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Abstract
Cross-Domain Few-Shot Learning (CD-FSL) aims at recognizing unseen classes from target domains that vastly differ
from training classes from source domains, utilizing only a few labeled samples. However, the substantial domain disparities
between target and source domains pose huge challenges to few-shot generalization. To resolve domain disparities, we propose
HybridPrompt, a novel architecture forDomain-Aware Prompting that integrates a variety of cross-domain learned prompts as
knowledge experts for CD-FSL. The proposed method enjoys several merits. First, to encode knowledge from diverse source
domains, severalDomain Prompts are introduced to capture domain-specific knowledge. Subsequently, to facilitate the cross-
domain transfer of valuable knowledge, a Transferred Prompt is specifically tailored for each target task by retrieving highly
relevantDomain Prompts based on domain properties. Finally, to complement insufficient transferred information, anAdaptive
Prompt is learned to incorporate additional target characteristics for model adaptation. Consequently, the collaboration of
these three types of prompts contributes to a hybridly prompted model that achieves domain-aware encoding, transfer, and
adaptation, thereby enhancing adaptability on unseen domains. Extensive experimental results on theMeta-Dataset benchmark
demonstrate that our method achieves superior performance against state-of-the-art methods. The source code is available at
https://github.com/Jamine-W/HybridPrompt.

Keywords Few-shot learning · Cross-domain few-shot learning · Open-world recognition · Image classification

1 Introduction

Few-Shot Learning (FSL) (Fei-Fei et al., 2006; Finn et al.,
2017; Vinyals et al., 2016; Snell et al., 2017; Oreshkin et al.,
2018) has emerged as a prominent topic, with the objective
of learning new unseen concepts from only a few labeled
examples. Dissimilar to conventional supervised learning
approaches that require a large amount of target data, a stan-
dard few-shot model is initially trained on base classes to
learn a good feature representation, and subsequently applied
or fine-tuned on novel classes with limited samples. Gener-

Communicated by Zhun Zhong.

B Tianzhu Zhang
tzzhang@ustc.edu.cn

Jiamin Wu
jiaminwu@mail.ustc.edu.cn

Yongdong Zhang
zhyd73@ustc.edu.cn

1 School of Information Science and Technology, University of
Science and Technology of China, Hefei 230026, China

ally, the base and novel classes are presumed to stem from an
identical domain, sharing similar data distribution. However,
in a more realistic cross-domain scenario, the base and novel
classes may exhibit considerable discrepancies, e.g., deploy-
ing an ImageNet-pretrained model to a medical imaging or
remote sensing dataset. The substantial domain disparities
between domains pose new challenges to generalization, as
it requires the few-shot model to extrapolate source domain
knowledge to tasks from new domains that were not encoun-
tered during training.

To facilitate few-shot generalization across different
domains, recent FSL models have shifted towards Cross-
Domain Few-Shot Learning (CD-FSL) (Guo et al., 2020;
Triantafillou et al., 2019), where the model is initially trained
on base classes drawn from Ns source domains, and is then
transferred to novel classes from Nt target domains that
exhibit extensive domain disparities, as shown in Fig. 2). To
address this challenge, recent CD-FSL methods (Li et al.,
2021, 2022; Hu et al., 2022) typically follow an Encoding-
Transfer-Adaptation (ETA) paradigm (see Fig. 1a) includ-
ing (1) source domain encoding to encode knowledge from
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Fig. 1 Comparison between prior CD-FSLmethods and ours under the
ETA paradigm. a Prior works (Hu et al., 2022; Li et al., 2021, 2022)
encodegeneral domain knowledgeby training a shareddomain-agnostic
model across various source domains. The learned model is directly
transferred to unseen tasks from the target domain without knowledge
selection. Then they fine-tune considerable model parameters from a
tiny support set to adapt to the target task. b In contrast, HybridPrompt
adopts a domain-aware prompting architecture by initially learning Ns

Domain Prompts P1, P2, . . . , PNs to encode domain-specific informa-
tion for Ns source domains, avoiding inter-domain interference. For a
target task, ourmodel can identify and aggregate highly relevantDomain
Prompts using affinity scores A = {ai }Ns

i=1 to create the Transferred
Prompt Pt . This selective approach allows us to transfer useful knowl-
edge from source domains to the target task efficiently. Besides, we
achieve efficient target domain adaptation by solely adapting theAdap-
tive Prompt Pa with a small number of parameters

Ns source domains; (2) cross-domain transfer to transfer
the knowledge learned from source domains to Nt unseen tar-
get domains; (3) target domain adaptation to incorporate
target characteristics for complementing insufficient trans-
ferred knowledge, particularly in complex target tasks. The
ETA paradigm enables the model to maintain robust few-
shot recognition capability when migrating across different
domains.

Despite the success, the prior CD-FSL methods (Guo
et al., 2020; Li et al., 2021, 2022;Hu et al., 2022) still struggle
to adequately address the large domain shift issue. By diving
into the essence of CD-FSL, we identify several limitations
within the ETA paradigm (see Fig. 1a). (1) In the encoding
step, preceding methods (Guo et al., 2020; Li et al., 2021,
2022; Hu et al., 2022) encode knowledge from diverse source
domains by training a domain-agnostic feature extractor in a
multi-domain learning manner. However, sharing the feature
extractor across domains may inevitably introduce inter-
domain interference, due to the fact that substantially varied
source domains often prioritize different learning objectives.
Therefore, it is crucial to incorporate domain-specific knowl-
edge encoding for diverse source domains. (2) In the transfer
step, a common strategy (Li et al., 2021; Hu et al., 2022; Li
et al., 2022) is to apply the learned domain-agnostic model
to vastly different target domains. However, directly reusing
the model lacks interpretability, as it fails to identify which

aspects of the source domains’ knowledge are useful for the
current task. Furthermore, transferring general knowledge
without effective selection may lead to negative transfer,
where irrelevant and even undesired knowledge hampers
generalization. Thus, a domain-guided selectionmechanism
is essential to identify useful knowledge for proper transfer
to target domains. (3) In the adaptation step, recent meth-
ods (Hu et al., 2022; Li et al., 2021, 2022; Requeima et al.,
2019;Bateni et al., 2020) learn task-related parameters froma
tiny support set by either fine-tuning thewhole backbone (Hu
et al., 2022) or tuning the last several network layers (Li et al.,
2021). The former approach causes huge computation costs,
while the latter is restricted in its ability for deep adaptation.
Additionally, tuning a substantial number of parameters from
only a fewsupport samplesmay cause over-fitting.Therefore,
an efficient adaptation mechanism tailored for data-scarce
scenarios is imperative.

To overcome these limitations, we propose a domain-
aware prompting architecture to ameliorate the domain
disparity issue for CD-FSL. Prompting techniques (Lester
et al., 2021; Brown et al., 2020; Liu et al., 2023; Shin
et al., 2020) are originally introduced in the NLP field
to condition the transformer by attaching a prompt to the
input sequence. Different from simply learning additional
prompts, we utilize prompts as plug-and-play knowledge
experts to carry, transfer, and adapt domain knowledge,
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with careful awareness of inter-domain disparities and rela-
tions. Specifically, we polish the ETA paradigm through
three types of key prompts (see Fig. 1b): (1) a collection of
DomainPrompts (D-Prompts) acting as specialized experts
to encode domain-specific knowledge for source domains;
(2) a Transferred Prompt (T-Prompt) that carries appro-
priate knowledge composed from highly relevant D-prompts
for effectively transferring to the target domain, enforc-
ing the transfer process concentrating on potent knowledge;
(3) an Adaptive Prompt (A-Prompt) that captures adaptive
task-related knowledge for complementing the insufficient
transferred knowledge.

Motivated by the above discussion, we propose a novel
architecture for Domain-Aware Prompting, dubbed as
HybridPrompt, to integrate a range of cross-domain learned
prompts for CD-FSL, as shown in Fig. 1b. Initially, we
introduce Ns D-Prompts to augment a domain-agnostic
Vision Transformer (ViT) for Ns source domains. Each D-
Prompt encodes domain-specific knowledge by attentively
interacting with instances from its corresponding source
domain. This approach enables our method could learn spe-
cialized domain patterns without inter-domain interference,
while still maintaining general knowledge shared within
the domain-agnostic model. To fully consolidate domain
knowledge, a self-supervised prompt regularization is pro-
posed to enforce the compatibility between D-Prompts and
domain instances. When encountering a target task T , a
T-Prompt containing effective transferable knowledge is
generated by composing highly relevant D-Prompts. Specif-
ically, we utilize the task embedding aggregated from the
support features in T to selectively retrieveD-prompts based
on inter-domain affinity scores A = {ai }Ns

i=1. T-Prompt can
be seamlessly integrated into ViT layers to inject valuable
source domain knowledge, contributing to positive trans-
fer and dynamic task adaptation. Finally, a small-sized
A-Prompt is optimized on the low-shot data while keeping
the remaining network frozen, thus efficiently rendering an
adaptive representation for challenging target tasks. The col-
laborative learning of D-Prompt, T-Prompt, and A-Prompt
contributes to a hybridly prompted model that incorporates
domain-aware encoding, transfer, and adaptation to enhance
the model’s adaptability and generalizability. Consequently,
our method effectively boosts out-of-domain generalization
capability, particularly in scenarios with substantial domain
disparities, as depicted in Fig. 2.

The contributions of HybridPrompt could be summarized
as follows: (1) We propose a Domain-Aware Prompting
architecture that integrates a variety of cross-domain learned
prompts to address significant domain disparities for CD-
FSL. To the best of our knowledge, this is the first work. (2)
Our HybridPrompt facilitates effective knowledge delivery
from source to target domains by incorporating D-Prompts
for domain-specific knowledge encoding, a T-Prompt for

Fig. 2 (1) We illustrate the Domain Disparity of each domain, includ-
ing both source and target domains. This metric is computed as the earth
mover’s distance (Rubner et al., 1998) between the test split of a given
domain and the training data of all source domains, following (Cui et al.,
2018). Notably, target domains exhibit significantly larger domain dis-
parities from the training data of source domains. (2)We also present the
accuracy improvements achieved by our proposed HybridPrompt over
the baseline (non-prompted ViT, see Sect. 4.3). Our method substan-
tially boosts the performance of target domains, particularly in scenarios
with large domain disparities

selective cross-domain knowledge transfer, and anA-Prompt
for efficient target domain adaptation. (3) Extensive experi-
mental results on the Meta-Dataset benchmark demonstrate
that our method achieves superior performance against state-
of-the-art CD-FSL methods.

2 RelatedWork

In this section, we introduce several lines of research in few-
shot learning, cross-domain few-shot learning, and prompt
learning.

2.1 Few-Shot Learning (FSL)

The literature on FSL can be mainly divided into two
main streams, optimization-based methods andmetric-based
methods. Optimization-based methods (Finn et al., 2017;
Antoniou et al., 2018; Ravi & Larochelle, 2017; Sun et al.,
2019; Lee et al., 2019) use a meta-learner as the opti-
mizer to update the network parameters for new tasks with
limited samples available. The most representative one is
MAML (Finn et al., 2017), which attempts to learn a gener-
alizable model initialization that allows the few-shot learner
to rapidly adapt to new tasks with only a few gradient
descent steps. Metric-based methods (Vinyals et al., 2016;
Snell et al., 2017; Sung et al., 2018; Tian et al., 2020; Liu
et al., 2020; Simon et al., 2020; Ye et al., 2020; Wu et al.,
2021) aim at learning a discriminative embedding space for
the selected similarity metrics. Prototypical Network (Pro-
toNet) (Snell et al., 2017) computes Euclidean distances
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between query samples and class prototypes obtained by
averaging the embedded support samples. The few-shot
prediction is performed by a nearest neighbour classifier.
Several methods (Hou et al., 2019; Wu et al., 2021; Zhang
et al., 2020; Wu et al., 2022) explore local parts for each
sample to construct fine-grained similarity measurements,
thereby deriving discriminative and transferable representa-
tions. Few-shot learning has also been actively studied for the
tasks of semantic segmentation (Cheng et al., 2022; Lang et
al., 2023a; 2023b; 2023c), object detection (Bulat et al., 2023;
Sun et al., 2021; Zhu et al., 2021), and action recognition (Wu
et al., 2022; Perrett et al., 2021; Kumar Dwivedi et al., 2019).
Our method belongs to the metric-based category. However,
directly transferring the above approaches into CD-FSLmay
be suboptimal, due to substantial inter-domain disparities. In
this paper, we propose a novel approach that jointly utilizes
multiple cross-domain learned prompts to build a generaliz-
able few-shot classifier.

2.2 Cross-Domain Few-Shot Learning (CD-FSL)

Aplethora of recent FSLwork (Triantafillou et al., 2019;Guo
et al., 2020; Hu et al., 2022; Li et al., 2021) has been ded-
icated to the cross-domain setting where source and target
domains are significantly dissimilar. To leverage the poten-
tially transferable knowledge from source domains, most of
the previous methods (Guo et al., 2020; Li et al., 2021, 2022;
Hu et al., 2022) directly apply the shared domain-agnostic
model trained on source domains to target domains. How-
ever, these approaches lack the ability to discriminate useful
knowledge for the current task. Other methods (Dvornik
et al., 2020; Liu et al., 2021a) make improvements by design-
ing feature aggregation mechanisms to blend the weighted
features from multiple domain-specific networks. However,
training a domain-specific network for each source domain
is time-consuming and cumbersome. Another line of CD-
FSL methods (Requeima et al., 2019; Li et al., 2022, 2021;
Liu et al., 2021a; Bateni et al., 2020) adapt the model from
the given limited support samples via test-time tuning. A
straightforward solution is to directly fine-tune the whole
network (Hu et al., 2022) or the last network layers (Li et al.,
2021). However, the former incurs substantial memory and
computational costs, while the latter may lead to insufficient
adaptation power. Some other methods (Requeima et al.,
2019; Bateni et al., 2020; Liu et al., 2021a) turn to meta-
learn auxiliary networks to estimate task-related parameters
from the support samples. CNAPs (Requeima et al., 2019)
and SCNAPs (Bateni et al., 2020) estimate task-specific
FiLM layers (including the scale and shift parameters) to
obtain adapted features. However, as the auxiliary network
is solely learned on source domains, it may fail to general-
ize to the target domain. Differently, our method enhances
adaptability for target domains by constructing a domain-

aware prompting architecture that achieves effective source
domain encoding, selective cross-domain transfer, and effi-
cient target domain adaptation, thereby bridging the domain
gap for CD-FSL.

2.3 Prompt Learning

To employ large-scale pre-trained language models to down-
stream tasks, prompt learning (Liu et al., 2023; Li & Liang
, 2021; Lester et al., 2021; Shin et al., 2020; Brown et al.,
2020) has become topical in the natural language processing
field. Initially, prompt learning prepends text instructions to
the input text to enable the language model to understand the
downstream task. To avoid heuristic manual prompt design,
recent works (Lester et al., 2021; Li & Liang, 2021; Jia et
al., 2022; Zhou et al., 2022a, 2022b) propose to learn soft
prompts, i.e., continuous vectors that are tailored for each
downstream task, to capture high-level task characteristics
for instructing the frozen models. The idea of soft prompt
learning has been extended to cross-modality tasks (Zhou et
al., 2022a, 2022b; Zhang et al., 2023). CoOp (Zhou et al.,
2022a) and CoCoOp (Zhou et al., 2022b) build upon the
vision-language model CLIP (Radford et al., 2021) by intro-
ducing soft prompt tuning, attempting to adapt the pre-trained
model to various cross-modality tasks. Recently, prompt
learning has also been explored in vision tasks. VPT (Jia
et al., 2022) attaches randomly initialized prompt tokens to
the Vision Transformer and optimizes them to incorporate
instructive information. However, it is non-trivial to directly
use prompt learning to adapt the cross-domain few-shot
model due to limited supervised samples and non-negligible
domain shift. To unveil the important values of prompt
learning in CD-FSL, our method designs a collection of
cross-domain learned prompts for domain-aware encoding,
transfer, and adaptation, significantly enhancing the gener-
alization capability of the model against substantial domain
disparities.

3 Our Approach

In this section, we first introduce some preliminaries includ-
ing the problem setting and backbone network. Then we pro-
vide a detailed introduction of the proposed HybridPrompt,
which consists of three modules (as shown in Fig. 3): (1)
the Source Domain Prompt Learning module (Sect. 3.2)
learns a collection of Domain Prompts to independently
encode domain-specific knowledge for source domains; (2)
theCross-domainPromptTransfermodule (Sect. 3.3) gen-
erates the Transferred Prompt for arbitrary target tasks by
retrieving relevant Domain Prompts; (3) the Target Domain
Prompt Adaptation module (Sect. 3.4) complements the
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Fig. 3 The architecture of HybridPrompt: (1) The source domain
prompt learning module initially learns Ns Domain Prompts (D-
Prompts) P1, . . . , PNs to encode domain-specific knowledge for var-
ious source domains. A self-supervised prompt regularization Lssl
is proposed to ensure alignment between the D-Prompts and corre-
sponding domain instances. (2) The cross-domain prompt transfer
module establishes a prompt-based knowledge store Kstore to store D-
Prompts, serving as a cross-domain bridge between the source and target

domains. For each target task, a Transferred Prompt (T-Prompt) is gen-
erated by retrieving and composing highly-relevant D-Prompts stored
in Kstore, with affinity scores {a1, . . . , aNs } as weights. (3) The target
domain prompt adaptation module introduces an Adaptive Prompt
(A-Prompt) and optimizes it to incorporate task characteristics from
low-shot target data while keeping the remaining network frozen. Ulti-
mately, the T- and A-Prompts are inserted into different ViT layers to
simultaneously activate the transferred and adaptive knowledge

insufficient transferred information by learning an Adaptive
Prompt.

3.1 Preliminaries

Problem Setting. In the general few-shot learning proto-
col, a large-scale meta-training set Dtrain is utilized to train
a generalizable model capable of classifying novel classes
from the meta-test set Dtest . Notably, Dtrain and Dtest con-
tainmutually exclusive classes, i.e., the classes in the two sets
have no overlap. In traditional few-shot learning, Dtrain and
Dtest are split from the same dataset. However, in the chal-
lenging cross-domain setting, Dtrain and Dtest are defined
over a union of diverse datasets. Thus the new classes in
Dtest originate from different datasets from Dtrain , result-
ing in a large domain gap. Here, we denote the Ns datasets
in Dtrain as source domains, and the Nt datasets in Dtest

as target domains. Classification is performed over a series
of tasks (or episodes) T to evaluate the model’s few-shot
learning ability. Each few-shot task T is composed of a sup-
port set S and a query set Q drawn from the same dataset
(or domain). Specifically, an N -way K -shot task T contains
N classes in the support set S with K samples per class,
i.e., S = {(xsi , ysi )}NK

i=1 , where xsi and ysi ∈ {1, 2, . . . , N }
denote the images and labels, respectively. The query set

Q = {(xqi , yqi )}|Q|
i=1 consists of |Q| query samples. Themeta-

training process is also conducted on tasks to resemble the
meta-test process. Each iteration randomly samples an N -
way K -shot task as a mini-batch. To elaborate, we initially
randomly select N classes from the training class set. Sub-
sequently, for each class, we sample K support images and
|Q| query images. Consequently, each mini-batch comprises
N × (K + |Q|) samples. During the meta-test, the ultimate
goal of each task is to classify a query sample xqi ∈ Q into
one of the N support classes, given only a few labeled sam-
ples from S.

VisionTransformer.Weintroduce the details of our back-
bone network, the Vision Transformer (Dosovitskiy et al.,
2021), which is a pure Transformer architecture for the
vision domain. It first reshapes and divides the input image
x ∈ R

H×W×C into a sequence of patches x p ∈ R
L×(b2×C),

where L is the number of patches and b is the patch size. A
patch projection layer embeds the image patches into patch
tokens xe ∈ R

L×D , where D is the embedding dimen-
sion. To simplify notation, we assume the first token of
xe is the classification token. The patch token sequence
xe is fed into the Transformer model Ht that consists of
a series of Transformer layers containing attention and MLP
sub-layers. During the classification task, the first token of
h = Ht ([xe])[0, :] is utilized for prediction.
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3.2 Source Domain Prompt Learning

Different from previous methods (Guo et al., 2020; Li
et al., 2021, 2022; Hu et al., 2022) that learn a shared
domain-agnostic feature extractor, our method designs a
flexible feature backbone integrated with Domain Prompts
(D-Prompts) to decouple the encoding of domain-specific
and domain-shared knowledge for different source domains.

Domain Prompt Learning. During the meta-training
stage, we introduce a collection of D-Prompts P =
[P1, P2, . . . , PNs ] ∈ R

Ns×m×D as plug-and-play knowl-
edge experts to encode domain-specific knowledge for Ns

source domains, where m denotes the prompt length. For
each source domain, we learn a unique domain prompt.
Following the common practice in prior prompting meth-
ods (Lester et al., 2021; Zhou et al., 2022a), the prompt
tokens are prepended to the patch token sequence before
being fed into the domain-agnostic ViT encoder Ht . The
domain-specific representation h for the sample x from the
i-th source domain is extracted as:

h = Ht ([Pi ; xe])[0, :], (1)

where Pi denotes the D-Prompt associated with the i-th
source domain. During meta-training, P is optimized via
attention interaction with a multitude of image tokens from
the same domain, effectively encoding frequently occurring
specialized domain patterns into semantic meta-knowledge
across diverse tasks. By decoupling domain-specific knowl-
edge from the domain-agnostic backbone, our method incor-
porates domain-dependent inductive biases without compro-
mising the general representation.

Self-supervised Prompt Regularization. The ideal D-
Prompts are expected to be class-agnostic yet domain-
aware, i.e., capturing essential domain patterns shared across
classes. To steer D-Prompts to comprehensively grasp the
domain knowledge, we propose a self-supervised prompt
regularization motivated by the SwAV framework (Caron et
al., 2020), a contrastive self-supervised learning approach.
The prompt tokens are regarded as prototypes in SwAV
(Caron et al., 2020) to compute codes for images. Specif-
ically, given a pair of extracted features h(i)

a , h(i)
b ∈ R

D

randomly sampled from the i-th source domain in the current
batch, the objective for regulating the D-Prompt Pi ∈ R

m×D

is formulated as:

Lssl = l(h(i)
b , qa) + l(h(i)

a , qb), (2)

where the function l(h, q) measures the fit between the fea-
ture h and a code q:

l(h(i)
b , qa) = −

m∑

k=1

qka log( p
k
b), (3)

where pkb = exp(h(i)
b ·Pk

i )
∑

k′ exp(h
(i)
b ·Pk′

i )
, and Pk

i is the k-th token (pro-

totype) of the i-th D-Prompt. qa ∈ R
m denotes a code

calculated by the Sinkhorn algorithm (Cuturi, 2013), where
h(i)
a is mapped to the prompt tokens {Pk

i }mk=1, and q
k
a denotes

the k-th dimension. Please refer to SwAV (Caron et al., 2020)
for more details. By enforcing consistency between prompt-
based predictions of instances from the same domain, the
compatibility between D-Prompts and instances from the
same domain can be enhanced.

3.3 Cross-Domain Prompt Transfer

In contrast to previous methods (Li et al., 2022, 2021;
Hu et al., 2022) that rely on implicit knowledge transfer
through indiscriminate feature reuse, our approach estab-
lishes explicit cross-domain knowledge transfer by the con-
struction of a prompt-based knowledge store Kstore as an
inter-domain bridge. In Kstore, the learned Ns D-Prompts
P are stored as values and keys. The acquired knowledge
from Kstore can be flexibly combined and extended to an
arbitrary task T with domain awareness. To this end, a
domain-guided prompt retrieval mechanism is proposed.
Specifically, for the taskT , we aggregate its support features
h j
supp into a task descriptor te:

te = 1

NK

NK∑

j=1

h j
supp, (4)

where h j
supp = H̃t (x

j
supp), and H̃t denotes the frozen ViT.

The task descriptor te is treated as the retrieval query tomatch
with the prompt keys. During knowledge retrieval, we first
compute inter-domain affinities A = {ai }Ns

i=1 between te and
D-Prompts P :

ai = �(te, Pi )
∑Ns

j=1 �(te, Pj )
, (5)

where � denotes the cosine similarity metric. Subsequently,
a Transferred-Prompt (T-Prompt) Pt ∈ R

m×D for T can
be generated as the combination of selected D-Prompts with
A acting as gating:

Pt =
Ns∑

i=1

ai Pi . (6)

The T-Prompt can be seamlessly inserted into the net-
work by input appending to provide task-level instructions:
Ht ([Pt ; xe]). The domain-guided prompt composition and
retrieval enable flexible knowledge reuse and fine-grained
knowledge transfer for diverse domains, thus dynamically
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assisting in producing task-adaptive representations for novel
tasks.

3.4 Target Domain Prompt Adaptation

When newly emerged target domains exhibit substantial dis-
parities from source domains, it may be insufficient to solely
rely on the transferred knowledge. Therefore, we develop
a target domain adaptation mechanism with a learnable
Adaptive-Prompt (A-Prompt) to incorporate additional
task-related characteristics during the meta-test stage. The
A-Prompt Pa ∈ R

m×D is inserted into the ViT in the
same manner as the T-Prompt: Ht ([Pa; xe]). Pa is updated
by minimizing a classification loss computed over a few
labeled support samples. Notably, only A-Prompt is tun-
able, while the other components, including the ViT model
and the T-Prompt Pt , remain fixed. The entire adaptation
process can be accomplished by several gradient descent
steps. In contrast to full fine-tuning, A-Prompt adaptation
is parameter-efficient and has favorable test-time compu-
tational complexity, leading to less risk of over-fitting to
the support set. By cooperating with T- and A-Prompts, our
model can simultaneously activate transferred and adaptive
knowledge for arbitrary target domains.

3.5 Training Objectives

TheT-Prompt andA-Prompt inject source-transferredknowl-
edge and task-specific knowledge into the Transformer
model, respectively. In Sects. 3.3 and 3.4 we introduced how
to insert them into the input Transformer layer, a strategy
commonly used in prior prompting methods (Lester et al.
2021; Zhou et al. 2022a, b). However, it’s worth noting that
different backbone layers of representations exhibit varying
levels of abstraction (Wang et al., 2022; Raghu et al., 2021;
Zeiler & Fergus, 2014), thus giving distinct activations to
different knowledge encoded in T- and A-prompts.

Therefore, we propose amulti-layered prompting strat-
egy to explore the optimal configuration for placing T- and
A-Prompts in separate layers. The multi-layered prompts are
denoted as P t = {P(l)

t |l ∈ π t }, Pa = P(l)
a |l ∈ πa}, where

π t andπa denote the sets of contiguous layer indices selected
for Pt and Pa , respectively. For the l-th layer, the prompting
function is formulated as:

[_, xle] = Hl
t ([P(l−1)

x ; xl−1
e ]), (7)

where P (l−1)
x ∈ {P (l−1)

t , P (l−1)
a } and l ∈ {π t ,πa}. We

search for the optimal π t and πa by grid search (see Sect. 4.5
for more details), which is empirically proved to demonstrate
consistently strong performance across different tasks and
domains.

The final prediction is performed by a prototype-based
classifier (Snell et al., 2017). Specifically, given a task T ,
we first compute the prototype for each class in T : ĥc =
1
K

∑K
i=1 h

s
i , where ĥc denotes the prototype for the c-th class,

and hsi denotes the support feature extracted by H t with its
label ysi = c. Then, the class probability over class c ∈
{1, 2, . . . , N } for each query point hq ∈ Q is calculated as

p(y = c|xq) = exp(�(hq , ĥc))
∑N

c′=1 exp(�(hq , ĥc′))
, (8)

where� denotes the cosine similarity metric. The classifica-
tion loss is formulated as negative log-probability:

Lcls = − 1

|Q|
∑

(hq ,yq )∈Q
log p(y = yq |hq). (9)

As such, the final training objective for HybridPrompt is as
follows: Ltotal = Lcls + λsslLssl , where λssl is the weight
coefficient of Lssl .

4 Experiment

In this section, we conduct extensive experiments to evaluate
the performance of our proposed algorithm on the large-
scale CD-FSL benchmark Meta-Dataset (Triantafillou et al.,
2019). We first introduce the used datasets and implementa-
tion details, and then present extensive experimental results
to verify the efficacy of our method.

4.1 Experimental Setup

Datasets. We evaluate our HybridPrompt on Meta-Dataset
(Triantafillou et al., 2019), a comprehensive cross-domain
few-shot learning benchmark collecting ten public image
datasets from a diverse range of domains: ILSVRC-2012
(ImNet) (Deng et al., 2009), Omniglot (Omni) (Lake et al.,
2015), FGVC-Aircraft (Acraft) (Maji et al., 2013), CUB-
200-2011 (Bird) (Wah et al., 2011), Describable Textures
(DTD) (Cimpoi et al., 2014), QuickDraw (QDraw) (Jonge-
jan et al., 2016), FGVCx Fungi (Fungi) (Schroeder & Cui,
2018), VGG Flower (Flwr) (Nilsback & Zisserman, 2008),
Traffic Signs (Sign) (Houben et al., 2013) and MSCOCO
(COCO) (Lin et al., 2014). We adopt the standard evalua-
tion protocol (Triantafillou et al., 2019) to use the first eight
datasets as source domains for meta-training, where each
dataset is further divided into train/val/test splits with dis-
joint classes. The remaining two datasets, i.e., Sign (Houben
et al., 2013) and COCO (Lin et al., 2014), are reserved as
unseen target domains for meta-test to measure the out-of-
domain generalization performance. The test splits of source
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domain datasets are used to evaluate the performance of
in-domain generalization during the meta-test. Besides, we
follow the practice in CNAPS (Requeima et al., 2019) to
incorporate three additional datasets to enrich the unseen
domains, i.e., MNIST (MNS) (LeCun & Cortes, 2010),
CIFAR-10 (CF10) (Krizhevsky et al., 2009), and CIFAR-100
(CF100) (Krizhevsky et al., 2009).

Implementation Details. We adopt the Vision Trans-
former (ViT-Small) (Dosovitskiy et al., 2021) pre-trained by
the self-supervised learning algorithm DINO (Caron et al.,
2021) as our backbone model, following the practice in
PMF (Hu et al., 2022). The prompt lengthm is set as 8 for D-
, T- and A-Prompts. For multi-layered prompting, we insert
T-Prompts into shallow ViT layers (π t = [0, 1, 2, 3]), and
A-Prompts into middle layers (πa = [4, 5, 6, 7, 8]). λssl is
set as 0.1. During meta-training, we adopt an episodic train-
ing protocol to train the model on source datasets. We use an
SGD optimizer with a cosine annealing learning rate sched-
ule plus a warm-up strategy, with the learning rate starting
from 10−6, increasing to 5 × 10−5 in 5 warm-up epochs,
and gradually decreasing to 10−6. In the meta-test stage, we
report the average classification accuracy of 600 sampled
tasks/episodes from the meta-test split of each dataset. We
conduct experiments under the varied-way varied-shot set-
ting,where the number ofways N , shots K , and query images
|Q| are randomly sampled with respect to the dataset speci-
fications. Given that the Meta-dataset has 8 source domains,
the number of domain prompts is accordingly set as 8. In the
target domain prompt adaptation module, the A-Prompt is
tuned for 30 iterations by using Adadelta optimizer (Zeiler ,
2012), with the learning rate set as 0.1 for in-domain datasets
and 1 for out-of-domain datasets.

4.2 Comparison to State-of-the-Art Methods

We compare our HybridPrompt with several state-of-the-art
methods on Meta-Dataset benchmark (Triantafillou et al.,
2019). The results of the Overall Average Accuracy (Over-
all Avg.), In-domain Accuracy (ID Avg.) and Out-of-domain
Accuracy (OD Avg.) are reported in Table 1.

ComparedMethods.We compare HybridPrompt against
several state-of-the-art (SOTA) CD-FSL methods including
ProtoNet (Snell et al., 2017), CNAPs (Requeima et al., 2019),
SCNAPs (Bateni et al., 2020), URT (Liu et al., 2021a), tri-
M (Liu et al., 2021b), FLUTE (Triantafillou et al., 2021),
URL (Li et al., 2021), TSA (Li et al., 2022), and PMF (Hu
et al., 2022). Most of these SOTA methods, except for
PMF (Hu et al., 2022), utilize ResNet-18 as the backbone,
which is somewhat out-of-date compared to the leading
work (Dosovitskiy et al., 2021; Carion et al., 2020; Xie et al.,
2021) in other computer vision tasks. Therefore, we follow
PMF (Hu et al., 2022) to build our model upon a pre-trained
ViT backbone, using the same pre-training strategy (Caron

et al., 2021) and model scale. For a fair comparison, we
re-implement several state-of-the-art CD-FSL methods (i.e.,
URL (Li et al., 2021) and TSA (Li et al., 2022)) by using
the same ViT backbone as HybridPrompt and strictly fol-
lowing their released implementation,1 represented as URL∗
and TSA∗ in Table 1. Specifically, We follow TSA (Li et al.,
2022) to insert linear adapters after each ViT layer in a resid-
ual manner. As for URL (Li et al., 2021), we insert linear
layers after the ViT output embedding layer. Besides, we
complement the results of PMF on MNS, CF10, and CF100
by using their officially released code.2

Result Analysis. As observed in Table 1, HybridPrompt
achieves the highest performance in both in-domain and
out-of-domain accuracies, establishing a new state-of-the-art
record (+ 2.2%) on Meta-Dataset. Specifically, our method
outperforms previous methods on 9 out of 13 datasets.
HybridPrompt notably surpasses the best-performing
method, PMF (Hu et al., 2022), particularly on Fungi
(+ 4.1%), COCO (+ 3.3%), and CF100 (+ 4.1%). Based
on these findings, we have several observations. (1) In-
domain Results. On in-domain datasets, HybridPrompt
achieves superior generalization performance compared to
previous methods, particularly on fine-grained datasets such
as e.g., Fungi (+ 4.1%). These outcomes demonstrate the
effectiveness of HybridPrompt in adapting to in-domain
unseen classes, indicating that D-Prompts adeptly capture
domain-specific characteristics for the source domains. (2)
Out-of-domain Results. Our method demonstrates remark-
able performance and high robustness in the out-of-domain
setting against substantial domain disparities. Possible rea-
sons can be attributed to the collaboration of three types of
cross-domain learned prompts, facilitating effective knowl-
edge encoding, transfer, and adaptation across domains. (3)
State-of-the-art Comparison. Compared to test-time tuning-
based methods (URL (Li et al., 2021), TSA (Li et al., 2022),
and PMF (Hu et al., 2022)) with the SAME ViT back-
bone, HybridPrompt consistently leads in performance in
both in-domain and out-of-domain generalization.Moreover,
our method only adapts a tiny amount of prompt param-
eters, making it more efficient than the best-performing
method, PMF, which fine-tunes the entire network for every
task. Detailed efficiency comparison results are provided in
Sect. 4.6. Compared with methods like CNAPS (Requeima
et al., 2019) and SCNAPs (Bateni et al., 2020) that rely
on generation networks to estimate task-related parameters,
our method also achieves superior performance. Genera-
tion networks trained on source domains may not generalize
effectively to target domains. In contrast, ourmethod exhibits
higher task adaptability by dynamically incorporating the

1 https://github.com/VICO-UoE/URL.
2 https://github.com/hushell/pmf_cvpr22.
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Table 2 Ablation results on the
Meta-Dataset

M Method ID Avg. OD Avg. Overall Avg.

1 Baseline 83.21 66.31 76.71

2 T-Prompt 85.41 74.10 81.06

3 T-Prompt + Lssl 86.99 75.38 82.52

4 A-Prompt 84.05 79.53 82.31

5 G-Prompt 83.89 67.14 77.45

6 G-Prompt + A-Prompt 84.57 77.82 81.97

7 T-Prompt + Lssl + A-Prompt (HybridPrompt) 87.34 83.90 86.02

The bold font numbers denote the best results

transferred experience and task-specific knowledge via var-
ious prompts.

4.3 Ablation Studies

In this section, we conduct comprehensive ablation studies
to illustrate the effectiveness of each model design.

Baseline. In establishing the baseline model, we utilize
the non-prompted ViT model as the backbone for feature
extraction and adopt the same training strategy as Hybrid-
Prompt. During inference, the meta-trained baseline model
is directly applied to the target domain for prototype-based
classification.

The Effectiveness of T-Prompt and A-Prompt. As
shown in Table 2, the complete version of HybridPrompt
significantly surpasses the classical baseline by 17.5% in
OD Avg. and 9.3% in Overall Avg. (M1 vs. M7). From
Table 2, we have several observations. (1) The improvement
of different prompts on OD Avg. is generally higher than ID
Avg. This aligns with our design rationale, which prioritized
addressing the issue of domain disparities and enhancing out-
of-domain generalization. (2) The utilization of T-Prompt
with Lssl (see M3) yields conspicuous improvements in OD
Avg. (+ 9%) compared to the baseline, demonstrating the
crucial role of knowledge selection in cross-domain transfer
for resolving domain discrepancies. Besides, T-Prompt also
enhances in-domain generalization (+ 3.8%), which can be
attributed to the effective transfer of well-encoded domain-
specific knowledge from source domains. The decoupled
learning of domain-shared and domain-specific knowledge
eliminates cross-domain interference and contributes to both
in-domain and cross-domain perception. (3) The introduc-
tion of A-Prompt (see M4) brings significant improvement
in the out-of-domain setting (+ 13% on average), verify-
ing the strong adaptation capability of A-Prompt on target
domains. Furthermore, as Table 2 indicates, the utilization of
A-prompt yields only marginal improvements in in-domain
performance, in contrast to its impact on out-of-domain
scenarios. The inconsistent improvement arises from the
instability of prompt tuning with a fixed learning rate on
in-domain datasets. In scenarios where domain disparities

are minimal, the model trained on source domains alone
suffices, rendering prompt tuning potentially distorting the
well-established representation.

The Effectiveness of Self-Supervised Prompt Regular-
ization Lssl . Lssl is used to guide the learning of D-Prompts
for improving source domain knowledge learning. Here, we
investigate the effect ofLssl and present the results in Table 2.
Compared to the complete T-Prompt (M3), the removal of
Lssl (M2) causes a severe performance decline, particularly
on in-domain datasets (−1.6%), justifying the effectiveness
of Lssl in steering the D-Prompt to consolidate domain-
specific knowledge. By encouraging the D-Prompt to align
closer to the centroid of its associated domain, Lssl con-
tributes to the generation of more reliable and informative
D-Prompts with discriminative domain patterns captured.

Comparisonwith theGeneral Prompt.To further verify
the efficacy of the cross-domain prompt transfer module, we
substitute theD-Prompt andT-Promptwith aGeneral Prompt
(denoted as G-Prompt) shared across all source domains,
maintaining the same number of additional parameters. After
training on source domains, the G-Prompt is directly trans-
ferred to the target domain. As shown in Table 2, introducing
the G-Prompt (M5) yields only marginal improvements (+
0.7% inOverallAvg.) compared to the baseline,which is sub-
stantially inferior to the T-Prompt that carries selected source
domain knowledge. Moreover, even when further learning
the A-Prompt alongside the G-Prompt (M6), its performance
still significantly lags behind our HybridPrompt (- 4.0%). In
fact, learning a G-Prompt is essentially sharing the feature
backbone across domains. Contrary to D-Prompts, the G-
Prompt only captures domain-general information, failing to
handle domain disparities when simultaneously training on
all source domains. Additionally, transferring G-Prompt to
the target domain overlooks inter-domain relations and the
identification of useful knowledge suited for transfer, which
are key aspects addressed by our method.

Comparison with Other Prompt Learning Methods
We compare our approach with other prompt learning meth-
ods, including CoOp (Zhou et al., 2022a), CoCoOp (Zhou
et al., 2022b), and VPT (Jia et al., 2022). We re-implement
these methods using the same backbone as HybridPrompt.
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Table 3 Comparison with other prompt learning methods

M Method ID Avg. OD Avg. Overall Avg.

1 Baseline 83.21 66.31 76.71

2 VPT*/Visual-CoOp* 84.13 79.26 82.26

3 Visual-CoCoOp* 83.78 71.52 79.06

4 HybridPrompt 87.34 83.90 86.02

The bold font numbers denote the best results

For VPT, prompts are inserted at every ViT layer, follow-
ing the original VPT-deep methodology. While CoOp and
CoCoOp are built upon the vision-language model, our
method employs a pure vision backbone. For fair com-
parison, we re-implement the visual version by integrating
prompts into the ViT backbone, yielding Visual-CoOp and
Visual-CoCoOp. For Visual-CoOp, a prompt is learned for
each task shared by categories. It is evident that the Visual-
CoOp shares essential similarities with VPT, hence we
represent their results together. Regarding Visual-CoCoOp,
we employ a linear meta-net to generate image-specific
prompts. The outcomes are depicted in Table 3. Notably,
VPT/Visual-CoOp and Visual-CoCoOp significantly behind
behind ourmethod, providing strong evidence for the efficacy
of our domain-aware prompting architecture. These methods
are not explicitly tailored for CD-FSL, thus struggling in out-
of-domain scenarios. Conversely, our method harnesses the
prompt-based cross-domain transfer and adaptation to effec-
tively mitigate domain gap issues.

Length of Prompt. The length of the prompt is related to
the number of introduced additional parameters. We exam-
ine the impact of prompt length m in {1, 4, 6, 8, 12, 16}
and fix other settings as default. The results for D-Prompt
and A-Prompt are shown in Fig. 4a, b. The optimal length for
both prompts is 8. For D-Prompt, accuracy exhibits relatively
smooth changes for different prompt lengths. Notably, even
using a single prompt token yields competitive performance
compared to prior approaches, validating the effectiveness
of prompt-based knowledge transfer and task adaptation.

When increasing the prompt length to 8, overall accura-
cies demonstrate growth, given that longer prompts are more
expressive for conveying more domain knowledge. How-
ever, excessively increasing the prompt size leads to saturated
performance, as redundant information and noises are intro-
duced. Overall, the model performance is robust against
different prompt length choices.

Number of Tuning Iterations. To determine the optimal
optimization configuration for A-Prompt adaptation, we vary
the number of tuning iterations in {5, 10, 20, 30, 40, 60} and
keep other settings as default. Herewe only use theA-Prompt
without employing the T-Prompt. As depicted in Fig. 4b, the
model starts converging after 20 iterations and achieves peak
performance when tuned for 30 iterations. However, perfor-
mance decreases with more tuning iterations, implying that
prompt adaptation suffers from the over-fitting issue. These
findings verify the efficiency of prompt adaptation which
requires only a few dozens of optimization steps and limited
adaptation time for updating to a new task.

4.4 DifferentWays of Retrieving Domain Prompts

During the cross-domain prompt transfer, we retrieve rel-
evant D-Prompts P by weighted interpolation (denoted as
Weighted Sum) as the Transferred Prompt Pt . Here we com-
pare several alternative retrieval strategies (conducted exper-
iments without Pa), including selecting with the maximum
affinity score (Max), concatenating top 3 or all D-Prompts
(Concat-Top3 and Concat-All), and averaging (Mean). As
shown in Table 4, Weighted Sum outperforms Mean in out-
of-domain accuracy by a considerablemargin, indicating that
carefully selecting knowledge according to domain relevance
is essential for effective knowledge transfer. Indiscrimi-
nate transfer of prompts may introduce irrelevant knowl-
edge noise, leading to negative transfer. Concatenating all
prompts as the T-Prompt yields the worst results due to the
introduction of considerable noises and redundancies. The
Concat-Top3 strategy eliminates the influence of less relevant
prompts but still underperforms, implying that prompt aggre-

Fig. 4 The impact of a the length of the D-prompt, b the length of the A-prompt, and c the number of tuning iterations for optimizing the A-Prompt
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Table 4 Comparison of different strategies of retrieving D-Prompts,
including selectingwith themaximumaffinity (Max), concatenating top
3 or all D-Prompts (Concat-Top3 and Concat-All), averaging (Mean),
and interpolation with affinities (Weighted Sum)

Method ID Avg. OD Avg. Overall Avg.

Max 86.14 73.36 81.22

Concat-Top 3 86.41 74.15 81.69

Concat-All 86.06 72.34 80.78

Mean 86.40 74.44 81.80

Weighted Sum 86.99 75.38 82.52

The bold font numbers denote the best results

gation via concatenation is inferior to weighted summation.
The Max strategy only considers the most relevant prompt,
neglecting the composite power of related knowledge from
other prompts that could also be crucial for the current task.
Based on these observations, we select the Weighted Sum
as the retrieval strategy for achieving selective cross-domain
transfer.

4.5 The Selection of Layers to Insert the Prompt

We have demonstrated the best-performing model equipped
with a multi-layered prompt learning strategy in Sect. 4.2. In
this section, we explore the optimal configuration for how to
insert Pt and Pa in different network layers.

Comparison of Inserting the Prompt to Different
Single Layers. We employ a heuristic search strategy to
determine the optimal single-layered prompting strategy for
the T-Prompt Pt andA-Prompt Pa . As shown in Fig. 5, insert-
ing the T-Prompt at the 3rd layer yields the best performance.
The performance gradually drops for higher layers. As for
the A-Prompt, the 4th layer emerges as the optimal choice.
Attaching A-Prompt to the 4th to 8th layers achieves signif-
icantly higher results compared other layers. Notably, the
accuracy declines when prompts are inserted into deeper
layers (i.e., 9th to 11th layers). This observation may be
attributed to the fact that inserting prompts into deep layers
affect fewer subsequent layers compared to shallower layers.
Another noteworthy observation is that the optimal layers for
Pt and Pa do not overlap. Pt provesmore effective in shallow
layers, while Pa performs better in middle layers. This find-
ing aligns with the intuition that different network layers of
representation capture varying types of knowledge (Wang
et al., 2022; Raghu et al., 2021; Zeiler & Fergus, 2014).
Shallow layers tend to learn low-level generic features (such
as edges or colors) shared across different domains, while
higher layers capture specific semantic patterns for a partic-
ular domain. Thus, T- and A-Prompts are indispensable, and
their collaboration provides complementary knowledge for
bridging large domain gaps.

Fig. 5 The effect of attaching. a the T-Prompt and b the A-Prompt to
different single network layers

Comparison of Single-layered and Multi-layered
Prompting.Based on the results from single-layered experi-
ments, we conduct further experiments to search the optimal
configuration for multi-layered prompting: π t = [0, 1, 2, 3]
for the T-Prompt and πa = [4, 5, 6, 7, 8] for the A-Prompt.
We compare the single-layered prompting (i.e., attaching
the Pt and Pa to the 3rd and 4th layers, respectively) with
the multi-layered version in Table 5. The latter consis-
tently outperforms the former for both T- and A-Prompts.
Notably, the multi-layered T- and A-Prompts claim a sig-
nificant lead in out-of-domain accuracy (+ 1.5% and +
2.1%), verifying the critical role of prompting depth in
cross-domain generalization. Compared to single-layered
prompting, multi-layered prompting attains more compre-
hensive adaptation by dynamically activating different layers
of knowledge.

4.6 Efficiency Comparison

We evaluate the efficiency of HybridPrompt by comparing it
to several test-time tuning-based methods (Li et al., 2021,
2022; Hu et al., 2022) in terms of the number of tuned
parameters and tuning time per task, as shown in Table 6.
URL (Li et al., 2021) tunes a pre-classifier linear mapping
to adapt learned features to the current task, while TSA (Li
et al., 2022) tunes task-specific adapters inserted in every
network module. PMF (Hu et al., 2022) fine-tunes the entire
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Table 5 Comparison between
single-layered prompting
strategy and multi-layered
prompting for the T- and
A-Prompts

Method type ID Avg. OD Avg. Overall Avg.

T-Prompt Single-layered 86.32 73.87 81.53

Multi-layered 86.99 75.38 82.52

A-Prompt Single-layered 83.92 77.44 81.43

Multi-layered 84.05 79.53 82.31

The bold font numbers denote the best results

Table 6 Efficiency comparison
with other test-time tuning-
methods with regard to the
number of tuned parameters
(Tuned Params.) and the
adaptation time per task
(Time/Task)

Method ID Avg. OD Avg. Overall Avg. Tuned Params. Time per task

URL* 84.0 75.3 80.7 262k 2.93 s

TSA* 84.1 82.5 83.5 1.48m 19.72 s

PMF 85.0 82.0 83.8 21.7m 27.17 s

HybridPrompt 87.3 83.9 86.0 15.5k 9.75 s

The bold font numbers denote the best results
*Denotes the re-implementation with the same ViT backbone

Fig. 6 The heatmap of affinity
scores between test domains
(columns, each with 600 tasks
sampled) and D-Prompts
learned on source domains
(row)s

backbone network for each task by using the support set.
Compared to PMF (Hu et al., 2022) based on full fine-tuning,
HybridPrompt simultaneously achieves higher efficiency and
adaptation performance simultaneously, requiring signifi-
cantly less tuning time (9.75 s vs. 27.17 s) and fewer tuned
parameter amount (15.5K vs. 21.7M). Our method updates
only a small number of prompt parameters but demonstrates
stronger task adaptation power and lower risk of over-fitting.
Compared with URL, HybridPrompt requires slightly longer
tuning time, but notably surpasses it in accuracy while
reducing the number of tuned parameters by 90%. Over-
all, these results verify that our method strikes an optimal
balance between generalization performance and parameter
efficiency.

4.7 Interpretability of Prompt Selection

To illustrate the details of cross-domain prompt transfer pro-
cess, we visualize the distribution of affinity scores between

each dataset (600 tasks sampled) and the learned D-Prompts
P during prompt selection. The visualization results are
depicted in Fig. 6.

For novel categories from seen domains (the first 8
datasets), the highest affinity scores are consistently assigned
to the D-prompt of the same domain, validating that the
learned D-Prompts are effectively aligned with their corre-
sponding source domains to encode domain-specific knowl-
edge. Furthermore, for some in-domain datasets, D-Prompts
from other domains also exhibit a certain level of contri-
bution (e.g., InNet, Omni). Unseen target domains exhibit
varied inter-domain relations. For instance, QDraw shows
relevance to several target domains, as it comprises graffiti
drawings with generalizable visual patterns (such as shapes
and edges). Somedomains have high affinities as they contain
similar classes. For example, MNS has a certain probability
of selecting Omni, as both datasets comprise digit images.
Target domains COCO, CF10, and CF100 are relevant to
ImNet, as these domains contain similar common objects.
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Table 7 The results of the
varying-way five-shot setting
and the five-way one-shot
setting

Accuracy SCNAPS SUR URT URL∗ TSA∗ PMF Ours

Varying-way five-shot setting

ID Avg. 69.0 71.2 73.8 80.4 79.8 80.1 84.3

OD Avg. 62.6 56.0 59.6 60.3 72.3 66.6 76.6

Overall Avg. 66.5 65.4 68.3 72.6 76.9 74.9 81.3

Five-way one-shot setting

ID Avg. 65.0 64.0 70.6 74.8 73.6 74.9 80.9

OD Avg. 57.7 49.6 57.5 59.2 58.4 57.2 66.8

Overall Avg. 62.2 58.5 65.5 68.8 67.7 68.1 75.5

The bold font numbers denote the best results

These observations indicate that the selection of the domain
knowledge during knowledge transfer has a non-negligible
impact on the model generalization. Our method can identify
the most transferable knowledge from the large-scale source
spectrum, thereby providing interpretable and useful prompts
automatically.

4.8 Further Results

In the previous experiments, we evaluated the standard
varying-way varying-shot tasks in the multi-domain setting.
Next, we conduct further experiments in more CD-FSL set-
tings to show the robustness of our method.

TheVarying-way Five-shot Setting.We follow (Li et al.,
2021, 2022) to experiment with the varying-way five-shot
setting, where the number of classes is varying and each class
is sampledwith five support samples.As presented inTable 7,
the restrictions on the number of support samples make the
setting more challenging, resulting in consistently decreased
accuracies compared to the standard setting. Notably, among
methods using the ViT backbone (i.e., URL∗, TSA∗ and
PMF), PMF exhibits significantly inferior performance in
out-of-domain scenarios, as full fine-tuning causes severe
over-fitting on low-shot data. Nevertheless, even in scenar-
ios with reduced available samples, our method maintains
superior performance, with approximately 5% higher overall
accuracy compared to PMF. This highlights the effectiveness
of HybridPrompt in generalizing to the extreme few-shot set-
ting.

The Five-way One-shot Setting.We further evaluate the
more challenging five-way one-shot setting, where each task
is sampled with five classes, with each class only having one
support sample.As shown inTable 7, the overall performance
declines significantly compared to the varying-way five-shot
setting. Owing to its parameter efficiency and cross-domain
transferability, our method consistently surpasses previous
state-of-the-art methods in all cases. These findings validate
that HybridPrompt can effectively sustain high generaliza-
tion performance in the extreme few-shot case.

Table 8 The results of the single-domain setting, which considers only
ImageNet-1k’s train-split for meta-training, and other datasets as out-
of-domain test set

Accuracy Baseline PMF URL∗ TSA∗ Ours

ID Avg. 74.8 74.7 73.4 74.2 76.3

OD Avg. 65.7 77.8 69.5 76.5 79.2

Overall Avg. 66.6 77.5 70.1 76.3 78.9

Single-Domain Setting. In the single-domain setting, the
model is trained exclusively on ImageNet‘s train-split and
tested on both test split of ImageNet and other 9 domains
of Meta-dataset. Our method is applicable to various cross-
domain scenarios. In the single domain setting, a large-scale
complex source domain S can be seen as a blend of sev-
eral smaller domains, allowing us to incorporate domain
knowledge from diverse perspectives by learning several
D-Prompts for S. When transferred to target domains, we
carefully select relevant knowledge in a fine-grained manner
by aggregating the learned D-Prompts. As shown in Table 8,
our method significantly outperforms other state-of-the-art
methods in both in-domain and out-of-domain conditions,
which demonstrates the effectiveness of our approach in
single-domain setting.

5 Discussions

In this section, we compare our method with relevant works
and discuss the differences. Prompt learning methods (Zhou
et al. 2022a, b; Lester et al. 2021) learn soft prompts with
a small proportion of additional parameters, which can be
attached to the Transformer model to adapt the model in
a parameter-efficient manner. Our method significantly dif-
fers from previous prompt learning methods in two aspects.
(1) Previous methods simply learn prompts for new tasks
but fail to properly utilize the already learned experience of
source domains related to target tasks. Differently, we regard
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prompts as plug-and-play knowledge experts to store domain
knowledge, which can be discarded, or selected, combined,
and transferred according to their relevance with the target
domain. (2) In contrast to the common practice of attaching
a single prompt to the input layer, our method inserts two
kinds of multi-layered prompts for the target task, simulta-
neously activating the transferred and adaptive knowledge in
different layers, respectively.

Recently, Pro-D (Ma et al., 2023) has introduced a
prompt learning strategy aimed at enhancing generalization
by acquiring a shared prompt to encapsulate domain-agnostic
knowledge. However, this approach primarily focuses on
sharing feature backbones across domains without actively
identifying relevant knowledge for transfer,while ourmethod
achieves selective knowledge transfer.

6 Conclusion

In this paper, we propose a Domain-aware Prompting archi-
tecture to mitigate substantial domain shift for cross-domain
few-shot learning. Our method could achieve effective
knowledge delivery from source to target domains, by includ-
ing D-Prompts to encode domain-specific knowledge of
source domains, a T-Prompt to achieve selective cross-
domain knowledge transfer, and an A-Prompt to accomplish
efficient target domain adaptation. The collaborative learn-
ing of these three types of prompts contributes to a hybridly
prompted model with enhanced adaptability and generaliz-
ability. Extensive experimental results demonstrate that our
method achieves superior performance against state-of-the-
art methods.

7 FutureWork and Impact

While our approach presents an advancement over the cur-
rent state-of-the-art in comprehending rare out-of-domain
objects, one limitation is that it sometimes may fail to clearly
distinguish different categories that possess similar visual
appearances. In the future, we will attempt to strengthen
the fine-grained semantic understanding capability by com-
bining pre-trained visual-language models and local part
exploration. Another limitation is that theA-Prompt tuning is
sensitive to learning rates (lr), posing challenges in selecting
an appropriate lr for unknown tasks. Thus, automated tuning
techniques may hold significance for future work.

Unlike closed-world classification approaches that specify
a fixed set of classes during training, the proposed prompting
framework empowers the model to identify arbitrary novel
objects that are unseen in the training set, leveraging limited
amounts of new data in the wild. Additionally, closed-world
methods presume test classes belong to the knowndomains in

the training set, while our method exhibits adaptable flexibil-
ity to unknown domains in the open-world context through
domain-aware prompt learning, providing new perspectives
for open-world visual recognition. While our current algo-
rithm only addresses classification, many other works in
computer vision, such as object detection and segmentation,
that based on the Transformer architecture can bemademore
robust to domain variances by seamlessly integrating our pro-
posed domain-aware prompts in a plug-and-play fashion.
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