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Abstract
Recent technological developments have lead to great advances in the computerized tracking of joints and other landmarks in
moving animals, including humans. Such tracking promises important advances in biology and biomedicine. Modern tracking
models depend critically on labor-intensive annotated datasets of primary landmarks by non-expert humans. However, such
annotation approaches can be costly and impractical for secondary landmarks, that is, ones that reflect fine-grained geometry
of animals, and that are often specific to customized behavioral tasks. Due to visual and geometric ambiguity, non-experts are
often not qualified for secondary landmark annotation, which can require anatomical and zoological knowledge. These barriers
significantly impede downstream behavioral studies because the learned tracking models exhibit limited generalizability. We
hypothesize that there exists a shared representation between the primary and secondary landmarks because the range of
motion of the secondary landmarks can be approximately spanned by that of the primary landmarks. We present a method
to learn this spatial relationship of the primary and secondary landmarks in three dimensional space, which can, in turn,
self-supervise the secondary landmark detector. This 3D representation learning is generic, and can therefore be applied to
various multiview settings across diverse organisms, including macaques, flies, and humans.

Keywords Landmark detection · Self-supervised learning · Human and non-human dataset · Shared representations ·
Contrastive learning

1 Introduction

Automated identification and tracking of important land-
marks or other body joints has become an important method
in biology and biomedicine. These tracking approaches have
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been leveraged by modern computer vision models that are
designed to learn the complex visual and geometric relation-
ships of landmarks from large annotated datasets (Wei et al.,
2016; Newell et al., 2016; Toshev & Szegedy, 2014; Cao et
al., 2017; Fang et al., 2017; Mathis et al., 2018; Bala et al.,
2020; Günel et al., 2019; Li et al., 2020). As a result, it is
currently possible to computationally analyze the behaviors
of many animals, including humans (Wei et al., 2016; Newell
et al., 2016; Toshev & Szegedy, 2014; Cao et al., 2017; Fang
et al., 2017), mice (Mathis et al., 2018), monkeys (Bala et al.,
2020), and flies (Günel et al., 2019; Li et al., 2020) without
the use of specialized markers in a variety of contexts.

These tracking algorithms are trained using datasets that
are annotated manually by crowd-workers or non-experts
who can specify the locations of primary landmarks, that is,
ones that correspond to the visually distinctive features, e.g.,
major body extremities such as the wrist, foot, and nose. Sec-
ondary landmarks, on the other hand, typically characterize
the fine-grained geometry of the subjects, e.g., an interpha-
langeal joint in a toe for arthritis assessment. These secondary
landmarks are visually and geometrically ambiguous; con-
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Fig. 1 This paper presents a novel semi-supervised learning approach
to detect the secondary landmarks of different species, e.g., monkeys,
humans and flies, by using unlabeled multiview images. a The primary
landmarks (white circles) on body extremities characterize the overall
pose where a number of labeled data are available. On the other hand,
the secondary landmarks (green circle) specify the fine-grained geom-

etry of dynamic organisms, which is specific to each behavioral task
where attaining a large labeled dataset is challenging.bGivenmultiview
cameras, we propose a self-supervised learning method to estimate the
secondary landmarks such as elbow joint (green). We leverage a shared
representation between primary and secondary landmarks to enforce
geometric consistency

sistently annotating them often requires expert knowledge in
gross animal anatomy. Further, they are often task specific,
and therefore, are not included in many existing landmark
datasets. For example, the OpenMonkeyPose dataset (Bala
et al., 2020) does not include the elbow, tail, and ear of
macaques as shown in Fig. 1, which can be critical for study-
ing social interactions. These issues thus present a major
impediment in obtaining a large annotated secondary land-
mark dataset comparable to that of the primary landmarks.

We present a new method to annotate secondary land-
marks in a self-supervised way by utilizing unlabeled multi-
view images as shown in Fig. 1. Our key insight is that
there exists a strong spatial relationship between the primary
and secondary landmarks, which implies that the primary
landmarks (known) can be used to predict the secondary
landmarks (unknown). This is possible because with a few
exceptions, the primary landmarks on body extremities span
a wide range of motion and deformation, and it is, therefore,
likely to include the movement of the secondary landmarks.
For instance, a secondary elbow landmark is close to the
primary wrist and shoulder landmarks, which are strongly
predictive of the elbow landmark. We formulate this sec-
ondary landmark prediction problem as learning a visual

representation shared between the primary and secondary
landmarks.

Existing image based learning approaches (Günel et al.,
2019; Bala et al., 2020) learn a visual representation in two
dimensions (2D) without reasoning about underlying three
dimensional (3D) geometry. 2D landmarks are a product of
3D landmarks and camera projection (3D to 2D), and there-
fore, learning a 2D representation alone implies learning an
additional signal of camera projection. To learn the camera
projection, larger annotated data seen frommany viewpoints
are needed. We argue that this limitation can be addressed
by learning a 3D representation by factoring out the camera
projection. Our 3D representation can therefore be compact,
which can be learned from a substantially smaller number
of annotated images. From our linear subspace analysis, we
demonstrate the effectiveness of the 3D representation to
express the joint subspace of the primary and secondary land-
marks.

Based on our hypothesis, we present a method to learn
a coherent 3D spatial representation shared between the
primary and secondary landmarks using multiview images,
which allows us to self-supervise a 2D secondary landmark
detector. We model this shared representation using a pre-
dictive pose model that predicts the 3D locations of the
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secondary landmarks given that of the primary landmarks.
This 3D pose predictor is designed to be agnostic to view-
points, which allows learning the compact representation
with a small number of labeled data. The predicted 3D pose
that includes the secondary landmarks is projected onto the
image to supervise the secondary landmark detector (i.e.,
ensuring geometric consistency). Our approach differs from
existing representation learning frameworks that learn the
shared representation directly from 2D images (Simon et
al., 2017; Yao et al., 2019; He et al., 2020b; Günel et al.,
2019) because in those frameworks, the representation needs
to take into account camera projection (viewpoint), which
requires a good deal of labeled data. Our approach, then, is
distinguished by its very low requirements for labeled data
from secondary landmarks. The paper presents a method of
tackling the novel problem of secondary landmark detection.
New landmarks with very few available annotations and hav-
ing an inherent spatial relationship with existing landmarks
(referred to here as primary landmarks) can be categorized as
secondary landmarks. Our approach can substantially reduce
manual annotation efforts needed to introduce a new set of
landmarks, by making use of the learned representations of
previously existing landmarks.

Another notable feature of our approach is that we employ
multiview contrastive learning (Chopra et al., 2005) to
maximize discriminativity and/ uniqueness in the learned
representation. That is, the landmarks with the same class
are expected to be close in their feature space while the
landmarks belonging to different classes are distant. For the
secondary landmarks, we maximize the correlation between
the visual features of the same landmarks while minimiz-
ing that of the different landmarks. This contrastive learning
that is agnostic to the labels, in particular, plays a major role
in representation learning when the number of labeled data
is limited. Our approach is effective and generalizable. We
show that the secondary landmarks can be reliably detected
by annotating a fraction of data (using less than 10% of data).
With the learned detector, we track the secondary landmarks
of organisms with diverse kinematic topologies including
humans, flies, and macaques.

2 RelatedWork

2.1 Supervised Landmark Detection

There are a large body of work that have discussed land-
mark detection, in particular for human subjects. Numerous
convolutional neural networks are designed to estimate 2D
landmarks, including convolutional pose machines (Wei et
al., 2016), stacked hourglass networks (Newell et al., 2016)
and HRnet (Sun et al., 2019). These networks learn the
appearance and spatial relationship between landmarks by

leveraging large scale datasets (Bala et al., 2020; Cao et al.,
2017, 2021; Newell et al., 2016; Wei et al., 2016; Toshev &
Szegedy, 2014; Tompson et al., 2014; Sagonas et al., 2016)
in a fully supervised fashion. However, due to the nature
of the overparameterized network models, such supervised
learning approaches exhibit bounded performance on gener-
alizationwhen the number of labeled data instances is limited
such as secondary landmarks.

2.2 Semi-supervised/unsupervised Landmark
Detection

Semi-supervised or unsupervised learning is a viable solu-
tion that leverages the intrinsic properties of data (Ukita &
Uematsu, 2018; Iqbal et al., 2017; Song et al., 2017; Liu
& Ferrari, 2017). Spatial-temporal relationships can also be
used to supervise the body keypoint estimation in uncon-
strained videos (Song et al., 2017). 3D reconstruction can be
used for self-supervision, e.g., bootstraping (Yao et al., 2019),
multiview belief transfer (Simon et al., 2017), and trans-
formers (He et al., 2020b). Labeling efforts can be reduced
using active learning (Liu & Ferrari, 2017) that finds the
most informative images to be annotated. For the unlabeled
data, predictions from the intermediate model can be used
as pseudo-labels where the model can incrementally learn
a more complex representation. A key limitation of using
pseudo-labeling however is that there is a risk of learning a
model misguided by inaccurate prediction.

2.3 3D Landmark Detection

Utilizing the spatial relation between landmarks in three
dimensional space can be advantageous to generate new land-
marks that adhere to this relationship. Self-supervised learn-
ing approaches that leverage multi-view geometry (Kocabas
et al., 2019; Bouazizi et al., 2021) can be used to accurately
estimate 3D human poses. Part-based approaches that lever-
age the prior knowledge of the human skeleton can also be
used in a self-supervisedmanner to estimate 3Dposes and for
image synthesis (Kundu et al., 2020). Projections also prove
practical in training a discriminator to estimate the accurate
2d to 3d pose skeleton from a given set of hypothesized 3D
poses (Drover et al., 2018). Unsupervised approaches that
make use of geometry-aware latent representations (Rhodin
et al., 2018) and temporal information (Tripathi et al., 2020)
have been proven to be beneficial for 3D human pose esti-
mation. The shape space representation of different animal
species can be learnt using scans of toys, which can be used
to estimate the 3D shape and pose of animals in the wild
(Zuffi et al., 2017). Deformable meshes also lend to the esti-
mation of 3D poses with weakly-supervised methods such
as DeMR (Deformable Objects Mesh Recovery) (Kim et al.,
2021). RGBD-Dog (Kearney et al., 2020) makes use of syn-
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thetic RGBD images to estimate 3D canine poses, which
can be further extended to estimate the 3D poses of other
quadruped animal species.

2.4 Multiview Contrastive Learning

Contrastive learning is based onmaximizingmutual informa-
tion. We leverage on noise contrastive estimation (Gutmann
& Hyvärinen, 2010), where an embedding is learnt by bring-
ing together associated signals and separating it out from
other samples in the dataset. Associated signals can be rep-
resented as an image with itself (Malisiewicz et al., 2011;
Shrivastava et al., 2011; Dosovitskiy et al., 2016; He et
al., 2020a; Wu et al., 2018), neighboring patches within
an image (Isola et al., 2015; Hénaff et al., 2020; Oord &
Li, 2018), or multiple views of the frame instance (Tian
et al., 2020). In this paper, contrastive learning is applied
to maximize discriminativity and uniqueness in the learned
representation. That is, the correlation between the visual fea-
tures of the same secondary landmarks are maximized and
that of the different landmarks are minimized.

3 Method

We present a new method to learn a secondary landmark
detector given the primary landmarks and unlabeled mul-
tiview images. The primary landmarks refer to the base
landmarks that characterize the overall pose such as the body
extremities, and the secondary landmarks refer to the cus-
tomized landmarks that describe their fine-grained geometry.
We denote the sets of the primary and secondary landmarks
by Z = {zk}Pk=1 and X = {xk}Sk=1 where z, x ∈ R2 are
the 2D locations of the primary and secondary landmarks in
an image, respectively, and P and S are the number of pri-
mary and secondary landmarks, respectively.DZ = {Ii ,Zi }i
and DX = {Ii ,Xi }i are the labeled primary and secondary
landmark datasets where Ii is the i th image. Since the sec-
ondary landmarks are difficult to annotate, the size of the
secondary landmark dataset is substantially (at least an order
of magnitude) smaller than that of the primary landmark
dataset, i.e., |DZ| � |DX|. We denote the total dataset by
D = DZ ∪DX ∪DU

X = DL ∪DU
X whereDU

X is the dataset of
the unlabeled multiview images of the secondary landmarks,
andDL = DZ ∪DX is the labeled dataset of the primary and
secondary landmarks. We assume that the multiview cam-
eras are static, and their intrinsic and extrinsic parameters
are pre-calibrated.

3.1 3D Secondary Landmark Prediction

We learn a visual representation by predicting the 3D loca-
tions of the secondary landmarks. Specifically, we learn a

new function that encodes the spatial relationship between
the primary and secondary landmarks, i.e.,

X3D = f (Z3D), (1)

where Z3D = {Zk}Pk=1 and X3D = {Xk}Sk=1 are the sets of
the 3D primary and secondary landmarks, respectively, and
Z,X ∈ R3 are the 3D locations of the primary and secondary
landmarks.

As an input to Eq. (1), we reconstruct the 3D primary
landmarks from two views:

Zk = φ(zik, z
j
k ,�i ,� j ), (2)

where zik is the kth 2D primary landmark in the i th view
image, and φ reconstructs the 3D primary landmarks from
two views. �i : R3 → R2 is the projection function onto
the i th image that encodes its camera intrinsic and extrinsic
parameters. In practice, we leverage a direct linear trans-
form (Hartley & Zisserman, 2004) to linearly triangulate the
3D landmarks, which is differentiable.

Instead of using the triangulated coordinates directly,
we use a coordinate normalization to learn a geometrically
coherent representation for the secondary landmark predictor
f . Given a triangulated primary landmark set Z3D, we per-
form Procrustes analysis (Sorkine-Hornung & Rabinovich,
2017) to align the primary landmarks:

̂Z = sRZ + t, (3)

where s ∈ R, R ∈ SO(3), and t ∈ R3 are the scale, rota-
tion, and translation, estimated by a Procrustes analysis. In
practice, we use the spine and shoulder limbs to define the
coordinate system of a pose, i.e., the spine limb as the x-axis,
and the right shoulder limb to the y-axis where the coordinate
is scaled such that the spline limb has a unit length.

3.2 Semi-supervisedMultiview Loss

We denote the landmark detector for the kth landmark by
�k : I → R2 that takes an image I and outputs the
2D location of the landmark, i.e., xk = �k(I). We model
the landmark detector by decomposing it into the feature
extractor that learns a common visual representation across
landmarks, and the landmark localizer finds the 2D location
given the visual representation.

The feature extractor � : R2 × I → Rn is a func-
tion that extracts a visual feature from an image where
I = R3×H×W is the image range (H and W are its height
and width, respectively), and n is the dimension of the visual
feature, i.e., �(x, I) is the visual feature (e.g., the penulti-
mate layer of a 2D landmark detector) at x ∈ R2 on the
image I ∈ I. On the other hand, the landmark localizer
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ψk : Rn × · · · × Rn
︸ ︷︷ ︸

WH

→ R2 estimates the 2D location of

the kth landmark from the visual representations, i.e., �k =
ψk ◦ {�(x, I)}x,∀x ∈ [0, · · · , H − 1] × [0, · · · ,W − 1].

In practice, we design the feature extractor with deep
convolutional layers to learn a high level and generic rep-
resentation for all landmarks while the landmark localizer is
modeled by shallow layers that are responsible for the land-
mark classification.

We minimize the following objective to jointly learn the
landmark detector � and predictor f using both labeled and
unlabeled multiview images:

L(θ�, θ f , θψ)=
∑

(Ii ,I j )∈D
LU(Ii , I j )+λL

∑

I∈DL

LL(I,X,Z),

where LU and LL are the losses for the unlabeled and
labeled data, and λL controls the balance between two
losses. θ�, θ f , θψ are the weights parametrizing the func-
tions �, f , ψ . X and Z are the ground truth primary and
secondary landmarks, respectively. (Ii , I j ) is a pair of syn-
chronized multiview images.

LU measures the geometric consistency of the secondary
landmarks between a pair of views and uses contrastive learn-
ing:

LU(Ii , I j )=
∑

k

‖�k(Ii )−�i (Xk)‖2+
∥

∥�k(I j )−� j (Xk)
∥

∥

2

−
∑

k

〈�k(�i (Xk), Ii ),�k(� j (Xk); I j )〉

+
∑

k �=l

〈�k(�i (Xk), Ii ),�l(�i (Xl); Ii )〉, (4)

where Xk is predicted by f from the triangulation of the
primary landmarks via Eq. (1). 〈·, ·〉measures the normalized
cross-correlation between two vectors. Note that the loss is
agnostic to the labels of the secondary landmarks where the
total data D including the unlabeled multiview image pairs
can be used to learn the detector and predictor jointly.

3.3 Contrastive Learning

We make use of contrastive learning, i.e., maximization of
mutual information, in order to enforce the uniqueness of
the visual features across landmarks. For example, the visual
feature of the elbow landmark must be sufficiently different
from that of the wrist. We achieve this by making use of the
feature extractor � to extract visual features corresponding
to the reprojected landmarks, and find the feature correlation
between them. The objective is to have the feature corre-
lation of the same landmark across views to be high while
that of different landmarks within the same view to be low.
The third term of Eq. (4) enforces this contrastive learning.

These consistency and uniqueness measures facilitate self-
supervised learning, i.e., the geometric consistency allows
us to precisely localize the landmarks via a consensus of pre-
dictions, and the equivariance enforces view-invariance in
learning the visual representation for the landmark detector.

The loss for the unlabeled data encodes the complemen-
tary relationship of geometry and visual semantics. The first
two terms ensure the geometric consistency by minimizing
the reprojection error, i.e., the detected secondary landmarks
from �(I) must align with the projection of the predicted
3D landmarks �(X). The third term enforces contrastive
learning across views, i.e., the visual representation of the
corresponding landmarksmust be view invariant. In addition,
the last term enforces the uniqueness of the visual features
across landmarks, e.g., the visual feature of elbow must be
sufficiently different from that of wrist. These consistency
and uniqueness measures facilitate self-supervised learning,
i.e., the geometric consistency allows us to precisely local-
ize the landmarks via a consensus of predictions, and the
equivariance enforces view-invariance in learning the visual
representation for the landmark detector. As a result, the fea-
ture correlation of the same landmark across views is high
while that of different landmarks within the same view is low
as shown in Fig. 7c.

Jointly learning visual representation and 3D landmark
prediction allows us to apply multiview supervision where
visual information from one view can be transferred to the
other views through multiview geometry. This results in uti-
lizing a large amount of unlabeled data of the secondary
landmarks in conjunction with a small set of labeled data.

LL is the loss for the labeled data, which can be defined
as:

LL(I,X,Z) =
S

∑

k=1

‖xk − �k(I)‖2 +
S+P
∑

k=S+1

‖zk − �k(I)‖2,

where z and x are the ground truth primary and secondary
landmarks, respectively. The first S outputs from the land-
mark detector � are the secondary landmarks and the next
P outputs are the primary landmarks.

3.4 Network Design and Implementation

We design a neural network that facilitates jointly learning
the landmark detection � and 3D landmark prediction f , by
leveraging multiview supervision as shown in Fig. 2. Given a
pair of images from different views at the same time instant,
the twin landmark detectors that share the weights produce
the predictions of the primary and secondary landmarks in
the form of heatmaps (i.e., probability of the landmarks).
We use the 6 stage convolutional pose machine (Wei et al.,
2016) as a pose estimator that takes as input an imagewith the
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Fig. 2 Overall architecture of the proposed framework.We design twin
networks to predict the 2D primary and secondary landmarks from two
views. The predicted primary landmarks are triangulated to form the 3D
primary landmarks.With normalization throughProcrustes analysis, the

3D secondary landmarks can be predicted by 3D landmark predictor.
We use the predicted secondary landmarks to evaluate geometric error
(reprojection error) and equivariancemeasures (feature correlation).We
minimize the label and unlabel losses (LL and LU)

size of 368×368 and outputs a set of heatmaps with the size
of 46×46×(P + S+ 1) including the background. The soft-
argmax on the heatmaps is used to estimate the coordinates of
the landmarks. This landmark detector is complementary to
other pose detectors (Newell et al., 2016; Toshev & Szegedy,
2014; Cao et al., 2017), and our method is agnostic to the
choice of networks. The primary landmarks from these two
views are triangulated to form the 3Dprimary landmarks, and
transformed to thenormalized coordinate. Thevisual features
are extracted from the penultimate layer of the pose estimator
at the 2D location of the predicted primary landmarks. We
implement the 3D landmark predictor f using a multi-layer
perceptron with three hidden layers that predicts the 3D sec-
ondary landmarks. These predicted secondary landmarks are
projected onto each view for geometric and semantic con-
sistency (contrastive learning). In practice, we pretrain the
landmark detector and 3D predictor using the labeled data
DL , and then refine them by minimizing the overall loss L
with the total dataD that includes labeled and unlabeledmul-
tiview data in an end-to-end fashion. In training, we use batch
size 10, learning rate 10−4, and learning decay rate 0.8 with
2000 steps. We use the ADAM optimizer (Kingma & Ba,
2014) of TensorFlow with a single NVIDIA GTX 2080Ti.
The value of λL has been set to 10.

3.5 Datasets

We evaluate our method on the following datasets.
OpenMonkeyPose is a large landmark dataset of rhesus
macaques captured by 62 synchronized multiview cameras.
It consists of nearly 200k labeled images with four macaque
subjects that freely move in a large cage while perform-
ing foraging tasks. 13 primary landmarks are annotated by
the crowd-workers, including nose, head, neck, shoulders,
hands, hip, knees, feet, and tail. In addition to the primary
landmarks, we manually annotate 14k images of the sec-
ondary landmarks (elbows, ears, spine and a mid-point of the
tail) by incorporating 3D reconstruction from synchronized
images. We train our secondary landmark detector using 14k
labeled images and 160k unlabeled multiview images.
Human3.6M is a human pose dataset captured by 4 high def-
inition cameras that includes 7 subjects performing a variety
of activities such as eating, greeting, sitting, andwalking. The
data consists of 32 annotated joints per image which include
nose, head, neck, ears, shoulders, elbows, wrists, hip, thorax,
spine, knees, and feet. We make use of 14 joints as primary
landmarks, including nose, head, neck, shoulders, hands, hip,
right-hip, left-hip, knees, and feet, and three joints as sec-
ondary landmarks, including elbows and spine. We train our
model using 30k labeled images from the subjects 1 and 5,
and 180k unlabeled images from the subjects 6, 7 and 8.
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Fig. 3 Qualitative results of
secondary landmark detection
on OpenMonkeyPose,
Human3.6M, and DeepFly3D
datasets. White and green
circles are the primary and
secondary landmarks,
respectively. For monkey
dataset, we consider the elbows,
ears, spine and mid-portion of
tail as secondary landmarks for
detection. For human dataset,
we choose the elbows and spine
as secondary landmarks. For
flies, the three tibia-tarsus joints
on the left-hand side limbs are
used as secondary landmarks

DeepFly3D contains a large number of landmark annotations
of Drosophila: adult flies captured by seven synchronized
multiview cameras. The dataset comprises nearly 1M images
with 10 different subjects captured in the course of four
varying experiments. The data consists of 38 landmark loca-
tions, which include, five on each limb— the thorax-coxa,
coxa-femur, femur-tibia, and tibia-tarsus joints as well as the
pretarsus, six on the abdomen— three on each side and one
on each antenna. We make use of 12 joints as primary land-
marks, including the thorax-coxa, coxa-femur, femur-tibia,
and pretarsus for the left-hand side limbs of the fly. The three
tibia-tarsus joints on the left-hand side limbs are used as sec-
ondary landmarks. We train our model on 3k labeled images
and 35k unlabeled images.

4 Results

We evaluate our method on existing real-world datasets
includingOpenMonkeyPose (Bala et al., 2020),Human3.6M

(Catalin et al., 2011; Ionescu et al., 2014), and Deep-
Fly (Günel et al., 2019). Figure 3 illustrates the qualitative
results of our approach on the three datasets. For the
Human3.6M and OpenMonkeyPose datasets, we observe
that the elbow joints (secondary landmarks) are accurately
estimated by using a strong spatial relationship between the
primary and secondary landmarks. A similar observation can
be made in case of the flies where the tibia-tarsus joints are
accurately predicted.

4.1 Shared Representation Analysis

Ourmethod is built upon themain hypothesis that there exists
a shared representation between the primary and secondary
landmarks. This indicates that the motion of the secondary
landmarks can be expressed by that of the primary landmarks.
We validate this hypothesis using a linear subspace analysis.

Consider a pose vector that is made of the primary and

secondary landmarksV = [ZTXT]whereZ = [

ZT
1 · · ·ZT

P

]T
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and X = [

XT
1 · · ·XT

S

]T
are the set of the primary and sec-

ondary landmarks, respectively, i.e., Z,X ∈ R3 are the 3D
coordinates of the primary and secondary landmarks. P and S
are the number of primary and secondary landmarks, respec-
tively. We learn a set of linear bases that span the joint space
of the primary and secondary landmarks using principal coor-
dinate analysis (PCA):

V =
B

∑

i=1

biαi + b (5)

where B is the number of bases, bi is the i th linear basis,
αi is its coefficient, and b is the mean pose. This joint space
describes how the secondary landmark is related to the spatial
configuration of the primary landmarks.

Given the joint space, wemeasure the reconstruction error
of the secondary landmarks from the primary landmarks:

E(X) = ‖X −
B

∑

i=1

bxi α
∗
i − b

x‖2,

{α∗
i }Bi=1 = argmin

{αi }Bi=1

‖Z −
B

∑

i=1

bzi α
∗
i − b

z‖2 (6)

where E(X) is the reconstruction error of the secondary
landmarksX. We decompose the basis into the primary land-
mark basis, bzi , and the secondary landmark basis, bxi , i.e.,

bi =
[

bzi
Tbxi

T
]T
. Similarly, bxi , i.e., b =

[

b
zT
b
x T

]T
.

The secondary landmarks are reconstructed by minimiz-
ing the reconstruction error of the primary landmarks. If the
primary and secondary landmarks share a joint space, min-
imizing the reconstruction error of the primary landmarks
must minimize that of the secondary landmarks.

Figure 4 illustrates a comparison of reconstruction error
measured by Eq. (6) for 2D (light bar) and 3D (dark bar)
shared representations on OpenMonkeyPose dataset. We
consider seven primary landmark configurations to recon-
struct the secondary landmarks as shown in the top row.
For all configurations, the 3D representation that factors
out camera projection shows 30.2−60.6% of error reduc-
tion compared to the 2D representation, i.e., the primary
landmarks can predict the secondary landmarks more accu-
rately through 3D representation. Among primary landmark
configurations, the second configuration, i.e., the absence of
wrist joints (primary) leads to an erroneous reconstruction of
elbow joints (secondary). This aligns with an intuition that
the motion of the secondary landmarks can be better pre-
dicted if they can be spanned by the range of motion of the
primary landmarks, i.e., two joint extremities (e.g., shoul-
der and wrist) connecting to a secondary (e.g., elbow) are
known. Similar observations can be made in the configura-

Fig. 4 Shared joint space relation between secondary and primary land-
marks demonstrated on OpenMonkeyPose dataset. The lighter shades
indicate the reconstruction error of secondary landmarks when prede-
fined 2D primary landmark coordinates are used. The darker shades
indicate the reconstruction error when 3D primary landmark coordi-
nates are used. The 3D representation is highly effective to model the
shared space between the primary and secondary landmarks regardless
of the configuration of the primary landmarks. The reconstuction error
of the 3D representation is 30–60% lower than that of the 2D represen-
tation

tions #3 and #4, where an absence of the left wrist-shoulder
and right wrist-shoulder, leads to inaccurate detection of left
and right elbows respectively.

Figure 5 shows the reconstruction error of the secondary
landmarks with respect to the primary landmark configu-
rations, where the size of the circles is proportional to the
reconstruction error. For example, the secondary landmark
reconstruction error for the left elbow and right elbow shown
in the third and fourth columns are higher as compared to
other secondary landmarks.

Figures 6a, b and c show the detection rate of the sec-
ondary landmarks using probability of correct keypoint
metric (Andriluka et al., 2014) with an error tolerance of
the size of head (PCKh). For instance, in the configuration
#2 and #4, the lack of the shoulder or wrist primary land-
marks lead to inaccurate reconstruction of the right elbow
secondary landmark as can be seen in Fig. 6b. This indicates
that spatial adjacency plays a pivotal role in determining the
location of a given landmark, in this case the right elbow.
Similar observations can be made in Fig. 6c.

4.2 Impact of Contrastive Learning

In addition to joint representation learning,we leverage unsu-
pervised contrastive feature learning to learn a discriminative
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Right Elbow Left Elbow Right Ear Left Ear Spine Mid-Tail

Fig. 5 Reconstruction error of secondary landmarks with respect to
predefined primary landmark configurations demonstrated on Open-
MonkeyPose dataset. The top row indicates the primary landmark

configurations. The secondary landmarks are shown in colored circles,
where the size of the circles is proportional to the reconstruction error

representation.Wemaximize the feature correlation between
the same landmarks while minimizing it between different
landmarks.

Figures 7a and b illustrate the visualization of UMAP
of landmark feature space with and without contrastive
learning. Unlike the feature distribution without contrastive
learning, that with contrastive learning aligns the features of
the same secondary landmarks, forming distinctive clusters
with respect to the secondary landmarks regardless of views
and poses.

Figure 7c and d illustrates the feature correlation of the
landmarks across views. The red points indicate the correla-
tion among the same secondary landmarks from different

views, denoted as self-correlation. The blue points indi-
cate the correlation among different secondary landmarks,
denoted here as cross landmark correlation. The one with
contrastive learning produces the visual feature of a sec-
ondary landmark that is highly correlatedwith that of another
secondary landmark (most correlation is higher than 0.7). In
contrast, this correlation is minimized with contrastive learn-
ing, which makes the visual feature more discriminative.

4.3 Ablation Study

We conduct an ablation study to measure the impact of each
component. (1) LL: a landmark detection model that is fully
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Fig. 6 Reconstruction error visualization and PCKh curves for different arrangements to reconstruct the secondary landmarks

supervised by the labeled data. Thismodel is equivalent to the
supervised learning models. (2) LL +Lt

U: a semi-supervised
learning model that uses the reprojection of triangulated
secondary landmarks to self-supervise the secondary land-
mark locations. This method is an application of Günel et
al. (2019) for the task of secondary landmark prediction. (3)
LL + Lg

U: a semi-supervised learning model that uses 3D
shared representation to self-supervise the secondary land-
mark locations. 3D reconstructed secondary landmarks are
projected onto multiview images to supervise the landmark
detector (minimizing reprojection error). (4) LL +Lg

U +Lc
U:

a semi-supervised learning model (our full model) that use
both the shared representation and contrastive learning for
self-supervision. It minimizes geometric error but also max-
imizes visual feature correlation, resulting in a view-invariant
representation.

Table 1 summarizes the performance of eachmethodmea-
sured at PCKh@t where t={0.25, 0.5, 0.75} on the secondary
landmarks for three datasets. In general, semi-supervised
learning Lg

U that uses multiview unlabeled data significantly
outperforms the supervised learning methodLL. Further, the
model trained with contrastive learning, LL + Lg

U + Lc
U,

improves the performance on generalization. In particular,
the left-ear, right-ear, spine, and mid-tail joints in OpenMon-
keyPose, right-elbow, left-elbow and spine joints in Humans
3.6M and J3, J8 and J13 joints in DeepFly3D show signifi-
cant improvement.

Figure 8 shows the PCKh performance of the baseline
methods to detect secondary landmarks on human, monkey
and fly subjects. Our approach significantly outperforms the
listed baseline approaches.

Fine-tuning process. The model is first trained on the
labeled primary (DZ) and secondary (DL

X) landmarks. In

order to implement the proposed self-supervised approach,
we add a large amount of unlabeled secondary data (DU

X ).
The size of the labeled secondary data is set as 1/10th of the
unlabeled secondary data. At the time of training, complete
supervision is provided for the primary landmarks, while in
case of the secondary landmarks, reprojection is used for the
self-supervision. During the fine-tuning process, we do not
freeze any portion of the pipeline, and the total amount of
data (i.e. DZ ∪DL

X ∪DU
X ) contribute towards the training of

both primary and secondary landmarks. As observed from
Table 3 of the paper, the primary landmark performance is
not affected much by the fine-tuning process.

4.4 Comparison with State-of-the-Art Approaches

We compare the accuracy of the secondary landmark detec-
tion with 7 baseline algorithms. (1) Alternating least squares
(Salakhutdinov & Mnih, 2007) (ALS): this is a matrix com-
pletion method that can predict the secondary landmarks
by considering them as missing entries in a matrix and by
applying rank minimization. We construct the matrix made
of the coordinates of the primary and secondary landmarks.
Given a set of primary landmarks, the algorithm finds a
nearest neighbor from the labeled set, and completes the
missing secondary landmarks by minimizing the rank of
the matrix. (2) Biased alternating least squares (Paterek,
2007) (BALS): this is a variant of alternating least squares
with weighted-λ-regularization. (3) Variational autoencoder
(Carissimi et al., 2018) (VAE): this learns a latent code that
can express the data distribution in the presence of missing
data. AVAEhas been used in 2Dhuman pose estimationwith
occlusion (Carissimi et al., 2018).We apply these threemeth-
ods on the 2D and 3D secondary landmark prediction. (4)
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Fig. 7 We visualize the UMAP of landmark feature space a with con-
trastive learning andbwithout contrastive learning.Contrastive learning
enforces maximizing feature correlation between the same landmark
across views and minimizing that between different landmarks. cWith-

out contrastive learning, the red points (self-landmark correlation) and
blue points (cross-landmark corrleation) are almost in the same space.
d With contrastive learning the red points (self-landmark correlation)
are far apart from the blue points (cross-landmark corrleation)

Unsupervised Learning of Object Landmarks by Factorized
Spatial Embeddings (FSE): this method learns object land-
marks from synthetic image deformations and by distilling
geometry-related features, all without manual supervision.
(5) Unsupervised Learning of Object Landmarks through
Conditional Image Generation (CIG): this method learns
object landmarks based on factorized image deformations,
as induced by a viewpoint change or an object deformation.
(6) Supervised approach LL: we use the labeled secondary
and primary landmarks to train the landmark detector in a
fully supervised manner.

We use a metric called PCKh (Andriluka et al., 2014) to
measure accuracy of secondary landmark detection. A pre-
dicted landmark is considered as correct if it is within t L
pixels from the ground truth landmark, where t is an error
tolerance proportion given the reference length L: the length
between the head and neck joints for the OpenMonkeyPose
and Human3.6M datasets, and the length between joints J0
and J4 for L for the DeepFly3D dataset.

We evaluate the approaches based on the accuracy of
the predictions and use PCKh@0.5 as the evaluation met-
ric summarized in Table 2. It is worth noting that while a few
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90 approaches exhibit strength for particular landmarks, none

of these baseline methods consistently dominate over all the
datasets. As expected, due to the limited amount of data, the
supervised method performs poorly. Considering methods
such as FSE and CIG, the models confound the frontal and
dorsal sides, and hence for limb landmarks, we see a differ-
ence in the qualitative and quantitative performance overall.
The quality of our secondary landmark detection strongly
outperforms the baselines with a large margin.

In Fig. 9, we report the qualitative comparison that shows
the performance of the baselines listed in Table 2, to detect
the secondary landmarks.

In Table 3, we evaluate the performance of the sec-
ondary landmark detection on the OpenMonkeyPose dataset
by varying the amount of labeled data, keeping the unlabeled
multiview data constant. We observe that the performance of
our method increases as the amount of secondary landmark
labels increases. At an observed ratio of 1:10, the proposed
method outperforms the fully-supervised approach.

5 Discussion

Wepropose a new solution to a relatively under-studied prob-
lem in the field of automated behavioral tracking, that of
secondary landmark detection. Unlike primary landmarks
that describe generic and coarse body geometry, secondary
landmarks are of particular interest because their spatial con-
figuration specifies the fine-grained geometry of organisms.
Indeed, they are particularly likely to be useful in customized
behavioral tasks or to answer bespoke tracking questions.
Our secondary landmark detector is learned from unlabeled
multiview images in conjunction with a small set of anno-
tated secondary landmarks. It leverages the key insight that
there exists a strong spatial relationship between the pri-
mary and secondary landmarks, which allows us to learn
their shared representation from unlabeled data. We develop
a self-supervised predictive model that can estimate the sec-
ondary landmarks from the primary landmarks.

The spatial relationship between the primary and sec-
ondary is more apparent in 3D, i.e., it is easier to predict
3D landmarks than 2D landmarks that are a function of cam-
era projection. Therefore, the use of multiview images is a
critical element of our method. By using multiview images,
we can triangulate the primary landmarks that can in turn
be used to predict 3D secondary landmarks. These recon-
structed 3D secondary landmarks are, in turn, projected onto
each view to supervise the 2D secondary landmark detector.
This process is helped by a contrastive learning scheme that
learns the distinctive and unique visual representation of the
secondary landmarks. These later processes are completely
label agnostic, i.e., the learning relies on self-supervision.
Our method is generic, applicable to diverse species, cam-
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(a) (b) (c)

Fig. 8 PCKh curves for a monkeys, b humans and c flies. The proposed method outperforms the listed baseline algorithms

Fig. 9 We qualitatively compare the performance of our method to detect secondary landmarks with 9 baseline methods mentioned in the main
paper on DeepFly, Human3.6M, and OpenMonkeyPose datasets

era poses, and primary/secondary landmark configurations.
Indeed,wedemonstrate that ourmethod can reliably augment
landmarks with a smaller number of secondary landmarks on
humans, monkeys, and flies.

Through a linear subspace analysis, we demonstrate that
there exists a subspace shared between the primary and sec-
ondary landmarks, and that, this subspace can be used to
predict the secondary landmarks given the primary land-
marks. Especially when constrained to a limited amount
of data, the 3D shared representation is more effective and
expressive than the 2D shared representation, which agrees
with our central hypothesis. Our 3D shared representation
learning differentiates it from existing approaches (Günel
et al., 2019) that enforce learning a 2D spatial configura-
tion without reasoning about 3D geometry. In contrast, we
explicitly learn the 2D spatial configuration through the 3D
shared representation that provides self-supervision to the
2D secondary landmark detector. Based on this linear anal-
ysis, we characterize the secondary landmark prediction as
a function of the primary landmark configuration so that a
secondary landmark can be accurately predicted.

There exists works such as Kim et al. (2021), that deal
with bridging the domain gap between species and focus on
cross-species augmentation, bymaking use ofmorphological
similarities of joint pairs between species. However, with our
proposedmethod, we highlight thewithin-species augmenta-
tion of landmarks bymaking use of shared representations of
spatially related landmarks in a self-supervised manner. Our
secondary landmark detection can be thought of as a new
landmark annotation paradigm parallel to the existing trans-
fer learning paradigm used in neuroscience and biology. For
example,Mathis et al. (2018);Mathis andMathis (2019) uses
a small number of annotations to learn a generalizable visual
representation via transfer learning: transferring a generic
image representation learned from a large image dataset such
as ImageNet to the target animal images. On the other hand,
our approach takes an incremental bootstrapping that can
substantially reduce manual annotation efforts updating a
visual representation by introducing a new set of landmarks
at each time given the previously learned representation for
the existing landmarks (e.g., primary landmarks). Similar to
transfer learning, this bootstrapping leverages a strong prior
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79 Table 3 Westudy the performance of the secondary landmark detection

as varying the amount of labeled data |DX| while that of unlabeled
multiview data |DU

X | remains constant

Method |DX|/|DU
X | Secondary Primary Mean

LL 2k/140k 0.567 0.693 0.653

LL + Lg
U + Lc

U 2k/140k 0.413 0.679 0.595

LL 6k/140k 0.687 0.701 0.696

LL + Lg
U + Lc

U 6k/140k 0.662 0.669 0.667

LL 10k/140k 0.707 0.707 0.707

LL + Lg
U + Lc

U 10k/140k 0.702 0.703 0.703

LL 14k/140k 0.722 0.693 0.706

LL + Lg
U + Lc

U 14k/140k 0.753 0.693 0.712

of the visual representation, which allows building a general-
izable augmented landmark detector. This, however, implies
the limitation of our approach: it needs an initial good repre-
sentation to start the bootstrapping process, which requires
a sufficient amount of annotated data for the primary land-
marks. We assume that such annotated data can be attainable
from existing annotation tools such as Mathis et al. (2018);
Mathis and Mathis (2019) or OpenMonkeyStudio Bala et al.
(2020).
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