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Abstract
We introduce an improved solution to the neural image-based rendering problem in computer vision. Given a set of images
taken from a freely moving camera at train time, the proposed approach could synthesize a realistic image of the scene from
a novel viewpoint at test time. The key ideas presented in this paper are (i) Recovering accurate camera parameters via a
robust pipeline from unposed day-to-day images is equally crucial in neural novel view synthesis problem; (ii) It is rather more
practical tomodel object’s content at different resolutions since dramatic cameramotion is highly likely in day-to-day unposed
images. To incorporate the key ideas, we leverage the fundamentals of scene rigidity, multi-scale neural scene representation,
and single-image depth prediction. Concretely, the proposed approach makes the camera parameters as learnable in a neural
fields-based modeling framework. By assuming per view depth prediction is given up to scale, we constrain the relative
pose between successive frames. From the relative poses, absolute camera pose estimation is modeled via a graph-neural
network-based multiple motion averaging within the multi-scale neural-fields network, leading to a single loss function.
Optimizing the introduced loss function provides camera intrinsic, extrinsic, and image rendering from unposed images. We
demonstrate, with examples, that for a unified framework to accurately model multiscale neural scene representation from
day-to-day acquired unposed multi-view images, it is equally essential to have precise camera-pose estimates within the scene
representation framework. Without considering robustness measures in the camera pose estimation pipeline, modeling for
multi-scale aliasing artifacts can be counterproductive. We present extensive experiments on several benchmark datasets to
demonstrate the suitability of our approach.

Keywords Neural radiance fields · Motion averaging · Multiscale representation · Single image depth prediction

1 Introduction

Using neural fields to represent a 3D scene from its multi-
view (MV) images has recently become popular for solving
novel view synthesis problems. This is primarily due to the
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Mildenhall et al. (2021) work on neural radiance fields pop-
ularly known as NeRF. NeRF’s idea to scene representation
has shown promising results on several computer vision,
graphics, and robotics problems (Yu et al., 2021; Sucar
et al., 2021; Zhang et al., 2021; Liu et al., 2020; Mar-
tel et al., 2021; Kaya et al., 2022; Lee et al., 2022). Yet,
its original design choice has inherent challenges in han-
dling day-to-day MV images captured from a freely moving
camera. For instance, NeRF shows visual artifacts on multi-
ple scale images (Barron et al., 2021), and its performance
degrades even with subtle inaccuracies in camera pose esti-
mates (Lin et al., 2021). Therefore, tomakeNeRF and similar
approaches more usable for arbitrarily captured MV images,
the approach must generalize to more realistic indoor and
outdoor scenes with dramatic camera motion.

While recently proposed Mip-NeRF (Barron et al., 2021)
solves the multiscale issues with NeRF, it assumes known
camera parameters, i.e., ground-truth camera poses as well
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Fig. 1 Left: aMulti-scaled, multi-view images with camera pose error
is fed to related NeRF-based methods (Mildenhall et al., 2021; Barron
et al., 2021; Lin et al., 2021). b Barron et al. (2021) Mip-NeRF can
handle multi-scale imaging effects but fails if the camera poses error
persists. c Lin et al. (2021) BARF can handle the camera pose error
for same-scale images but fails for multi-scale images. d Our approach

works well for both cases.Right: a Error in the camera pose estimation
can lead to incorrect cone casting in the volume space leading to mis-
guided localization of the object for proper modeling. bCorrect camera
poses certify the propermodeling of the object volume for each sampled
canonical frustum

as camera intrinsics are given, or estimated via off-the-shelf
COLMAP software (Schonberger & Frahm, 2016). On the
other hand, recent works such as BARF (Lin et al., 2021),
NeRF–(Wang et al., 2021b), SC-NeRF (Jeong et al., 2021)
introduced formulations to simultaneously estimate camera
pose yet unsuitable for multiscale unposed images (Jain et
al., 2022). Furthermore, available methods in this same vein
often ignore the relative camera motion between images,
which is a critical prior to absolute camera pose estima-
tion. In both of these independent research directions, a gap
exists, i.e., BARF (Lin et al., 2021) and similar methods can
jointly solve the camera pose with neural fields represen-
tation but cannot address multiscale image issues. On the
contrary, Mip-NeRF (Barron et al., 2021) can handle multi-
scale images but assumes the correct camera pose. Hence, in
this work, we introduce a simple and effective approach to fill
this gap. By utilizing the fundamentals of scene rigidity, rela-
tive camera motion, and scene depth prior, we jointly address
the multiscale issues and the challenges in camera parame-
ter estimation within neural fields approaches (see Fig. 1a).
Consequently, our self-contained approach performswell for
handheld captured MV images.

To put the notions intuitively, we show in Fig. 1b that
the correct intersection of the conical frustum for object
localization—as proposed in Mip-NeRF (Barron et al.,
2021), is possible if both the camera poses are correctly
known. One trivial way to solve this is to jointly opti-
mize for object representation and camera pose as done in
BARF (Lin et al., 2021) and NeRF–(Wang et al., 2021b)
with Mip-NeRF representation idea. As is known that the

bundle-adjustment (BA) based joint optimization is complex,
sub-optimal, requires good initialization, and can handle only
certain types of noise and outlier distribution (Chatterjee &
Govindu, 2017). So, conditioning the multi-scale rendering
representation based on BA-type optimization could com-
plicate the approach, hence not an encouraging take on the
problem.

To solve the above mentioned challenges, we propose an
approach that leverages the fundamentals of scene rigidity
and other scene priors that could be estimated from images.
Firstly, we estimate the camera motion robustly without
having explicit information about the object’s 3D position
assuming a rigid scene (Govindu, 2001). Secondly, we esti-
mate the geometric prior per framewithout using any camera
information by relying on single image depth prior (Ranftl
et al., 2021). This helps in overcoming the object’s geometry
and radiance ambiguity in multi-scale neural radiance fields
representation (Barron et al., 2021). Thirdly, we use rela-
tive camera motion prior between the frames with predicted
depth to further improve the absolute camera pose solution
between frames.

At the heart of the proposed approach lies the idea of
disentangling geometry, radiance, and camera parameters in
multi-scale neural radiance fields representation for mak-
ing novel view synthesis more usable and practical. Our
approach introduces graph-neural network-based multiple
motion averaging with multi-scale feature modeling and per-
frame depth prior to solving the problem. For single image
depth prior, we rely on Ranftl et al. (2021) work. In this arti-
cle, we claim the following contributions.
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Contributions

– We propose a novel view synthesis approach to jointly
estimate camera parameters and multi-scale scene repre-
sentation from daily captured multi-view images.

– The introduced approach exploits rigid scene assumption
to disentangle the camera motion estimation variables
from explicit 3D geometry variables. Furthermore, radi-
ance and shape ambiguity is resolved by utilizing the
per-image scene depth prior.

– The proposed loss function utilizes multi-scale scene
representation and per-view scene depth with graph neu-
ral network-based multiple motion averaging for robust
camera pose parameters estimation leading to improved
scene representation.

This article extends our published paper at the British
Machine Vision Conference (BMVC), 2022 (Jain et al.,
2022). Firstly, the proposed approach extends it to recover
accurate scene representation and camera poses starting from
entirely random poses. It is referred to as RM-NeRF (w/o
pose). Another extension presented is that we further relax
the requirement of camera intrinsics as input and recover cor-
rect scene representation from randomly initialized camera
extrinsic and intrinsic parameters. We refer it as RM-NeRF
(E2E). Thus, the proposed approach serves as a unified
framework, eliminating the dependency on other third-party
modules.

Experimental results show that our proposed extensions
initializedwith random intrinsic and extrinsic camera param-
eters, are quite effective. To test this, we presented the
RM-NeRF (Jain et al., 2022) with very noisy pose initial-
ization in one of the experiment and with COLMAP poses
in the next experiment. We observed that the introduced
extensions are quite effective and provides commendable
results compared to the baseline experiments on day-to-day
captured images, which we collected using our phone by
randomly walking around an object. Our approach achieves
better camera pose estimates and novel view synthesis results
than the existing NeRF-based baseline methods when tested
on the standard benchmark dataset (Mildenhall et al., 2021;
Knapitsch et al., 2017). Additionally, our approach outper-
forms RM-NeRF (Jain et al., 2022) on tanks and temples
dataset (Knapitsch et al., 2017) as well on recently proposed
NAVI dataset (Jampani et al., 2023) under similar experi-
mental settings. Refer to Sect. 4 for more details.

2 RelatedWorks

Recently, neural radiance fields (NeRF) based implicit scene
representation has gained significant attention in the com-
puter vision andgraphics communitywith several extensions.

As a result, discussing all the NeRF-related methods is
beyond the scope of the article, and interested readers may
refer to Tewari et al. (2022) paper for reference. Here, we
keep the related work discussion concise and concern our-
selves with methods relevant to our proposed approach.

2.1 Neural Fields for Scene Representation

NeRF (Mildenhall et al., 2021) represents a rigid scene as
a continuous volumetric field parametrized by a multi-layer
perceptron (MLP). It assumes a fully calibrated setting with
well-posed input images, i.e., correct camera pose and inter-
nal camera calibration matrix is known, and images are
captured in a dome setting. Once the experimental setup is
prepared, NeRF for each pixel sample points along rays that
are traced from the camera’s center of projection. Later, these
sampled points are transformed using positional encoding to
represent each point in a high-dimensional feature vector
before being fed to an MLP for density and color estimation
for novel view synthesis at test time.
(i) Multiscale NeRF. Barron et al. (2021) introduced Mip-
NeRF to overcome the limitations with NeRF in rendering
multi-resolution images, i.e., MV images are captured at a
varying distance from the object. Instead of sampling points
along the rays traced from the camera center of projec-
tion, Mip-NeRF queries samples along a conical frustum
interval region approximated using 3D Gaussian to render
the corresponding pixel. Since the image acquisition setup
used in NeRF is unrealistic for many practical day-to-day
captured videos,Mip-NeRF broadens the scope of NeRF for-
mulation to commonly acquired multi-view and multi-scale
image acquisition setups. Yet, the Mip-NeRF assumption on
the availability of ground-truth camera pose parameters is
uncommon and could substantially restrict its application.
(ii) Uncalibrated NeRF. Recently, a few methods have
appeared to jointly solve camera pose and object’s neural
representation via NeRF formulation. For example, BARF
(Lin et al., 2021) leverages photometric bundle adjustment
to estimate the camera poses and recover scene representation
jointly. Recently, NeRF−−(Wang et al., 2021b) introduced
an approach for estimating intrinsic and extrinsic camera cal-
ibration while training the NeRF model. Nonetheless, these
extensions of NeRF work well for the same scale images;
accordingly, its usage is limited to a synthetic multi-view
dome or hemispherical setup. Not long ago, NoPe-NeRF
(Bian et al., 2022) utilized depth maps to estimate cam-
era poses via point cloud alignment and a surface-based
photometric loss. As a result, it can reconstruct the scene
from randomly initialized poses. Other related work includes
iNeRF (Yen-Chen et al., 2021) that solves camera poses
given a well-trained NeRF model, and SC-NeRF (Jeong et
al., 2021). The method jointly learns the camera parameters
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and scene representation using a loss function that enforces
geometric consistency for a given camera model.
(iii) NeRF extension with other scene priors. There have
been several attempts to make the NeRF approach either
faster or more generalizable by extracting valuable features
from the input images. One line of works (Yu et al., 2021;
Wang et al., 2021a) involves estimating a feature volume
from an image via a generalizable CNN and then feeding the
feature vector into theMLP to generalizeNeRF idea.Another
line of works (Chen et al., 2021; Xu et al., 2022) estimates
scene 3D structure prior via MVS-based methods (Yao et
al., 2018). Combining input image features with recovered
3D structure, it learns better scene representation, and such
approaches are shown to converge faster.

2.2 Camera Pose Estimation

Widely used approaches to camera pose estimation from
multi-view images are based on image key-points matching
and incrementally solve camera pose (Agarwal et al., 2011)
or use global BA (Triggs et al., 2000) with five-point (Nistér,
2004) or eight-point algorithm (Hartley, 1997) running at the
back-end. Yet, such methods can provide sub-optimal solu-
tions and may not robustly handle outliers inherent to the
unstructured images. To address such an intrinsic challenge
with pose estimation, Govindu (Govindu, 2001) initiated and
later authored a series of robust multiple rotation averaging
(MRA) approaches (Govindu, 2016; Chatterjee & Govindu,
2017). The benefit of using MRA is that it uses multiple esti-
mates of noisy relative motion to recover absolute camera
pose based on view-graph representation and rotation group
structure (Govindu, 2006) i.e., SO(3). Contrary to the robust
conventional rotation averaging approaches (Chatterjee &
Govindu, 2017;Aftab et al., 2014;Hartley et al., 2011), in this
work, we adhere to graph neural network-based approaches
for robust camera pose estimation via a learned view-graph
module, which helps in better removal of the erroneous poses
nodes in the graph (Yang et al., 2021; Gilmer et al., 2017;
Purkait et al., 2020; Li & Ling, 2021).

Note that part of our work was published as a confer-
ence proceeding at the British Machine Vision Conference
(BMVC), 2022 (Jain et al., 2022). Nevertheless, this jour-
nal version is a substantial extension of the conference paper
both in terms of formulation, experimentation and ablation.

3 Problem Statement and Our Approach

Given a set ofmulti-view images captured from a freelymov-
ing handheld camera, the goal is to recover accurate camera
pose and learn a better neural scene representation for novel
view synthesis. In our problem setting, we predict single

image depth prediction (SIDP) prior per frame using off-
the-shelf pre-trained model (Ranftl et al., 2021).

As discussed, a freely moving camera could lead to
scene observation at different pixel resolutions, and there-
fore, we propose to utilize the mipmapping approach to
model the scene representation (Barron et al., 2021). For
joint optimization of camera pose with the scene represen-
tation parameters, we compose our proposed pipeline with
graph-neural network-based robust motion averaging, where
the initial pose could be initialized randomly or via off-the-
shelf algorithms. Still, we are plagued by radiance-geometry
ambiguity, so we introduce SIDP per frame to resolve it.
Another advantage SIDP brings is that we can use relative
camera pose prior per frame to further improve the camera
motion estimates and respective scene 3D parameters.

Based on the above discussion, we propose three algo-
rithmic variations of our proposed idea, which is based on
the following variations in the experimental initial setup
(i) The basic version, dubbed as RM-NeRF takes a noisy
set of poses estimated using COLMAP (Schönberger et al.,
2016) with multi-scale MV images as input. It assumes no
depth prior per frame while the intrinsic camera matrix is
known. (ii) Similar to the first version, we assume the intrin-
sic camera matrix as well as per view depth prior is known;
however, the camera pose is randomly initialized. We call
this version of our algorithm as RM-NeRF (w/o pose). (iii)
Assuming SIDP per view and randomly initialized camera
pose, the third variation RM-NeRF (E2E) estimates cam-
era intrinsic, camera extrinsic, and scene representation from
multi-view images. Fig. 2 provides the complete pipeline
of our algorithm. Depending on our assumptions about the
known priors, we utilize the different modules shown in the
diagram to optimize the proposed overall loss function.

Next, we discuss the technical details pertaining to our
approach pipeline. We begin with a discussion on multiscale
representation for NeRF followed by multiple motion aver-
aging. These two concepts form the basis of ourmethodology
i.e., RM-NeRF.
(a) Multiscale Representation for NeRF. By leveraging
pre-filtering techniques in rendering (Amanatides, 1984) i.e.,
tracing a cone instead of ray, Mip-NeRF (Barron et al., 2021)
learns the scene representation by training a single neural net-
work, which can be queried at arbitrary scales. Furthermore,
contrary to NeRF, which uses point-based sampling along
each pixel ray to form their positional encoding (PE) feature
vector, Mip-NeRF uses the volume of each conical frustum
along the cone to model the integrated positional encoding
(IPE) features. The positional encoding γ (x) (as defined in
NeRF (Mildenhall et al., 2021)) of all the point within the
conical frustum, having center at o and axis in the direction
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Fig. 2 We propose to jointly solve camera poses and learn the multi-
scale scene representation. The pipeline consists of a camera pose
refining network, single image depth prior to estimate camera pose and
the IPE (Integrated Positional Encoding) by casting well-posed conical

frustums through the pixels. Later, those are fed to theMLP network for
learning the scene representation for novel view synthesis.P denotes set
of camera pose. Here, DPT symbolizes single image depth prediction
model from Ranftl et al. (2021) work

d, is formulated as

γ ∗(o,d, ṙ , t0, t1) =
∫

γ (x)F(x, o,d, ṙ , t0, t1)dx∫
F(x,o,d, ṙ , t0, t1)dx

, (1)

where F is an indicator function regarding whether a point
lies inside the frustum in the given range [t0, t1] and ṙ is
the ray corresponding to the axis. Since Eq. (1) is com-
putationally intractable with no closed form solution, it is
approximated using multivariate Gaussian which provides
“integrated positional encoding” (IPE) feature, proposed in
Barron et al. (2021).1

(b)SceneRigidity andMultipleMotionAveraging.Assume
a pin-hole camera model with intrinsic calibration matrix
K ∈ R

3×3 and extrinsic calibration R ∈ SO(3), t ∈ R
3×1

as the rotation matrix and translation vector, respectively
w.r.t assumed reference. We can relate i th image pixel x =
[ui , vi , 1]T to its corresponding 3D point x = [xi , yi , zi ]T
using the following popular projective geometry relation, i.e.,

s[ui , vi , 1]T = K
[
R | t][xi , yi , zi , 1

]T (2)

1 For more details and derivations, refer Barron et al. (2021) work.

where s is the constant scale factor. Equation (2) indicate a
non-linear interaction between 3D scene point and camera
motion. Yet, the classical epipolar geometry model suggests
that if the scene is rigid x ′TE x = 0must hold (Hartley&Zis-
serman, 2003), where x ′ is the image correspondence of x in
the next image frame. It is well-studied that E can be decom-
posed into R and t such that E = [t]×R, where E ∈ R

3×3 is
the essential matrix and [t]× ∈ R

3×3 is the skew-symmetric
matrix representation of the translation vector. Using this
epipolar relation, we can estimate rigid camera motion with-
out making use of any actual 3D observation. Nonetheless,
rigid motion solution based on epipolar algebraic relation is
not robust to outliers and may provide unreliable results with
more multi-view images (Chatterjee & Govindu, 2017). So
to estimate robust camera motion independent of 3D scene
point in a computationally efficient way led to the success
of robust motion averaging approaches in geometric com-
puter vision (Govindu, 2006; Aftab et al., 2014; Chatterjee
& Govindu, 2017). Moreover, given rotations, solving trans-
lations generally becomes a linear problem (Chatterjee &
Govindu, 2017). Consequently, solution to motion averag-
ing reduces to rotation averaging problem.

123



International Journal of Computer Vision (2024) 132:1310–1335 1315

3.1 RM-NeRF: Formulation and Optimization

Let I be the set of multi-view images taken at different dis-
tances from the object (see top left: Fig. 2). RM-NeRF aims at
simultaneously updating theMLP parameterized multi-scale
representation network (θ ) and set of camera poses P , given
estimated noisy poses P̃ and camera intrinsics K. Assum-
ing the favorable distribution model Φ(), we can write the
overall goal of RM-NeRF as

θ,P ∼ Φ(θ,P|I, P̃,K). (3)

The above formulation can further be simplified based on
rigid scene assumption. As a result, we can optimize for the
camera pose without explicit knowledge of 3d points in the
scene space. Accordingly, we simplify the Eq. (3) as

Φ(θ,P|I, P̃,K) =
Multiscale MLP
︷ ︸︸ ︷
Φ(θ |I,P,K) ·

Motion averaging
︷ ︸︸ ︷
Φ(P|I, P̃,K). (4)

Equation (4) allows a separate modeling scheme for cam-
era pose recovery and the 3D scene representation. Next, we
describe our motion averaging approach for camera motion
estimation, followed by its modification to recover robust
camera pose estimates leading to RM-NeRF joint optimiza-
tion.

3.1.1 Graph Neural Networks for MRA

Assume a directed view-graph G = (V, E) (see Fig. 2 center
bottom). A vertex V j ∈ V in this view graph corresponds to
j th camera absolute rotation R j and Ei j ∈ E corresponds
to the relative orientation R̃i j between view i and j (in
Fig. 2 represented as quaternions). Here, we assume noisy
relative camera motion for view graph initialization. We
aim to recover accurate absolute pose R j and jointly model
the object representation. Conventionally, in the presence of
noise, the cameramotion is obtained by solving the following
optimization problem to satisfy well-known compatibility
criteria for rotation group (Hartley et al., 2013), i.e.,

argmin
{R j }

∑

Ei j∈E
ρ
(
d(R̃i j , R j R

−1
i )

)
, (5)

where, d(.) denotes a suitable metric on SO(3) and ρ(.)

is the robust loss function defined over that metric. Mini-
mizing this cost function ρ(.) in Eq. (5) using conventional
method may not be apt for several types of noise distribution
observed in the real-world multi-view images. Therefore, we
adhere to learn the noise distribution from the input data
at train time and infer the noisy pattern to robustly pre-
dict absolute rotation. We pre-train graph neural network
in a supervised setting to learn the mapping f that takes

noisy relative rotation R̃i j and predict absolute rotations i.e.,

{R f
j } := f (R̃i j ;Θ), where Θ is the network parameters.
We now discuss working of our camera pose network

performing multiple rotation averaging (MRA) based on
message passing graph neural networks (GNNs). We first
discuss the working of Message Passing Networks(MPNN)
involving a graph node and its neighbours.
(i) Message Passing Scheme. Given a directed view-graph
G (see Fig. 3) with N cameras and M pairwise relative orien-
tation, we use the message passing neural network approach
to operate on it. Let m(t)

j be the message functions that cor-
respond to the message from the neighboring nodes u ∈ N j .

Denoting ψ(t) as the update functions (T layers), and h(t−1)
j

the state of node j at time step (t − 1), the feature node state
h(t)
j at time t in the graph is updated as:

h(t)
j = ψ(t)(h(t−1)

j ,m(t)
j

)
(6)

ψ(t) corresponds to concatenation operation followed by a
1D convolution and ReLUs. Intuitively, the node j state at
time t is updated via update functionψ(t) based on the current
message function value m(t)

j and state of the node j at t − 1
(concatenation). Yet, we want to have a smooth update of
the graph node value hence 1D convolution. The message
function m(t)

j at node j due to all neighbor N j is expressed
as

m(t)
j = ΩVi∈N j h

(t)
i−→ j (7)

Here, Ω(.) denotes a differentiable function like the soft-
max activation function, h(t)

i−→ j := Ψ (t)(h(t−1)
j , h(t−1)

i , ei j )

is the accumulated message for the edge Ei j at t . Ψ (t) is con-
catenation operations followed by 1D convolution and ReLU
activation. In our setup,N j is the set of all neighboring cam-
eras connected to V j and ei j is the edge feature of the edge
Ei j . For more details on the messaging passing algorithmic
details refer Gilmer et al. (2017); Purkait et al. (2020)
(ii) Robustifying Poses using GNN. The GNNs pipeline for
estimating robust pose consists of three major steps:
(1) Cleaning the view-graph. We first estimate the relative
rotations R̃i j from the noisy rotations Ri due to input data.
Next,we apply cycle consistency check to remove the outliers
(Aftab et al., 2014; Hartley et al., 2013). Local cyclic graph
structure of the view-graph must provide orientation close to
identity. Violation of such a local constraint helps in removal
of bad camera pose estimates. In this work, we have proposed
three approaches,.i.e, RM-NeRF, RM-NeRF (w/o) pose and
RM-NeRF (E2E). For RM-NeRF, we initialized the camera
poses in the view-graph using COLMAP (Schönberger et
al., 2016). For the rest of our approaches, we initialized the
view-graph with random camera poses.
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Fig. 3 An example view graph extracted form the input poses. The
vertex setV j of this viewgraph correspond to initial absolute orientation
of each of the images and the edge set Ei j correspond to the relative
orientations between the image pairs

(2) Computing noisy initial solution using the extracted rel-
ative rotations. For this, we build a minimum spanning tree
(MST) using all the nodes in the view-graph by fixing the
root node to be the node with maximum neighbours (great-
est fan-out). Then, we generate an initial absolute rotation R̂i

for each node by solving for the motion variables from the
root pose value to other nodes along the tree structure.
(3) Refining the initial solution using Graph Neural Net-
works. For applying GNNs, we require features correspond-
ing to each node in a viewgraph.Weuse the rotationmatrix in
the initial solution corresponding to every node in the graph
as its input feature. Furthermore, we also pass the observed
relative rotations R̃i j as edge features to the GNN following
the formulation described in the previous paragraph. Further-
more, instead of directly passing these relative rotations as
edge features, we instead pass the discrepancy between these
observed relative rotations and the initial solution resulting

in the the edge feature euv = R̂v
−1

R̃uv R̂u , to the GNN.
The resultant input view graph then becomes G =

{R̂i , ei j } leading to a supervised learning problem R f
j :=

f ({R̂i , ei j };Θ), which is trained using the rotation averag-
ing loss function. Moreover, we know that relative rotation
between any 2 nodes in the viewgraph is invariant to any
constant angular deviation in form of rotation matrix R to
both the nodes and thus, both the solution sets {Ri R, R j R}
and {Ri , R j} result in the same discrepancy when using the
rotation averaging loss function. To handle this issue involv-
ing an unknown global ambiguity in the rotations, we add
a regularizer in our objective function to handle such a dis-
crepancy between the absolute rotations. This results in the
following objective function

L =
∑

G∈D

∑

Ei j∈E
dQ(q f

i j , qi j ) + β
∑

V j∈V
dQ(q f

j , q j ), (8)

where dQ = min{‖p − q‖2, ‖p + q‖2} measures distance
between two quaternion p, q. Thus, our overall RM-NeRF
loss solves for accurate camera poses and scene representa-
tion jointly. Concretely, we combine Eq. (8) (Lmra) with the
squared error between the trueC(r) and predicted Ĉ(r) pixel
colors (Lrgb) to define the overall RM-NeRF loss L as

Lmra
︷ ︸︸ ︷∑

Ei j∈E
dQ(q f

i j , qi j ) + β
∑

V j∈V
dQ(q f

j , q j )+
Lrgb

︷ ︸︸ ︷∑

r∈R
‖C(r) − Ĉ(r)‖22,

(9)

Here, β is a scalar constant. qi j ’s symbolizes correspond-
ing quaternion representation of the rotation matrix defined
in Eq. (8). V denotes the vertex set of the view graph cor-
responding to the scene being optimized and E denotes the
corresponding edge set.

3.1.2 RM-NeRF Joint Optimization

Let’s denote MLP parameters in rendering network as θ and
camera pose network parameters as Θ . Our objective is to
optimize for the parameters θ and Θ jointly such that Eq. (9)
loss is as minimum as possible. Using gradient based opti-
mization for this search process requires calculating ∇θL
and ∇ΘL. As Lmra is independent of rendering network, we
have ∇θL = ∇θLrgb. This appears to be similar as previ-
ous optimization landscape for the rendering network, but
here the poses would be changing continuously resulting in
different numeric value of the gradient, making the optimiza-
tion difficult to converge. Now, for the pose network ∇ΘL
will have 2 terms: ∇ΘLrgb and ∇ΘLmra . The second term
is easy to handle given the pose network is able to solve the
rotations as shown in Purkait et al. (2020). The first term is
something that would entangle the search process for θ and
Θ . For clarity, let’s assume the loss due to predicted color as
Φ(θ, γ (P)), whereP (with slight abuse of notation) denotes
the poses having rotations predicted by the pose network, γ
denotes the positional encoding (Rahaman et al., 2019), then
the gradient ofΦ(θ, γ (P))w.r.t the pose network parameters
Θ can be computed using backpropagation as:

∇ΘLrgb = ∂Φ(θ, γ (P))

∂Θ
= ∂Φ(θ, γ (P))

∂γ (P)

∂γ (P)

∂P
∂P
∂Θ

(10)

Differentiating this γ function might result in updates being
favourable to higher frequencies (k) as pointed out previously
in Lin et al. (2021). Accordingly, we modify γ function fur-
ther to

γ ∗(x, k) = eg(k)γ (x), (11)
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where g(k) = min( t−k
b , 0), t is annealed from 0 to maxi-

mum number of modes and b is a scalar constant. The term
∇ΘLrgb shown in Eq. (10) results in correlated updates on
MLP network and pose network parameters and can result
in a highly non-convex optimization. To make optimization
stable, we use the following weighted loss function:

L = λLmra + (1 − λ)Lrgb (12)

where λ is a scalar constant.

3.2 RM-NeRF (w/o Pose): Random Initial Camera
Poses

Our approach RM-NeRF as discussed in the previous sub-
section works well in practice, given that the initial camera
pose estimates are not random. The intuition behind this is
that pose-refining based on MRA is used in scenarios where
the amount of noise in the initial estimatedposes is distributed
across the global pose graph, hence we can recover a good
overall solution. Yet, RM-NeRF formulation could fail if the
pose graph initialization is reasonably erroneous. This puts a
hard constraint of providing reasonable camera pose initial-
ization to perform MRA.

To overcome such a practical limitation, we propose an
extension to the introducedRM-NeRF formulation. The idea
is if we have prior knowledge about the scene’s geometry, we
could constrain the camera motion per view at the same time
and resolve radiance-geometry ambiguity in neural image
rendering. To this end, we assume depth per frame is known
and predicted using Ranftl et al. (2021) network.2 Given the
depth prediction per view, we constrain scene point align-
ment via relative camera pose. Yet, solving for camera pose
using such a constraint could lead to sub-optimal solution
and requires further pose refinement. Nevertheless, it fits our
purpose of using the MRA. Accordingly, we use our pose-
refining GNN (same as RM-NeRF) in an iterative manner.

RM-NeRF (w/o pose) extension is based on the intuition
that refining the camera poses estimated using 3d scene point
alignment loss per view at each step via GNN can help avoid
sub-optimal solution in the optimization landscape of the
overall objective.Thus,wepropose a loss function that allows
camera poses to be initialized randomly and still be able to
recover good camera pose estimates. For each step during
optimization, the current poses are updated using the point
cloud alignment and then refined using our pose-refining
GNN.

The goal is to model the network parameters (θ ) and the
correct camera pose set (P) using the input image set (I)
and known camera intrinsics (K) involving an intermediate

2 With the recent progress in single image depth prediction (SIDP)
network, it is quite a reasonable assumption.

monocular depth prediction per view and reasonable camera
pose set P̂ estimation using monocular depth, followed by
refinement. For better abstraction,we can define the proposed
intuition in terms of following equation.

θ,P ∼ Φ(θ,P|I,K)

= Φ(θ,P|I,K,D)Φ(D|I)

= Φ(θ,P|I,K, P̂)Φ(P̂|D,K)Φ(D|I).

(13)

Here, D denotes the set of predicted depth map per frame.
Given that we are feeding the initial estimate P̂ into motion
averaging network with parameters Θ to predict the refined
poseP , this leads to the following relation:P = fΘ(P̂). This
allows us to randomly initialize the camera pose set P̂ . Thus,
given I,D, and P̂ , we perform an iterative optimization by
minimizing the chamfer distance Lcd of the scene points
between views leading to depth and camera pose refinement.

Similar to the concurrent work Nope-NeRF (Bian et al.,
2022), we define two learnable parametersαi ,βi to transform
each monocular depth Di to a global frame for multi-view
consistency. Denoting transformed depth as D∗

i , we write

D∗
i = αi Di + βi . (14)

Such transformation parameters is learnt by aligning the
transformed and rendered depth (D̂) via an MLP loss

Ld = ||D∗ − D̂||2. (15)

Here, αi , βi are scalar parameters. The role of α is to fix the
scale in the monocular depth map. Whereas β is responsible
for handling the additive bias. This is because relative depth
shouldbe consistent over different camera viewpoints.Acon-
stant scale and bias factor seem sufficient to fix it for each
view. Similar toBian et al. (2022), assuming the known trans-
formed depths for i th and j th image along with their relative
pose Ti j = Tj T

−1
i , we unprojected the depth maps to scene

point clouds Pi and Pj respectively. Here, Ti , Tj ∈ P . The
camera pose corresponding to each of these images should be
such that relative pose Tji aligns Pi to Pj . Thus, the Cham-
fer Distance (Lcd ) between the Pj and the transformed point
cloud Tji Pi becomes a suitable objective function constraint
for the camera poses. Using this objective as an additional
loss function, we arrive at the following overall loss func-
tion Lagg—across all the training images—to optimize the
MLP parameters θ , transformation parameters α, β and the
randomly initialized set of poses P:

Lagg = (Lmra + Lrgb + Ld
) +

∑

i, j

Lcd
(
Tji Pi , Pj

)
(16)

The loss proposed in Eq. (16) captures our overall notions.
Yet, it is complex and challenging to optimize efficiently
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compared to RM-NeRF, accounting for the fact that we want
to allow for randomcamera pose initialization. To understand
this better, let us look at the gradient descent-based update
term of optimization variables in Eq. (16). At any optimiza-
tion step t , the rendering MLP network parameters (θ t ) are
updated just w.r.t. the rendering loss Lrgb with the gradient

term being
∂Lrgb

∂θ
(same as RM-NeRF). On the other hand, the

overall updates involved in camera pose estimation is intri-
cate. For each step t , we first update the initial estimate of
each pose P̂ t

i using chamfer distance:

P̂ t
i = P̂ t−1

i − α
∑

j

∂

∂P̂
Lcd(Tj T

−1
i Pi , Pj ) (17)

Given the updated poses P̂ t and the MLP parameters θ t , we
now update the camera pose network parameters Θ t using
Lmra and Lrgb similar to RM-NeRF i.e.,

Θ t = Θ t−1−β
∂

∂Θ

(
Lmra( fΘ(P̂ t )) + Φ(θ t , γ ( fΘ(P̂ t )))

)

(18)

Note, however we use disjoint set of loss functions for updat-
ing P̂ t

i ,Θ
t and therefore, donot update P̂ t

i usingLrgb orLmra

due to the term ∂Θ t

P̂ t
i

, and deal with them only using Θ t . Such

updates in Eqs. (17) and (18) can be either simultaneously
for each step or applied alternatively for some fixed num-
ber of steps. We follow the later strategy and update P̂ t

i , Θ
t

alternatively, for a fixed number of steps (K ).

3.3 RM-NeRF (E2E): Unknown Intrinsic Camera
Matrix

Even though our RM-NeRF (w/o pose) method overcomes
the requirement of good initialization of camera pose-graph
variables, it still requires the intrinsicmatrix for a given image
set, which may not be available for real-world multi-view
data. To handle this, we introduce the third extension of our
algorithm referred as RM-NeRF (E2E).

RM-NeRF (E2E) estimates both camera poses and intrin-
sic camera parameters from the multi-view image set. Addi-
tionally, it is able to work well with randomly initialized
intrinsic matrix and camera poses, given the D is provided
or predicted via a trained model. The overall loss is similar
to RM-NeRF (w/o poses) except now the intrinsic matri-
ces K is estimated leveraging the following relation among
θ,P,K.

θ,P ∼ Φ(θ,P,K|I, P̂)Φ(P̂|D)Φ(D|I) (19)

Note, α and β are updated only using the term Ld and the
intrinsic (K), extrinsic (P) and MLP network parameters (θ )

are updated using the three terms except Ld in Eq. (16)

K,P, θ = arg min
K,P,θ

(Lmra + Lrgb + Lcd
)

(20)

where Lcd is shorthand for
∑

i, j Lcd(Tji , Pi , Pj ).
UpdatingK. The overall objective for the updating intrinsics
at step t (Kt ) involves minimizing losses Lrgb and Lcd :

Kt = Kt−1 − ∂

∂K
(Lrgb + Lcd) (21)

The intrinsics are being updated alongside camera poses P̂
w.r.t. loss Lcd and pose-refining GNN parameters Θ w.r.t.
loss Lrgb. Such a strategy may lead to suboptimal solution
due to the complex nature of optimization. Thus, we only
update intrinsics K using the rendering loss Lrgb alongside
the GNN parameters Θ .

3.4 Optimization Implementation Details

RM-NeRF.Webeginwith a disjoint optimization scheme for
camera poses and scene representation by fixing λ = 1 for
some initial number of epochs. For this case, Eq. (4) depicts
the modified formulation of the problem statement. After the
initial optimization of both the networks via biasedweighting
strategy,λ is annealed byusing an exponential decay, i.e.,λ =
λ0e−kt where λ0 = 1. This annealing goes till λ = 0.5 and
then we fix it at 0.5 for the remaining optimization process.
RM-NeRF (w/o pose). Here, we perform initial updates
using only the Lcd and Ld loss function for some number
of epochs and then use all the loss function terms (equi-
weighted) to update the variables and parameters. Our idea
to train the overall model this way is a warm-up step, given
that the optimization landscape can be pretty complex.
RM-NeRF (E2E). For this case, we first perform updates
only using theLcd ,Ld andLrgb losses (equi-weighted). This
leads to an initial estimate of the camera intrinsics and poses.
Furthermore, we include theLmra while performing updates
in an equi-weighted fashion.

4 Experimental Setup, Results and Ablations

Our overall pipeline involves optimizing parameters for two
neural networks: (a)GraphNeuralNetwork (GNN) for robust
refinement of camera poses and (b)MLP network to learn the
multi-scale NeRF representation for the scene. For the GNN,
we follow the architecture of FineNet, proposed by Purkait
et al. (2020). For the MLP, we use the same architecture
and sampling scheme as the Mip-NeRF paper (Barron et al.,
2021) (“coarse" and “fine" sampling involving 128 samples
each to render the color for a given pixel).
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Fig. 4 Camera poses recovered by COLMAP (Schonberger & Frahm,
2016) corresponding to the Truck scene in Tanks and Temples dataset
(Knapitsch et al., 2017), comprising a total of 251 images captured by
gradually moving around the truck object

Furthermore, we pre-train our pose-refining GNN in a
supervised setting using a dataset comprising synthetically
generated view graphs, proposed by Purkait et al. (2020).
This dataset contains 1200 view graphs with up to 30%
outliers. Additionally, the dataset comprises noisy rotations
where the noise is sampled from a Gaussian distribution with
a standard deviation between 5°and 30°. We used 20% of the
dataset to test and train the network on the remaining exam-
ples. Once trained, our pose refinement network achieves a
mean angular error (MAE) of 2.09◦ and a median angular
error of 1.1◦ on the test set. We do this pre-training for 250
epochs using a learning rate of 5× 10−5 and a weight decay
of 10−4. Also, we drop one-fourth of the edges in the view
graph to minimize overfitting at train time.

The trained pose-refinement network is now updated
alongside the scene representation MLP network for each
scene. Given refined rotations, a linear optimizer is employed
to solve translation (Chatterjee &Govindu, 2017).We set the
value of hyperparameter β (used in Eq. 8) to 0.1 during both
the pretraining and pose refinement stages. Similarly, we fix
the value of hyperparameter b from Eq. (11) to be 10 for
all the experiments. The training of our proposed involves
optimizing the MLP network for 100k iterations per scene
using the Adam Optimizer (Kingma & Ba, 2014). We use
a batch size of 4096 and a logarithmically varying learning
rate (between 5 × 10−4 and 5 × 10−5).

All of our experiments have been carried out on a 32 GB
Nvidia V100 GPU computing machine.

4.1 Test Sets and Results

We evaluate our proposed method under two settings:
(i) This setting involves analysis of the introduced approach
on a synthetic dataset. This dataset is generated by rendering
images of 3D object using a pre-defined and well structured
camera poses covering 360° viewof the object. Thus, ground-
truth poses are well defined. For this experiments, we use the
Blender dataset provided by Mildenhall et al. (2021)3 and
its multi-scaled version Barron et al. (2021), consisting of
single object scene centered around a single object without
any background. Each scene in this dataset comprises of 100
images with 800×800 resolution with is captured bymoving
the camera along a fixed hemisphere surrounding this object.
We simulate realistic scenario for this dataset by (a) using the
multi-scaled version representing varying distance of camera
from the object and (b) adding noise to the ground truth poses.
(ii) This setting tests our method on the real-world images
which are acquired by a freelymoving camera with no access
to ground-truth camera parameters. The camera parameters
have to be estimated. For this, we use the Tanks and Temples
dataset (Knapitsch et al., 2017), comprising various scenes
from indoor and outdoor real-world settings. Other than this,
we test our approach on the popular ScanNet dataset (Dai et
al., 2017) comprising a diverse set of indoor scenes. Addi-
tionally, we show results on two other datasets. This first one
captures a box using a regular phone with arbitrary camera
trajectory, and the second is a scene taken from a recent work
by Yen-Chen et al. (2022a).

More details regarding each dataset are provided in the
following subsections.

4.1.1 Multi-scaled Images of Object

For evaluating our method in an object-centric synthetic
setting comprising a complete 360° view, we study themulti-
scaled version of the NeRF Blender dataset, proposed by
Barron et al. (2021). It is generated by resizing each image
in theNeRFBlender dataset to three different,resolutions and
concatenating them with the original dataset. Resizing these
images does not change the ground-truth poses, however the
intrinsics for images at each resolution are updated accord-
ingly. This resizing can be interpreted as changing the camera
distance from the center of the object and thus, this dataset
is more closely aligned with real-world setting as compared
to Blender dataset (Mildenhall et al., 2021).

We further perturb the ground-truth camera poses to make
this dataset close to the real-world setting. Given all the cam-
eras in ground-truth poses lie on a hemisphere, we limit
ourselves to only perturbing the rotational parameters. For
this, we first sample Gaussian noise δp ∼ N (0, 1e−1I) in

3 CC-BY−3.0 license.
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Fig. 5 Qualitative Comparison of our method, and the baselines Mip-
NeRF (Barron et al., 2021), BARF (Lin et al., 2021) on the multi-scaled
version of the NeRF Blender dataset (Mildenhall et al., 2021), with
noise added to camera poses, and our black-box sequence. We have

used three scenes (Lego, Drums andMic) from theMulti-Scale Blender
dataset. Our method is able to localize and reconstruct the object much
accurately as compared to the baselines for all the scenes including the
black-box sequence

the axis angle space, convert it into rotation matrix represen-
tation and multiply it with the rotations of the ground truth
poses, hence perturbing ground-truth camera orientation.
Baselines.We compare the proposed RM-NeRF, RM-NeRF
(w/o pose) methods with the Mip-NeRF, NeRF–(Wang et
al., 2021b), BARF (Lin et al., 2021) baselines to highlight
their effectiveness in dealing with camera pose errors and
multi-scale images simultaneously. To further demonstrate
the challenges with this dataset setting, we define three new
baselines and evaluate themagainst ourmethods. These base-
lines are designed by combining existing baselines that can
deal with pose errors and multi-scale issues separately. This
leads to the first baseline (Base A) being a result of directly
combiningMip-NeRF and BARF by replacing the positional
encoding function to create the Mip-NeRF Integrated Posi-
tional Encoding with the pose encoding function used by
BARF. Both its components, Mip-NeRF and BARF, when
used separately, can either solve multi-scale issues (Mip-
NeRF) or pose errors (BARF). On similar lines, we define a
second baseline (Base B) which involves feeding BARF esti-
mated poses to theMip-NeRFmulti-scale modeling scheme.
Finally, we define the third baseline (Base C), which com-
bines Mip-NeRF with NeRF– by replacing the positional
encoding scheme in NeRF– with the Integrated Positional
encoding that uses frustum-based volumetric modeling for
each pixel, instead of rays. Other than these baselines, we

compare our proposed methods against the recent Point-
NeRF (Xu et al., 2022) method, which has shown to be quite
efficient in convergence leading to high-quality renderings
on the original Blender dataset (Mildenhall et al., 2021).
Results.Table 1 provides the quantitative comparison results
on this dataset for RM-NeRF, RM-NeRF (w/o pose), and the
baseline methods. We reported the results using the popular
PSNR andLPIPSmetrics averaged across all resolutions. For
RM-NeRF (w/o pose), we initialized the orientation angles
randomly and then converted them to rotation matrices. It
can be observed that the baselines provides inferior view
synthesis results for this setup. The inferior results of base-
lines Base A, Base B, Base C as well Mip-NeRF, BARF and
NeRF– shows that naively combining the multi-scale repre-
sentation with existing pose refining methods is not an apt
solution. Hence, showing the importance of our proposed
RM-NeRF, RM-NeRF (w/o) appraoches. Note RM-NeRF
(w/o pose) shows commendable results from randomly ini-
tialized rotations.

Figure 5 provide the qualitative result comparison for the
same. Both our approaches are able to achieve good quality
renderings in this setup compared to the baselines.
Inducing both rotational and translation errors. Here,
we analyze a more challenging setting where we introduce
translation and rotation errors to the camera poses on the
multi-scale blender dataset. A normal distribution with a
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standard deviation of 0.34 is used to sample the noisy transla-
tion, keeping the strategy for introducing rotational error the
same as before.We keep our approach the same, i.e., use rota-
tion averaging to refine the camera orientation solution and
then use these refined solutions to estimate the translations.
The results for this setup in Table 2 show that our method
supersedes the other methods showing its effectiveness in a
more realistic scenario.
The need for RM-NeRF (w/o pose). We now analyze the
effect of further increasing the perturbations to the Multi-
Scale Blender dataset G.T. poses. We again sample the noise
fromagaussian but this time the std is doubled. The results for
RM-NeRF and RM-NeRF (w/o pose) are provided in table X
for this setup. It can be observed that upon increasing noise,
RM-NeRFmight results in poor rendering and thus, for a very
random scene trajectory, RM-NeRF (w/o pose) should be the
chosen option. Also, we have added another row in Tables 1
and 2 where we use the initialization for RM-NeRF (w/o
pose) to be same as RM-NeRF (noise added to G.T. poses).
In this case, RM-NeRF (w/o pose) is able to outperform the
RM-NeRF algorithm further proving its usefulness.

4.1.2 Tank and Temples

This dataset, proposed by Knapitsch et al. (2017), comprises
of challenging large scale real-world scenes. This dataset is
widely used for bench-marking the 3D reconstruction algo-
rithm.However, lately, this dataset has been popularly used in
evaluating Novel View Synthesis methods designed to learn
large scale scene representations with unconstrained camera
pose trajectory. Accordingly, we used some sequences of this
dataset to evaluate our proposed methods against the popular
baselines. Specifically, we have used 8 sequences from this
dataset namely ‘Truck’, ‘M60’, ‘Train’, ‘Family’, ‘Ignatius’,
‘Horse’, ‘Museum’ and ‘Francis’, comprising both indoor
and outdoor sequences with significant camera motion. For
example, the Truck sequence consists of image set containing
a 360° view of the subject captured freely at a varying dis-
tance from the object. Since there are no ground-truth poses
available, COLMAP is used to estimate the initial poses and
intrinsic camera matrix (see Fig. 4 for the COLMAP result
on Truck sequence). Note that our methods RM-NeRF (w/o
pose) and RM-NeRF (E2E) are initialized with completely
random camera poses for all the experiments performed on
this dataset.
Baselines. We compared view synthesis results of our
approaches with the following baseline methods on this
dataset: (a)Mip-NeRF Barron et al. (2021), Point-NeRF (Xu
et al., 2022) that usesCOLMAPposes. (b)NoPe-NeRF (Bian
et al., 2022) that uses randomly initialized camera poses. (c)
NeRF–(Wang et al., 2021b) that do not use either intrinsic or
extrinsic camera parameters.

Results. Table 4 shows the quantitative comparison results
using the PSNR and LPIPS metrics. It shows results under
three different scenarios, the top set of results corresponds to
the default scenario where COLMAP poses are used as input,
the middle set of results corresponds to the scenario where
poses are initialized randomly, and the bottom set of results
corresponds to the scenario where both camera intrinsics and
extrinsics are unknown. For each setup, we use a different set
of methods (baselines and our proposed method) for evalu-
ation based on the input requirements. From the top setup,
it can be observed that our RM-NeRF improves the cam-
era pose accuracy once initialized using COLMAP camera
pose results and provide improved image renderings when
compared with the baselines. For the middle setup, it can be
inferred that our approach RM-NeRF (w/o pose) surpasses
the baselines, starting from random poses, thereby proving
to be effective and robust in camera pose estimation than
COLMAP and the Nope-NeRF (Bian et al., 2022) on this
dataset. Finally, in the bottom setup, our method RM-NeRF
(E2E) outperforms NeRF– and provides results comparable
to our RM-NeRF (w/o pose) approach and baselines with
random camera intrinsic parameters. We further show qual-
itative results for our RM-NeRF approach along with the
Mip-NeRF (using COLMAP poses) and NoPe-NeRF (two-
stage training (Bian et al., 2022)) in Fig. 6 for better insights.
Clearly, our approach shows better image rendering results
compared to the baselines.

The results obtained on this dataset demonstrate the
potential of our approach in enhancing the view-synthesis
framework to real-world scenes. Our joint optimization for
modeling scene representation and camera pose estimation
could provide favorable results for real-world scenes, includ-
ing scenarios where no extra information other than the
image set is given. Whereas relying on only COLMAP poses
(Schonberger & Frahm, 2016) with existing neural rendering
approach may provide good results on a synthetic scene or
a well-controlled setup. Yet, for a general real-world video
sequence, suchmethods could lead to erroneous camera pose
estimates leading to inferior view-synthesis results. Hence,
our joint formulation provides robustness to the camera pose
while giving better multi-scale image rendering.
RM-NeRF (w/o pose, E2E) with COLMAP poses.We use
the Tanks and Temples dataset to conduct this study. We
use COLMAP camera poses to initialize the RM-NeRF (w/o
poses) and RM-NeRF (E2E) methods and compare them
against the RM-NeRF result. The results are provided in
Table 4. It is easy to infer from the table that both RM-NeRF
(E2E) and RM-NeRF (w/o pose) are able to outperform the
base RM-NeRF method. This shows that the extension of
RM-NeRF proposed in the article is better in a direct com-
parison setup, hence an encouraging take on the problem.
The proposed extension could also work for a more realistic
setting where the trajectory is sparse, and COLMAP might
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not be a very reliable pipeline, as we will also show in the
later subsection with more realistic datasets.

4.1.3 ScanNet

ScanNet is a widely used dataset to benchmark 3D recon-
struction and semantic segmentation algorithm results for
indoor scenes. Its train and validation sets contain 2.5M
RGB-D images for 1512 scans acquired in 707 spaces. This
dataset is collected using hardware-synchronized RGB and
depth cameras of an iPad Air 2 at 30Hz exhibiting a realistic
hardware setup.

We studied the performance of our approaches on this
dataset to observe view-synthesis result on room-scale indoor
scene. Recently NoPe-NeRF (Bian et al., 2022) also per-
formed such a study; therefore, we used their experimental
setup for this study. This experiment involves subsampling
the image sequences leading to 80–100 images per sequence.
It is evaluated under two settings: (I) with intrinsics: where
the intrinsic matrix is known, and we optimize for camera
poses and (II)w/o intrinsics: where we optimize for both the
camera intrinsic as well as extrinsic parameters. In setting
(I), we compare our RM-NeRF (w/o pose) method with the
NoPe-NeRF baseline, which assumes given intrinsic param-
eters. For setting (II), we compare our RM-NeRF (E2E)
method with the NeRF–baseline, which optimizes both cam-
era extrinsic and intrinsic parameters.

Table 5 shows both settings’ experimental results using
PSNR and LPIPS metrics. For each scenario, our proposed
method outperforms the relevant baseline. This shows the
effectiveness of our proposed joint optimization approaches
in view-synthesis for indoor scene, thereby showcasing the
benefit of motion averaging and multi-scale modeling.

4.2 NAVI Dataset

NAVI is a recently proposed image collection dataset com-
prising scenes captured in the wild. It contains images of
an object with various backgrounds and illumination condi-
tions, which is an apt setting to test our proposed approaches.
We evaluate the three proposed approaches on six complex
scenes. Meanwhile, COLMAP performs poorly on 19 out
of the 36 scenes from this dataset. For RM-NeRF, we use
the COLMAP pose initialization whereas, for RM-NeRF
(w/o pose) and RM-NeRF (E2E), camera parameters are
initialized randomly. Table 6 provides the results of our
approaches on this dataset. It is easy to infer that RM-NeRF
(w/o pose) can surpass RM-NeRF in this setup, demon-
strating the advantage of our introduced extension in this
article. Furthermore, the RM-NeRF (E2E) is better as com-
pared to RM-NeRF in this case and is marginally inferior
to the RM-NeRF (w/o pose), showing the possibility of a
fully uncalibrated frameworkwithout sacrificingmuchon the

rendering quality. Thus, RM-NeRF (E2E) method might be
an excellent self-contained framework for view-synthesis
in-the-wild or unstructured scenes instead of relying on third-
party software such as COLMAP.

4.3 Black-Box Dataset

4.3.1 Images Taken from a Freely Moving Camera

To simulate a general real-world multi-view image capture
setup for view-synthesis, we collect a dataset using a freely
moving mobile phone. We captured 22 images of a sim-
ple black-box object (refer Fig. 7) using 16 out of them for
training the model. The camera poses are shown in Fig. 8
demonstrating that the images are captured at varying dis-
tance from the object. The aim of this experiment is to show
that for such real-world scene capture using COLMAP cam-
era pose is not encouraging take for modeling view-synthesis
problem. We must further refine the camera pose via mind-
ful optimization. Accordingly, we compare our RM-NeRF
approach result with Mip-NeRF by using COLMAP camera
poses as initialization.

Figure5 shows the qualitative results for this scene in the
last two columns alongside the Multi-Scale Blender dataset.
For completeness, we included the results of the BARF
method (Lin et al., 2021). It is quite intuitive to assume
that Mip-NeRF could have localized the object incorrectly,
whereas our method can cast the apt cone in the scene space
for object localization. And therefore, our method provides
much better image rendering results. Additionally, it helps us
deduce that assuming COLMAP poses as ground-truth poses
can be misleading for real-world scenarios. This shows how
a robust estimation approach on top of COLMAP camera
poses initialization might effectively generalize the method
for day-to-day captured multiview images.

We further study the RM-NeRF (w/o pose) andRM-NeRF
(E2E) performance on the black box dataset. The results
for both these sequences are shown in Fig. 9. Clearly, the
result shows the suitability of our introduced extension. The
result demonstrates that it is quite possible tomodel the scene
representation without access to COLMAP camera poses or
camera intrinsic parameters without sacrificing much on the
view-synthesis rendering quality.

4.3.2 Specular Objects

We studied the behavior of RM-NeRF (w/o pose) on objects
with specular surfaces. As it is well-known that specular
objects are often challenging to model for view synthesis,
we test the limits of RM-NeRF (w/o pose) by conducting
this study. Even recent works such asYen-Chen et al. (2022b)
highlight this issue on their dataset comprising objects such
as ‘spoon’, ‘fork’, etc. This dataset comprises eight object-
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Fig. 6 Qualitative Comparison of our RM-NeRF method, Mip-NeRF
(Barron et al., 2021) and NoPe-NeRF (Bian et al., 2022) on the Tanks
and Temples dataset comprising real world scenes. We have visualized

the synthesized images from all the approaches on 3 scenes namely
Truck, M60 and Train. Our method clearly provide better synthesized
images as emphasized by the red boxes (Color figure online)

Table 5 ScanNet Scene With intrinsics w/o intrinsics
Nope-NeRF Ours (w/o pose) NeRF– Ours (E2E)

0079_00 32.47/0.41 33.12/0.39 30.59/0.49 31.88/0.47

0418_00 31.33/0.34 32.07/0.32 30.00/0.40 31.23/0.46

0301_00 30.83/0.36 30.83/0.35 27.84/0.45 29.14/0.42

0431_00 33.83/0.39 34.09/0.38 31.44/0.45 32.23/0.44

Performance comparison of our methods with NoPe-NeRF (Bian et al., 2022) and NeRF–Wang et al. (2021b)
methods on 4 scenes of ScanNet dataset. The values in the table are of the format PNSR/LPIPS, respectively
The bold values indicate that the best results in the corresponding category

Table 6 Results on Navi dataset Method PSNR↑ LPIPS↓ SSIM↓ Rotation◦ ↓ Translation↓
RM-NeRF 22.41 0.34 0.73 26.54 24.91

RM-NeRF (w/o pose) 23.12 0.29 0.79 22.76 21.23

RM-NeRF (E2E) 22.97 0.33 0.78 24.13 22.23

Comparison of our proposed methods on navi dataset. For this, we have used 6 scenes from its in-the-wild
image collection where COLMAP struggles to reconstruct accurate poses
The bold values indicate that the best results in the corresponding category
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Fig. 7 A subset of images corresponding to our black box dataset, captured using phone by randomly moving w.r.t. the box (Sect. 4.3.1). The aim
behind this using scene is to mimic a very generic scenario representing day-to-day captured multi-view image sets

centric scenes with 30–50 images of a reflective material
object per scene. The scenes are captured using a slow-
moving mobile phone around an object. Yen-Chen et al.
(2022b) estimates the camera poses and object’s 3D using
COLMAP. For testing, 8–10 images per scene are used.

For this experiment, we used the shiny fork object
sequence comprising 38 training images. We followed the
same setup as Yen-Chen et al. (2022b) for evaluation.
Figure10 shows the camera poses and sparse 3D points
recovered for this scene. Figure11 shows our method’s view
synthesis result on this sequence.

Following the setup, we separate eight images for testing.
Figure10 shows the camera poses and 3D points recovered
via COLMAP on this scene, demonstrating the challenges
in dealing with specular surfaces. Figure11 provides our
method’s view synthesis result on this sequence. Figure11
result shows 4 rendered images obtained using our method.
The model hasn’t seen the object from this viewpoint at train
time. Despite favorable results in modeling view-synthesis
for such an object, it is observed that our method has clear
limitations in modeling it.

4.4 Ablations

4.4.1 Synthetic Datasets

Here, we analyse our method’s performance on the original
Blender data (Mildenhall et al., 2021)with camera pose error,
Multi-Scaled Blender data (Barron et al., 2021) with ground

Fig. 8 Camera poses and a sparse collection of 3D points correspond-
ing to our black-box sequence (described in Sect. 4.3.1) recovered using
COLMAP (Schonberger & Frahm, 2016). These estimated camera
poses point verify the randomness in motion while capturing the back-
box scene. Also, the recovered set of 3D points (bottom-left) appear to
be quite sparse further pointing to the failure of COLMAP in recovering
the correct 3D and poses for this case

truth poses and a variation of our RM-NeRF method with
unbiased weighting of the rotation averaging and rendering
losses for updating camera poses.
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Fig. 9 Results on the black box dataset for the proposed version. Here,
RM-NeRF (w/o pose) provides more accurately rendering of the object,
while RM-NeRF andRM-NeRF(E2E) approaches results are quite sim-
ilar. Note that RM-NeRF (E2E) start from a randomly initialized pose
without the knowledge of camera intrinsic parameters, hence demon-
strating its suitability

Fig. 10 Approximate poses recovered by using COLMAP on the scene
centered around a reflective fork object (Sect. 4.3.2), proposed in Yen-
Chen et al. (2022b)

(a) Same Scale Images with Camera Pose Error. We
analyze our method’s image-rendering results with the Mip-
NeRF and BARF on the original NeRF Blender dataset in
the presence of noisy rotations. Here, all images have the
same resolution and are captured at a fixed distance from the
object. The results for this setup are shown in Table 7, using
the PSNR, LPIPS, and SSIM metrics for the four scenes.
The statistical comparison show that our method supersedes
the Mip-NeRF baseline. Also, it is comparable to the BARF
method performance, which was designed to handle pose
errors for single-scale datasets where all images are taken at
approximately the same distance from the object.
(b) Multi Scale Images with Ground-Truth Pose.We fur-
ther study the multi-scale case on the multi-scale Blender
dataset, but this time without perturbing the ground truth
poses. Table 8 compares the PSNR, LPIPS and SSIM val-
ues for this scenario. Once again, our method performance
is similar to the current baselines, and the difference to the
best method (Barron et al., 2021) is minor, thereby showing
the effectiveness of our approach. The point to note is, using
our method, we don’t have to rely on a separate module for
estimating accurate pose and it is recovered jointly with the
object’s neural representation.

Fig. 11 Qualitative evaluation of our RM-NeRF (w/o pose) method on
a real-world scene (captured using phone) centered around a shiny fork
object (Sect. 4.3.2), proposed in Yen-Chen et al. (2022b)

Looking at the rendered image quality results of both the
tables, i.e., Tables 7 and 8, our method performs well on both
settings showing a clear advantage.
(c) Unbiased Optimization of Eq. (12). We performed this
study to provide a better insight into our weighted loss opti-
mization strategy for the RM-NeRF method. For this, we
initialized λ = 0.5 in Eq. (12) in the overall optimiza-
tion. Table 9 provides the results for this study using the
PNSR, LIPIPS metric on the Multi-Scale blender dataset
with noisy camera poses. The unbiased optimization vari-
ant result is denoted as Ours† in Table 9. The results clearly
show the benefit of biased optimization in Sect. 3.1.2. It can
be observed that this unbiased optimization results in infe-
rior performance due to the complex optimizing landscape.
Hence, the proposed biased optimization is suited for such
loss function optimization. Initially, the bias is built toward
estimating correct poses, which is gradually decreased with
time. This leads to adequate minima after convergence.

4.4.2 Real-World Datasets

Here, we study our approach under two circumstances often
observed in any imaging data used for practical purposes.
The first study corresponds to noisy monocular depth maps,
and the second corresponds to the noise in input images.
To study both cases, we use the Tanks and Temples dataset
(Knapitsch et al., 2017) comprising real-world images. We
add some noise to the predicted monocular depth maps to
simulate a general scene, which is usually valid for complex
and cluttered scenes. Similarly, we also analyze the perfor-
mance of our proposed methods in the presence of noise in
the input images, accounting for the case with unclear or
occluded regions in the day-to-day collected images.
(a) Noisy 3D prior.Noise in the estimated monocular depths
ultimately leads to noisy 3D prior for: (a) updating initial
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Table 9 Performance analysis
of our method with unbiased
joint optimization (λ = 0.5 in
Eq. (12))

Mean error (◦) Single-scale dataset Multi-scale dataset
Ours† Ours PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

Lego 0.86 0.03 24.0(27.1) 0.8(0.5) 22.2(27.0) 0.6(0.4)

Ship 0.74 0.05 23.7(25.4) 1.0(0.7) 23.3(26.5) 0.7(0.7)

Drum 0.83 0.03 20.2(24.9) 0.8(0.7) 15.6(26.0) 0.7(0.4)

Mic 0.42 0.07 24.2(30.0) 0.6(0.3) 22.6(30.0) 0.4(0.1)

Chair 0.47 0.06 27.4(33.7) 0.3(0.5) 25.7(35.2) 0.7(0.3)

Ficus 0.78 0.07 24.2(28.6) 0.7(0.4) 22.7(29.2) 0.7(0.3)

Mat. 1.12 0.05 20.2(25.1) 0.7(0.7) 18.8(24.8) 0.9(0.6)

H.D. 0.62 0.05 26.5(33.1) 0.6(0.3) 23.3(32.5) 0.8(0.3)

This ablation is denoted as Ours†. We analyze both pose estimation and learned scene representations of this
ablation. The first two columns compare the mean error in estimating poses using this ablation and our method
which uses a biased optimization strategy in a single scale scale case. The remaining columns analyze the
PSNR and LPIPS metric values for this ablation on the original and multi-scale versions of Blender dataset.
For reference, we have provided the PSNR and LPIPS values for our RM-NeRF method, from Table 1, in the
brackets
The bold values inside the bracket shows the performance that is achieved using the proposed biased joint
optimization as compared to the unbiased one

Table 10 Performance analysis of our RM-NeRF (w/o pose) method
and the NoPe-NeRF (Bian et al., 2022), PointNeRF (Xu et al., 2022)
baselines on scenes from Tanks and Temples dataset, when noise is
added to the 3D prior (monocular depth maps in case of RM-NeRF
(w/o pose), NoPe-NeRF and MVS depths in case of PointNeRF)

NoPe-NeRF Point-NeRF Ours
Noise Clean Noise Clean Noise Clean

M60 24.47 26.31 24.23 26.54 24.91 26.71

Family 23.12 25.93 22.97 25.76 23.78 26.07

Ignatius 21.67 23.88 21.79 24.13 22.23 24.47

The bold values indicate the best results in the corresponding category

poses P̂ for our RM-NeRF (w/o pose), RM-NeRF (E2E)
methods via point cloud alignment and (b) aligning depths
to a global frame using rendered depth and parameters α, β.
To simulate this, we add noise δ ∼ N (0, 1e−1I) to a fraction
of pixels in the normalized estimated depth maps, sampled
uniformly throughout the image.

Table 10 shows our method’s results with noisy poses and
the other relevant baselines in this setup on three sequences
from the Tanks and Temples dataset, namely ‘M60’, ‘Fam-
ily’, and ‘Ignatius’. For comparison, it shows results with
and without (w/o) this noise. We compared the results with
the recent NoPe-NeRF (Bian et al., 2022) and Point-NeRF
(Xu et al., 2022) method. For Point-NeRF, we add the noise

δ to theMVS estimated depth maps. All the methods’ perfor-
mance degrades with noise, yet our method performs better
than others.
(b) Image quality and noise. Day-to-day collected images
can have noise due to low-quality imaging sensors or bad
physical condition of the scene, which could effect the scene
representation using images. We performed this study to
observe the sensitivity of the proposed approaches to such
noisy images. For this, we add holes to the given scene
images, at randomly selected locations. Alongside this, we
also add a small gaussian blur (std=0.1) to certain randomly
sampled locations in the image. This is done to simulate the
occlusion effect.

Table 11 shows the results for this experiment on three
Tanks and Temples dataset namely ‘M60’, ‘Family’, and
‘Ignatius’. All the three proposed approaches have observ-
able drop in their PSNR values, with E2E version having
the maximum, when using these noisy images. It shows the
vulnerability of our approach to noisy images.

4.5 Analyzing Estimated Camera Intrinsic
Parameters

Here, we provide the statistical results obtained using our
RM-NeRF (E2E) approach in estimating intrinsic camera

Table 11 Performance analysis
of our proposed methods on
three scenes from the Tanks and
Temples dataset (Knapitsch et
al., 2017), with noise added to
the input images

RM-NeRF RM-NeRF (w/o pose) RM-NeRF (E2E)
Noise Clean Noise Clean Noise Clean

M60 26.91 27.60 26.12 26.71 24.79 25.88

Family 26.41 27.12 25.43 26.07 23.93 24.89

Ignatius 24.71 25.29 23.71 24.47 22.07 23.28

123



International Journal of Computer Vision (2024) 132:1310–1335 1333

Table 12 Performance comparison (in percentage error) of our RM-
NeRF (E2E) method and the baselines for focal length estimation on
the Tanks and Temples dataset (Knapitsch et al., 2017)

Tanks and temples ScanNet
M60 Family Ignatius 0079 0418 0301

SC-NeRF 2.8 26.9 2.3 6.3 4.9 8.7

NeRF−− 3.8 3.7 2.2 6.1 4.7 8.9

Ours 1.6 1.3 1.1 2.5 3.3 3.1

The table shows focal errorΔf results of ourmethod compared toNeRF–
(Wang et al., 2021b), and SC-NeRF (Jeong et al., 2021). The results are
compiledw.r.t. assumed ground-truths for these datasets, i.e., COLMAP
results for Tanks and Temples and BundleFusion for ScanNet
The bold values indicate that the lowest focal length error

parameters.We compared our approach’s result with popular
NeRF–(Wang et al., 2021b) and recently proposed SC-NeRF
(Jeong et al., 2021), which estimates both camera intrinsic
and extrinsic parameters. For the experimental evaluation,
we use three scenes from Tanks and Temples and ScanNet
datasets. For Tanks and Temples, the authors have provided
COLMAP parameters as the pseudo ground truth, which we
used as it is for evaluation. Likewise, ScanNet’s camera poses
recovered using Bundle Fusion are treated as the pseudo
ground truth.

Table 12 shows the difference in focal lengths, Δ f (in
pixels) estimation by our approach compared to relevant
baselines. Our approach performs better than the baselines,
hence can be a good step towards differentiable intrinsic
estimation leading to a complete end-to-end pipeline for
joint estimation camera parameters—intrinsic, extrinsic, and
scene representation, using images.

4.6 Motion Averaging Analysis

A critical idea from multi-view geometry used in this article
is motion averaging. In this section, we provide insights into
the usefulness of motion averaging in providing robustness
to the camera pose estimation pipeline.

4.6.1 View Graphs Analysis

We conducted a simple test using the Blender dataset to show
the benefits of view-graph modeling in motion averaging for
robust camera pose estimation. For this, we perturbed one-
fifth of the camera poses corresponding to each scene and
constructed a view graph. We analyze camera pose errors
before and after applying our pose-refining network to the
viewgraph constructed using perturbed poses. Table 13 result
shows the robustness of our method in camera pose esti-
mation. It can be observed that our pose-refining network
handles noise efficiently and significantly reduces the over-
all camera pose error.

Table 13 Our pose-refinement GNN results on noisy camera poses
synthesized from Blender dataset (Mildenhall et al., 2021)

Noisy (°) Improved (°)
Mean rms Mean rms

Lego 1.78 4.24 0.031 0.041

Ship 2.12 4.02 0.052 0.063

Drums 1.98 3.65 0.038 0.052

Mic 2.36 5.12 0.073 0.091

Chair 1.76 3.45 0.056 0.071

Ficus 2.46 5.34 0.065 0.096

Materials 1.58 3.55 0.046 0.074

Hotdog 2.23 4.78 0.052 0.071

The column corresponding to the Noisy (°) and Improved (°) denote
the camera pose estimation error before and after applying our method,
respectively
Bold values indicate that the lower error in camera pose recovery

4.6.2 Camera Pose Error Analysis in Presence of Noisy
Feature Key-Point Correspondence

Images captured in a real-world setting often contain noises
leading to misleading keypoint matching between frames.
This can affect the camera pose estimation results using the
popular COLMAP framework. And therefore, to analyze this
effect of noisy correspondences on our pose-refining method
and COLMAP, we perform this simple experiment on the
Lego scene from the Blender dataset. We first generate pair-
wise keypoint correspondences for images. Then, we add
noise to these correspondences and estimate the relative pose
between every image pair using these noisy correspondences.
We then estimate absolute rotations from these noisy rela-
tive pose estimates using both approaches, i.e., COLMAP
and our pose-refining GNN. Using these absolute camera
rotation estimates, we compute corresponding camera trans-
lations. Figure 12 shows the difference in predicted poses
by each of these methods w.r.t. the ground truth poses pro-
vided by the dataset. Our approach offers robustness to such
noise and attains significantly lesser error (consistent for all
the images) compared to COLMAP in this scenario. The dif-
ference in the recovered camera pose is shown using lines.
The results clearly show the effectiveness of our approach.
Our approach gives better results than COLMAP, and the
recovered camera pose is consistently better across images.

The quantitative results for these experiments are provided
in Table 14. For clarity, the rotation and translation error are
provided separately.
Limitations.Our proposed approaches could performpoorly
on scenes containing specular and highly reflective surfaces.
Moreover, further improvements could be made to our RM-
NeRF (E2E) approach to apply to images collected from the
internet, where each image of the same object is captured
from a different camera.
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Fig. 12 Performance comparison of COLMAP and our pose-refining
GNN w.r.t. ground truth poses on the Lego scene from the Blender
dataset (Mildenhall et al., 2021), in presence of noise to the matched
keypoint correspondences. The read line corresponds to the translation
error in the estimated poses. Left: Camera pose output from COLMAP
(Schonberger & Frahm, 2016) along with the ground truth poses pro-
vided by the dataset. Right: Camera pose output from our poses refining
GNN alongside the ground truth poses. It can be observed that our
estimated poses are much closer to the ground truth as compared to
COLMAP

Table 14 Quantitative results for the noisy image keypoint correspon-
dence case

Rot. error (°) Trans. error (cm)
COLMAP Ours COLMAP Ours

Lego 18.3° 12.4° 10.2 7.1

Bold values indicate that the lower error in camera rotation and camera
translation recovery, respectively

5 Conclusion and Future Directions

In this paper, we introduce two extensions of our published
work that allows the NeRF based scene representation for
continuous view synthesis to work well for daily captured
multi-view images. Specifically, the proposed approaches
addresses the practical view synthesis issues around multi-
scale images and the unavailability of camera parameters
at train time. These issues are addressed using concepts
from multi-view geometry, NeRF representation, and exist-
ing robust camera pose estimation literature. Although the
proposed approaches may not be perfect, they open up the
scope for modeling a randomly captured image set using
continuous neural volumetric rendering without relying on
third-party software such as COLMAP, hence self-contained
framework. One interesting future direction is to extend our
RM-NeRF (E2E) method to a scenario where different cam-
eras are used to capture the multi-view images, leading to
continuously varying intrinsic parameters. This can further
broaden the scope of these NeRF-based methods to ran-
domly collect images of a scene from the internet uploaded
by different users. Another interesting direction is to extend
our RM-NeRF (w/o pose) and RM-NeRF (E2E) methods to
scenes containing specular objects exhibiting interreflection.

Dataset Availability The datasets used in this paper are pub-
licly available. Their names and links are as follows:

1. NeRF Blender Dataset
2. Multi-Scale Blender Dataset
3. Tanks and Temples Dataset
4. ScanNet Dataset
5. Fork Scene
6. Black Box example: This is not public yet, but we will

put online after the reviews.

Other underlying data related to paper such as authors Orcid-
ID and institution affiliation are publicly available online.
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