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Abstract
Visual reconstruction of fast non-rigid object deformations over time is a challenge for conventional frame-based cameras.
In recent years, event cameras have gained significant attention due to their bio-inspired properties, such as high temporal
resolution and high dynamic range. In this paper, we propose a novel approach for reconstructing such deformations using
event measurements. Under the assumption of a static background, where all events are generated by the motion, our approach
estimates the deformation of objects from events generated at the object contour in a probabilistic optimization framework. It
associates events to mesh faces on the contour and maximizes the alignment of the line of sight through the event pixel with
the associated face. In experiments on synthetic and real data of human body motion, we demonstrate the advantages of our
method over state-of-the-art optimization and learning-based approaches for reconstructing the motion of human arms and
hands. In addition, we propose an efficient event stream simulator to synthesize realistic event data for human motion.

Keywords Event cameras · Non-rigid reconstruction · Human motion reconstruction

1 Introduction

The capturing and 3D reconstruction of real-world scenes
is an important field in computer vision with applications in
VR/AR or robotics. Tracking and reconstructing non-rigid
objects poses challenges due to the high dimensionality of
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the inference problemwhen reconstructing complex deform-
ing shapes. Existing methods for non-rigid reconstruction
from RGB(-D) (Salzmann & Fua, 2009; Ngo et al., 2016;
Yu et al., 2015; Bregler et al., 2000; Dai et al., 2014; Garg
et al., 2013; Sidhu et al., 2020; Lamarca et al., 2021) have
limitations, particularly in scenarios with fast motion or low
lighting conditions due to limits in temporal resolution or
motion blur. Event-based cameras, which offer advantages
like high dynamic range and low latency, have the potential
to excel in non-rigid tracking tasks in dark scenes. Despite
their benefits, only a few studies have addressed the problem
of non-rigid reconstruction with event cameras.

Event cameras (Lichtsteiner et al., 2008) offer a consider-
able number of advantages in computer vision tasks over con-
ventional cameras, such as low latency, high dynamic range
and virtually no motion blur (Gallego et al., 2022). Unlike
conventional frame-based cameras that capture images at a
fixed rate, event cameras asynchronously measure per-pixel
brightness change, and output a stream of events that encode
the spatio-temporal coordinates of the brightness change and
its polarity. This measurement principle avoids the limita-
tions ofmotion blur in frame-based cameras and enables high
temporal resolution. In recent years, a significant amount of
research has focused on developing event-based approaches
for various computer vision applications (Gallego et al.,
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2022) including optical flow estimation (Bardow et al., 2016;
Gehrig et al., 2021; Gallego et al., 2018; Stoffregen &
Kleeman, 2019; Zhu et al., 2018), visual-inertial odome-
try(VIO) (Kim et al., 2016; Rebecq et al., 2017; Vidal et
al., 2018; Bryner et al., 2019), video reconstruction (Rebecq
et al., 2019, 2021), object pose estimation (Li & Stueckler,
2021).

While several approaches for event cameras have been
proposed for aforementioned computer vision tasks, only
little work has been devoted to non-rigid reconstruction.
Recently, Nehvi et al. (2021) proposed a non-rigid track-
ing approach using a differentiable generative event model
to simulate eventmeasurementswhich are comparedwith the
actual measurements in an optimization framework. Differ-
ently to this method, we explicitly reason on the association
of events to elements in the 3D geometry of the object. Rud-
nev et al. proposed EventHands (Rudnev et al., 2021), a
learning-based framework trained on synthetic event data to
reconstruct hand motion. As learning is fully supervised, the
method requires annotated data for training and can be lim-
ited to the data domain seen during training.

In this paper, we present a novel non-rigid reconstruc-
tion approach for event cameras. Our algorithm takes event
streams and an initial pose guess as input and outputs
the reconstructed object pose parameters, assuming a low-
dimensional parameterized shape template of a deforming
object (i.e. hand and body model). To achieve this, we
propose a novel optimization-based method based on expec-
tation maximization (EM). Our method models event mea-
surements at contours of the non-rigid 3D shape model in
a probabilistic way to estimate the association likelihood
of events to mesh faces and maximize the measurement
likelihood. We evaluate our approach on synthetic and real

data sequences, and demonstrate the improvements over
the state-of-the-art optimization (Nehvi et al., 2021) and
learning-based (Rudnev et al., 2021)methods for hand recon-
struction. In summary, our contribution are:

• We propose a novel non-rigid reconstruction approach
for event cameras based on expectation maximization.
In our experiments, it demonstrates better accuracy
than state-of-the-art event-based non-rigid reconstruc-
tion approaches while being robust to different level of
noise.

• We also develop an efficient event stream simulator for
human motion sequences. It supports 5 different data
modalities as well as synthesis of various noise sources.

2 RelatedWork

2.1 Event Camera

As a bio-inspired sensor, event-based cameras (Lichtsteiner
et al., 2008; Gallego et al., 2022) capture the logarithmic
pixel-wise brightness change asynchronously, mimicking
how the retina works in our brain. Thus, the outputs of
traditional cameras and event-based cameras are different:
traditional cameras acquire the visual information of a scene
as a stream of intensity frames at a constant rate, while event-
based cameras have no notion of images since each pixel
operates independently. Event cameras provide significant
advantages over conventional frame-based cameras:

• High temporal resolution: events are measured with
microsecond resolution (1 MHz) (Gallego et al., 2022)

initial pose guess

input event stream

high temporal-resolution reconstruction

reference (not used)

Association Expectation Maximization

Expectation-step

Maximization-step

Fig. 1 Our approach performs non-rigid reconstruction with high temporal resolution from measurements of event-based cameras within an
expectation-maximization (EM) framework and using an initial pose guess, which can, for instance, be obtained from frame-based cameras
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when the brightness at pixel-level changes by a thresh-
old. As comparison, conventional frame-based cameras
usually have a frequency of 30 to 60Hz. Due to the mea-
surement principle, event-based cameras do not suffer
from motion blur like frame-based cameras.

• High dynamic range: event cameras have high dynamic
range (> 120 dB), which exceeds the 60 dB of typical
high-quality frame-based cameras. Therefore, event cam-
eras can adapt to very dark as well as very bright stimuli.

• Lowpower and storage consumption: event cameras only
capture pixel-level brightness change asynchronously,
which means it avoids redundant data. Power and storage
are only used to process pixel brightness changes.

Since event cameras do not have images as output,
the existing computer vision algorithms for conventional
cameras are not directly feasible to event-based cameras.
Recently, several computer vision tasks have been addressed
with event cameras (Gallego et al., 2022). Considering their
advantageous features such as low latency, low power con-
sumption, and high dynamic range, event-based cameras
have been applied to robotics problems such as optical
flow (Bardow et al., 2016; Gehrig et al., 2021; Gallego et al.,
2018; Stoffregen&Kleeman, 2019; Zhu et al., 2018), SLAM
and VIO (Kim et al., 2016; Rebecq et al., 2017; Vidal et al.,
2018; Bryner et al., 2019). Event-based non-rigid reconstruc-
tion as pursued in this work has received limited attention
from the research community so far (see Sect. 2.3).

2.2 Non-rigid Reconstruction

Reconstruction and tracking of non-rigid shapes is a chal-
lenging problem in computer vision. For monocular frame-
based cameras, several approaches have been proposed. They
can be classified into methods that align shape templates
[e.g. (Salzmann & Fua, 2009; Ngo et al., 2016; Yu et al.,
2015)] or approaches that use regularizing assumptions such
as low-rank approximations to achieve non-rigid structure
frommotion [e.g. (Bregler et al., 2000; Dai et al., 2014; Garg
et al., 2013; Sidhu et al., 2020; Lamarca et al., 2021)]. Using
RGB-D cameras simplifies the task due to the availability of
dense depth for which several methods have been proposed
recently [e.g. (Newcombe et al., 2015; Bozic et al., 2020)].

Humanmotion reconstruction is a specific type of problem
setting which facilitates template-based non-rigid recon-
struction. While other deformable objects can exhibit sig-
nificant shape variations, human bodies possess inherent
similarities, allowing for parametrization in low-dimensional
shape models (Anguelov et al., 2005; Loper et al., 2015;

Pavlakos et al., 2019; Romero et al., 2017). The process of
reconstructing a dynamic human body, based on the provided
parametric template, is comparable to solving for the pose
parameters within the low-rank space. Various studies (Sun
et al., 2021; Lin et al., 2021; Aboukhadra et al., 2023; Li
et al., 2023, 2021) have focused on estimating the 3D body
pose using frame-based cameras.

The previously mentioned methods use frame-based cam-
eras for reconstructing non-rigid deformations. However,
these approaches are constrained by the limitations inherent
to conventional cameras, such as motion blur and rela-
tively low dynamic range. Our novel event-based non-rigid
reconstructionmethod leverages advantages offered by event
cameras.

2.3 Event-Based Non-rigid Reconstruction

Non-rigid reconstruction and trackingwith event cameras has
only recently attained attention in the computer vision com-
munity. Nehvi et al. (2021) propose a differentiable event
stream simulator by subtracting renderings of parametrized
hand models (Romero et al., 2017). The paper demonstrates
the use of the simulator for non-rigid motion tracking from
event streams by optimization. However, the tracking perfor-
mance of Nehvi’s method is constrained by the quality of the
generated events. Non-robustness in tracking arises when the
capturing scenario deviates from a pure black background,
resulting in differences between the captured and generated
events. Rudnev et al. (2021) propose EventHands, which
trains a deep neural network on synthetic event streams to
estimate the deformation of a MANO (Romero et al., 2017)
hand model. To input the event data into the neural network,
they propose to represent the data in local time windows.
However, EventHands is limited to synthetic hand training
data since there is a lack of labeled real-world event data.
Consequently, there can be a performance drop when a dis-
tribution shift occurs between test and synthetic training data.

Different to these methods, we propose geometric con-
tour alignment in a probabilistic optimization framework.
Our approach, unlike Nehvi’s (Nehvi et al., 2021), lifts
2D events to 3D by a contour measurement model and
optimizes the object pose parameters using the expectation
maximization (EM) algorithm. The EM algorithm asso-
ciates and aligns events to contours on the 3D shape which
results in improved accuracy and robustness.Moreover, com-
pared to EventHands (Rudnev et al., 2021), our approach is
optimization-based and does not depend on synthetic train-
ing data for deep learning, thus avoiding issues of distribution
shift.
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3 Background

3.1 Non-rigid Parametric Models

3.1.1 Parametric Body Model

SMPL (Loper et al., 2015) is a widely used parametric model
for representing human body shapes and poses. SMPLmodel
begins with a canonical template mesh T, and subsequently
incorporates shape blend shapes BS (controlled by shape
parameters β) and pose blend shapes BP (controlled by pose
parameters θ ) as additional vertex offsets

TC (β, θ) = T + BS(β) + BP (θ),

BS(β;S) =
β∑

n=1

βnSn,

BP (θ;P) =
9K∑

n=1

Rn(θ)Pn,

(1)

where Sn and Pn are shape and pose blend shape deforma-
tion matrices. Rn(θ) is the element in rotation matrices of
the pose θ . The resulting mesh TC is in canonical space,
and is transformed into deformation space by Linear Blend
Skinning and joints rotation

TP =
(

K∑

i=1

wiGi (θ)

)
TC , (2)

where Gi (θ) is the transformation matrix of joint i and wi

is the skinning weights. Please refer to Sect. 3 and Fig. 3 in
SMPL (Loper et al., 2015) for more details about the para-
metric blend shapes as well as the skinning. In our work, we
can consider SMPL (Loper et al., 2015) as a linear model,
which takes pose parameter as input and outputs the given
posed mesh.

3.1.2 Parametric HandModel

MANO (Romero et al., 2017) is a generative handmodel that
can map the hand pose parameter and shape parameter into a
3Dhandmesh. Each hand posture is parameterized by a set of
principle components coefficients that map a differentiable
low-dimensional manifold. In our scenario, we use the full
45-dimensional PCA parameters of MANO to formulate the
pose space.

3.1.3 Parametric Expressive Model

SMPL-X (Pavlakos et al., 2019) is an expressive parametric
human model, which models shape and pose of the human
body using SMPL (Loper et al., 2015), hand pose using

MANO (Romero et al., 2017), and facial expression using
FLAME (Li et al., 2017; Feng et al., 2021). The body pose
is represented by 3-DoF orientations of 21 joints, hand pose
is controlled by 45 PCA parameters, and facial expression is
controlled by 10 PCA parameters in expression space. The
SMPL-X model can map the body pose, hand pose, and the
facial parameters into an expressive and detailed 3D body
mesh.

3.2 ExpectationMaximization

TheExpectationMaximization (EM) algorithm is an iterative
optimization method to estimate the maximum likelihood or
maximum a posteriori parameters of a probabilistic model.
The EM algorithm is a powerful approach for handling miss-
ing or unobserved data. In the maximum likelihood case, the
problem with missing data can be formulated as

ln p(x | θ) = ln

{
∑

z

p(x, z | θ)

}
, (3)

where x, θ , z represent observation, model parameters, and
unobserved latent variables, respectively.

The knowledge of latent variables z is only given by the
posterior distribution p(z | x, θ). Because the complete-data
log likelihood is not available due to the missing data (unob-
served latent variables z), it is determined by an expected
value under the posterior distribution of the latent variable.
The expectation of the complete-data logmarginal likelihood
is written as

Q
(
θ, θ

)
=

∑

z

p
(
z | x, θ

)
ln p(x, z | θ), (4)

which is maximized in the M-step to revise the new model
parameter estimate θnew. Note that θ is the current estimate
of model parameters from the previous iteration, which is
treated as constant in optimization. In the E-step, the opti-

mal posterior distribution p
(
z | x, θ

)
is determined based

on the latest parameter estimate. Both E- and M-steps are
alternated for the optimization. In our approach, we model
the events association w.r.t. the given template as fully unob-
served data, i.e., the problem is a Missing Completely At
Random (MCAR) problem. We detail our EM-formulation
for event-based reconstruction in Sect. 5.1.

4 Non-rigid Event Stream Simulator

For data generation and evaluation, we develop an efficient
event stream simulator capable of generating synthetic event
data for temporally deforming objects. Our simulator goes
beyond solely producing events and can also generate RGB
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Fig. 2 Data modalities for MANO (Romero et al., 2017) hand model
(a–e), SMPL-X (Pavlakos et al., 2019) hand model (f–j), and SMPL-
X (Pavlakos et al., 2019) arm and hand model (k–o). Data include (a,
f, k) RGB image, (b, g, l) depth map, (c, h, m) motion field, (d, i, n)

normal map, (e, j, o) accumulated events in 1/30 s. Background images
in RGB images are randomly selected from YCB video dataset (Xiang
et al., 2018)

images, depth images, optical flow, and surface normals
based on a sequence of pose parameters.

4.1 Event GenerationModel

Unlike RGB cameras which capture absolute brightness for
each pixel at a fixed frame rate, event cameras record log-
arithmic pixel-level brightness change asynchronously. To
simulate the event at time ti , we calculate the absolute loga-
rithmic brightness at each pixel ui, denoted as L (ui, ti ), and
compare it with the logarithmic brightness value of the last
sampled image at time ti−1. The polarity p of the event is

p(ui , ti ) =
{

+1 if L (ui , ti ) − L (ui , ti−1) ≥ C+,

−1 if L (ui , ti−1) − L (ui , ti ) ≥ C−,
(5)

where C+ and C− are positive and negative contrast thresh-
old, respectively. If the logarithmic brightness change is less

than the corresponding contrast threshold, no event is gener-
ated at pixel ui .

4.2 Simulation Approach

Our simulator takes a sequence of pose parameters of body
and hand, the facial expression parameters, and the simula-
tion time as inputs and simulates event stream, RGB image,
depth map, optical flow, and normal map (see Fig. 2). Similar
as other event stream simulators (Rebecq et al., 2018; Nehvi
et al., 2021; Rudnev et al., 2021), our simulator assumes that
the pose and expression parameters change linearly between
two consecutive inputs of the sequence.

An example of a simulated data stream for the MANO
(Romero et al., 2017) model is shown in Fig. 2 in (a–e). Note
that the MANO hand model only contains the hand but no
arm. We visualize the simulated data stream for the SMPL-
X (Pavlakos et al., 2019) hand model in an example in Fig. 2
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in (f–j). It only contains the motion of the hand. However,
attaching the arm to the hand makes it more realistic. The
simulated data modalities of SMPL-X (Pavlakos et al., 2019)
arm and hand motion are visualized in Fig. 2 in (k–o).

4.3 Adaptive Sampling

An essential advantage of event-based cameras is the inde-
pendent representation of the visual signal at every pixel.
Unlike the intensity images which have a fixed frame rate,
the events are measured in an asynchronous fashion on the
pixel array. Inspired by ESIM (Rebecq et al., 2018), we adapt
the sampling rate based on the predicted change of the visual
signal using the optical flow at each pixel. The color image
is rendered in the calculated sampling rate. The events since
the last color image are simulated using the event generation
principle in Sect. 4.1.

To simulate the optical flow, we project the 3D movement
of each mesh face onto the 2D image plane. The idea of
adaptive sampling based on optical flow is to ensure that
the maximum displacement of any pixel on the image plane
between consecutive rendered frames is bounded:

tk+1 = tk + λv|V|−1
m , (6)

where |V|m = maxx∈�|V (x; tk)| is themaximummagnitude
of the motion vector across the image plane at time tk . We
use λv ≤ 1 to manually control the render rate and adjust it
using real event data. For more details regarding the adaptive
sampling, we kindly ask readers to refer to ESIM (Rebecq et
al., 2018).

4.4 Noise Synthesis

Measurements of event cameras are often noisy. To make
the simulated data more realistic, we also inject noise in the
simulated event stream. As in ESIM (Rebecq et al., 2018),
we sample the contrast threshold from a normal distribution
with standard deviation σ for each pixel at every sampling
step to add uncertainty to the event generation. To simu-
late salt-and-pepper noise on the background, we sample the
probability of each pixel to generate an outlier event from
a uniform distribution in [0, 1] and compare it with a pre-
defined threshold. If the probability exceeds the threshold, a
noise event is generated. We then sample the timestamp of
the noise events uniformly in [ti−1, ti ]. For more details on
how to adjust the threshold for obtaining a similar amount of
salt-and-pepper noise as real event cameras, please refer to
EventHands (Rudnev et al., 2021).

4.5 Comparison

We present a comparative analysis of our proposed simula-
tor with existing event stream simulators (Nehvi et al., 2021;
Rebecq et al., 2018; Rudnev et al., 2021) in Table 1. Our
simulator offers significant advancements over Nehvi’s sim-
ulator (Nehvi et al., 2021), as it is capable of generating
optical flow for deforming objects and achieves acceleration
through parallel processing of all pixels within a frame. To
assess the efficiency of our simulator, we conducted experi-
ments by simulating the same hand motion using theMANO
model (Romero et al., 2017) on anNVidiaRTX-2080TiGPU.
The results indicate that our simulator (47.17 s) outperforms
Nehvi’s (3717.56 s) by a remarkable factor of 78 in terms
of run-time. In comparison to ESIM (Rebecq et al., 2018),
our simulator extends its capabilities to simulate events for
non-rigid human body motion. Furthermore, our simulator
utilizes the adaptive sampling strategy to avoid redundant cal-
culations for small motion. In contrast, EventHands (Rudnev
et al., 2021) samples image frames at a fixed rate of 0.001s,
regardless of the actual motion characteristics. This adap-
tive sampling approach adopted in our simulator improves
realism.

5 Event-Based Non-rigid Reconstruction
from Contours

Our event-based reconstruction method estimates deforma-
tions of parameterized non-rigid objects assuming a static
background. Typically, for deforming texture-less objects
such as hands or human bodies, the majority of events is gen-
erated at the contour between the object and the background
(e, j, o in Fig. 2). Hence, we formulate the reconstruction
problem in a probabilistic way using a contour measurement
model for the events as in Fig. 3. Assuming a known initial
state, we optimize for the pose parameters of the parametric
object model incrementally from the event stream.

5.1 ExpectationMaximization Framework

We formulate the 4D reconstruction problem asmaximum-a-
posteriori (MAP) estimation of themodel parameters θ given
the event observations x from the event camera

θ∗ = argmax
θ

ln p(x | θ) + ln p(θ), (7)

where p(θ) is a prior on the parameters obtained with a
constant-velocity motion model from the parameters of the
previous event buffer. In practice, we aggregate a fixed num-
ber of events into an event buffer, assume that the event
observations at each pixel are independent from each other,
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Table 1 Comparison between our event simulator and other event simulators in different properties

Objects Modalities Adaptive sampling Parallelism

Our simulator Body, hand, face 5 ✓ ✓

ESIM (Rebecq et al., 2018) Rigid 5 ✓ ✗

Nehvi et al. (2021) Hand 1 ✗ ✗

EventHands (Rudnev et al., 2021) Hand 1 ✗ ✓

Fig. 3 Our approach reconstructs non-rigid deformation states of
objects from event streams of event cameras within an expectationmax-
imization (EM) framework given the initialized template. In the E-step,
the association probability of events to contour mesh faces is estimated

from the contour measurement likelihood. In the M-step, the expected
value of themeasurement likelihood over the the association probability
is maximized for pose parameter θ∗

and optimize over this event buffer

θ∗ = argmax
θ

N∑

i=1

ln p(xi | θ) + ln p(θ), (8)

where N is the number of aggregated events in an event buffer
x and xi denotes the 2D location of the event i on the image
plane. By this aggregation, computation can be parallelized
in the event buffer more efficiently with a trade-off against
the temporal resolution of the data. The analytical solution of
the MAP is difficult to obtain because there is no observable
relation between measurement x and model parameters θ

available without further knowing how the events are gener-
ated from themodel. To solve theMAP in Eq. 8, we introduce
a set of latent variables z as in Eq. 3.

Since our background is static and the objects are texture-
less, most of the event measurements are generated at the
contour of the deforming object. We thus assume that the
events in xi are generated at a point on the observed con-

tour of the object. However, the point on the mesh which
generated an event is unknown and needs to be estimated
as well. We therefore introduce the latent variable zi = j
which represents the association between the event at xi and
a mesh face of the object with index j on which the event is
generated,

ln p(xi | θ) = ln
F∑

i=1

p(xi , zi = j | θ). (9)

We use the expectation-maximization (EM) framework in
Eq. 3 to find themodel parameters with the latent association,

argmax
θ

N∑

i=1

ln

⎛

⎝
F∑

j=1

p(xi | zi = j, θ)

⎞

⎠ + ln p(θ), (10)

where F is the number of mesh faces and for which we
assume a uniform distribution for p(zi | θ). The optimiza-
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tion of the next event buffer is initialized with the parameters
from the previous buffer. Here we assume that the events in
an event buffer are conditionally independent of each others
given the pose parameters. We provide a detailed derivation
of Eq. 10 from Eq. 7 in the supplementary material.

The expectation of the log marginal likelihood in Eq. 4 is
formulated as

N∑

i=1

F∑

j=1

q(zi = j) · ln p (xi | zi = j, θ) + ln p(θ), (11)

with the probabilistic belief on the latent association variables
q(zi = j)using avariational approximationgiven the current
estimate of parameters θ from the previous iteration,

q(zi = j) = p(zi = j | xi , θ). (12)

In the E-step of our EM-framework, we update the prob-
abilistic belief on the latent association variables q(zi = j).
In theM-step, the parameters are updated by maximizing the
expected log posterior with the probabilistic, i.e. soft, data
association from the E-step,

θ ← argmax
θ

N∑

i=1

F∑

j=1

q(zi = j) ln p(xi | zi = j, θ)

+ ln p(θ).

(13)

The posterior includes terms for the expected value of
the measurement likelihood under the association likeli-
hood q(zi ) and a prior term on the parameters. In the
following, we explain the concrete form of the EM steps
in detail.

5.2 Data Association

Ideally we can use mesh rasterization to find the associa-
tion of pixels to all mesh faces that intersect the line of sight
through each pixel. Due to limits in the image resolution,
initial inaccuracies of the shape parameters during optimiza-
tion, and complex mesh topologies which allow for multiple
layers being intersected by the line of sight, the rasterization
often misses the correct association of contour mesh faces
with event pixels. For instance, if the shape estimate is off,
the contour mesh face could be rendered a few pixels off the
observed event location. If fingers are bent in front of the
palm, events observed on the contour of the finger might hit
palm mesh faces, but miss mesh faces on the finger which
generated the events.

The EM-framework requires to quantify the probability of
associating a mesh face with an event. Intuitively, the closer
the mesh face to the event’s unprojection ray, the higher the

probability is that it causes the event. Inspired by SoftRaster-
izer (Liu et al., 2019), we formulate the contourmeasurement
likelihood as

p(xi | zi = j, θ) ∝ σ

(
δij

d2lat(i, j)

α

)

exp

(
−dlong(i, j)

β

)
exp

(
−rang(i, j)

γ

)
, (14)

with lateral distance dlat, longitudinal distance dlong and
angular error rang between the line of sight through event xi
and the mesh face f j , and sigmoid function σ . The angular
error rang measures the deviation of the direction of the line
of sight from being orthogonal to the normal of the mesh
face. Hyperparameters α, β, and γ are used to control the
sharpness of the individual terms for the probability distri-
bution.

The lateral distance dlat is the distance between the line of
sight and the closest edge of themesh face. The sign indicator
is defined as δij := {+1, if xi ∈ f j ;−1, otherwise

}
. We use

a maximal lateral distance threshold τlateral to reject outlier
events due to noise and unmodelled effects. As the longi-
tudinal distance dlong, we determine the projected distance
between the event pixel and the mesh face center on the line
of sight. As sketched above, the line of sight may intersect
multiple mesh faces on the deformed object. The longitudi-
nal distance gives higher likelihood to the mesh face closer
to the camera. The line of sight through an event caused by
the object contour should be approximately orthogonal to the
normal of the corresponding mesh face. For this, we assume
that our object mesh is a closed watertight mesh with suffi-
cient resolution. The angular error rang is thus computed by
the absolute dot product between the unit direction vector of
the line of sight and the face normal.

5.3 E- andM- Step

In the E-step, we determine the latent association likelihood
using the measurement likelihood p(xi | zi = j, θ) based
on Bayes’ theorem (Davies, 1988)

q(zi = j) = p(zi = j | xi , θ)

= p(xi | zi = j, θ)p(zi = j | θ)∑
j ′ p(xi | zi = j ′, θ)p(zi = j ′ | θ)

= p(xi | zi = j, θ)∑
j ′ p(xi | zi = j ′, θ)

,

(15)

where we assume that the association variable zi = j does
not dependent stochastically on themeshmodel θ without the
measurement variable xi . I.e., we assume that the probability
p(zi = j | θ) has a uniform distribution.
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For the M-step, we evaluate the measurement likelihood
as

p(xi , zi = j | θ) = p(xi | zi = j, θ)p(zi = j | θ)

∝ σ

(
δij

d2lat(i, j)

α

)
exp

(
−rang(i, j)

γ

)
, (16)

where p(zi = j | θ) is neglected due to the uniform distri-
bution assumption. Here we do not include the longitudinal
distance term as this would pull the object towards the cam-
era. Ideally, this term should assign a constant probability to
mesh faces on the same occlusion layer. Notably the ideal
term does not depend continuously on the shape parameters,
but is difficult to calculate. Instead, if included in theM-step,
our approximativeGaussian term for theE-stepwould falsely
incentivize shape parameters for which the mesh intersects
the line of sight closer to camera. Note that in the E-step,
the longitudinal distance is needed to disfavor associations
of events to occluded mesh faces. The angular error term in
the M-step encourages the alignment of events with con-
tours. For scenes with many outlier events (e.g. textured
objects), we choose a larger value of γ . The prior term for
the M-step is a constant velocity prior on the parameters,

i.e., ln p(θ) = k ‖v − v
′ ‖22, v = θ−θ

′
�t , where θ

′
and v

′

are the parameters and velocity for the previous event buffer
and �t is the time difference between the two event buffers.
We alternate E-step and M-step until convergence. When a
new event buffer is available, we initialize θ based on the
current estimate of v.

6 Experiments

We evaluate and demonstrate our event-based non-rigid
reconstruction approach on synthetic and real sequences
using MANO and SMPL-X object models, involving ran-
dom motions and various background textures. We provide
qualitative and quantitative results, comparing with state-of-
the-art baselines. At the end of the section, an evaluation of
the robustness against noisy events and initial poses, an abla-
tion study for the terms in our E- and M-steps, and results
for a hard-EM variant are available. Please also refer to the
supplemental video for more qualitative results.

6.1 Experiment Setting

6.1.1 Implementation Details

Weaccumulate noisy events in event buffers and optimize the
shape parameters for each event buffer sequentially. Similar
to Vidal et al. (2018), we accumulate buffers with a fixed

number of events, therefore choosing their temporal length
adaptively. For our real captured data sequences, we accumu-
late 100 events per buffer. For synthetic data generated by our
simulator, we stack 300 events into each buffer. We simulate
a Prophesee camera with image size 1280× 720 pixels. The
event contrast threshold is 0.5. We use the pinhole camera
model for the event camera and assume the camera intrinsics
are calibrated. Our algorithm optimizes for the pose param-
eters of the MANO hand model (Romero et al., 2017) and
the SMPL body model (Loper et al., 2015; Pavlakos et al.,
2019). In case of the hand model, the pose parameters are in
PCA space and the MANO modeling approach reconstructs
the vertex offsets, which are used together with the canoni-
cal pose vertices to generate the posed mesh. For the SMPL
body model, the pose parameters represent the joint orienta-
tions. We apply Linear Blend Skinning (LBS) together with
optimized pose parameters to recover the posed mesh.

6.1.2 Datasets

We generate synthetic datasets of sequences with three types
of different objects, namely theMANO (Romero et al., 2017)
hand (Fig. 6a), the SMPL-X (Loper et al., 2015; Pavlakos et
al., 2019) hand (Fig. 7a), and the combined SMPL-X (Loper
et al., 2015; Pavlakos et al., 2019) arm & hand (Fig. 9a).
MANO hand sequences are generated with a single hand
mesh at a fixed position and orientation. We vary the full 45-
dimensional pose parameter space to generate varying hand
poses. For SMPL-X hand sequences, the hand is attached to
the whole human body which prevents observing the inside
of the hand mesh. We vary the first 6 principal component
pose parameters to simulate time-varying and realistic hand
deformations. In the SMPL-X arm & hand sequences, we
synthesize the armmotion by the 3-DoF rotation of the elbow
joint and the hand motion by the 6 principal pose param-
eters. We use the proposed event simulator with adaptive
sampling rate to generate the synthetic sequences for the dif-
ferent object models.

For each sequence, the background image is randomly
chosen from a texture-rich indoor scene in the YCB video
dataset (Xiang et al., 2018). To introduce noise into the
event generation process, we sample the contrast threshold of
each pixel from a Gaussian distribution with standard devia-
tion 0.0004. The threshold of salt-and-pepper noise is 10−5.

In Fig. 4, we provide a histogram over the event buffer
time lengths for all SMPL-X hand sequences. It can be
observed that due to the varying degree of image motion,
the buffers have varying temporal length. The median length
of the event buffers is approx. 0.007s, which corresponds to
approx. 142Hz.
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Fig. 4 Histogramof the temporal length of event buffers in the SMPL-X
hand sequences

6.1.3 Evaluation Metrics

For the synthetic data, 3D ground-truth positions for all
joints and mesh vertices as well as pose parameters are
known. We evaluate using the Mean Per Joint Position Error
(MPJPE (vonMarcard et al., 2018)), the percentage of correct
3D Joints (3D-PCK (Mehta et al., 2017)), and the area under
the PCK-curve (AUC (Mehta et al., 2017)) with thresholds
ranging from 0 to 50mm. For hand sequences, we consider
the 15 hand skeleton joints. For arm & hand sequences, only
the forearm and the hand have motion. Thus, we consider
one wrist joint and 15 hand joints.

6.2 Pose Initialization

Our approach assumes the initial pose and shape parameters
are known. For real data, we used MeshGraphormer (Lin et
al., 2021) to infer MANO mesh model parameters from a
grayscale image. We also adopt MeshGraphormer for ini-
tializing Nehvi’s method (Nehvi et al., 2021). We minimize
the Chamfer distance between the predicted hand mesh and
the PCA-parametrized MANO hand mesh to optimize shape
and pose parameters of the captured hand. Finally, we fix
the pose parameters of the hand, and manually fine-tune the
global rotation and translation of the mesh model by visual
alignment between the rendered 2D hand image and captured
hand image.

6.3 Hyperparameter Tuning

We use Optuna (Akiba et al., 2019) to tune hyperparameters
of our approach and Nehvi’s method (Nehvi et al., 2021).
The hyperparameters in our work comprise sharpness con-
trol parameters (α, β, γ ), early stopping threshold in the
optimization, expectation update threshold, and the outlier

distance threshold. The hyperparameters in Nehvi’s method
are the contrast threshold C , the smoothness control weight
w, and weights of individual loss terms.

For each scenario, we have 10 random training sequences
to tune the hyperparameters.We use theMPJPE as themetric
of the loss function. Optuna minimizes the MPJPE error to
find the hyperparameters. We use different settings of hyper-
parameters for the MANO and the SMPL-X model.

6.4 Quantitative Evaluation

We compare our approach quantitatively with the state-of-
the-art event-based non-rigid object reconstruction methods:
Nehvi’s optimization-based approach (Nehvi et al., 2021)
evaluates using the MANO hand model, while Rudnev’s
approach (Rudnev et al., 2021) is designed for the SMPL-X
hand model. To the best of our knowledge, previous event-
based reconstruction approaches have not been demonstrated
on combined arm & hand motion of a SMPL-X model.
Hence, we only provide results for our method on these
sequences.

For synthetic MANO hand sequences, we use the MANO
(Romero et al., 2017) hand model as the parametric mesh
template. In the experiments, we initialize the optimized
parameters with the ground-truth pose parameters and eval-
uate, how well the approach can keep track of the hand
deformation. Our approach reconstructs the 45-dimensional
pose parameter. We report quantitative results MPJPE and
AUC on these sequences in Table 2. Similar to our approach,
Nehvi’s method is optimization-based and requires the initial
parameters of themesh template. To ensure a fair comparison,
we use Optuna (Akiba et al., 2019) to tune hyperparame-
ters in Nehvi’s method and our method. We observe that
our approach is about 2.5-times more accurate than Nehvi’s
method.We also show the 3D-PCK curve of both approaches
in Fig. 5a. Apparently, our method has higher AUC than
Nehvi’s method. Results in Table 2 and Fig. 5a demonstrate
that our method outperforms Nehvi’s method clearly in this
dataset.

In the SMPL-X hand sequences, the hand is attached to
a human body model. Here, our approach reconstructs the
6-dimensional pose parameters, which is consistent with the
evaluation conducted in Rudnev’s method (Rudnev et al.,
2021).We report quantitative results in Table 2. It can be seen
that our approach achieves better performance than Rudnev’s
method (Rudnev et al., 2021) inMPJPE. Rudnev’s method is
learning-based and does not require the knowledge of the ini-
tial pose parameters. We use the network trained by Rudnev
et al. (2021) which is limited to the resolution (240×180) of
the DAVIS 240C camera. Thus, we simulate event streams
of the same motion with the intrinsics provided in Rudnev
et al. (2021) for Rudnev’s method. We observe that since
the global rotation and translation are fixed, events are only
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Table 2 Quantitative results on
synthetic sequences

Scenario Method Mean MPJPE (mm) Median MPJPE (mm)

MANO hand Nehvi et al. (2021) 11.61 10.85

Ours 4.52 4.27

SMPL-X hand Rudnev et al. (2021) 11.88 10.73

Ours 1.11 0.76

SMPL-X arm & Hand Ours 15.39 3.93

Fig. 5 3D-PCK curve @50mm on synthetic sequences

Fig. 6 Qualitative reconstruction results on synthetic MANO hand sequences

generated where the deformation occurs. Rudnev’s method
performs worse than our approach in this setting.

Finally, we evaluate the performance of our approach on
sequences which combine arm and hand motion using the
SMPL-Xmodel. In the synthetic data generation process, we
vary 6 principal parameters to synthesize hand poses and the
3 rotation parameters of the elbow joint. Our approach jointly
optimize these hand and elbow parameters. The median
MPJPE in Table 2 demonstrates that our approach can recon-
struct the motion of the arm and hand with high accuracy.
The mean MPJPE is higher than the median MPJPE due to
failures in some sequences. We show failure cases and their
analysis in the Sect. 6.9. The difference in accuracy to the
SMPL-X hand sequences can be explained by the fact that
for the SMPL-X arm & hand sequences, also the elbow joint

needs to be reconstructed. Moreover, the hand is visible on
different scales in the image (the hand is smaller for SMPL-
X arm & hand). Hence, the absolute error in mm becomes
higher.

As an incremental optimization-based approach, our
approach can also drift, but it can snap the mesh silhouette to
the observed events on the contour if sufficient observations
are available. In Fig. 15, we provide a plot of median error
over time for the MANO hand dataset.

Due to the non-convexity of the problem, our approach
needs a sufficiently good initial guess of the pose. In Sect. 6.6,
we evaluate reconstruction accuracy vs. varying noise levels
for the initial pose. We also evaluate the effect of varying
noise in the events on accuracy.
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Fig. 7 Qualitative reconstruction results on SMPL-X hand sequences

Fig. 8 Qualitative reconstruction results on SMPL-X hand sequences for an in-ward closing hand

6.5 Qualitative Evaluation

6.5.1 Synthetic Data

We show qualitative results of our approach and state-of-the-
art baseline approaches (Nehvi et al., 2021; Rudnev et al.,
2021) on synthetic sequences. For each object, the ground-
truth RGB images, accumulated events during the motion,
and reconstruction results are shown. We crop all images
with a fixed ratio to increase the view of the objects. Results
on synthetic MANO hand sequences of our approach and
Nehvi’s approach (Nehvi et al., 2021) are shown in Fig. 6c,
d, respectively. It can be observed that our approach recon-
structs the deformation of the hand well, while Nehvi’s
approach struggles to track the hand pose accurately. Note
that Nehvi’s method does assume black background and gen-
eratively models the specific log intensity changes induced
at the optical flow at contours. Our approach only assumes
that events are generated by contours without explicit depen-
dency on the optical flow, hence, it is more robust to textured
backgrounds. We compare our approach with Rudnev’s

method (Rudnev et al., 2021) in Fig. 7d on a SMPL-X
hand deformation sequence. While our approach can recon-
struct the hand motion well, Rudnev’s approach performs
less accurately. In Fig. 8 we show a qualitative example of a
challenging SMPL-X hand motion in which an opened hand
is bended inwards which causes self-occlusions at the palm
and fingers. For the sequences with combined arm and hand
motion of the SMPL-Xmodel, we show qualitative results of
our approach in Fig. 9c. Our proposed approach can recon-
struct the motion well.

6.5.2 Real Data

In Fig. 10, we also show qualitative results of our approach
with the MANO hand model on real sequences with hand
motion capturedwith aDAVIS240Ccamera. The camera also
records grayscale intensity frames for reference. Since our
approach requires an initialization of the hand pose parame-
ters, we use (Lin et al., 2021) on the first image frame and set
rotation and translation manually, since the pretrained model
did not yield proper poses on the DAVIS gray scale images.
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Fig. 9 Qualitative reconstruction results on SMPL-X arm & hand sequences

Fig. 10 Qualitative results on a real event sequence from aDAVIS240C
camera. Lin et al. (2021) infer MANO pose parameters from intensity
images; Rudnev et al. (2021) infer 6 principal MANO pose parameters;

Nehvi et al. (2021) and our approach optimize 45MANO pose parame-
ters. Our approach recovers the deformation most similar to the ground
truth

Further details on the initialization procedure are provided in
Sect. 6.2. We compare our approach qualitatively with state-
of-the-art image-based (MeshGraphormer (Lin et al., 2021))
and event-based (Nehvi et al., 2021; Rudnev et al., 2021)
methods. MeshGraphormer is a learning-based approach
which predicts MANO pose parameters from grayscale
images. It has solid reconstruction performance for slower

motions, but suffers from motion blur for fast motions. Fur-
thermore, the temporal resolution of the reconstruction result
is limited by the frequency of the frames. Compared to the
result of MeshGraphormer (Lin et al., 2021) and event-based
approaches (Nehvi et al., 2021; Rudnev et al., 2021), our
approach follows the ground-truth reference more closely.
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Fig. 11 Robustness to different levels of uncertainty for the initial
parameters

6.6 Robustness

We evaluate robustness to noisy inputs on the SMPL-X hand
motion sequences. In the first experiment, we investigate the
robustness to noisy initial templates of objects.Here,we sam-
ple 6-dimensional initial pose parameters of handmodel from
a Gaussian distribution with the mean of ground-truth values
and different standard deviations. The 3D-PCK curve and
AUC value of each standard deviation are shown in Fig. 11.
The result demonstrates that our approach still achieves an
AUC of 0.86 when the standard deviation is 0.8. Note that
a noise level of σ = 0.2 is already high for MANO hand
parameters which are in the scale −2 to 2 (see Fig. 12 for
hand parameters θ ∈ R

6).

In the second experiment, we evaluate robustness to noise
in the input event stream. Noise is caused by the uncertainty
of contrast threshold and salt-and-pepper noise in evaluation
sequences. Here, we use different levels of standard devia-
tion for contrast threshold sampling and vary the threshold
for salt-and-pepper noise to simulate event streams with dif-
ferent noise levels for the samemotion.We show the 3D-PCK
curves and AUC values of different noise levels in Fig. 13.

The result in Fig. 13a demonstrates that our approach is
robust to different levels of uncertainty for the contrast thresh-
old in the event generation process. Besides, Fig. 13b shows
that our approach has solid performance on different amounts
of salt-and-pepper noise, too.

6.7 Ablation Study

6.7.1 Likelihood Formulation

In the first ablation study, we investigate variants of the data
likelihood term formulated for E-step and M-step on SMPL-
X hand motion sequences. The data likelihood for the E-
step is formulated by the lateral probability, the longitudinal
probability, and the contour probability:

p(xi | zi = j, θ) ∝ plateral · plongitudinal · pcontour . (17)

Fig. 12 Variation of MANO
hand parameters

Fig. 13 Robustness to different level of a contrast threshold uncertainty; b salt-and-pepper noise

123



International Journal of Computer Vision (2024) 132:2943–2961 2957

Table 3 Ablation study on
probability terms of the data
likelihood in the E-step and the
M-step

Elateral Elongitudinal Enormal Mlateral Mlongitudinal Mnormal MPJPE (mm) AUC (%)

✓ ✓ ✓ ✓ ✗ ✓ 1.5289 95.9308

✓ ✗ ✓ ✓ ✗ ✓ 1.6523 93.5601

✓ ✓ ✗ ✓ ✗ ✓ 2.2500 92.7352

✓ ✓ ✓ ✓ ✗ ✗ 1.9891 92.8573

In the ablation study, we formulate the data likelihood
in the E-step by either lateral probability and longitudinal
probability in:

p (xi | zi = j, θ) ∝ plateral · plongitudinal , (18)

or the lateral probability and the contour probability:

p (xi | zi = j, θ) ∝ plateral · pcontour . (19)

The proposed data likelihood in the M-step is formulated
by the lateral probability and the longitudinal probability:

p (xi | zi = j, θ) ∝ plateral · pcontour . (20)

In the ablation study,we formulate the data likelihood only
with the lateral probability:

p (xi | zi = j, θ) ∝ plateral . (21)

We demonstrate the ablation study in the SMPL-X hand
motion reconstruction. We combine different variants of E-
step andM-step. The quantitative results of above mentioned
variants are shown in Table 3.

The results demonstrate that the contour probability is
essential for the formulation of the data likelihood term both
in the E-step and the M-step. It also indicates that intro-
ducing longitudinal probability in the E-step can slightly
improve the performance. Our full data likelihood formu-
lation (Eqs. 17, 20) has best accuracy on the SMPL-X hand
motion sequences.

6.7.2 Soft and Hard Association

In the second ablation study, we investigate the soft associ-
ation and hard association in the M-step on SMPL-X hand
motion sequences. For the soft association, we maximize the
formulated objective for all mesh faces in the M-step. For
the hard association, we select the mesh face which has the
highest probability according to the E-step, and maximize
only the likelihood for this mesh face in the M-step.

From the results in Table 4 it can be seen that the soft
association is slightly better in MPJPE. The difference to
hard association is small. We observe that the E-step often
assigns a relatively high probability to one mesh face. Thus,

Table 4 Ablation study on soft association and hard association

MPJPE (mm) AUC (%)

Soft association 1.11 96.38

Hard association 1.19 96.45

Table 5 Average event buffer processing run-time of Nevhi’s approach
and our method on the first MANO hand sequence

Method Avg. runtime (s)

Nehvi’s (Nehvi et al., 2021) 13.27

Ours 11.78

the soft association and the hard association achieve similar
results in this experiment.

6.8 Run-Time Analysis

Differently to Lin et al. (2021), Rudnev et al. (2021), our
implementation of soft association is not real-time capable,
due to the complete evaluation of all event measurement like-
lihoods for allmesh faces in the soft E-step.Depending on the
motion, a sequence can be split into 50 to 500 event buffers.
For each event buffer, the current average run-time of the
method is 8.76s on MANO hand sequences, and 50.72 s on
SMPL-X arm & hand sequences. EventHands (Rudnev et
al., 2021), a real-time capable learning-based approach, has
the fixed time span for event buffers buffers and thus it’s
not directly comparable. Here, we focus on comparing the
runtime with the optimization-based method by Nehvi et al.
(2021). We provide a per-buffer runtime comparison on the
first MANO hand sequence (with average buffer temporal
length 0.011s) in Table 5. It demonstrates that our approach
is faster than Nehvi’s method in processing each event buffer
while both are still far from real-time processing.

We also evaluate the run-time efficiency of a hard asso-
ciation approach (see Sect. 6.7.2) which performs an E-step
only every 10th M-step. Since the hard association only con-
siders one face in theM-step, it ismore efficient and performs
faster than the soft association.

InFig. 14,wevisualize results for the individual sequences
and for different number of M-steps for each buffer on a
subset of 10 SMPL-X hand sequences. Each buffer contains
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Fig. 14 Running time evaluation of SMPL-X hand sequences

Table 6 Run-time and accuracy on subset of SMPL-X hand sequences
for hard association with different number of M-steps

MPJPE (mm) Time per buffer (s)

Soft association 1.36 43.57

1M-step 4.44 0.15

5M-steps 1.95 0.51

10M-steps 1.69 0.91

50M-steps 1.02 4.69

100M-steps 1.02 8.79

200 events. We also show quantitative comparison between
different number of M-steps in Table 6 over these sequences.
We observe that withmediumnumber ofM-steps (e.g. 5–10),
the accuracy of our approach degradesmildly. Note that these
results cannot be directly compared to Table 4 because they
are evaluated on a subset of the SMPL-X hand sequences and
use a different learning rate of 0.007.

The soft association results on the same subset of
sequences are shown in Table 6 as baseline. We can acceler-
ate the run-time from 43.57s per buffer with soft association
86.3 times for 5M-steps per buffer and 47.6 times for 10M-
steps per buffer with hard association.

Although the hard association variants achieve better run-
time results, they still do not reach real-time performance.
Note that our current implementation is in PyTorch and
that we use a first-order optimizer (ADAM (Kingma & Ba,
2015)). In future work, the optimization process could be
implementedmore efficiently by associatingmesh faces with
a local search, tailoring code with CUDA/C++, and using
second-order Gauss-Newton methods instead of the current
gradient-descent algorithm.

6.9 Drift and Failure Cases

6.9.1 Drift

Asan incremental optimization-based approach, our approach
can also drift, but it can snap the mesh silhouette to the
observed events on the contour if sufficient observations are
available. Figure 15 shows that for the MANO hand dataset
our approach drifts from the ground-truth initial value at the
beginning phase (buffers (0–100)), but is able to keep the
same level of error in the remaining optimization process.
The sequences in our experiments have a duration between
0.5 s and 2s, while the number of buffers to optimize mainly
depends on the speed of the motion.

6.9.2 Reconstruction Failures

Our approach fails in some sequences of SMPL-X body and
hand motion. We visualize the ground-truth images, input
event stream, and reconstructed arm and hand in Fig. 16.
The initial pose is in the blue bounding box, and the final
pose is in the green bounding box. Figure 16b shows that
the hand at the initial pose does not generate valid events.
The reason can be observed from Fig. 16a: the fingers at the
initial pose have similar color as the background. According
to the event generation model, no events are generated by the
motion of fingers. The lack of events leads to a failure case
of our approach in this sequence. However, as illustrated in
Fig. 16c, our approach can still reconstruct the arm motion,
because the arm moves over a different texture and sufficient
events for the arm motion are generated.

The failure cases due to similar background and object
color are more pronounced for the SMPL-X arm & hand
than for SMPL-X hand sequences, because the hand appears
smaller in the image and can overlap with the region in the
background with similar color more strongly than on the
SMPL-X hand sequences. For example, see Fig. 16b, where
a large part of the events on the hand are missing. In the
SMPL-X hand sequences, the hand appears larger (for exam-
ple Fig. 9b) and the events are more widely distributed in the
image, such that often only parts of the hand are affected and
the hand pose is better constrained.

6.10 Assumption and Limitation

Our approach uses a loose coupling of frames and events
by initializing the optimization from the gray-scale frame.
A possible direction of future work is to extend the method
by feeding the frame-based information at a specific lower
rate and use the events to estimate pose between frames in a
tightly-coupled joint optimization framework. In our exper-
iments, self-occlusions occur within the hand (for instance
between fingers, or fingers and the palm, see also Fig. 6). The
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Fig. 15 Drift during optimization ofMANOhand reconstruction experiments. aAverageMPJPE developmentwith the number of processed buffers.
b Number of sequences still available at the number of processed buffers, indicating over how many sequences the MPJPE in (a) is averaged

Fig. 16 Analysis of a failure case of our approach for SMPL-X arm & hand sequences. a Ground-truth motion in sequence 1. b Events in sequence
1. c Reconstructed arm and hand pose in sequence 1

more self occlusions, themore unconstrained the pose param-
eters get due to the partial observations and low number of
events. The constant velocitymodel and the PCA subspace of
MANOcan help to regularize themotion in this partially con-
strained setting. Our method relies on events on the contour
and cannot estimate deformation if there are little contour
events due to similar background color or insufficientmotion.
We expect that for two independently moving hands that
occlude each others, our method cannot track the motion of
the occluded hand well due to the independence assumption
of event measurements. Due to the image projection, the con-
tour information seems not sufficient yet for reconstructing
shape parameters concurrently with rotation and translation
of the objects with our formulation. To address challenging
settings like 6D pose estimation or crossing hands in future
work, one could for instance investigate including learned
temporal priors, texture-based cues, or combining events
with frames in a joint optimization framework. Our approach
assumes the deformation of non-rigid objects is constrained
by a set of low rank parameters. Thus, adapting our approach
to complex deformable models with higher degree of free-

dom could be challenging and can be considered as a future
direction.

7 Conclusion

We present a novel non-rigid reconstruction approach for
event cameras. Our approach formulates the reconstruction
problem as an expectation-maximization problem. Events
are associated to observed contours on parametrized mesh
models and an alignment objective is maximized to fit the
mesh parameters with event measurements. Our method
outperforms qualitatively and quantitatively state-of-the-art
event-based non-rigid reconstruction approaches (Nehvi et
al., 2021; Rudnev et al., 2021). We also demonstrate that our
proposed approach is robust to noisy events and initial param-
eter estimates. In future work, texture-based reconstruction
fromevents and frames could be combinedwith our approach
or the run-time of our implementation could be improved by
searching for correspondences efficiently or using second-
order optimization methods. In addition, our method could
inspire novel learning-based approaches [e.g. (Messikommer
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et al., 2020; Schaefer et al., 2022)], for instance, by using
our EM objective to formulate self-supervised losses. Lastly,
handling events in textured regions or tightly integrating our
approach with image frame based measurements to further
increase the variety of reconstructable objects could be an
interesting direction for future research.
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