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Abstract
The practical Domain Adaptation (DA) tasks, e.g., Partial DA (PDA), open-set DA, universal DA, and test-time adaptation,
have gained increasing attention in the machine learning community. In this paper, we propose a novel approach, dubbed
Adversarial Reweighting with α-Power Maximization (ARPM), for PDA where the source domain contains private classes
absent in target domain. In ARPM, we propose a novel adversarial reweighting model that adversarially learns to reweight
source domain data to identify source-private class samples by assigning smaller weights to them, for mitigating potential
negative transfer. Based on the adversarial reweighting, we train the transferable recognition model on the reweighted source
distribution to be able to classify common class data. To reduce the prediction uncertainty of the recognition model on the
target domain for PDA, we present an α-power maximization mechanism in ARPM, which enriches the family of losses
for reducing the prediction uncertainty for PDA. Extensive experimental results on five PDA benchmarks, e.g., Office-31,
Office-Home, VisDA-2017, ImageNet-Caltech, and DomainNet, show that our method is superior to recent PDA methods.
Ablation studies also confirm the effectiveness of components in our approach. To theoretically analyze our method, we
deduce an upper bound of target domain expected error for PDA, which is approximately minimized in our approach. We
further extend ARPM to open-set DA, universal DA, and test time adaptation, and verify the usefulness through experiments.
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1 Introduction

Deep learning approaches have achieved great success in
visual recognition (He et al., 2016; Krizhevsky et al., 2012;
Simonyan et al., 2014), but at the expense of laborious large-
scale training data annotation. To alleviate the burden of data
labeling, Domain Adaptation (DA) transfers the knowledge
from a related but different source domain with rich labels
to the label-scarce target domain. DA methods mainly learn
the transferable model for the target domain by self-training
(Gu et al., 2022; Liang et al., 2021; Liu et al., 2021; Xu et
al., 2022) or by mitigating the domain shift using moment
matching (Kang et al., 2022; Koniusz et al., 2017; Long et al.,
2015; Sun & Saenko, 2016; Zellinger et al., 2017) or adver-
sarial training (Ganin & Lempitsky, 2015; Sun & Saenko,
2016; Tzeng et al., 2015, 2017). Conventional unsupervised
DA is the closed-set DA setting, which assumes known tar-
get label space (identical to source label space) that is of
the “closed-world” paradigm. However, it is often not easy
to find a source domain with identical label space to the
target domain in practice. Therefore, DA with label space
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mismatch, e.g., Partial DomainAdaptation (PDA) (Cao et al.,
2018a, b), open-set DA (Panareda Busto & Gall, 2017; Saito
et al., 2018), and universal DA (You et al., 2019; Fu et al.,
2020), has gained increasing attention in the machine learn-
ing community. PDA, open-set DA, and universal DA are
related to the more realistic “open-world” paradigm. Specif-
ically, open-world visual recognition does not assume a fixed
set of categories (i.e., label space) as in closed-world visual
recognition. For PDA, the target label space, being a subset
of the source label space, is not fixed, because there exist
numerous possible subsets of the source label space. For
open-set DA and universal DA, the target domain contains
unknown/open classes that are absent in the source domain.
Another practical DA setting is the Test-Time Adaptation
(TTA) (Wang et al., 2021), allowing model adaptation at test
time. This paper first focuses on the methodology design for
PDA, and then extends the developed approach to open-set
DA, universal DA, and TTA.

PDA (Cao et al., 2018a, b; Zhang et al., 2018; Feng et
al., 2019) tackles the setting that the source domain con-
tains private classes absent in the target domain, while the
target domain classes belong to the set of source domain
classes. Besides the domain shift between source and tar-
get domains, another main challenge of PDA is the possible
negative transfer (Pan & Yang, 2010) (see Sect. 3.1), i.e.,
the knowledge from source domain harms the learning in the
target domain, caused by the source-private class data. To
mitigate the negative transfer, previous PDA methods (Cao
et al., 2018a, b, 2019; Li et al., 2020; Liang et al., 2020; Ren
et al., 2020; Yan et al., 2020; Zhang et al., 2018) commonly
reweight the source domain data to decrease the importance
of data belonging to the source-private classes. The target and
reweighted source domain data are used to train the feature
extractor by adversarial training (Cao et al., 2018a, b, 2019;
Liang et al., 2020; Yan et al., 2020; Zhang et al., 2018) or
kernel mean matching (Li et al., 2020; Ren et al., 2020) to
align distributions in feature space.

In this paper, we propose a novel approach, dubbedAdver-
sarial Reweighting with α-Power Maximization (ARPM),
for PDA. To alleviate the potential negative transfer caused
by source-private class data, we propose an adversarial
reweighting model to reweight the source domain data to
decrease the importance of source-private class data in adap-
tation by assigning them with smaller weights. The learning
of source data weights is conducted by minimizing the
Wasserstein distance between the target distribution and
the reweighted source distribution. The intuition is that the
source domain common class data are possibly closer to
the target domain data than the source-private class data.
This is reasonable and is the assumption taken in Cao et al.
(2019), and otherwise, PDA could be hardly realized. Using
the dual formulation of the Wasserstein distance, the idea is
further transformed into an adversarial reweightingmodel, in

which we introduce a discriminator to distinguish domains
and adversarially learn the source data weights to fool the
discriminator.

Based on the reweighted source data distribution, we
define a reweighted classification loss to train the model to
recognize objects of common classes, in which the impor-
tance of source-private class data is reduced using the learned
data weights. Inspired by Liang et al. (2020) that bridges
domaingap in feature space by entropyminimization (Grand-
valet & Bengio, 2005) to reduce the prediction uncertainty1

of recognition model on target domain, we also aim to
reduce the prediction uncertainty on target domain. Instead
of entropy minimization, we propose an α-power maximiza-
tion mechanism that maximizes the sum of α-power of the
classification score outputted by the recognition model. The
α-power maximization enriches the family of losses for min-
imizing the prediction uncertainty. We experimentally show
that the α-power maximization could be more effective for
PDA than the widely adopted entropy minimization (Grand-
valet & Bengio, 2005). We also utilize the neighborhood
reciprocity clustering (Yang et al., 2021b), which is shown
to be effective for closed-set DA, to enforce the robustness
of the recognition model for PDA.

The above techniques are unified in our total training loss.
To train the recognition model, we design an iterative train-
ing algorithm that alternately updates the parameters of the
recognitionmodel and learns the source domain data weights
by solving the adversarial reweighting model. To evaluate
our proposed method, we apply our approach to the PDA
tasks on five benchmark datasets: Office-31, Office-Home,
VisDA-2017, ImageNet-Caltech, andDomainNet.On all five
datasets, our proposed ARPM outperforms the recent PDA
methods. Ablation studies and empirical analysis also show
the effectiveness of each component in our method.

To further theoretically analyze our method, we study the
theoretical analysis of PDA from the perspective of robust-
ness and prediction uncertainty of the recognition model.
More specifically, we prove theoretically that the expected
error of the recognition model on target domain can be
bounded by the expected error on source domain common
class data, and the robustness and prediction uncertainty
on target domain of the recognition model. Our approach
approximately realizes the minimization of this bound so as
to minimize the expected error on target domain.

Additionally, we extend our approach to open-setDA, uni-
versal DA, and TTA. For open-set DA, the target domain
contains private classes that are absent in the source domain.
For universal DA, both source and target domains pos-

1 In this paper, by “prediction uncertainty”, we refer to the uncertainty
of the classification probability distribution (classification score) out-
putted by the recognitionmodel, e.g., the uniform distribution has larger
uncertainty while the one-hot distribution has smaller uncertainty.
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sibly contain private classes. The goals of open-set and
universalDAare to identify the target-private class data as the
“unknown” class and meanwhile classify the target domain
common class data. To extend our approach to open-set and
universal DA, we apply our adversarial reweighting model
to reweight target domain data, such that the target domain
common (resp., private) data are assigned with larger (resp.,
smaller)weights.Basedon learnedweights,we reduce (resp.,
increase) the prediction uncertainty of target domain possibly
common (resp., private) data using our α-power loss. As a
result, the target-private class can be identified based on pre-
diction uncertainty. For TTA, the goal is to evaluate themodel
on a target domain that may be different from the source
domain in data distribution. Different from vanilla machine
learningwhich directlymakes predictions for amini-batch of
test samples at test time, TTA allows adapting the model for
a few steps on the mini-batch of test samples in an unsuper-
vised manner and then makes predictions for them. Inspired
by the TTA method (Wang et al., 2021) that updates the
parameters of the batch normalization (BN) layers by entropy
minimization for one step, we update the parameters of the
BN layers by our proposed α-power maximization for one
step to achieve the extension to TTA. Experiments show the
usefulness of our approach for open-set DA, universal DA,
and TTA.

Our contributions are summarized as follows:

• Wepropose a novel ARPMapproach for PDA. InARPM,
wepropose an adversarial reweightingmodel for learning
to reweight source domain data to decrease the impor-
tance of source-private class data in adaptation for PDA.
We also propose the α-power maximization mechanism
to reduce the prediction uncertainty.

• We present a theoretical bound of PDA based on the
robustness and prediction uncertainty. We analyze that
our proposed ARPM can realize the minimization of the
bound.

• Extensive experimental results show the superiority of
ARPM against recent PDA methods, along with suffi-
cient ablation studies verifying the effectiveness of each
component.

• We extend our approach to open-set DA, universal DA,
and TTA that are closely related to “open-world vision
recognition”.

This paper extends our conference version (Gu et al.,
2021) published at NeurIPS, in which we devised the
adversarial reweighting model and reduced the prediction
uncertainty by entropy minimization for PDA. In this jour-
nal version, we make the following additional contributions.
(1)We propose tomaximize the sumofα-power of the classi-
fication score outputted by the recognition model, enriching
the family of losses to minimize the prediction uncertainty.

We experimentally show that the α-power maximization
could be more effective for PDA than the widely adopted
entropy minimization. (2) We present a theoretical analysis
for PDA based on the prediction uncertainty and robust-
ness of the recognition model, which theoretically grounds
our approach. (3) We also enhance the robustness of the
recognition model using neighborhood reciprocity cluster-
ing. (4) To ensure reproducibility, more techniques, e.g.,
spectral normalization to the discriminator and initializing
the classification layer using PCA, are introduced. (5) The
performance of our approach is further improved compared
with the conference version, and the journal version of our
method outperforms recent PDA methods. (6) We extend
our approach to other “open-world” tasks, including open-
set DA, universal DA, and TTA. (7) More related works are
included and summarized. (8) The paper is restructured and
rewritten to include the above contributions better.

In the following sections, we summarize the related works
in Sect. 2, elaborate our ARPM approach in Sect. 3, and
present the theoretical analysis in Sect. 4. Section5 discusses
the experimental results.

2 RelatedWork

We summarize the related closed-world DA, PDA, open-set
DA, and universal DA approaches below.
Closed-WorldDomainAdaptation.UnsupervisedDA (Pan
& Yang, 2010) aims to transfer knowledge learned from
the labeled source domain to the unlabeled target domain,
which generally assumes that the source and target domains
share the same label space. A group of unsupervised DA
methods (Gretton et al., 2006; Tzeng et al., 2014; Long
et al., 2015; Sun & Saenko, 2016; Zellinger et al., 2017;
Tang et al., 2023) attempt to reduce the distribution gap
between the source and target domains by moment match-
ing. Another line of methods (Ganin & Lempitsky, 2015;
Long et al., 2018; Ganin et al., 2016; Hoffman et al., 2018;
Liu et al., 2021; Du et al., 2021; Li et al., 2021; Gu et
al., 2020) alleviate the domain discrepancy by introducing
a domain discriminator to discriminate domains and training
the feature extractor to fool the discriminator in an adversar-
ial manner, to learn domain-invariant features. Recently, DA
approaches based on self-training (Liu et al., 2021; Liang et
al., 2021; Xu et al., 2022), transferable attention (Wang et al.,
2019), neighborhood consistency (Yang et al., 2021b, a), pro-
gressive adaptation (Li & Chen, 2022), and other techniques
(Li &Chen, 2023; Balgi &Dukkipati, 2022) without domain
alignment have been proposed, achieving promising results.
Differently, we mainly tackle the PDA setting by proposing
a novel adversarial reweighting with α-power minimization
method for PDA. Inmethodology, ourmethodmay bemostly
related to the adversarial training-based methods (Ganin &
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Lempitsky, 2015; Long et al., 2018; Ganin et al., 2016; Hoff-
man et al., 2018; Liu et al., 2021; Du et al., 2021). Different
from them, our adversarial reweighting model conducts the
adversarial training by learning to reweight data to fool the
discriminator instead of training the feature extractor as in
these methods.
Partial Domain Adaptation. SAN (Cao et al., 2018a) and
IWAN (Zhang et al., 2018) circumvent negative transfer by
training the domain discriminator with reweighted source
domain samples. PADA (Cao et al., 2018b) and ETN (Cao et
al., 2019) reweight source domain data in losses for training
both the classifier and the domain discriminator. DRCN (Li
et al., 2020) uses reweighted class-wise domain alignment
with a plug-in residual block that automatically uncovers the
most relevant source domain classes to target domain data.
TSCDA (Ren et al., 2020) introduces a soft-weighed maxi-
mizationmean discrepancy criterion to partially align feature
distributions to alleviate negative transfer, and proposes a
target-specific classifier to further address the classifier shift.
SLM (Sahoo et al., 2023) exploits “select", “label" and
“mix" modules to mitigate negative transfer, enhance dis-
criminability of features, and learn domain-invariant latent
space, respectively. ISRA (Xiao et al., 2021) aligns the source
and target data distributions based on the implicit seman-
tic topics shared between two domains that are extracted by
a plug-in module, to boost the positive transfer. IDSP (Li
& Chen, 2023) introduces intra-domain structure preserv-
ing without domain alignment, achieving improved results.
MOT (Luo & Ren, 2023) utilizes a masked optimal transport
on conditional distribution by defining the mask using label
information to align class-wise distributions for PDA. Dif-
ferent from the above PDA methods, we adversarially learn
to reweight the source domain data to decrease the impor-
tance of source-private class data in the classification loss,
and propose α-power maximization to reduce the prediction
uncertainty.
Open-Set Domain Adaptation. Panareda Busto and Gall
(2017) first study the setting that both the source and tar-
get domains contain private categories in addition to the
common categories. Saito et al. (2018) consider the prob-
lem setting that the source domain only covers a subset of
the target domain label space, which is a common setting
in the other open-set DA methods (Saito et al., 2018; Liu
et al., 2019; Feng et al., 2019; Baktashmotlagh et al., 2019;
Kundu et al., 2020; Bucci et al., 2020; Rakshit et al., 2020;
Luo et al., 2020; Pan et al., 2020; Jing et al., 2021a, b). STA
(Liu et al., 2019) adopts a coarse-to-fine weighting mech-
anism to progressively separate the target domain data into
known and unknown classes. Feng et al. (2019) exploit the
semantic structure of open-set data by semantic categorical
alignment and contrastive mapping to encourage the known
classes more separable and push the unknown class away
from the decision boundary. Baktashmotlagh et al. (2019)

tackle the open-set DA problemwith a method based on sub-
space learning that models the common classes by a shared
subspace and the unknown classes by a private subspace. The
method inLuo et al. (2020) introduces a graph learning-based
adversarial training strategy to align the known class samples
from target domain with samples from source domain. Pan
et al. (2020) augment Self-Ensembling for both closed-set
and open-set DA scenarios by integrating category-agnostic
clusters into DA procedure. Bucci et al. (2020) utilize a new
open-set metric that properly balances the contribution of
recognizing the known classes and rejecting the unknown
samples, and investigate the self-supervised task of rotation
recognition for facilitating open-set DA. Jing et al. (2021b)
develop structure-preserving partial alignment to recognize
the seen categories and discover the unknown classes. ANNA
(Li et al., 2023) tackles Open-set DA utilizing front-door
adjustment theory. Different from the above methods, we
propose the adversarial reweighting model to identify target-
private class data for open-set DA. We further respectively
decrease and increase the prediction uncertainty of the recog-
nitionmodel on target domain commonandprivate class data,
to classify/detect the common/private class data.
Universal Domain Adaptation. UAN (You et al., 2019)
proposes a criterion to quantify sample-level transferability
based on entropy and domain similarity, thereby promot-
ing the adaptation in the automatically discovered common
label set and recognizing the “unknown” samples success-
fully. CMU (Fu et al., 2020) designs a better criterion based
on a mixture of entropy, confidence, and consistency from
a multi-classifier ensemble model to measure sample-level
transferability. DANCE (Saito et al., 2020) uses entropy-
based feature alignment and rejection to align target domain
features with the source domain or reject the target domain
features as unknown categories based on their entropy.
OVANet (Saito & Saenko, 2021) introduces one-vs-all clas-
sifiers for each class to automatically learn the threshold for
identifying the unknown class data.DCC (Li et al., 2021) pro-
poses a cluster-basedmethod to exploit the domain consensus
knowledge to discover discriminative clusters for separating
the private classes from the common ones in target domain.
The method in Chen et al. (2022) explores the intrinsic geo-
metrical relationship between the two domains and designs
a universal incremental classifier to separate “unknown”
samples. Motivated by Bag-of-visual-Words, the method in
Kundu et al. (2022) introduces subsidiary prototype-space
alignment to tackle universal DA, avoiding negative transfer.
GLC (Qu et al., 2023) introduces a global and local clustering
learning technique for source-free universalDA.PPOT(Yang
et al., 2023) tackle universal DA based on a proposed pro-
totypical partial optimal transport model to identify private
class data. SAKA(Wanget al., 2023) introduces knowability-
guided detection of known and unknown samples and refines
target pseudo labels based on neighborhood consistency. Dif-
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Fig. 1 Architecture of our ARPM. Red (resp. blue) arrows indicate the
computational flow for source (resp. target) domain data. Both source
and target images are mapped to feature space by the feature extractor.
Our adversarial reweighting model automatically reweights the impor-
tance of source domain data to match the target domain distribution
in feature space to decrease the importance of the data of source-

private class data. We then define a reweighted classification loss on
the reweighted source domain data distribution to train the recognition
model to classify common class data. An α-power maximization is pro-
posed to reduce the prediction uncertainty on the target domain. We
also utilize neighborhood reciprocity clustering (Yang et al., 2021b) to
impose the robustness of the recognition model on the target domain

ferently, we propose the novel adversarial reweightingmodel
to reweight data for identifying the private class data of target
domain, and perform domain adaptation relying on reduc-
ing/increasing prediction uncertainty based on the learned
data weights.

3 Method

PDA assumes two related but different distributions, namely
source distribution P over space X ×Y and the target distri-
bution Q over spaceX ×Ycom, whereYcom ⊂ Y . In training,
we are given labeled source samples S = {(xsi , yi )}mi=1 drawn
i.i.d. from P , and unlabeled target samples T = {xtj }nj=1
drawn i.i.d. from Qx where Qx is the marginal distribution
of Q in space X . The goal of PDA is to train a recognition
model using the training samples to predict the class labels
of target samples. Ycom ⊂ Y implies that the source domain
contains private classes absent in the target domain, which
may cause negative transfer in adaptation (see Sect. 3.1). In
this paper, we implement the recognition model using deep
neural networks. Specifically, the recognition model is com-
posed of a feature extractor F (e.g., ResNet (He et al., 2016))
and a classifier C . Detailed architectures of F and C will be
given in Sect. 3.5.

To tackle the PDA task, we propose a novel approach,
dubbed Adversarial Reweighting with α-Power Maximiza-
tion (ARPM). The overall framework of ARPM is illustrated
in Fig. 1. We apply the feature to the input images to extract
features for both source and target domains. In the fea-
ture space, we propose the adversarial reweighting model
to reweight source features such that the source-private class
features are assigned smaller weights. We then perform PDA
based on the adversarial reweighting. Specifically, on the
reweighted source domain data distribution, we define a
reweighted classification loss to train the recognition model

Fig. 2 Illustration of negative transfer caused by the source-private
class data in PDA. The source and target features are respectively in red
and blue. Some of the target domain samples are unavoidably aligned
with the source-private class data in feature adaptation by distribution
alignment, and are incorrectly recognized by the recognition model

to be able to classify commonclass data.On the target domain
data, we propose an α-power maximization mechanism to
reduce the prediction uncertainty of the recognition model.
Wealso utilize the neighborhood reciprocity clustering (Yang
et al., 2021b) to enforce the robustness of the recognition
model on target domain data. We next discuss our intuitive
motivation in Sect. 3.1, the adversarial reweighting model in
Sect. 3.2, and adaptation based on adversarial reweighting in
Sect. 3.3, in which we introduce the reweighted classifica-
tion loss, the α-power maximization, and the neighborhood
reciprocity clustering, followed by our training algorithm in
Sect. 3.4. Finally, we extend our method to open-set DA and
universal DA in Sect. 3.6 and to TTA in Sect. 3.7.

3.1 Motivation

We explain the negative transfer in PDA and the intuitive
motivation of our method as follows.
Negative Transfer. The challenges of PDA arise from the
distribution difference and the possible negative transfer
caused by the source-private class data in adaptation. To
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Fig. 3 Intuitive motivations of ARPM. We reweight source domain
data by our adversarial reweighting model to assign smaller weights
to source-private class data. The classification loss can enforce lower
prediction uncertainty mainly on source domain common class data.

We propose the α-power maximization to lower prediction uncertainty
on target samples. Intuitively, to achieve lower prediction uncertainty,
the target samples will be pushed toward the regions of source domain
common class data

enable the recognition model to be transferred from source
to target domain, DA methods often align source and target
distributions in feature space to adapt the feature extractor
to tackle the challenge of distribution difference. However,
some of the target domain data are unavoidably aligned with
the source-private class data if directly aligning distribu-
tions, and thus are incorrectly recognized, as illustrated in
Fig. 2. In other words, the source-private class data can cause
negative transfer when aligning distributions in PDA, i.e.,
these source-private class data harm the learning in the tar-
get domain.
Intuitive Motivation. Figure3 shows the motivations of
our approach. Intuitively, our adversarial reweighting model
aims to learn to reweight source domain data to assign smaller
weights to source-private class data, as illustrated in Fig. 3b.
We then define the classification loss on the reweighted
source domain data to train the recognition model, in which
the source-private class data are less important because they
are reweighted by smaller weights. The trained recognition
model could be mainly discriminative on source domain
common class data, i.e., the predictions are certain on these
data. We propose the α-power maximization to reduce the
prediction uncertainty on the target domain, as will be dis-
cussed in Sect. 3.3. By using our α-power maximization loss
to train the feature extractor, the learned target featureswill be
pushed toward the source common class features to achieve a
lower prediction uncertainty, as shown in Fig. 3c. After adap-
tation, the target features will be aligned with source domain
common class features, as illustrated by Fig. 3d (also Fig. 13
on real data). Therefore, the negative transfer could be alle-
viated in our approach.

3.2 Adversarial Reweighting

We followCao et al. (2019) to assume that the source domain
data of common classes Ycom are closer to the target domain

data than the source domain data belonging to the source-
private classesY\Yc. This is reasonable, and otherwise, PDA
could be hardly realized. We then learn the weights of source
domain data byminimizing theWasserstein distance between
the reweighted source and target distributions. The weight
learning process is formulated as an adversarial reweighting
model. Figure4 illustrates our idea. We first introduce the
Wasserstein distance.
Wasserstein Distance. The Wasserstein distance is a met-
ric from optimal transport that measures the discrepancy
between two distributions. TheWasserstein distance between
distributions μ and ν is defined by W (μ, ν) = minπ∈�

E(x,x′)∼π

∥
∥x − x′∥∥, where � is the set of couplings of μ

and ν, i.e., � = {π | ∫ π(x, x′)dx′ = μ(x),
∫

π(x, x′)dx =
ν(x′)}, and ‖·‖ is the l2-norm. Leveraging the Kantorovich-
Rubinstein duality, theWasserstein distancehas the dual form
ofW (μ, ν) = max‖g‖L≤1 Ex∼μg(x)−Ex′∼νg(x′), where the
maximization is over all 1-Lipschitz functions g : Rd → R.
To compute the Wasserstein distance, we parameterize g by
a neural network D (called discriminator). Then, theWasser-
stein distance becomes

W (μ, ν) ≈ max‖D‖L≤1
Ex∼μD(x) − Ex′∼νD(x′). (1)

In the conference version (Gu et al., 2020), we enforce the
constraint in Eq. (1) with the gradient penalty technique as
in Gulrajani et al. (2017), which adds in a regularization
term −βEx̃∼P̃μ,ν

(‖∇x̃D(x̃)‖ − 1)2 to the objective func-

tion in Eq. (1), and D is unconstrained. P̃μ,ν denotes the
samples uniformly along lines between pairs of points sam-
pled from distributions μ and ν, i.e., x̃ is constructed by
x̃ = τx + (1 − τ)x′ where x ∼ μ, x′ ∼ ν, τ ∼ U(0, 1).
However, this strategy introduces additional hyper-parameter
β and additional randomness from τ , making the results
less reproducible. In this journal version, we implement the
Lipschitz constraint using spectral normalization (Miyato et
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Fig. 4 We minimize the Wasserstein distance between reweighted
source feature distribution P̂z(w) and target feature distribution Q̂z to
learn weights w. This idea is further transformed into the adversarial
reweighting model

al., 2018), which normalizes the weight of each layer in D
by its spectral norm. We experimentally show in Sect. 5.5
that the spectral normalization results in better reproducibil-
ity of our method than the gradient penalty. Equation (1)
allows us to approximately compute theWasserstein distance
using gradient-based optimization algorithms on large-scale
datasets. Compared with the other popular statistical dis-
tances, e.g., the JS-divergence, the Wasserstein distance
enjoys better continuity for learning distributions (Arjovsky
et al., 2017).

3.2.1 Adversarial Reweighting Model

We introduce source data weight wi
m (divided by m is for

the convenience of description) for each i , and denote w =
(w1, w2, . . . , wm). Our adversarial reweighting model is
defined in the feature space. We extract features by zsi =
F(xsi ) and ztj = F(xtj ) for source and target domain data.

The empirical distribution of the target domain features Q̂z

is denoted as Q̂z = 1
n

∑n
j=1 δztj

. The reweighted source

domain feature distribution using w is denoted as P̂z(w) =
1
m

∑m
i=1 wiδzsi

. Based on the aforementioned analysis that the
source-private class data are more distant from target domain
data than the source data of commonclasses,weminimize the
Wasserstein distance between the reweighted source domain
and target domain feature distributions to learn the weights
(as illustrated in Fig. 4) as follows:

min
w∈W

W
(

P̂z(w), Q̂z

)

. (2)

To avoid themode collapse, i.e., the reweighted distribution is
only supported on a few data, we enforce

∑m
i=1(wi − 1)2 <

ρm, where ρ is a hyper-parameter and is set to 5 in this
paper. We will study the effect of ρ in Sect. 5.5. By this con-
straint, the difference between the learned data weights and
the all-one vector (corresponding to unweighted data distri-

bution) is not too large, avoiding the case that most samples
are assigned with zero weight. Then, the solution space is
W = {w : w = (w1, w2, · · · , wm)T , wi ≥ 0,

∑m
i=1 wi =

m,
∑m

i=1(wi − 1)2 < ρm}. With the approximation of the
dual form in Eq. (1), Eq. (2) is transformed to the following
adversarial reweighting model:

min
w∈W

max‖D‖L≤1

1

m

m
∑

i=1

wi D
(

zsi
) − 1

n

n
∑

j=1

D
(

ztj
)

. (3)

In Eq. (3), the discriminator D is trained to maximize (resp.
minimize) the average of its outputs on the source (resp.
target) domain to discriminate the source and target domain
data. Adversarially, the source data weights w are learned
to minimize the reweighted average of the outputs of the
discriminator on the source domain. As a result, the source
data (closer to the target domain) with smaller discriminator
outputs will be assigned with larger weights. We will discuss
the adversarial training of Eq. (3) in Sect. 3.4.

3.3 Adaptation Based on Adversarial Reweighting

Based on the adversarial reweighting model, we perform
PDA by defining a reweighted classification loss on reweigh-
ted source domain data, proposing an α-power maximiza-
tion mechanism to reduce prediction uncertainty on target
domain, and utilizing the neighborhood reciprocity cluster-
ing to enforce the robustness. We next discuss these three
techniques.

3.3.1 Reweighted Classification Loss

Based on the learned source domain data weights by the
adversarial reweighting model, we define the reweighted
classification loss on reweighted source domain data to
implement the supervised training of the recognition model.
The reweighted classification loss is defined using the cross-
entropy by

Lcls(F,C) = 1

m

m
∑

i=1

wiJ
(

C
(

F
(

xsi
))

, ysi
)

. (4)

Following Liang et al. (2020), we employ the cross-entropy
loss with label smoothing, i.e., J (p, y) = −∑

k ak log pk
for distribution p = (p1, p2, · · · , p|Y |)T where ak = 1 − α

if k = y, otherwise ak = α
|Y |−1 . α is set to 0.1. In the

reweighted classification loss, the importance of the source-
private class data is decreased because they are reweighted
by smaller weights learned from the adversarial reweighting
model.Minimizing the reweighted classification loss encour-
ages the ability of the trained recognition model to classify
common class data only.
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Fig. 5 a–d Contour ofHα(p) and e–h gradient norm ‖∇pHα(p)‖ for 3-dimensional distribution p in probability simplex 
3 under different α. To
show the relative magnitude for different p, we normalize the gradient norm such that the maximum value is 1 in each figure of e–h

3.3.2 ˛-Power Maximization

Reducing the prediction uncertainty is shown to be effective
in DA and even in PDA. In our conference version (Gu et
al., 2021) of this work, we utilize entropy minimization that
is widely adopted in DA methods to reduce the prediction
uncertainty. In this journal paper, we propose to maximize
the sum of α-power of the output of the recognition model.
The α-power loss is defined by

Lpow(F) = −1

n

n
∑

j=1

Hα

(

C
(

F
(

xtj
)))

, (5)

whereHα(p) = ∑

k p
α
k . We empirically set α = 6 in experi-

ments.Hα(p)with α > 1 takes its maximum value when p is
a one-hot distribution (with low uncertainty) and minimum
value when p is a uniform distribution (with high uncer-
tainty). Minimizing the α-power loss (i.e., maximizing Hα)
will reduce the uncertainty ofp.We plot the contour ofHα(p)

and its gradient norm ‖∇pHα(p)‖ under different α in Fig. 5.
We can see that for larger α, the samples with high pre-
diction uncertainty (points near to the center in Fig. 5a–h)
have smaller or even near-to-zero gradients ofHα , implying
that these samples may not contribute to the training. The
α-power loss enriches the family of losses for reducing pre-
diction uncertainty. Following Zhang et al. (2018), we use
the α-power loss to update the feature extractor F . We show
that α-power maximization could be more effective for PDA
than entropy minimization in Sect. 5.5.

Comparison of Different Uncertainty Losses. In the learn-
ing tasks with unlabeled data, e.g., semi-supervised learning
and DA, reducing the uncertainty of model’s prediction on
unlabeled data in training can often improve the performance
of the model (Zhang et al., 2018; Grandvalet & Bengio,
2005). The most used uncertainty loss in DA could be condi-
tional entropy. Somemethods (Li et al., 2020;Cui et al., 2020)
also investigate the mutual information and the nuclear norm
for balancing the prediction over classes. Liu et al. (2021)
minimize the α-Tsallis entropy, i.e., 1

α−1 (1 − ∑

k p
α
k ), but

choose α in a narrow interval [1, 2], possibly limiting its
ability. Chen et al. (2019) propose to maximize the square
loss of prediction probability, i.e.,

∑

k p
2
k . Our α-power loss

is mostly related to the square loss and the α-Tsallis entropy.
The square loss is a special case (α = 2) of the α-power loss.
Comparedwith theα-Tsallis entropy, theα-power loss is pos-
sibly more stable to α because of the presence of 1

α−1 in the
α-Tsallis entropy. We experimentally find that 2 < α ≤ 10
often yields better results than 1 < α ≤ 2 for PDA tasks, as
in Sect. 5.5.

3.3.3 Neighborhood Reciprocity Clustering

The robustness or local consistency (Yang et al., 2021b) that
enforces the outputs of the recognition model on the neigh-
borhood samples are similar, is proven effective for closed-set
DA.Weutilize the neighborhood reciprocity clustering (Yang
et al., 2021b) to impose the robustness for PDA in this paper.
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Wefirst build the feature and score banks on target domain
data by

Z = {zt1, zt2, · · · , ztn},S = {st1, st2, · · · , stn} (6)

where ztj = F(xtj ) is the feature, and stj = C(F(xtj )) is the
classification score outputted by the recognition model. At
each training step, feature and score banks are updated by
replacing the old items with the corresponding items from
the current mini-batch samples.

Given target sample xtj with feature ztj , the index set of

its K -nearest neighbors2 in the feature bank is denoted as
N j

K . To better identify the true neighbors, we introduce the
affinity3 as

A j, j ′ =
{

1 if j ′ ∈ N j
K and j ∈ N j ′

M ;
0.1 otherwise.

(7)

The intuition of the affinity in Eq. (7) is that if ztj and z
t
j ′ are

both neighbors of each other, they could be true neighbors
(reciprocal neighbors). Finally, the neighborhood reciprocity
clustering loss is defined as

Lnrc(F) = −1

n

n
∑

j=1

∑

j ′∈N j
K

A j, j ′
〈

stj ′,C
(

F
(

xtj
))〉

. (8)

We use Lnrc(F) to update F . Minimizing Lnrc(F) encour-
ages the similar output of the neighborhood samples so that
the robustness could be imposed.

Note that Zhong et al. (2017) proposed a k-reciprocal
encoding method to re-rank the re-identification results for
the person re-identification task, which may be related to
the neighborhood reciprocity clustering in our approach.
They encode the k-reciprocal nearest neighbors of a given
image into a single vector, which is used for re-ranking
under the Jaccard distance to help accomplish the person
re-identification task. Differently, we utilize the reciprocal
neighbors to enforce the robustness of the deep recognition
model, instead of aggregating them as in Zhong et al. (2017).

3.4 Training

The overall training loss is

L = Lcls + λLpow + Lnrc, (9)

where λ is a hyper-parameter. Note that in the classification
lossLcls in Eq. (4), the source domain data weightsw should

2 Following Yang et al. (2021b), we use the cosine distance to find the
neighbors.
3 As in Yang et al. (2021b), we set K = M = 5 for VisDA-2017 dataset
and K = 4, M = 3 for the other datasets in experiments.

Algorithm 1 Training algorithm.
Input: Source and target domain training datasets S and T
Output: Trained networks F,C
1: S′ = S
2: Initialize w by wi = 1, i = 1, 2, · · · , |S′|
3: for step = 0, 1, 2, · · · do
4: Sample a mini-batch data (Xs , Ys) and Xt from S′ and T , respec-

tively
5: Update F and C with the loss in Eq. (9) computed on (Xs , Ys)

and Xt , using the SGD
6: if step%N = 0 and step > 0 then
7: if |S| >1000k then
8: Randomly select N ′ samples from S to construct S′
9: end if
10: Extract features for all training samples in both S′ and T
11: Train D as in Eq. (1) with spectral normalization to enforce

the 1-Lipschitz constraint
12: if |S′| >20k then

13: Split source data indexes into
[

m
20k

]

groups

14: Solve Eq. (10) for each group to update w
15: else
16: Solve Eq. (10) for all source data indexes to update w
17: end if
18: end if
19: end for

be learned in training. We then devise an iterative training
algorithm to alternately train F and C , and learn w.

3.4.1 Training Algorithm

We initialize w by wi = 1 for all i . Then, we alternately run
the following two procedures when training the networks.
Updating F and C with fixed w. Fixing w, we update F
and C to minimize the loss in Eq. (9) for N steps, using the
mini-batch stochastic gradient descent algorithm.
Updating w with fixedF and C. Fixing F andC , we extract
the features for all training data on both source and target
domains, and learn w in Eq. (3). Since Eq. (3) is a min-
max optimization problem, we can alternately optimize the
weightsw and the discriminator D by fixing the other one as
known. To reduce the computational cost, we only perform
the alternate optimization once,which yields satisfactory per-
formance in experiments. Therefore, we first fix wi = 1 for
all i and optimize D to maximize the objective function in
Eq. (3). Then, fixing the discriminator, we optimizew as fol-
lows. We denote di = D(zsi ) and d = (d1, d2, · · · , dm)T .
The optimization problem for w becomes

min
w

dTw,

s.t.wi ≥ 0,
m

∑

i=1

wi = m,

m
∑

i=1

(wi − 1)2 ≤ ρm.
(10)

Equation (10) is a second-order cone program. We use the
CVXPY (Diamond&Boyd, 2016) package to solve Eq. (10).
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The above algorithm faces challenges when m is large.
We next discuss how to tackle the cases with larger size m
of the source dataset. (1) In the first case (20k< m <1000k),
solving Eq. (10) for all source data is time-consuming or even
infeasible. For such a case, once the discriminator is trained
and fixed, we split the source data indexes into several groups
and solve the problem (10) for each group. The number of

groups is l =
[

m
20k

]

, where [·] is the floor function. The

i-th group is {i, l + i, 2l + i, · · · }. Such a splitting strategy
ensures that the empirical feature distribution corresponding
to each group can approximate the empirical distribution of
all features. (2) In the second case (m >1000k), extracting
the features of all source samples is time-consuming. For
such a case, we randomly sample a subset (with size N ′) of
the source dataset to learn their weights w, and then update
F and C on the subset and weights, and iterate these two
above procedures. We give the pseudo-code of the training
algorithm in Algorithm 1.

3.5 Network Details

For the discriminator D, we use the same architecture as
Ganin and Lempitsky (2015) (three fully connected layers
with 1024, 1024 and 1 nodes respectively), excluding the
last sigmoid function. For the feature extractor F , we use the
ResNet-50 (He et al., 2016) pre-trained on ImageNet (Rus-
sakovsky et al., 2015), excluding the last fully-connected
layer. The classifier C is a fully-connected layer. Inspired
by Gu et al. (2020); Liang et al. (2020), we perform L2-
normalization after the feature extractor to enforce the same
norm4 of features, and normalize each row of the weight of
classifier C to a unit vector.5

Since the features are normalized, the feature distribu-
tion is not a Gaussian distribution. Therefore, the commonly
adopted initialization strategies (Glorot & Bengio, 2010; He
et al., 2015) that assume the Gaussian distribution could not
be suitable.While the initialization of the classifier can affect
the reproducibility as we experimentally show in Sect. 5.5.
Following the idea of preserving the variance in Glorot and
Bengio (2010); He et al. (2015), we use Principal Compo-
nentAnalysis (PCA) to initialize theweight of the classifier to
preserve the feature variance. Specifically, we compute prin-
cipal components V = (v1, v2, · · · , v|Y |) of target features.
We then compute the principal component scores of each
source feature and assign the source feature to the principal
component with the largest score. Between the class label
and the assigned principal component, we can calculate the
confusion matrix M ∈ R

|Y |×|Y |, of which the entry Mi j

4 We set the norm as in Gu et al. (2020).
5 On VisDA-2017 dataset, we do not normalize the weight of C . We
empirically find that on VisDA dataset, the unnormalized weight of C
yields better result.

is the ratio of the i-th class source samples being assigned
to the j-th principal component. Finally, the weight W of
C is initialized by W = MV T . This PCA-based initializa-
tion strategy reduces the randomness compared with Glorot
and Bengio (2010); He et al. (2015), and may achieve better
reproducibility, as shown in Sect. 5.5.

3.6 Extension to Open-Set and Universal DA

We extend our approach to open-set DA and universal DA in
this section. In open-setDA, the unlabeled target domain con-
tains private classes that are absent in the source domain. In
universal DA, both the labeled source domain and unlabeled
target domain possibly contain private classes. The goals
of both open-set DA and universal DA are to identify the
target-private class data as “unknown” and classify the target
domain common class data. To extend our approach ARPM
to open-set DA and universal DA, we employ our adver-
sarial reweighting model to reweight target domain data,
such that the target domain common (resp., private) class
data are assigned larger (resp., smaller) weights. That is, in
Eq. (3), we reweight D(ztj ) by a weight w j and D(zsi ) is
unweighted. Based on the reweighted target domain data,
we reduce (resp., increase) the prediction uncertainty on the
target domain common (resp., private) class data so that the
target-private class data can be detected using the prediction
uncertainty.

More specifically, we sort the target samples according
to the learned data weights in ascending order to obtain
xt(1), x

t
(2), · · · , xt(n). Since the target samples with larger

weights possibly belong to common classes, we define the
following reweighted α-power loss to reduce the prediction
uncertainty on these data:

Lcom(F) = − 1

nτ

n
∑

l=n−nτ

w(l)Hα(C(F(xt(l)))), (11)

where we discard the n−nτ samples with smaller weights to
further enforce robustness. We also maximize the following
α-power loss on the nτ samples with smaller weights that
are more possibly private classes, to increase their prediction
uncertainty:

Lpri(F) = − 1

nτ

nτ
∑

l=1

Hα(C(F(xt(l)))). (12)

The total training loss for open-set DA and universal DA is

L = Lcls + λ′(Lcom − Lpri). (13)

Lcls is defined in Eq. (4), in which we do not reweight the
source domain data. For universal DA, onemay also reweight
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the source domain data in Lcls to reduce the importance of
source-private class data. In this extension, for the sake of a
unified formulation for open-set DA and universal DA, we
do not reweight the source domain data.

3.7 Extension to TTA

This section extends our approach to TTA. TTA trains the
recognition model on a source domain and evaluates it on
an unknown target domain. Different from vanilla machine
learningwhich directlymakes predictions for amini-batch of
test samples at test time, TTA allows adapting themodel for a
fewsteps on themini-batchof test samples in anunsupervised
manner and then makes predictions for them. At the test time
of TTA, we are given the source-trained recognition model.
The test data arrive sequentially. At each time,we only access
a mini-batch of target data B = {xtj }bj=1 where b is the batch
size. The goal of TTA is to update the model on the mini-
batch data B and then make predictions on them. Inspired
by TENT (Wang et al., 2021) that updates the parameters
of the BN layers by entropy minimization for one step, we
update the parameters of the BN layers by our proposed α-
power maximization for one step. Specifically, if we denote
the set of parameters of the BN layers in the model as �bn,
the α-power loss is defined as

Lpow(�bn) = −1

b

b
∑

j=1

Hα(C(F((xtj ))). (14)

We update�bn usingLpow by one-step gradient descent, and
then predict the label of B. Note that the updated�bn will be
taken as the initial value for the nextmini batch.Our approach
for TTA is dubbed Test α-Power Maximization (TPM).

4 Theoretical Analysis

This section presents the theoretical analysis of our method
for PDA.Wefirst provide the notations and assumptions, then
present an upper bound for PDA, and finally analyze that our
proposed ARPM approximately realizes the minimization of
the upper bound.
Notations. We denote Pc as the source domain common
class data distribution, i.e., Pc(x, y) = P(x, y|y ∈ Ycom).
For any x ∈ X , its neighborhood is defined by N (x) =
{x′ : d(x, x′) ≤ ξ} for some ξ > 0, where d(·, ·) is the
distance on X . For any set A ⊂ X , we define N (A) =
⋃

x∈A N (x). For convenience, we denote f : X → [0, 1]|Y |
as the recognition model, i.e., f = C ◦ F . The deci-
sion function corresponding to f is f̃ defined by f̃ (x) =
argmaxi∈Y f (x)i . We use F /F̃ to denote the sets of all
possible f / f̃ . For any f ∈ F , its margin on sample x

is defined by M( f (x)) = f (x)i∗ − maxi �=i∗ f (x)i , where
i∗ = argmaxi f (x)i . 1 − M( f (x)) reflects the prediction
uncertainty of f . Specifically, if 1 − M( f (x)) is smaller,
f (x) approaches the one-hot vector leading to low prediction
uncertainty. The expected margin of f on distribution P is
MP ( f ) = E(x,y)∼PM( f (x)). The robustness of f on distri-
bution P is defined by RP ( f ) = P({x, ∃x′ ∈ N (x), f̃ (x) �=
f̃ (x′)}). For any i ∈ Ycom, we denote Pc

i = Pc(x|y = i) as
class-wise data distribution of the i-th class. Qi is similarly
defined.
Assumptions. To develop the theory for PDA, we assume
that:

(i) ∀i ∈ Ycom,
Q(y=i)
Pc(y=i) ≤ r ;

(ii) ∀i, j ∈ Ycom, the supports of Qi and Q j are disjoint
for i �= j ;

(iii) For any i ∈ Ycom, 12 (P
c
i + Qi ) satisfies (q, ε)-constant

expansion (see Definition 1) for some q, ε ∈ (0, 1).

Definition 1 ((q, ε)-constant expansion)We say that a distri-
bution P satisfies (q, ε)-constant expansion for some q, ε ∈
(0, 1), if for any set A ⊂ X with 1

2 ≥ P(A) ≥ q, we have
P(N (A)\A) > min{ε, P(A)}.

Assumption (i) is realistic because Q(y = i) is finite.
Assumption (ii) implies that any target sample has a unique
class label.We follow Liu et al. (2021);Wei et al. (2021); Cai
et al. (2021) to take the expansion assumption (Assumption
(iii)) of the mixture distribution. Intuitively, this assumption
indicates that the conditional distributions Pc

i and Qi are
closely located and regularly shaped, enabling knowledge
transfer from the source domain to the target domain. Wei
et al. (2021) justified this assumption on real-world datasets
with BigGAN (Brock et al., 2019).

Theorem 1 Suppose the above Assumptions hold. For any
f ∈ F and any η ∈ (0, 1), if f is L-Lipschiz w.r.t. d(·, ·), we
have

εQ( f ) ≤ rεPc( f ) + c1R Pc+Q
2

( f )

+ c2(1 − MPc+Q
2

( f )) + 2rq,
(15)

where the coefficients c1 = 2ηr
min{ε,q}(1+r) and c2 =

2r(1−η)
min{ε,q}(1−2 Lξ)(1+r) are constants to f .

The proof is given in Appendix. Theorem 1 implies that
the target domain expected error εQ( f ) is bounded by the
expected error εPc( f ) on source domain common class
data, the robustness R Pc+Q

2
( f ) and prediction uncertainty

1 − MPc+Q
2

( f ) on mixture distribution of source and target

domains.
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In our method, the adversarial reweighting model aims to
assign larger weights to source domain common class data,
and the reweighted source data distribution is expected to
approach the data distribution of source common classes.
Minimizing the classification loss Lcls on the reweighted
source domain data distribution enforces the recognition
model to predict the label of source common class data.
Therefore, the expected error εPc( f ) on source domain com-
mon class data could be minimized.

We notice that R Pc+Q
2

( f ) = 1
2 (RPc( f ) + RQ( f )). Since

f is trained using the classification loss with the class labels
on the source domain, the prediction of f̃ on the neighbor-
hood samples should be their class labels and thus are similar,
because the neighborhood samples should belong to the same
class. This implies that RPc( f ) is minimized. The neigh-
borhood reciprocity clustering loss Lnrc encourages similar
outputs of the recognition model on neighborhood samples
on target domain, which implies RQ( f ) is minimized.

Note that 1 − MPc+Q
2

( f ) = 1
2 (1 − MPc( f )) + 1

2 (1 −
MQ( f )). By the classification loss, the outputs of f on the
source domain common class data are near to one-hot vec-
tors, so that 1 − MPc( f ) is minimized. Our α-power loss
Lpow reduces the prediction uncertainty on the target domain,
realizing the minimization of 1 − MQ( f ) which reflects the
prediction uncertainty on target domain.

5 Experiments

We conduct experiments on benchmark datasets to evaluate
our ARPM approach, and compare it with recent methods.
The source code is available at https://github.com/XJTU-
XGU/ARPM.

5.1 Setup

For ease of understanding, we discuss the setup for PDA
in this section. We will discuss the setup for open-set and
universal DA in Sect. 5.3 and for TTA in Sect. 5.4.
Datasets. Office-31 dataset (Saenko et al., 2010) contains
4,652 images of 31 categories, collected from three domains:
Amazon (A), DSLR (D), and Webcam (W). ImageNet-
Caltech is built with ImageNet (I) (Russakovsky et al.,
2015) and Caltech-256 (C) (Griffin et al., 2007), respectively
including 1000 and 256 classes. Office-Home (Venkateswara
et al., 2017) consists of four domains: Artistic (A), Clip Art
(C), Product (P), and Real-World (R), sharing 65 classes.
VisDA-2017 (Peng et al., 2017) is a large-scale challenging
dataset, containing two domains: Synthetic (S) and Real (R),
with 12 classes. DomainNet (Peng et al., 2019) is another
large-scale challenging dataset, composed of six domains
with 345 classes.

Table 2 Accuracy (%) on ImageNet-Caltech dataset for PDA

Method C→I I→C Avg

ResNet-50 (He et al. 2016) 71.3 69.7 70.5

DAN (Long et al. 2015) 60.1 71.3 65.7

DANN (Ganin et al. 2016) 67.7 70.8 69.2

IWAN (Zhang et al. 2018) 73.3 78.1 75.7

PADA (Cao et al. 2018b) 70.5 75.0 72.8

ETN (Cao et al. 2019) 74.9 83.2 79.1

DRCN (Li et al. 2020) 78.9 75.3 77.1

BA3US (Liang et al. 2020) 83.4 84.0 83.7

ISRA+BA3US (Xiao et al. 2021) 83.7 85.3 84.5

SLM (Sahoo et al. 2023) 81.4 82.3 81.9

SAN++ (Cao et al. 2023) 81.1 83.3 82.2

∗AR (Gu et al. 2021) 82.2 87.1 84.7

ARPM 87.1 84.6 85.9

The best results are bolded. *AR is our conference version

Table 3 Accuracy (%) on VisDA-2017 dataset for PDA

Method S→R

ResNet-50 (He et al. 2016) 45.3

IWAN (Zhang et al. 2018) 48.6

PADA (Cao et al. 2018b) 53.5

DRCN (Li et al. 2020) 58.2

SHOT++ (Liang et al. 2021) 78.6

SPDA (Guo et al. 2022) 82.9

APDA-CI (Lin et al. 2022) 69.8

RAN (Wu et al. 2023) 75.1

STCPDA (He et al. 2023) 70.1

SLM (Sahoo et al. 2023) 91.7

SAN++ (Cao et al. 2023) 63.1

MOT (Luo and Ren 2023) 92.4

∗AR (Gu et al. 2021) 88.8

ARPM 93.2

The best results are bolded. *AR is our conference version

AdaptationTasks.OnOffice-31, ImageNet-Caltech,Office-
Home datasets, we set every domain as the source domain
in turn and use each of the rest domain(s) to build the target
domain, forming the adaptation tasks. On Office-31, we fol-
lowCao et al. (2018a) to select images from the 10 categories
shared by Office-31 and Caltech-256 (Griffin et al., 2007) to
build the target domain in each task. On ImageNet-Caltech
dataset, we utilize the 84 shared classes by ImageNet and
Caltech-256 to build the target domain in each task. As most
networks are pre-trained on the training set of ImageNet, for
task C→I, we use images from ImageNet validation set to
build the target domain. On Office-Home, we use images of
the first 25 classes in alphabetical order to build the target
domain in each task. On VisDA-2017, we set Synthetic (S)
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Table 4 Accuracy (%) on
Office-31 dataset for PDA

Method A→D A→W D→A D→W W→A W→D Avg

ResNet-50 (He et al. 2016) 83.4 75.6 83.9 96.3 85.0 98.1 87.1

DAN (Long et al. 2015) 61.8 59.3 75.0 73.9 67.6 90.5 71.3

DANN (Ganin et al. 2016) 81.5 73.6 82.8 96.3 86.1 98.7 86.5

IWAN (Zhang et al. 2018) 90.5 89.2 95.6 99.3 94.3 99.4 94.7

PADA (Cao et al. 2018b) 82.2 86.5 92.7 99.3 95.4 100.0 92.7

ETN (Cao et al. 2019) 95.0 94.5 96.2 100.0 94.6 100.0 96.7

DRCN (Li et al. 2020) 86.0 88.5 95.6 100.0 95.8 100.0 94.3

TSCDA (Ren et al. 2020) 98.1 96.8 94.8 100.0 96.0 100.0 97.6

BA3US (Liang et al. 2020) 99.4 99.0 94.8 100.0 95.0 98.7 97.8

ISRA+BA3US (Xiao et al. 2021) 98.7 99.3 95.4 100.0 95.4 100.0 98.2

SPDA (Guo et al. 2022) 96.2 99.3 96.0 100.0 96.6 100.0 98.0

APDA-CI (Lin et al. 2022) 96.8 99.7 96.2 100.0 96.6 100.0 98.2

CLA (Yang et al. 2023) 100.0 100.0 94.5 100.0 96.7 100.0 98.5

RAN (Wu et al. 2023) 97.8 99.0 96.3 100.0 96.2 100.0 98.2

SLM (Sahoo et al. 2023) 98.7 99.8 96.1 100.0 95.9 99.8 98.4

SAN++ (Cao et al. 2023) 98.1 99.7 94.1 100.0 95.5 100.0 97.9

IDSP (Li and Chen 2023) 99.4 99.7 95.1 99.7 95.7 100.0 98.3

MOT (Luo and Ren 2023) 98.7 99.3 96.1 100.0 96.4 100.0 98.4
∗AR (Gu et al. 2021) 96.8 93.5 95.5 100.0 96.0 99.7 96.9

ARPM 99.6 99.4 96.6 99.9 96.8 100.0 98.7

The best results are bolded. *AR is our conference version

as source domain and Real (R) as target domain to perform
synthetic to real domain transfer, and use the first 6 classes
in alphabetical order as the target domain. On DomainNet,
since the labels of some domains and classes are very noisy,
we follow Saito et al. (2019) to adopt four domains (Clipart
(C), Painting (P), Real (R), and Sketch (S)) with 126 classes
for PDA. We use the first 40 classes in alphabetical order
to build the target domain in each task. In each adaptation
task, we report the average classification accuracy on target
domain.
Implementation Details. We implement our method using
Pytorch (Paszke et al., 2019) on a single Nvidia Tesla v100
GPU. We use the SGD algorithm with momentum 0.9 to
update the parameters of F and C . The learning rate of C
is ten times that of F . The parameters of D are updated
by the Adam algorithm with learning rate 0.001. Following
Ganin and Lempitsky (2015), we adjust the learning rate of
C by κ

(1+10p)0.75
, where p represents the training progress

linearly changing from 0 to 1. Bath size is set to 64. For
Office-Home, ImageNet-Caltech, and DomainNet datasets,
we set κ = 0.01 and λ = 0.3. Since the training processes on
VisDA-2017 and Office-31 datasets converge faster, we set κ
to 0.001 forVisDAand0.005 forOffice-31.Correspondingly,
λ is set to 1.0 for VisDA-2017 and Office-31 datasets. N
in Algorithm 1 is set to 500 for Office-Home and Office-
31 datasets, and is set to 1000 for the larger VisDA-2017,

DomainNet, and ImageNet-Caltech datasets. N ′ is set to 64∗
2000.

On VisDA-2017, ImageNet-Caltech, and DomainNet
datasets, we sample the mini-batch data according to the
learned weights using a reweighted random sampler and then
calculate the unweighted classification loss on the sampled
mini-batch data in training. We find that this strategy makes
training more stable on these datasets than the commonly
used strategy that we first uniformly sample mini-batch data
and then reweight the classification loss for each sample in
the mini-batch. The reason could be that the number of sam-
ples with zero weights is large in these large-sized datasets
and the uniformly sampledmini-batch data may contain only
a few samples having non-zero weights.

5.2 Results for PDA

We implement our approach with three different random
seeds {2019, 2021, 2023}, and report the average results
over these three different runs in Tables 1, 2, 3, 4, and
5, for Office-Home, Office-31, DomainNet, ImageNet-Calt-
ech, and VisDA-2017 datasets, respectively. The results of
compared methods on Office-Home, Office-31, ImageNet-
Caltech, and VisDA-2017 datasets are quoted from their
papers. The results of compared methods on DomainNet
dataset are produced using their official codes (except the
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results of STCPDA (He et al., 2023), which are quoted from
its paper).

In Table 1, our approach ARPM achieves the best average
accuracy of 81.8% on Office-Home dataset, outperforming
the second-best approach of MOT by 1.2%. Tables 2 and 3
imply that our proposed ARPM achieves the best results of
85.9% and 93.2% on ImageNet-Caltech and ViSDA-2017,
respectively. ARPM outperforms the second-best method on
ImageNet-Caltech by 1.2% and on VisDA-2017 by 0.8%,
respectively. In Table 4, on Office-31 dataset, our proposed
ARPM achieves the best result of 98.7%, outperforming the
recent PDA methods CLA (Yang et al., 2023) (the second-
best method) by 0.2%. ARPM outperforms CLA by 2.3%
on Office-Home dataset. Table 5 shows that our approach
ARPM achieves the best accuracy on DomainNet dataset,
outperforming the second-best method by 3.6%.

Among the reported methods in Tables 1, 2, 3, 4, and 5,
DANN(Ganin&Lempitsky, 2015),DAN(Long et al., 2015),
ADDA (Tzeng et al., 2017), andCDAN+E (Long et al., 2018)
are devised for closed-set DAwhich do not consider the chal-
lenge of label space mismatch in PDA and achieve worse
results than the other PDA approaches. In PDA approaches,
IWAN (Zhang et al., 2018), PADA (Cao et al., 2018b), ETN
(Cao et al., 2019), DRCN (Li et al., 2020), TSCDA (Ren et
al., 2020), and BA3US (Liang et al., 2020) align reweighted
source domain feature distribution and unweighted target
domain feature distribution by minimizing maximum mean
discrepancy or adversarial training, performing worse than
MOT (Luo & Ren, 2023). MOT (Luo & Ren, 2023) aligns
reweighted source and unweighted target feature distribu-
tions using robust optimal transport that does not require
exact matching of the distributions. This implies that align-
ing reweighted distribution without requiring exact matching
may be better than that with requiring exact matching for
PDA. Our proposed ARPM boosts the performance of MOT
on all the evaluated datasets. ARPM adversarially learns
to reweight source domain data by minimizing the cross-
domain distribution distance, and enforcing robustness and
reducing prediction uncertainty of the recognition model,
whichmore effectively tackles PDA from a novel perspective
with theoretical analysis.

Compared with the conference version, the results on
Office, Office-Home, ImageNet-Caltech, VisDA-2017, and
DomainNet datasets are improved by 1.8%, 3.5%, 1.2%,
4.4%, and 9.5% in this journal version, respectively. In this
journal version, we extend the work by introducing more
methodological techniques, e.g., the α-power maximiza-
tion for substituting entropyminimization, the neighborhood
reciprocity clustering (Yang et al., 2021b), and the spectral
normalization to enforce the Lipschitz constraint and the
PCA-based initialization strategy to improve stability. The
performance improvements demonstrate the effectiveness of

Table 9 Ablation study on VisDA-2017 dataset

Method S→R

SO 46.4

SO+R 50.4

SO+P 90.7

SO+N 89.2

SO+R+P 91.7

SO+R+N 90.8

SO+N+P 92.4

SO+R+N+P (ARPM) 93.2

SO+E 85.2

SO+R+E 89.2

SO+E+R+N 90.7

“SO” means training the model using the source domain data only. “R”
represents our adversarial reweighting model. “P” is the α-power loss.
“N” is the neighborhood reciprocity clustering loss. “SO+R+N+P” is
our full method ARPM. We also report the results for entropy mini-
mization (E) as a substitute of α-power loss (P)

themethodological extensions for PDA. Note that the useful-
ness of each of these techniques will be verified in Sect. 5.5.

5.3 Results for Open-Set and Universal DA

We follow the protocol ofYang et al. (2023) to conduct exper-
iments on Office-Home dataset for open-set and universal
DA. In the test phase, the samples with prediction confidence
lower than 0.65 are classified as “unknown” class. τ is set
to 0.25 and λ′ is set to 0.05. The other experimental details
are the same as those for PDA. We report the open-set eval-
uation metric, H-score, in Tables 6 and 7. It can be observed
from Tables 6 and 7 that our method performs better than the
recent open-set DA methods and universal DA methods on
Office-Home dataset. Our proposed ARPM outperforms the
previous state-of-the-art method PPOT (Yang et al., 2023) by
1.7% in open-set DA task as in Table 6 and by 0.2% in univer-
sal DA task. These results imply that our method can tackle
the tasks of open-set DA and universal DA with open-class
data.

5.4 Results for TTA

For TTA, we take the RestNet-18 pre-trained on ImageNet
as the source-trained model and evaluate it on ImageNet-R
dataset (Hendrycks et al., 2021). The experimental setups are
the same as those in Wang et al. (2021). The experimental
results are reported in Table 8. We can see that our pro-
posed method TPM (test α-power maximization) achieves
better results than the other TTA approaches. Especially,
TPMoutperforms TENT. Themodel adaptation is performed
by α-power maximization in TPM and by entropy minimiza-
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Table 10 Ablation study on Office-Home dataset

Method A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg

SO 50.2 69.5 79.8 60.2 61.1 67.5 60.3 43.7 74.5 71.3 50.6 78.0 63.9

SO+R 50.3 71.4 83.3 61.9 64.3 72.6 63.8 43.9 78.5 73.3 52.6 80.5 66.4

SO+P 64.3 84.4 88.8 76.6 80.0 81.9 78.2 65.4 88.4 81.0 63.1 86.3 78.2

SO+N 63.1 83.8 88.3 75.1 76.6 77.4 77.4 60.8 85.1 81.3 62.9 86.1 76.5

SO+R+P 67.5 87.6 91.7 79.4 78.9 85.0 78.9 65.3 90.8 82.8 63.7 87.7 79.9

SO+R+N 65.3 86.1 92.0 80.3 77.2 85.4 81.2 64.2 87.8 84.5 65.3 89.0 79.9

SO+N+P 65.6 86.5 91.3 78.6 82.1 82.3 79.8 65.6 90.7 82.2 65.0 86.9 79.7

SO+R+N+P (ARPM) 68.3 87.8 92.3 77.8 84.6 86.3 81.1 69.2 89.5 86.2 70.0 89.1 81.8

SO+E 58.6 84.1 88.0 74.1 76.8 77.4 76.1 61.4 86.2 78.5 61.5 84.3 75.6

SO+R+E 63.3 86.7 91.5 78.0 77.6 81.9 77.5 64.6 89.7 81.0 63.6 86.8 78.4

SO+E+R+N 66.6 86.8 91.9 78.3 81.9 85.3 77.9 65.9 89.6 83.7 67.9 89.6 80.5

“SO” means training the model using the source domain data only. “R” represents our adversarial reweighting model. “P” is the α-power loss. “N”
is the neighborhood reciprocity clustering loss. “SO+R+N+P” is our full method ARPM. We also report the results for entropy minimization (E)
as a substitute of α-power loss (P)

tion in TENT. The performance improvement of TPM over
TENT indicates that our α-power maximization could be
more effective than entropy minimization for TTA.

5.5 Analysis

In this section, for convenience of description, we utilize
“SO” to denote the baseline approach that trains the recogni-
tionmodel using the source domain data only. “R” represents
our adversarial reweighting model. “P” is the α-power loss.
“N” is the neighborhood reciprocity clustering loss.
Effectiveness of Components in ARPM. We study the
effectiveness of each component in our method on VisDA-
2017 and Office-Home datasets, of which the results are
reported in Tables 9 and 10.Note that the differences between
SO and “ResNet-50” in Tables 1 and 9 are that SO uti-
lizes label smoothing and feature normalization. These two
techniques enable SO to perform slightly better than ResNet-
50. We can observe from Tables 9 and 10 that on both
datasets, SO+R, SO+R+P, SO+R+N, and SO+R+N+P (i.e.,
our full method ARPM) respectively outperforms SO, SO+P,
SO+N, and SP+N+P, demonstrating the effectiveness of
our adversarial reweighting model for learning to reweight
source domain data. The results of SO+P, SO+R+P, SO+N+P,
SO+R+N+P are better than those of SO, SO+R, SO+N,
SO+R+N, respectively. This confirms the usefulness of our
α-power maximization for reducing the prediction uncer-
tainty of the recognition model. Tables 9 and 10 show that
SO+N+P outperforms both SO+N and SO+P, which implies
that α-power maximization and neighborhood reciprocity
clustering are complementary to improve the performance.
On all the combinations of SO, P, N, and R, SO+R+P+N, i.e.,
ARPM, achieves the best results on both datasets. Note that
SO and SO+R do not utilize target domain data to update

Fig. 6 a The normalized gradient of α-power loss with varying α and
entropy loss. b Amplified part of Fig. 6a with p ranging in [0.5, 0.6]

the recognition model (SO+R utilizes target domain data to
learn the source data weight). The results of SO and SO+R
seem to be largely lower than those of the other approaches
in Tables 9 and 10 since the α-power and neighborhood reci-
procity clustering losses are implemented on target domain
data.
Comparisonof α-PowerMaximizationandEntropyMin-
imization. We report the results of entropy minimization
(E) as a substitute of α-power maximization (P) in our
framework. Tables 9 and 10 show that SO+E, SO+R+E,
and SO+R+E+N respectively degrade the results of SO+P,
SO+R+P, and SO+R+P+N by more than 1.0% on both
VisDA-2017 and Office-Home datasets. This demonstrates
that ourα-powermaximization ismore effective than entropy
minimization for PDA.

We provide more analysis on the α-power maximization
and entropy minimization in this paragraph. We take the
two-way classification task as an example to compare the
gradients of the α-power loss (i.e.,H(p) = pα + (1 − p)α)
and entropy loss (i.e.,H(p) = p log p+ (1− p) log(1− p))
w.r.t. the probability p in Fig. 6. Note we only care about the
absolute value of the gradients in this experiment. The gra-
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Fig. 7 aResultswith varyingα in taskA→ConOffice-Homedataset.b
Results of different reweighting strategies on Office-Home and VisDA-
2017 datasets

dients are normalized by dividing by their maximum value
when p ranges in [0.5, 0.99]. The samples with larger nor-
malized gradients are more important in training. We can see
(in Fig. 6a) that the curves of α-power losses approach that
of entropy as α goes to 1. Larger α more possibly pushes the
gradients of uncertain samples (with p near 0.5) to zero as
shown in Fig. 6b (also in Fig. 5 for three-way classification),
and hence neglects their importance in network training.
In Fig. 7a, we show that in range [1, 10], α larger than 2
achieves better performance than α smaller than 2. This may
be because, for α (in [1, 10]) larger than 2, the uncertain
samples that are more likely incorrectly predicted are less
important (compared with α smaller than 2) when reducing
the prediction uncertainty.
Comparison of different reweighting strategies.We com-
pare different reweighting strategies for obtaining theweights
used in our loss of Eq. (4) for PDA, including our adversarial
reweighting (Adv-Rew), reweighting based on the classifier
in the PDA methods (Cao et al., 2018a, b; Li et al., 2020;
Liang et al., 2020), and reweighting by the output of dis-
criminator on source data as in Zhang et al. (2018). For the
classifier-based strategy, the source data weight of the k-th
class is definedby 1

n

∑n
j=1 C(F(xtj ))k . For thediscriminator-

based strategy, we introduce a discriminator D̃ that aims to
predict 1 (resp. 0) on the target (resp. source) domain data.
The weight of source domain data xsi is D̃(xsi ). The results in
Fig. 7b show that our adversarial reweighting outperforms
the other two reweighting strategies on VisDA-2017 and
Office-Home datasets, confirming the effectiveness of our
adversarial reweighting strategy.
Comparison with MMD and JS-divergence to learn
the weights. As discussed in Sect. 3.2, we minimize the
Wasserstein distance to learn the data weights deducing our
adversarial reweighting model. We compare ARPM with
the approaches that minimize the JS-divergence and Max-
imum Mean Discrepancy (MMD) to learn the data weights
in our framework (denoted as ARPM (w/ JS) and ARPM (w/
MMD), respectively), onOffice-Homedataset for PDA.Note
that the JS-divergence also induced an adversarial reweight-

Fig. 8 a Results for MMD and JS-divergence for learning source data
weights in our framework on Office-Home dataset. b Results for learn-
ing one weight for each class (OWEC) on Office-Home dataset

Table 11 Results (under varying random seeds) of gradient penalty
(GP) and spectral normalization (SP) to impose Lipschitz constraint on
Office-Home dataset

Seed 2019 2021 2023 Avg Std

SP 81.8 81.6 82.1 81.8 0.3

GP 81.1 80.6 81.9 81.2 0.7

ing model where the discriminator is trained with loss in
Goodfellow et al. (2014). In Fig. 8a, we can see that ARPM
using the Wasserstein distance for learning the data weights
outperforms ARPM (w/ JS) and ARPM (w/MMD). The rea-
sons could be as follows. When the supports of source and
target distributions are disjoint, theWasserstein distancemay
bemore suitable tomeasure their distance than JS-divergence
(Arjovsky et al., 2017). The MMD with widely used ker-
nels may be unable to capture very complex distances in
high dimensional spaces (Arjovsky et al., 2017; Reddi et al.,
2015), possibly making it less effective than the Wasserstein
distance in our framework.
Comparison with learning one weight for each class
(OWEC). The previous PDA methods (Cao et al., 2018a, b;
Li et al., 2020; Liang et al., 2020) assign one weight for each
class. As comparisons, we conduct experiments for learning
one weight shared by samples of each class in our adver-
sarial reweighting model (denoted as ARPM (w/ OWEC))
on Office-Home dataset for PDA. The results in Fig. 8b
show that ARPM with individual weight for each sample
outperformsARPM(w/OWEC), implying that learning indi-
vidual weight for each sample is more effective. If the weight
is learned for each sample, it is possible to assign higher
weights to samples (even in the same class) closer to the tar-
get domain. The model trained in such a case may be more
transferable, because samples (even in the source domain
common classes) less relevant to the target domain become
less important.
Comparison of gradient penalty (GP) and spectral nor-
malization (SP) to impose Lipschitz constraint. We com-
pare the gradient penalty (GP) and spectral normalization
(SP) to impose Lipschitz constraint in Eq. (3). The results in
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Table 12 Results (under varying random seeds) of ARPM with and
without PCA for initializing classifier on VisDA-2017 dataset

Seed 2015 2017 2019 2021 2023

w/ PCA 92.4 93.5 92.2 93.9 93.6

w/o PCA 93.8 76.8 94.1 78.6 93.9

Fig. 9 Accuracywith varying numbers of target classes in tasks aA→C
and b C→A on Office-Home dataset

Table 11 indicate that spectral normalization achieves better
average accuracy and lower standard variation. As discussed
in Sect. 3.2, GP introduces additional hyper-parameter and
randomness, which may degrade the reproducibility.
PCA initialization of classifier improving reproducibility.
Table 12 shows that initializing the weight of the classifier
by PCA as discussed in Sect. 3.5 does improve the repro-
ducibility of ourmethod (i.e., ourmethodwith PCAperforms
well over different random seeds). Note that ∇pHα(p) ∝
(pα−1

1 , pα−1
2 , · · · , pα−1

|Y | ), which implies that p is updated
with high possibility towards the class corresponding to the
largest element of p. Therefore, good initializationwith “cor-
rect”∇pHα(p) on target domainmay yield better results. Our
PCA-based initialization specifies the variance preservation
idea of commonly used random initialization strategies (Glo-
rot & Bengio, 2010; He et al., 2015) for normalized features
and reduces the randomness, which may yield better repro-
ducibility.
Accuracywith varyingnumbers of target classes.Weeval-
uate our method with different numbers of target classes in
Fig. 9. Our method of ARPM outperforms recent PDAmeth-
ods BA3US (Liang et al., 2020) and ISRA+BA3US (Xiao et
al., 2021) when the number of target classes is smaller than
45 (the number of source classes is 65). This indicates that
our method is effective for PDA with different degrees of
label space mismatch.
Sensitivity to hyper-parameters. We investigate the effect
of hyper-parameters λ and ρ in Fig. 10. Our method is rela-
tively stable to ρ in range [3, 9] as shown in Fig. 10a and to
λ in [0.3, 0.7] as shown in Fig. 10b.
Convergence of training algorithm. In Fig. 11, we take
the PDA task S→R on VisDA-2017 as an example to study
the convergence of our method. Figure11a indicates that the
accuracy of our approach stably increases and converges in

Fig. 10 Results for varying magnitudes of a ρ in the constraints of
adversarial reweighting model and b λ in Eq. (9), in task A→C on
Office-Home dataset

Fig. 11 a Accuracy in training in task S→R on VisDA-2017 dataset. b
Relative difference of source data weights in alternate iteration in task
S→R on VisDA-2017 dataset

Fig. 12 a Average weights for each class on source domain in task
S→R on VisDA-2017. b Computational cost of PDA methods in task
A→C on Office-Home

the training process. We also show the relative difference of
weights in Fig. 11b. The relative difference is ‖
wt‖

‖wt‖ , where


wt = wt+1 − wt , and wt is the value of the weights in the
t-th iteration of the alternate training algorithm. We can see
that ‖
wt‖

‖wt‖ stably decreases.
Visualization of learned weights. We visualize the learned
average weights of source domain data of each class in task
S→R on VisDA-2017 dataset, as shown in Fig. 12a. We can
see that the source domain commonclass (thefirst six classes)
data are assigned with larger weights in general (except the
6-th class). Even for the 6-th class, its weight is larger than the
weights of five among the total of six source-private classes.
Computational cost. We compare the computational cost
of different methods with the total training time in the same
training steps (5000 steps), as in Fig. 12b. Figure12b shows
that our approach (ARPM) is comparable to other methods
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Fig. 13 T-SNE visualization of features in task R→A on Office-Home
dataset. a Features before adaptation. b Features after adaptation of
ARPM

in terms of computational time cost. Note that the test time
cost is similar for all the methods because all the methods
only need one forward process.
Feature visualization. We visualize the features before
and after the adaptation of ARPM in Fig. 13 by T-SNE
(Maaten & Hinton, 2008). We can see that from Fig. 13b,
the source domain common class features are more discrim-
inative/separable than the source-private class features, and
the target domain data features are aligned with the source
domain common class features.

6 Conclusion

In this paper, we propose a novel ARPM approach for PDA,
in which we propose an adversarial reweighting model to
learn to reweight source domain data, propose α-power max-
imization to reduce prediction uncertainty, and utilize the
neighborhood reciprocity clustering to enforce robustness.
Extensive experiments on five benchmark datasets demon-
strate the effectiveness of the proposed ARPM for PDA. We
also present the theoretical analysis of the proposed method.
Additionally, we extend our approach to more “open-world”
recognition tasks, including open-set DA, universal DA, and
TTA. Since both the adversarial reweighting model and the
α-power maximization in our approach require accessing the
target domain data, it is non-trivial to extend our approach to
the adaptation tasks without target domain data, e.g., domain
generalization. We will explore more applications of our
approach in the future.

Appendix

We first give some lemmas and then provide the proof of
Theorem 1.

Lemma 1 Divide Ycom into S1 and S2 such that S1 = {i ∈
Ycom : E

(x,y)∼ Pci +Qi
2

I(∃x′ ∈ N (x), f̃ (x) �= f̃ (x′)) <

min{ε, q}} and S2 = {i ∈ Ycom : E
(x,y)∼ Pci +Qi

2

I(∃x′ ∈
N (x), f̃ (x) �= f̃ (x′)) ≥ min{ε, q}}. Under the condition
of Theorem 1, we have

∑

i∈S2

Pc + Q

2
(y = i) ≤

R Pc+Q
2

( f )

min{ε, q} . (16)

Proof Suppose
∑

i∈S2
Pc+Q

2 (y = i) >
R( f )

min{ε,q} , which
implies

R Pc+Q
2

( f )

= Pc + Q

2
({x, ∃x′ ∈ N (x), f̃ (x) �= f̃ (x′)})

= E
(x,y)∼ Pc+Q

2
I(∃x′ ∈ N (x), f̃ (x) �= f̃ (x′))

=
∑

i∈Ycom

{

E
x∼ Pci +Qi

2

I(∃x′ ∈ N (x), f̃ (x) �=

f̃ (x′)) P
c + Q

2
(y = i)

}

≥
∑

i∈S2

{

E
x∼ Pci +Qi

2

I(∃x′ ∈ N (x), f̃ (x) �=

f̃ (x′)) P
c + Q

2
(y = i)

}

≥ min{ε, q}
∑

i∈S2

Pc + Q

2
(y = i) > R Pc+Q

2
( f ).

(17)

R Pc+Q
2

( f ) > R Pc+Q
2

( f ) forms a contradiction. ��

Lemma 2 (Lemma 2 in Liu et al. (2021)) Under the con-
dition of Theorem 1, if sub-populations Pc

i and Qi satisfy
E

(x,y)∼ Pci +Qi
2

I(∃x′ ∈ N (x), f̃ (x) �= f̃ (x′)) < min{ε, q}, we
have

|εPc
i
( f ) − εQi ( f )| ≤ 2q. (18)

Lemma 3 (Lemma 3 in Liu et al. (2021)) For any distribution
P, if f is L-Lipschiz w.r.t. d(·, ·), we have

RP ( f ) ≤ 1

(1 − 2Lξ)
(1 − MP ( f )). (19)

Proof of Theorem 1. From the definition of εQ( f ) in PDA,
we have

εQ( f ) =
∑

i∈Ycom

εQi ( f )Q(y = i)

≤
∑

i∈S1
εQi ( f )Q(y = i) +

∑

i∈S2
Q(y = i)

≤
∑

i∈S1
(εPi ( f ) + 2q)r Pc(y = i)
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+
∑

i∈S2
Q(y = i)

≤
∑

i∈Ycom

(εPi ( f ) + 2q)r Pc(y = i)

+
∑

i∈S2
Q(y = i)

= rεPc( f ) + 2qr +
∑

i∈S2
Q(y = i). (20)

The second inequality uses Lemma 2 and Q(y=i)
Pc(y=i) ≤ r for

i ∈ Ycom. Since

Pc + Q

2
(y = i) = 1

2
(Pc(y = i) + Q(y = i))

≥ 1

2
(
1

r
Q(y = i) + Q(y = i))

= 1 + r

2r
Q(y = i),

(21)

we have

∑

i∈S2
Q(y = i) ≤ 2r

1 + r

∑

i∈S2

Pc + Q

2
(y = i). (22)

Using Lemma 1, we have

∑

i∈S2
Q(y = i) ≤ 2r

min{ε, q}(1 + r)
R Pc+Q

2
( f ). (23)

Applying Lemma 3, for any η ∈ [0, 1], we have
∑

i∈S2
Q(y = i)

≤ 2rη

min{ε, q}(1 + r)
R Pc+Q

2
( f )

+ 2r(1 − η)

min{ε, q}(1 + r)(1 − 2Lξ)
(1 − M Pc+Q

2
( f )).

(24)

Combining Eqs. (20) and (24), we have

εQ( f ) ≤ rεPc( f ) + c1R Pc+Q
2

( f )

+ c2(1 − MPc+Q
2

( f )) + 2rq,
(25)

where the coeffcients c1 = 2ηr
min{ε,q}(1+r) and c2 =

2r(1−η)
min{ε,q}(1−2 Lξ)(1+r) are constants to f . ��
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