylight andVisdroneDaylight as the source
domain to train the UAV-OD network and acknowledge
UAVDTNighttime, UAVDT Foggy, and Visdrone Nighttime
as unseen target domains for both intra-dataset and cross-
dataset generalization testing. The experimental results are
presented in Tables 3 and 4.

Revealed in Table 3, our method notably excels all others
across every one of the twelve measures. In particular, con-
cerning the average AP50, AP75 and AP metrics, our method
achieves an impressive increase over the baseline method by
13.6%, 5.2% and 6.4%while consistently exceeding the con-
ference version by 3.4%, 0.8%, and 2.2%. We also surpass
the best-performing method among comparative procedures
by 3.7%, 1.2%, and 2.5%.

Similarly, as exposed in Table 4, our method consis-
tently displays superior results across all metrics. There
was a significant enhancement over the baseline method,
with increases of9.6%, 5.4%, and 5.3% for average AP50,
AP75 andAP, respectively. Relative to the conferencemodel,
ours did better by 2.4%, 1.3%, and 1.2%. Additionally, we
exceeded the best-performing method among other com-
pared approaches by 3.8%, 2.5%, and 1.3%.

Furthermore, to validate our method’s effectiveness, we
apply YOLOv5 as the detection model. Given many com-
parative procedures mentioned previously are not readily
adaptable to YOLOv5, we perform a comparative analy-
sis with the remaining applicable approaches. We also train
individually on two source domains measuring the UAV-OD
generalization performance on three unseen target domains.
As shown in Tables 5 and 6 for the test results, our pro-
posed method leads across all metrics, establishing a new
high standard in all benchmarks, especially as it frequently
outperforms comparative strategies by a significant margin.

To conclude, considering the quantitative results shown
in the tables, we select three best-performing comparative
methods, the baseline, conference version, and our method,
and analyze qualitative detection results on three unseen tar-
get domains, as exhibited in Figs. 8 and 10. Evidently, our
approach displays superior detection precision, leading to
fewer false positives and false negatives.

5.3 Ablation Study

In this section, we carried out ablation tests with Faster R-
CNN as the detection network and UAVDT Daylight as the
training dataset, unless otherwise explicitly suggested. These
experiments are designed to delve into the contribution of
individual components of our proposed methodology to its
overall success.
Framework ablation.Wefirst run an ablation study to verify
the efficacy of each component within our proposed frame-

work, as detailed in Table 7. We initially include frequency
learnable filters as extra learnable parameters at the front
end of the UAV-OD network without added supervision. Just
this single addition results in a performance enhancement of
4.7%, 3.2%, and 2.2% regarding the average AP50, AP75,
and AP metrics, respectively. This indicates the appropriate-
ness of frequency learning for the UAV-OD task, as it can
seize features conducive to generalization that in turn may
not be assimilated in the spatial domain. Following this, the
inclusion of both image-level and instance-level contrastive
losses into the framework further boosts the generalization of
UAV-OD. This substantiates our premise that our proposed
two contrastive losses can aid the frequency learnable filter
to extract a domain-invariant spectrum. These experiments
conclusively verify the efficacy of each component in our
framework.
Spatial or Frequency.We conduct experiments to compare
the performance of spatial and frequency domain disentan-
glement. For the spatial domain disentanglement, we employ
the spatial convolution block similar to the Single-DGOD
(Wu & Deng, 2022) method, disentangling features at the
feature level. Through experiments, as shown in Table 8, we
observed that, for enhancing the generalization of UAV-OD,
frequency domain disentanglement exhibits superior perfor-
mance compared to spatial disentanglement.
Frequency disentanglement structure.We perform exper-
iments to explore the comparative efficacy of different
frequencydisentanglement structures.Weexperimentedwith
five structures incorporating learnable HW-shaped tensor,
learnable HWC-shaped tensor, vanilla convolution, dilated
convolution, and deformable convolution. As can be clearly
seen from Table 9, among the five disentanglement methods
in the frequency domain, the HWC-shaped learnable tensors
outperform other structures.
Amplitude or Phrase. We conducted experiments to vali-
date whether disentanglement is performed on the amplitude
spectrumor the phase spectrum in the frequency domain. The
experiment results are shown in Table 10. Our observations
indicate that the generalization performance of decoupling
the phase spectrum and simultaneously decoupling both the
amplitude and phase spectra is inferior to that of decoupling
the amplitude spectrum. A plausible explanation is that the
phase spectrum is related to the structural information of
the image, whereas the amplitude spectrum is associated
with style information. Given the critical role of structural
information in object detection, encompassing the target’s
positional details, decoupling the phase spectrum is likely to
disrupt this crucial structural information, leading to a reduc-
tion in detection performance. Therefore, we only adjust the
frequency domain amplitude spectrum.
Different training strategy. To evaluate the effectiveness
of the alternating training strategy, we further implemented
it within our framework. The alternating training approach
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Table 7 Ablation study of each component in the proposed framework

Base Filter Ins-level Img-level UAVDT Nighttime UAVDT Foggy Visdrone Nighttime Average

AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP

� 49.4 22.3 26.3 29.6 12.5 15.7 19.7 10.1 11.9 32.9 14.9 17.9

� � 59.0 29.4 31.8 31.1 13.3 16.4 22.5 11.5 12.2 37.6 18.1 20.1

� � � 66.9 34.0 36.5 42.0 13.6 20.2 24.1 11.9 13.1 44.3 19.8 23.3

� � � 66.7 33.8 36.2 39.7 14.0 19.7 24.1 11.8 12.5 43.5 19.9 22.8

� � � � 67.8 34.4 36.9 46.9 13.8 22.3 24.7 12.2 13.8 46.5 20.1 24.3

‘Base’ denotes baseline, ‘Filter’ denotes the learnable filters, ‘Ins-level’ denotes the instance-level contrastive loss, ‘Img-level’ denotes the image-
level contrastive loss

Table 8 Ablation study of whether spatial or frequency domain disentanglement

Disentanglement UAVDT Nighttime UAVDT Foggy Visdrone Nighttime Average

AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP

Spatial Convolution Block 64.4 32.8 35.1 40 0 13.3 19.2 22.2 10.8 11.4 42.1 19.0 21.9

Freqency Learnable HWC Tensor 67.8 34.4 36.9 46.9 13.8 22.3 24.7 12.2 13.8 46.5 20.1 24.3

For the spatial domain disentanglement, we employ the spatial convolution block similar to the Single-DGOD (Wu & Deng, 2022) method

Table 9 Ablation study of the frequency disentanglement structure

Disentanglement UAVDT Nighttime UAVDT Foggy Visdrone Nighttime Average

AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP

Frequency Vanilla Convolution 67.5 31.9 34.6 37.3 13.9 19.1 24.9 12.4 13.5 43.2 19.4 22.4

Frequency Dilated Convolution 62.1 32.5 34.4 39.5 13.3 18.6 20.5 10.2 12.8 40.7 18.7 21.9

Frequency Deformable Convolution 64.1 32.8 34.3 39.8 13.4 19.0 22.1 10.7 11.0 42.0 19.0 21.4

Freqency Learnable HW Tensor 65.2 32.6 34.4 40.6 13.3 19.2 22.2 10.8 11.2 42.7 18.9 21.6

Freqency Learnable HWC Tensor 67.8 34.4 36.9 46.9 13.8 22.3 24.7 12.2 13.8 46.5 20.1 24.3

We adopt different disentanglement strategies, including HW-shaped and HWC-shaped learnable tensors, vanilla convolution, dilated convolution
and deformable convolution

Table 10 Ablation study of whether frequency disentanglement is performed on amplitude spectrum or phase spectrum

Amptitude Phrase UAVDT Nighttime UAVDT Foggy Visdrone Nighttime Average

AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP

� 67.8 34.4 36.9 46.9 13.8 22.3 24.7 12.2 13.8 46.5 20.1 24.3

� 57.5 26.5 30.6 39.3 12.9 17.5 17.2 9.1 9.7 38.0 16.1 19.3

� � 62.6 31.3 32.9 36.7 13.7 18.4 24.6 10.0 11.9 41.3 18.3 21.1

Table 11 Ablation study of the training strategy for the proposed framework

Training Strategy UAVDT Nighttime UAVDT Foggy Visdrone Nighttime Average

AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP

Joint Training 67.4 34.9 37.0 43.4 13.9 20.8 24.4 12.0 12.4 45.1 20.3 23.4

Alternating Training 67.8 34.4 36.9 46.9 13.8 22.3 24.7 12.2 13.8 46.5 20.1 24.3

We adopt different strategies, including joint training and alternating training
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Fig. 9 Qualitative comparisons of the top-performing five two-stage
methods, and our method. We employ Faster-RCNN as the detection
model, with UAVDT Daylight as the source domain. The images in

the first group to the third group originate from UAVDT Nighttime,
UAVDT Foggy, and Visdrone Nighttime, respectively
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Table 12 Ablation study of the hyper-parameter λ. We vary the setting of λ to investigate how λ affects the generalization

Hyper-parameter UAVDT Nighttime UAVDT Foggy Visdrone Nighttime Average

AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP

λ = 0.01 67.5 34.9 37.1 41.2 13.9 20.1 23.9 11.9 12.4 44.2 20.2 23.2

λ = 0.05 67.2 34.6 36.8 43.1 13.9 20.9 24.1 12.0 12.6 44.8 20.1 23.4

λ = 0.1 67.8 34.4 36.9 46.9 13.8 22.3 24.7 12.2 13.8 46.5 20.1 24.3

λ = 0.2 66.9 33.7 36.5 44.1 13.8 21.0 24.3 11.9 12.9 45.1 19.8 23.5

λ = 0.3 66.4 33.6 36.3 42.7 13.6 20.5 23.6 10.8 12.3 44.2 19.3 23.0

λ = 0.5 65.7 33.0 35.6 41.3 13.0 19.3 22.9 11.2 12.0 43.3 19.1 22.3

Table 13 Ablation study of the plug-in layer for calculating the contrastive loss

Plug-in Layer UAVDT Nighttime UAVDT Foggy Visdrone Nighttime Average

AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP

Layer 0 67.2 34.6 37.0 40.6 14.0 19.9 24.1 11.9 12.3 43.9 20.2 23.1

Layer 1 67.6 34.7 37.0 42.4 14.0 20.6 24.1 11.9 12.0 44.7 20.2 23.2

Layer 2 67.4 34.9 37.1 40.7 14.0 20.0 24.1 11.9 13.1 44.0 20.3 23.4

Layer 3 67.8 34.4 36.9 46.9 13.8 22.3 24.7 12.2 13.8 46.5 20.1 24.3

Layer 4 66.8 34.2 36.3 43.5 13.9 21.0 24.0 12.0 13.6 44.8 20.0 23.6

Layer 5 67.2 34.1 36.6 46.9 13.8 22.3 23.8 10.0 11.5 46.0 19.3 23.5

Layer 6 65.8 32.2 35.5 44.3 13.9 21.5 24.0 11.9 12.9 44.7 19.3 23.3

Layer 7 67.3 33.0 36.4 41.9 13.7 20.1 23.3 11.4 11.4 44.2 19.4 22.6

We divide the backbone of Faster-RCNN into six segments and conduct experiments between each segment, including both the front-end and the
back-end

Fig. 10 Visualization analysis of the domain-specific and domain-
invariant components extracted fromdifferent domains.We also provide
the high-frequency components of the input images as a reference. The

images in the first row to the third row originate from UAVDT Night-
time, UAVDT Foggy, and Visdrone Nighttime, respectively
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divides the learnable parameters of the entire framework into
two portions: the first part comprises two learnable filters,
and the other consists of the detection network. We indi-
vidually optimize these two sets of parameters applying the
contrastive loss and detection loss. We specifically fix the
first part’s parameters and optimize the second set of param-
eters using detection loss. Following this, we keep the second
part of parameters constant and optimize the parameters of
the first part using the contrastive loss. This cyclical pro-
cess continues until the model converges. On the contrary,
joint optimization doesn’t partition the learnable parame-
ters and instead optimizes them together based on the total
loss function during the forward propagation of the network.
As represented in Table 11, alternating optimization yields
superior generalization performance. This is because alter-
nating optimization can avoid clashes between two distinct
optimization directions, thereby preventing suboptimal out-
comes.
Hyper-parameter λ ablation. We then probe into how the
changes in setting for hyper-parameter λ affect the gener-
alization performance of the network. For this, we conduct
several experimentswith differentλ values, and the outcomes
are illustrated in Table 12 and Fig. 9a. Our evaluations clearly
show that either too high or too lowλ values result in a consis-
tent drop in generalization performance. Interestingly, even
a relatively small setting for lambda still brings about sub-
stantial enhancement in the generalization performance than
when λ = 0, under which circumstances no extra contrastive
losses are used for supervision. In the end, taking lambda as
0.1 emerges as the optimal hyper-parameter choice, leading
to the highest generalization performance.
Contrastive loss after different layers. Finally, we proceed
to present our experimental results where we computed the
contrastive loss at different layers of the ResNet50. As shown
in Table 13 and Fig. 9b, the analyses demonstrate that calcu-
lating the contrastive loss after the ResNet50’s third layer
leads to the highest generalization performance. This can
be rationalized by acknowledging that the features drawn
out from the more superficial layers possess high resolution,
implying semantic sparsity, whereas features from the deeper
layers embody low resolution, signaling semantic abstrac-
tion. Both of these conditions make them less appropriate as
a feature space for optimizing the contrastive loss for feature
disentanglement. As a result, the middle layers surface as a
favourable compromise for this purpose.

5.4 Comparison with Two-StageMethods

In this section, we evaluate our method by comparing it
with several two-stage approaches. Two stage methods is to
pre-process target domain images using off-the-shelf image
restoration or enhancement methods and eliminate the neg-
ative effects of domain shift on person re-id. For nighttime

images, we utilize ZeroDCE (Guo et al., 2020), ZeroDCE++
(Li et al., 2021), EnlightenGAN(Jiang et al., 2021b), LLFlow
(Wang et al., 2022), SCI (Ma et al., 2022) and LLFormer
(Wang et al., 2023b) as pre-processing low-light enhance-
mentmethods. For foggy images,we employGridDehazeNet
(Liu et al., 2019), FFA-Net (Qin et al., 2020), MSBDN-DFF
(Dong et al., 2020), PSD (Chen et al., 2021), DehazeFormer
(Song et al., 2023) and C2PNet (Zheng et al., 2023) as pre-
processing restoration methods.

We integrate the aforementioned pre-processing strate-
gies with Faster R-CNN that has been separately trained
on UAVDT daylight and Visdrone daylight source domains.
The quantitative and qualitative results are enumerated in
Tables 14 and 15, and Fig. 11. It is evident that two-stage
methods prioritize the enhancement of visual quality, demon-
strating improvements in brightness and fog degradation for
images with lower brightness or affected by fog after under-
going image enhancement. However, based on the detection
results, it is apparent that these two-stage methods do not
effectively consider the requirements of downstream detec-
tion networks. Consequently, they do not lead to a significant
improvement in detection performance. In some instances,
certain two-stage methods may even produce unnaturally
restored images, creating a gap between the restored images
and the natural images used to train Faster-RCNN. This gap
can result in a decline in detection performance.

5.5 Comparison with Domain Adaptionmethods

To further evaluate the generalization ability, we compare
our method with some domain adaptation method, including
DAF (Chen et al., 2018), SWDA (Saito et al., 2019), HTCN
(Chen et al., 2020), ICCR (Xu et al., 2020), VDD (Wu et al.,
2021a) and TIA (Zhao & Wang, 2022).

To accommodate the configuration of DA methods, we
further divide the 11,489 UAVDT nighttime images, 5,179
UAVDT foggy images, and 1,698Visdrone nighttime images
into subsets of 7,653 and 3,836 UAVDT nighttime images,
3,654 and 1,525 UAVDT foggy images, and 1,209 and 489
Visdrone nighttime images. Thefirst subsets are used as train-
ing images in the target domain, while the second subsets are
utilized for testing within the target domain. For the detec-
tion network, we employ Faster R-CNN and train it on the
UAVDT daylight source domain. The experimental results
are tabulated in Table 16.

When compared to the baseline, the DA methods have
shown substantial improvements, with TIA’s performance
even exceeding that of our conference version. However,
none of these methods can outdo our newly proposed
approach. The main drawback of DA methods may be the
limited quantity of data available from the target domain.
Their performance might continue to improve and may even
surpass ourmethod ifmore target domain datawere included.
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Table 14 Comparisons of the
generalization performance with
several two-stage methods

Methods Avenue UAVDT Nighttime Visdrone Nighttime

AP50 AP75 AP AP50 AP75 AP

Baseline (Girshick, 2015) ICCV15 49.4 22.3 26.3 19.7 10.1 11.9

ZeroDCE (Guo et al., 2020) CVPR20 47.1 19.7 24.1 15.2 6.3 7.8

ZeroDCE++ (Li et al., 2021) TPAMI21 53.0 21.3 26.5 20.1 10.1 10.7

EnlightenGAN (Jiang et al., 2021b) TIP21 43.3 19.1 22.4 16.2 9.5 9.9

LLFlow (Wang et al., 2022) AAAI22 53.8 23.7 27.5 20.7 10.4 10.8

SCI (Ma et al., 2022) CVPR22 44.4 17.5 22.2 17.1 9.1 10.0

LLFormer (Wang et al., 2023b) AAAI23 41.6 16.9 21.0 16.7 9.1 9.1

Ours This work 67.8 34.4 36.9 24.7 12.2 13.8

Methods Avenue UAVDT Foggy

AP50 AP75 AP

Baseline (Girshick, 2015) ICCV15 29.6 12.5 15.7

GridDehazeNet (Liu et al., 2019) ICCV19 33.0 13.1 16.8

FFA-Net (Qin et al., 2020) AAAI20 30.0 12.5 15.7

MSBDN-DFF (Dong et al., 2020) CVPR20 30.1 11.8 15.5

PSD (Chen et al., 2021) CVPR21 33.6 12.0 14.2

DehazeFormer (Song et al., 2023) TIP23 33.2 13.1 16.7

C2PNet (Zheng et al., 2023) CVPR23 30.0 12.4 15.8

Ours This work 46.9 13.8 22.3

We employ Faster-RCNN as the detection model, with UAVDT Daylight as the source domain, and UAVDT
Nighttime, UAVDT Foggy, and Visdrone Nighttime as the unseen target domains for conducting experiments
We highlight the best results using such formatting

Table 15 Comparisons of the
generalization performance with
several two-stage methods

Methods Avenue UAVDT Nighttime Visdrone Nighttime
AP50 AP75 AP AP50 AP75 AP

Baseline (Girshick, 2015) ICCV15 58.8 19.6 28.3 34.3 14.2 16.7

ZeroDCE (Guo et al., 2020) CVPR20 55.4 21.8 26.4 31.4 11.9 14.6

ZeroDCE++ (Li et al., 2021) TPAMI21 57.7 17.6 27.2 33.5 13.8 15.8

EnlightenGAN (Jiang et al., 2021b) TIP21 54.5 22.5 26.0 31.0 8.8 15.0

LLFlow (Wang et al., 2022) AAAI22 56.3 22.7 27.3 33.2 13.7 16.2

SCI (Ma et al., 2022) CVPR22 49.5 18.1 23.2 30.5 11.5 14.2

LLFormer (Wang et al., 2023b) AAAI23 56.4 20.4 25.8 33.2 13.9 16.0

Ours This work 65.4 32.4 34.5 43.3 20.0 21.9

Methods Avenue UAVDT Foggy

AP50 AP75 AP

Baseline (Girshick, 2015) ICCV15 24.6 9.1 12.4

GridDehazeNet (Liu et al., 2019) ICCV19 27.8 8.0 11.6

FFA-Net (Qin et al., 2020) AAAI20 24.9 8.5 11.3

MSBDN-DFF (Dong et al., 2020) CVPR20 28.1 8.2 11.7

PSD (Chen et al., 2021) CVPR21 28.6 8.9 12.5

DehazeFormer (Song et al., 2023) TIP23 27.9 8.3 12.0

C2PNet (Zheng et al., 2023) CVPR23 24.8 8.4 11.1

Ours This work 37.6 10.9 16.8

We employ Faster-RCNN as the detection model, with Visdonre Daylight as the source domain, and UAVDT
Nighttime, UAVDT Foggy, and Visdrone Nighttime as the unseen target domains for conducting experiments
We highlight the best results using such formatting
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Table 16 Comparisons of the generalization performance with several DA methods

Methods Avenue UAVDT Nighttime UAVDT Foggy Visdrone Nighttime Average

AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP AP50 AP75 AP

Baseline (Girshick, 2015) ICCV15 49.4 22.3 26.3 29.6 12.5 15.7 19.7 10.1 11.9 32.9 14.9 17.9

DAF (Chen et al., 2018) CVPR18 62.2 29.5 32.7 32.5 13.1 18.0 22.7 8.7 11.3 39.1 17.1 20.7

SWDA (Saito et al., 2019) CVPR19 64.8 28.5 32.5 35.9 13.6 18.6 23.5 12.0 13.1 41.4 18.0 21.4

HTCN (Chen et al., 2020) CVPR20 61.8 32.1 29.7 41.2 12.9 19.3 23.4 12.2 13.5 42.1 19.1 20.9

ICCR (Xu et al., 2020) CVPR20 59.7 29.9 28.8 33.5 13.9 17.4 23.5 9.4 11.2 38.9 17.7 19.1

VDD (Wu et al., 2021a) ICCV21 60.4 31.0 30.0 37.5 13.1 18.6 20.0 10.1 11.5 39.3 18.0 20.0

TIA (Zhao & Wang, 2022) CVPR22 66.5 34.4 37.0 44.9 14.3 19.6 23.7 12.3 13.4 45.0 20.3 23.3

Conference (Wang et al., 2023a) CVPR23 65.6 33.4 34.5 41.4 13.6 19.7 22.3 10.9 12.0 43.1 19.3 22.1

Ours This work 67.8 34.4 36.9 46.9 13.8 22.3 24.7 12.2 13.8 46.5 20.1 24.3

We employ Faster-RCNN as the detection model, with UAVDT Daylight as the source domain, and UAVDT Nighttime, UAVDT Foggy, and
Visdrone Nighttime as the unseen target domains for conducting experiments
We highlight the best results using such formatting

However, this is precisely the primary challenge that DA
methods face. Amassing substantial target domain data for
UAV-OD scenarios is a complicated task. Given the adapt-
ability and mobility of UAVs, they can be operational in
a range of environments, making it difficult to guarantee
the availability of the target domain data. In contrast, our
method achieves superior generalization performance with
sole reliance on source domain data.

5.6 Efficiency

To gain insight into the efficiency of our approach, we imple-
mented an analysis using Faster R-CNN with a ResNet50
backbone as the detection model. This was compared to the
baseline, ten domain generalization (DG) methods, and the
conference version of ourmethod. To evaluate eachmethod’s
efficiency, three widespread metrics were applied: latency
(calculated based onmodel inference on aGTX1080ti graph-
ics card), floating-point operations per second (FLOPs), and
the number of parameters. We also noted the average gen-
eralization performance across three unseen target domains
for object detection tasks, measured using mean average
precision (mAP) at various intersection-over-union (IoU)
thresholds. The experimental results are shown in Table 17.

Our approach strives to disentangle domain-invariant
features in the frequency domain, which subsequently intro-
duces additional parameters and computational overhead
during inference. This mainly stems from the integration
of domain-invariant learnable filters and the implementa-
tion of Fourier and inverse Fourier transforms on images.
However, our learnable filter structure utilizes element-wise
multiplication with the amplitude spectrum, which enables
disentanglement at the image level with fewer channels.
This counteracts the significant computation and parame-
ter burden found in methods like Single-DGOD (Wu &

Deng, 2022), which decouples features using convolutions
across more channels. In addition, the Fast Fourier Trans-
form (FFT) exhibits lower computational cost. For a given
M × N two-dimensional image, the computational com-
plexity of the 2D Fourier transform is O(M2 × N2), as
it involves M × N additions and M × N multiplications.
However, in the case of the 2D FFT, it can be considered
as two consecutive one-dimensional FFTs. Due to the use
of the Cooley-Tukey algorithm, its computational complex-
ity is reduced to O(M × N log(M × N)). Furthermore, in
real-world applications, various hardware and software tech-
niques can be employed, including specialized hardware
acceleration, parallel and distributed processing, pipeline
processing, and quantization. These approaches enhance the
operational speed of Fourier transforms, alleviating concerns
about additional burdens resulting from Fourier transform
computations. Compared to the baseline and DG meth-
ods that do not introduce extra inference parameters, our
approach only slightly increases latency by 6.1ms, FLOPs by
0.96G, and parameters by 1.03M,while significantly enhanc-
ing generalization. The deployment of multi-dimensional
filters in our conference version led to minor improvements
across all metrics. To sum up, our method boosts generaliza-
tion performance while maintaining efficiency comparable
to the baseline.

5.7 Visualization

Image-level visualization. We undertake a visual examina-
tion of both domain-invariant and domain-specific elements,
using the high-frequency parts from the original images as
a benchmark. Our intention is to analyze which frequency
bands play a crucial role in elevating the generalization
capability of UAV-OD networks. The visual understanding
gleaned from this analysis is depicted in Fig. 6.
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Fig. 11 Comparisons of the domain-invariant features extracted by the baseline, the top-performing three comparative methods, and our method.
The images in the first group to the third group originate from UAVDT Nighttime, UAVDT Foggy, and Visdrone Nighttime, respectively
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Table 17 Comparisons of the efficieny and performance of various DG methods

Methods Avenue Latency (ms) FLOPs (G) Params (M) Average

AP50 AP75 AP

Baseline (Girshick, 2015) ICCV15 84.6 128.03 28.29 32.9 14.9 17.9

IBN-Net (Pan et al., 2018) ECCV18 90.8 135.94 28.29 37.6 17.5 19.4

IterNorm (Huang et al., 2019) CVPR19 82.7 127.99 28.29 27.6 11.8 14.2

JiGen (Carlucci et al., 2019) CVPR19 84.6 128.03 28.29 32.4 14.0 16.6

SW (Pan et al., 2019) ICCV19 98.4 135.86 28.29 42.8 17.8 21.3

RSC (Huang et al., 2020) ECCV20 84.6 128.03 28.29 31.3 12.8 15.5

StableNet (Zhang et al., 2021) CVPR21 84.6 128.03 28.29 30.8 13.4 15.9

FACT (Xu et al., 2021) CVPR21 84.6 128.03 28.29 41.4 18.5 21.0

DIDN (Lin et al., 2021) ICCV21 84.6 128.03 28.29 40.0 18.8 21.4

Single-DGOD (Wu & Deng, 2022) CVPR22 101.2 204.42 56.61 39.6 18.0 20.5

MAD (Xu et al., 2023) CVPR23 84.6 128.03 28.29 42.4 18.9 21.8

Conference (Wang et al., 2023a) CVPR23 90.3 128.88 28.63 43.1 19.3 22.1

Ours This work 90.7 128.99 29.32 46.5 20.1 24.3

For efficiency, Latency, FLOPs, and Params are reported. For performance, the average generalization performance across three unseen target
domain are reported. We employ Faster-RCNN as the detection model, with UAVDT Daylight as the source domain, and UAVDT Nighttime,
UAVDT Foggy, and Visdrone Nighttime as the unseen target domains for conducting experiments

Firstly, the observation is made that despite variations in
the visual appearances of images over different domains,
the domain-invariant elements from these domains display
a significant degree of resemblance. This suggests that the
learnable filters are successful in capturing the domain-
invariant spectrums, bridging gaps across diverse domains.

Secondly, in spite of our early experimental results sug-
gesting that harnessing high-frequency information from
images outperforms incorporating the entire frequency spec-
trum from a generalization standpoint, and that includ-
ing mid-frequency or low-frequency data could result in
detrimental effects, our visual results tell a somewhat dif-
ferent story. When comparing the domain-invariant parts
to the high-frequency portions, it is revealed that the
domain-invariant parts still retain some elements of low
and mid-frequencies. This suggests that the relevance of
mid-frequency and low-frequency data in images should
not be entirely overlooked. It is clear that certain portions
of low-frequency and mid-frequency information positively
contribute to UAV-OD generalization. This highlights the
benefits of using learning-based methods. In contrast to
frequency-prior-based Domain Generalization (DG) tech-
niques, our method allows for dynamic adaptation and helps
in understanding which frequency bands are most beneficial
for generalization, based on the peculiar characteristics of
the task at hand.
Feature-level visualization. InFig. 7,wepresent the domain-
invariant features drawn by the baseline, the top three
comparative methods, and our approach across three unseen
target domains. It is evident that our method is capable of

extracting more foreground object-related information while
suppressing background-related information. This leads to a
more robust disentanglement, as evidenced by such exam-
ples as the cars in the first and third night scenes, as well as
the car in the second foggy scene.

5.8 Generality of the Framework

In this section, we delve into the generality of our framework.
Within our framework, the frequency domain disentangle-
mentmodule operates at the image level, and the computation
of the contrastive loss takes place during the feature extrac-
tion stage. Consequently, our framework is not dependent
on any particular design of the object detection network.
We simply need to position the frequency domain disen-
tanglement module ahead of the network and calculate the
contrastive loss during the network’s feature extraction stage
to seamlessly integrate it into our proposed framework. In this
paper, we have explored representative one-stage methods
like Faster-RCNN and two-stage methods such as YOLOv5.
Regarding transformer-based methods like DETR Carion et
al. (2020), the integration process is straightforward: we
simply incorporate the frequency domain disentanglement
module before the network and compute the contrastive loss
during the feature extraction stage of the transformermodule.
Consequently, our framework can be seamlessly combined
and applied with transformer-based methods.
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6 Limitation and Social Impact

Limitation. As illustrated in Table 17, although our method
significantly enhances the generalization performance of
UAV-OD, it introduces an additional frequency domain dis-
entanglement module. Consequently, it brings extra parame-
ters, inference time, and computational loadduring inference,
creating an additional burden, particularly forUAVplatforms
with edge computing capabilities. In the future work, we
would like to explore strategies for further reducing the addi-
tional overhead. One potential solution involves integrating
the frequency domain disentanglement module with the con-
volutional module responsible for detection at the feature
level. By replacing a convolutional module in the detection
networkwith a frequency domain convolutional module (Chi
et al., 2020), we establish a unified module for detection and
disentanglement, thereby mitigating the additional computa-
tional costs.
Social impact. UAV applications are widespread in today’s
society, spanning various fields such as military operations,
rescue missions, agriculture, and surveillance. This paper
aims to enhance the generalization ability of UAV-OD in
adverse environments, potentially yielding the following
positive impacts on society: Firstly, it contributes to improv-
ing the security of UAV operations in military, rescue, and
surveillance tasks. This enhancement helps to prevent mis-
judgments caused by interference in harsh environments,
thereby averting significant economic losses and potential
risks to personnel. Secondly, it facilitates the increased
efficiency of UAV operations, diversifying the application
scenarios of UAV and subsequently enhancing industrial and
agricultural productivity. Lastly, it assists in more accurately
monitoring and responding to natural disasters, thereby mit-
igating their impact on society.

7 Conclusion

This paper presents a novel approach to improving the
generalizability of UAV-OD through frequency domain dis-
entanglement, amore direct and efficientmethod of disentan-
glement. Initially, two adaptable filters are utilized to isolate
the domain-neutral spectrums that positively affect gener-
alization and the domain-specific spectrums that negatively
influence it. Following this, we formulate two contrastive
losses at both the image and instance levels, in order to
guide the learning of these adaptable filters. Comprehensive
tests with various detection models such as Faster-RCNN
and YOLOv5, across numerous datasets including UAVDT
andVisdrone2019-DET, showcase the superiority of our pro-
posed technique.
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