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Abstract
The ability to capture detailed interactions among individuals in a social group is foundational to our study of animal behavior
and neuroscience. Recent advances in deep learning and computer vision are driving rapid progress in methods that can
record the actions and interactions of multiple individuals simultaneously. Many social species, such as birds, however, live
deeply embedded in a three-dimensional world. This world introduces additional perceptual challenges such as occlusions,
orientation-dependent appearance, large variation in apparent size, and poor sensor coverage for 3D reconstruction, that are
not encountered by applications studying animals that move and interact only on 2D planes. Here we introduce a system for
studying the behavioral dynamics of a group of songbirds as they move throughout a 3D aviary. We study the complexities
that arise when tracking a group of closely interacting animals in three dimensions and introduce a novel dataset for evaluating
multi-view trackers. Finally, we analyze captured ethogram data and demonstrate that social context affects the distribution
of sequential interactions between birds in the aviary.
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1 Introduction

In social animals, moment-to-moment interactions among
individuals drive the formation of long-term social networks.
In turn, both an animal’s position in the social network and its
immediate social context change how it behaves and interacts
with others (e.g. Anderson et al.,2021; White, 2010). The
dynamics of a group’s social network drives how individuals
access food, shelter, and mates, and ultimately determines
the group’s reproductive success (Kohn et al., 2013). As we
work toward a quantitative understanding of social behavior,
it is essential thatwe develop animal and engineering systems
for studying the interplay between the behavior of individuals
and group dynamics.

Capturing the dynamics of social networks is not an easy
task. Individuals must be accurately tracked and re-identified
over long time periods and interactions between individuals
must be detected and characterized to create an ethogram,
or record of salient behaviors and their timestamps, for all
individuals. Manual focal sampling by behavioral experts is
one way of creating ethograms, but such efforts only capture
a small slice of important behaviors for a few individuals at a
time. Many recent works have developed automated systems
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supporting the creation of behavioral ethograms, including
those focusing on 2D tracking and re-ID (Pérez-Escudero
et al., 2014; Romero-Ferrero et al., 2019; Walter & Couzin,
2021), pose estimation in 2D (Mathis et al., 2018; Lauer et
al., 2022; Segalin et al., 2021; Pereira et al., 2019, 2022;
Graving et al., 2019; Chen et al., 2020), and 3D (Gosztolai
et al., 2021; Bala et al., 2020; Joska et al., 2021; Dunn et al.,
2021; Günel et al., 2019; Badger et al., 2020; Wang et al.,
2021; Zuffi et al., 2019), behavioral mapping (Berman et al.,
2014), and analysis of collective behavior (Heras et al., 2019;
Katz et al., 2011; Evangelista et al., 2017).

Of foundational importance to all multi-animal pipelines
is the ability to track and re-identify individuals. With a few
exceptions (Graving et al., 2019; Joska et al., 2021; Badger
et al., 2020), current systems have only been deployed and
tested in 2D settings with consistent lighting and static back-
grounds, which make the problems of detection and tracking
significantly easier. Interesting social dynamics, however,
usually do not occur in isolation. Instead, they are embedded
in the surrounding 3D environment, which introduces many
challenges for automated perception. Groups of interacting
animals spread over regions orders of magnitude larger than
their body size, requiring many cameras to capture details
for every individual. Individuals may be visually similar, yet
their appearance may change dramatically as they move in
3D, puff their fur, or fluff their feathers. Variable lighting
further alters the appearance of individuals. Backgrounds are
visually complex and dynamic, and animals are frequently
occluded by each other and structures in the environment.
Many animals also have multimodal motion distributions
making tracking extremely difficult. The extent to which
automated systems can overcome these difficulties and cap-
ture groups of animals interacting within large and complex
3D environments is not well understood.

In this work, we aim to study behavioral dynamics in a
socially gregarious species of songbirds (White et al., 2012;
Maguire et al., 2013). We present 1) approaches for track-
ing a flock of birds and capturing their social interactions
in a dynamic, multi-view setting, and 2) a new challenging
dataset for evaluating the real-world performance of multi-
view multi-object trackers.

Tracking in 3D is a complex problem. Some methods per-
form3Dreconstruction followedby tracking (Reconstruction-
then-Tracking, or RT) and other methods first form tracks
in 2D and then associate the tracks across views (Tracking-
then-Reconstruction, or TR) (Wu et al., 2009). The advantage
of performing reconstruction first is that tracking ambigui-
ties are much less common in 3D than in 2D, so associating
detections across time is far easier in 3D. On the other hand,
matching sequences of points from2D tracks improves cross-
view association by reducing the potential for false matches,

which create ghost trajectories. When used for tracking bats,
these two approaches show a tradeoff between the number
of track fragments and false positive tracks (Wu et al., 2009)
and the best-performing approach will depend on both cam-
era geometry and the performance of the 2D tracker. We
implement twoRT approaches because the camera views fre-
quently containmanyocclusions and the baseline 2D trackers
such as SORT (Bewley et al., 2016) did not perform well
under these situations.

Our first approach uses foreground masks to construct a
3D pointcloud, which is then clustered to form points for
tracking in 3D. Our second approach performs stereo match-
ing of detections across views to reconstruct 3D points. In
both approaches, 3Dpoints are subsequently linked over time
to form tracks using a motion prior. We test the performance
of both trackers on an evaluation dataset containing long tra-
jectories (∼36000 frames) with sparse 3D annotations and
ground truth identities.

Our evaluation dataset includes a challenge task along
with code for loading and viewing examples and evaluating
performance on the task. In the task, which we call Where’d
It LanD (WILD), the 3D locations of a single bird’s head and
tail are provided alongwith a sequence of frames. The tracker
must then return the 3D location of the same bird’s head at the
end of the sequence as the target bird hops or flies with other
birds in the aviary. Predictions are marked as correct if the
returned 3D location is within a given threshold distance of
the ground truth 3D location. Tracking performance is eval-
uated by the fraction of correctly predicted sequences across
a range of distance thresholds. Finally, we use our dataset
to perform a behavioral analysis of birds interacting in the
aviary and show that social context influences the distribution
of actions used by birds during courtship.

2 Contributions

1. A system for automatically extracting behavioral
ethograms from a flock of birds interacting in an outdoor
aviary. Components include synchronized camera and
microphone array recording for months-long durations,
and pipelines for detection, reconstruction, tracking, and
re-identification.

2. Anexplorationof reconstruction-then-tracking approaches
to multi-view multi-object tracking.

3. A unique dataset and codebase with tracking challenges
for evaluating multi-view multi-object tracking algo-
rithms.

4. An analysis of the social network of a flock of cowbirds
showing how social context affects behavioral choices
made by male and female birds during courtship.
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Fig. 1 Full pipeline for cowbird tracking and recognition. A A syn-
chronized set of raw videos from multiple views are processed in a
frame-by-frame manner. B Segmentation masks of bird instances are
obtained using a Mask R-CNN network and background subtraction.
C Pointclouds are reconstructed by multi-viewmatching, triangulation,
and clustering. D Tracking, which is implemented using a Lagrangian

Particle Tracking (LPT) algorithm, links pointclouds in time to form
tracklets. Re-tracking associate 3D tracklets to generate longer 3D
tracks. E Individual identity recognition using the FastReID frame-
work. F Output from the pipeline can then be used for social network
analysis

3 RelatedWork

3.1 Multi-object Tracking

3.1.1 Detection

Most state-of-the-art tracking methods follow the tracking-
by-detection paradigm (Bergmann et al., 2019; Bewley et al.,
2016; Karunasekera et al., 2019; Wojke et al., 2017; Wu et
al., 2009; Cavagna et al., 2021; Sinhuber et al., 2019; Ling
et al., 2018), in which the quality of detection is critical
to the tracking performance. Convolutional Neural Network
(CNN) based detectors (Girshick et al., 2014;Girshick, 2015;
He et al., 2017; Ren et al., 2015; Liu et al., 2016; Redmon
et al., 2016; Wang et al., 2020; Lin et al., 2017) have outper-
formed previous methods for object detection and instance
segmentation tasks. In particular, the R-CNN family (Gir-
shick et al., 2014; Girshick, 2015; He et al., 2017; Ren et al.,
2015) find category-agnostic bounding box candidates, and
then perform classification and refinement on them based on
feature maps. A latest work Context R-CNN (Beery et al.,
2020) keeps a “memory bank” based on contextual frames
and uses attention to improve detection. SSD (Liu et al.,
2016), the YOLO family (Redmon et al., 2016; Wang et
al., 2020), and RetinaNet (Lin et al., 2017) directly regress
to category-specific bounding box candidates. Detection can
fail though, if an object’s appearance changes dramatically
between sightings. Unless enough examples are available
in the training data, networks may not be robust to such
changes. In the aviary, for example, motion blur caused by
birds in flight is rare in training data and hence difficult to

detect. Background subtraction is a widely used technique
to detect dynamically moving objects from static cameras.
Zivkovic (2004) and Zivkovic and van der Heijden (2006)
use a Gaussian mixture model that captures gradual changes
in the background such as illumination changes, which is an
important factor when running outdoor experiments where
the sun is the light source. By using both a CNN based detec-
tor and a background subtraction based motion detector, we
can reliably detect birds despite variations in their postures
and movements.

3.1.2 Trajectory Generation

The ability to track an individual animal as it moves through-
out its 3D environment is fundamental for addressing a broad
range of questions in behavioural ecology and the study of
animal social networks. Some interesting methods obtain
3D detections using point cloud observations from LiDAR
data (Weng et al., 2020; Chiu et al., 2020; Yin et al., 2021),
but obtaining such data is unrealistic in long-term wildlife
monitoring. Recently, video data has become ubiquitous and
indispensable in the study of collective behavior (Caravaggi
et al., 2017; Schofield et al., 2019; Ling et al., 2018; Sinhuber
et al., 2019). When individuals interacting in a 3D environ-
ment pass behind eachother or objects in the environment, 2D
occlusions occur. Because single camera views do not pro-
vide depth information, such occlusions create ambiguities
and often result in lost tracks, identity swaps, or other track-
ing errors (Ciaparrone et al., 2020). Occlusions occur more
frequently in crowded environments and identity swaps that
occur during such occlusions can be difficult to recover from
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if animals have similar appearances. An intuitive solution is
to use multiple calibrated cameras and fuse information from
different viewpoints to resolve ambiguities.

To track multiple objects in multiple camera views, data
association must be performed not only across time (Track-
ing), but also spatially across views (Reconstruction). Doing
reconstruction and tracking at the same time is computation-
ally infeasible (Atanasov et al., 2014), so current methods
typically adopt either a Tracking-then-Reconstruction (TR)
route or a Reconstruction-then-Tracking (RT) route (Wu et
al., 2009; Cavagna et al., 2021). TR methods first form
2D tracks in each camera views and then match them to
reconstruct 3D tracks. Many state-of-the-art 2D tracking
algorithms (Bergmann et al., 2019; Bewley et al., 2016;
Karunasekera et al., 2019; Wojke et al., 2017) can be readily
extended to track in 3D using cross-view data association
techniques (Wang et al., 2014; Wu & Betke, 2016), but the
complexity of most data association methods grows quickly
with the number of simultaneously processed frames. Work-
ing in the 2D space, TRmethods also have to handle both 2D
and 3D occlusions in the reconstruction procedure (Cavagna
et al., 2021; Wu & Betke, 2016).

Conversely, RT methods first reconstruct 3D representa-
tions using cross-view matching techniques, and then link
them in time to form3D trajectories. 2Docclusions are solved
during the reconstruction procedure, which is typically per-
formed independently for each frame, so the complexity of
RT methods is substantially lower than the TR methods.
Sinhuber et al. (2019); Ling et al. (2018) associate detec-
tions from multiple camera views using the stereo matching
technique and use predictive Lagrangian Particle Tracking
(LPT) (Ouellette et al., 2006) to form short 3D trajectories,
or tracklets. A re-tracking strategy (Xu, 2008) is then used
to solve 3D occlusions and link these short tracklets to form
longer trajectories.A recentRTworkbyCavagna et al. (2021)
reconstructs each target as a point cloud in 3D and resolves
3D occlusions by solving a partitioning problem through a
semi-definite optimization technique. While this method has
proven to be effective for tracking birds moving at non-zero
velocities in a dense flock, it performs poorly and cannot
separate birds that perch close together for minutes (several
hundred frames) because the complexity of the partitioning
problem becomes too high to be solved reliably. Beyond
using simple 2D locations to reconstruct 3D representations
of targets, other methods also encompass orientation (Cheng
et al., 2015), keypoints (Dong et al., 2021), and deep appear-
ance features (Dong et al., 2021; Zhou et al., 2015) to perform
association across views. In this work, we only use 2D loca-
tions andmasks to reconstruct the targets in 3D for simplicity
and efficiency.

3.1.3 Datasets

State-of-the-art multi-object tracking (MOT) datasets pre-
dominantly target people and vehicles, motivated by surveil-
lance and self-driving applications (Sun et al., 2020; Gan et
al., 2021; Han et al., 2021). Datasets for animal tracking and
related tasks are presented by a comparatively small amount
of previous literature. Recent work AP-10K dataset (Yu et
al., 2021) is the first large-scale benchmark for mammal ani-
mal pose estimation which consists of 10,015 images from
23 animal families and 54 species. The OVIS dataset (Qi
et al., 2021) for video instance segmentation consists of 20
animal species in hundreds of occluded scenes. Recently, a
larger scale dataset for Tracking Any Object (TAO) (Dave
et al., 2020) has been compiled containing 2,907 videos. We
contribute our multi-view 3D tracking dataset of cowbirds
for evaluating generalist trackers.

In the biology context, most behavioral studies acquire the
dataset with carefully designed lab conditions: ideal illumi-
nation, arenas with a plain background, and well-quantified
or no environmental stimuli (Sinhuber et al., 2019; Pérez-
Escudero et al., 2014; Romero-Ferrero et al., 2019). While
well-defined lab environments make it easier for tracking the
objects, they restrict the complexity of the objects’ move-
ments that can be measured. Birds, in particular, exhibits
rich postures and movements. Current datasets for the track-
ing of birds, however, contain only scenarios of bird flocks in
migration Ling et al. (2018);Wu et al. (2014). In contrast, our
multi-view tracking dataset contains large variation in bird
pose, orientation, appearance, and social interaction across
different lighting conditions that characterize “wild” footage.

3.2 Animal Re-Identification

In spite of the vast literature on multi-object tracking, han-
dling occlusions remains the biggest challenge, especially in
crowded scenes. Visual appearance features can aid frame-
to-frame association (Wojke et al., 2017a; Romero-Ferrero
et al., 2019; Pereira et al., 2022), and the ability to re-identify
(re-ID) an individual animal upon re-encounter is extremely
helpful in preserving the correct identities after occlusions.
However, few ecological studies have taken advantages of the
deep learning re-ID methods despite their success in human
re-ID (Schneider et al., 2018). More recently, Schofield et
al. (2019) used a variant of the VGG-M architecture (Chat-
field et al., 2014) for both identity and sex classification
of wild chimpanzees. When pre-trained on the ImageNet
dataset, the VGG19 CNN architecture (Simonyan & Zisser-
man, 2014) can recognize individuals within small groups
of birds (Ferreira et al., 2020) and giant pandas (Hou et al.,
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2020). While classification approaches have demonstrated
good overall performance (Luo et al., 2019) and can gen-
eralize across age-related changes in individual appearance
(Schofield et al., 2019), the extent of their generalizability to
unseen individuals in a small dataset (small in the number of
individuals and training examples) is an important question
that remains unexplored. Deep metric learning approaches,
on the other hand, have shown good generalization across
difference individuals and datasets (Yi et al., 2014; Zou et
al., 2021). Here we collect a dataset for bird re-identification
and train an identity embedding network using both metric-
learning-based and classification-based losses (Luo et al.,
2019).

4 Data Collection

4.1 Aviary

Many songbird species exhibit complex social structures,
including the highly gregarious brown-headed cowbirds
(Molothrus ater). Cowbirds present an excellent study sys-
tem because exhibit complex patterns of behavioral inter-
actions and the dynamics and structure of a group’s social
network predicts overall reproductive success (Kohn et al.,
2013). Interactions between birds occur on timescales rang-
ing from seconds to months. In just a few seconds a male
could sing aggressively towards another male and then fly
toward and land near a female, who then might make a chat-
ter vocalization, lunge at the male, or fly away. Through
hundreds of these interactions pair bonds between males
and females emerge and a stable social network forms over
the course of the three month breeding season. Several
interesting questions remain unanswered, including what
interactions influence the formation of pair bonds between
males and females, how these interactions change over time,
and how female feedback and multi-way interactions influ-
ence the development of the social network throughout the
breeding season. Furthermore, these dynamics and the pos-
sible quantification of the social network will allow for
eventual neurobiological studies that probe the influence of
social context on brain dynamics in a naturalistic environ-
ment. To address these questions, we studied a flock of 15
cowbirds housed in a large outdoor aviary.

The UPenn Aviary is a covered outdoor arena (length ×
width× height: 6× 2.4× 2.4 meters) enclosed by rigid wire
mesh. Inside are 12 central perches (located 40 cm below
the ceiling) and 8 additional perches on the long sides (50
cm below the ceiling) of the aviary (see Fig. 4b,c for a dia-
gram). Each corner has one camera (BLFY-PGE-23S6Cwith
aKowa 12.5mmC-Mount lens) pointing inwards. The height
× width field of view of the cameras is approximately 31 ×
48 degrees and they are angled so that all points in the aviary

Fig. 2 Variation of captured images. Lighting and background appear-
ance varies widely across viewpoint, time of day, and season throughout
the birds’ breeding period

volume can be observed by at least two cameras. Ten of the
twelve central perches can be seen by all four top cameras.
The bottom four cameras capture birds when they descend
the ground to feed or bathe. Cameras are synchronized by
a hardware trigger and capture 1920 × 1200 pixel frames
at 40 Hz, which are sent over Gigabit Ethernet to a central
server. Cameras are calibrated using a standard checkerboard
(intrinsics) and an array of 96AprilTags (Krogius et al., 2019)
printed on 16 aluminum boards attached to the walls of the
aviary (extrinsics). The aviary also captures audio signals
using an array of 24 microphones (Behringer ECM8000),
which are organized in eight triplets (with ∼ 10 cm between
microphoneswithin a triplet) around the exterior of the aviary
and sampled at 48 kHz. The server writes all camera and
microphone messages and their timestamps to one ROS bag
(Quigley et al., 2009) for each day of recording.

Using the recording system described above, we recorded
a flock of 15 interacting cowbirds (Molothrus ater) for
approximately 16 hours per day for 104 days (March 16,
2019 to June 28, 2019). Captured images varied significantly
in appearance across views andwith the time of day, weather,
and season (Fig. 2). There were sixmales and nine females in
the flock. Males have black bodies with dark brown plumage
on their heads and are larger than females, which are brown
coloredwith lighter gray-brownbreasts (seeFig. 4a for exam-
ples). We banded the left and right legs of each bird with
a unique color combination drawn from blue, teal, green,
pink, red, and yellow colors. Leg bands were approximately
1 cm in diameter and birds could bemanually identified from
nearby cameras whenever there was sufficient lighting and
their bands were not occluded. Birds usually perched on the
perches when not flying around the aviary, but they occasion-
ally perched on the walls or walked along the floor between
food and water trays. Perching periods varied dramatically,
lasting from a fraction of a second to over 15minutes. During
long periods of perching, shadows shifted more rapidly than
the birds themselves. In flight, however, birds crossed the 6
meter aviary in about 1 second (40 frames) and moved more
than a body length between consecutive frames.
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4.2 Multi-viewMulti-bird Dataset and Challenge
Tasks

Our dataset for multi-view multi-object tracking originates
from four 15 minute segments drawn from one day in early
April and two days in mid May. We chose these months
because we expected to see rapid change in the social net-
work across this period. The social network, including pair
bonds, is not yet formed in April but solidifies by mid-May.
Because cowbirds’ behavior in the aviary makes it relatively
easy to annotate periods of perching, we chose to annotate
the beginning and end of these stationary periods for every
bird in the aviary.

Each annotation effort began by selecting a bird and view-
ing a synchronized multi-view recording from the aviary in
the VIA Video Annotator (Dutta & Zisserman, 2019). Once
a bird stopped flying or walking (e.g. by landing on a perch),
the center of the bird’s head and the tip of its tail were clicked
in at least two views. Very small motions during stationary
periods (< 10 cm), such as steps along the same perch, were
annotated with midpoints. Just before the bird started its next
flight, its head and tail were annotated and labeled as an end
point of the stationary sequence. The bird was then followed
visually in flight until it landed again and a new station-
ary sequence was started. A behavioral annotation was also
created whenever a target male sang. We ignore female chat-
ter vocalizations because the visual chattering cue is subtle
and annotators had a hard time assigning chatter when the
female was not close to the camera. We plan to incorporate
sound detection and localization to reliably assign chatters in
futurework.We confirmed the identity of each birdwhenever
both its leg bands were visible. All 15 birds in all four seg-
ments were positively identified and no two birds in the same
segment were given the same identity. After all birds were
annotated for a given segment, annotations were triangulated
to obtain a sparse sequence of 3D locations and body axis
orientations for each bird. For stationary segments, the posi-
tions of the head and tail were interpolated between the start
and endpoints (using any available midpoints). Annotations
were inspected for tracking errors (ID swaps or merges) by
plotting pairwise distances between all birds. Whenever the
distance between any two birds became less than 15 cm, the
annotationsweremanually checked to ensure that trajectories
had not merged (i.e. that no identity merge had occurred dur-
ing manual annotation). From the annotations, we extracted
1098 stationary sequences of widely varying length. Aver-
aged across birds, the 10th, 50th, and 90th percentiles of
stationary sequence length were 3.7, 17.6, and 165 seconds
respectively. These stationary sequences were used to form
a training dataset for re-ID described below.

Untracked periods between stationary sequences were
collected to obtain 986 motion sequences and formed
our “Where’d It LanD” or WILD challenge. Each motion

Fig. 3 The WILD dataset. Motion sequences are usually between 15
and 200 frames (a) between endpoints separated by 0-6 meters (b). In a
reconstruction of all stationary sequence start and end points (c), areas
of high point density reveal the perch geometry and ground plane. Lines
between motion sequence start and end points (d) reveal flights from
perch to perch, and from perches and the ground. Lines connect start
and end points belonging to the same sequence; they do not indicate the
actual trajectories. Points in (c) and (d) are colored by bird ID. Large
spheres show the locations of the camera centers. An example from the
dataset (e) shows the target bird’s start location (green), approximate
flight trajectory (blue), and ending location (red). Image borders denote
the camera and correspond to large sphere colors in (c, d)

sequence is annotated with 3D start and end points (Fig.
3e; the endpoint of a stationary sequence serves as the start
point of the following motion sequence). Averaged across
birds, the 10th, 50th, and 90th percentiles ofmotion sequence
length were 0.88, 1.6 and 4.5 seconds (35, 63, and 180
frames) respectively (Fig. 3a). The average number ofmotion
sequences per bird was 66 (minimum: 8, maximum: 269) or
an average total duration of 157 seconds per bird (minimum:
15.5 s, maximum: 552 s). Themean distance betweenmotion
sequence endpoints was 1.9 m (Fig. 3b, d).

Motion sequences inWILDvary dramatically in difficulty.
In “easy” examples, a bird might hop between two perches
and the entire sequence can be seen from the same set of
cameras (e.g. Fig. 4b). In more challenging examples, birds
change direction multiple times, fly behind other birds or
through dark areas, or land in areas that are not visible by
the original set of cameras (e.g. Fig. 4c). In the most difficult
cases, birds might be fully visible by only one camera and be
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partially or fully occluded fromviewby a second camera, and
might then fly and land in an opposite corner of the aviary,
where they are not visible by the original set of cameras (e.g
Fig. 3e).

As part of the WILD challenge, we provide a data loader
that takes in an example index and returns metadata, 3D start
and end points of the target bird and an iterator containing
the sequence of synchronized multi-view frames. We also
provide an example visualization script that creates a video
showing the start and end points of a sequence reprojected
onto all visible views. Finally,we provide an evaluation script
that takes in a list of indices and predicted 3D endpoint loca-
tions and returns the fraction of correctly predicted sequences
using several distance thresholds.

5 Multi-viewMulti-bird Tracking

5.1 Approach

We present an automated pipeline that can detect and track
multiple cowbirds from raw video footage and demonstrate
its use on the WILD challenge. The pipeline consists of the
following components: (A) detection of bird instances, (B)
3D position recovery based on point cloud reconstruction
and clustering, (C) 3D tracks generation using a predic-
tive Lagrangian Particle Tracking (LPT) algorithm, and (D)
occlusion handling in a re-tracking procedure.

5.2 Detection

We use a Mask R-CNN network pretrained on COCO
instance segmentation to localize bird instances. Similar to
our previous work (Badger et al., 2020), we removedweights
for non-bird classes (leaving bird and background) and then
fine-tuned all layers on on the Aviary Dataset (Badger et al.,
2020). While Mask R-CNN would be robust to variations
of bird postures given enough training examples, it is not
reliable when detecting birds in certain postures which are
rarely seen in training data, such as birds in flight withmotion
blur. To account for this issue, we add a background subtrac-
tion module (Zivkovic, 2004) to detect flying birds. For each
frame in a raw video, we first convert it to a grey scale image,
and then remove stationary features from the scene, eg. the
aviary settings and gradual changes in illumination, adap-
tively learned from 500 temporally consecutive frames using
Gaussian mixture probability density. We then segment the
foreground image into distinct blobs of pixels correspond-
ing to bird instances. However, shadows often move faster
than perched birds, so pure background subtraction is not
reliable when capturing birds that remain stationary during
a substantial part of the video footage. We therefore exploit
advantages of both Mask R-CNN detector and motion-based

detector, keeping a union of their detections without dupli-
cates as inputs to the next stage of the pipeline. By combining
the two methods, we are able to reliably detect birds both in
stationary and in motion.

5.3 Reconstruction

The reconstruction step aims to recover the 3D positions
of the detected instances. We first reconstruct dense 3D
point clouds, and subsequently perform clustering to obtain
cluster centers as the 3D positions of the birds. This point
cloud reconstruction step is essential in the tracking pipeline
because we found in experimentation that reconstructing the
2D center points alone is not able to sufficiently represent
the 3D location of the bird. The single point representation
is extremely sensitive to the quality of detections. As the
shape of the bird changes dramatically during flight, shape of
the bounding boxes and segmentation masks vary between
frames (see Fig. 5a), and accordingly, the center/weighted
centers of the bounding boxes/segmentationmasks shift a lot.
This adds additional unstableness to tracking. In our experi-
ments, representing the bird by taking the center of the dense
cloud of 3D points is more smooth and stable.

We use a similar method to (Cavagna et al., 2021) to
reconstruct 3D point clouds. At each instant of time, given
a union of segmentation masks from each camera view, we
find matched pairs of active pixels from 2 distinct camera
views based on epipolar distance. In the aviary, a region can
be seen in another 2-4 camera views. We consider a pair to
be a good match if it satisfies the trifocal constraint (Hartley
& Zisserman, 2003) with another active pixel from one of
those views. The matched pairs of pixels are then triangu-
lated using a standard DLT method (Hartley & Zisserman,
2003). A potential challengemay occur if a bird were to enter
the camera view at an extremely near distance, which results
in a big mask with a large number of pixels that could blow
up the memory. To solve this, one could sub-sample a mask
if the number of pixels in it exceeds certain number. After
reconstructing all 3D points, ghost points due to bad triangu-
lation or false detection are filtered temporally if their nearest
neighbor cannot be found in the neighboring frames.

We then cluster the 3D point clouds using the DBSCAN
clustering algorithm. Centers of the clusters are the inputs to
the tracking algorithm described in the next subsection.

5.4 Tracking

Once the 3D positions of the detected bird instances are
reconstructed at each instant of time, we link them in time
through anLPT (Ouellette et al., 2006) procedure. This track-
ing method has been successfully applied to study dynamic
behaviour in aggregations of animals, including swarms of
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midges (Sinhuber et al., 2019) and flocks of birds (Ling et
al., 2018).

At a generic time t , let xti denote the i th 3D point. The
objective of the tracking problem is to find an xt+1

j for every

xti such that x
t+1
j corresponds to the 3D location of the point

at time t + 1 that was at position xti at time t . We define φn
i j

to be the cost of associating each pair of xti and x
t+1
j . As this

multidimensional assignment problem and is known to be
NP-hard (Ouellette et al., 2006), minimizing the overall cost
spanning hundreds of frames is computationally expensive.
Therefore, we limit the temporal association to only a few
frames at a time.

We generate 3D trajectories for each individual in the fol-
lowing two stages:

1. Tracking: Associate 3Dpoints in time to form short track-
lets in a frame-by-frame manner. At first instant of time,
t = 1, we perform Hungarian matching based only on
the distance between points as there’s no dynamic infor-
mation from the past. For each matched pair of points,
we add a velocity vector to points at t = 2 defined as
follows:

v2j = 1

�t
(x2j − x1i ) (1)

Starting from t = 2, we estimate the expected position
of each particle in the future frame as

pti = xti + vti�t (2)

We define the cost of association φn
i j to be the distance

between particles xt+1
j and the estimated position pti . A

particle can be linked to the tracklet if the cost of linking
is below a set threshold. The velocity corresponding to
point xt+1

j can be calculated as

vt+1
j = 1

�t
(xt+1

j − xti ) (3)

If multiple particles can be linked to the same tracklet, we
stop the tracklet and start new ones. We set the threshold
conservatively to minimize false linking. This results in
shorter tracklets, which will be further connected in the
re-tracking procedure described next. At last, the position
and velocity of each point in a tracklet will be smoothed
by a one dimensional Gaussian Filter (Mordant et al.,
2004).

2. Re-tracking: Associate 3D tracklets to generate longer
3D tracks. All tracklets generated from the last stage
are projected forward and backward in time using the
positions and velocities at the endpoints (Xu, 2008). If
distance between a forward projection of one tracklet is

close to the backward projection of another tracklet, the
two tracklets are joined. When there are multiple pos-
sible matches, closeness of the velocity vectors is used
to determine the best match. In addition, we handle the
transient disappearance and appearance of a particle from
the field of view due to miss detection by extrapolation
based on its previous motion history. At last, trajectories
shorter than 10 frames are removed from the final set to
avoid ghost trajectories.

Generated tracks could be used to calculate motion priors
of birds in the aviary, both of the collective as a whole as well
as of the individuals.

Comparison with 2D tracking systems: the majority of
the tracking literature focuses on 2D tracking. Many recent
methods are learning-based and require track-level training
data that is expensive to annotate. A general framework
that does not require track-level training is a tracking-by-
detection approach, where 2D detections are temporarily
linked to form 2D tracklets (Bewley et al., 2016). In the
context of multi-animal tracking, popular systems such as
DeepLabCut and SLEAP are based on tracking by detection
(Lauer et al., 2022; Pereira et al., 2022).

An extension to the 3D scenario is to match 2D tracklets
across views stereoscopically to form 3D tracklets. But there
are many complications in our setting: 2D tracking in a sin-
gle view is less robust in complex scenes (Fig. 3); matching
tracks across view is an NP-hard multidimensional assign-
ment problem that can produce duplicate 3D tracks; merging
or deleting duplicates relays on heuristics. The complexity
of the system quickly increased to cover many corner cases.

In contrast, tracking directly with a 3D representation
reduces ambiguities, and the system is simple in principle.
Recent 3D tracking papers have made a similar observation
(Rajasegaran et al., 2021; Cavagna et al., 2021). Amore com-
prehensive comparison is left for future research.

5.5 Re-ID with the Bird15 Dataset

To form a dataset for bird re-identification, we exported
images from stationary sequences. Images were passed
through the bird detector and the sequence annotations
(ground truth locations and identities of perched birds) were
used to assign an identity with each detection. We exported
tight crops from all available views, except when two ormore
birds occluded each other, in which case only the crop for
the bird closest to the camera was exported for that view. To
improve the spatial and pose diversity of exported crops, we
partitioned the aviary into 3D bins (10 cm side length) and
tracked the number of crops exported for each bird in each
bin. For each bird, we exported crops every 10 frames until
the bin for that bird and location had 10 images. Once the
bin was filled, we continued to export crops, but only every
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40 frames. We use this method to bias collection towards a
diversity of locations generated by brief periods of perching
as birds move throughout the aviary. All crops were resized
to 256x256 pixels. Image filenames contain bird ID, cam-
era view, sequence number, and frame number information
following the Market1501 format (Zheng et al., 2015).

We split the dataset into training and test sets, composed
of crops obtained from the first half and second half of each
15 minute segment, respectively. The training and test sets
each contain 18,000 images. Birds were fairly evenly rep-
resented in both sets (mean ± std. training images per bird:
1225±531, test images per bird: 1229±339), with the excep-
tion of one female with Red+Yellow leg bands, which only
had four examples in the training set and 620 in the test set.
The number of examples from each of the top cameras was
similar between training and test sets, and was consistently
higher than the number of examples from the bottom cameras
(as expected based on the lack of visibility of the perches).
We randomly selected 7,500 training images to serve as a
validation set.

We then trained an embedding network for bird identi-
fication on the Bird15 dataset. The network consists of a
ResNet50 (He et al., 2016) pre-trained on ImageNet, which
takes in a 256 × 256 image and outputs a 2048 vector of
re-ID features f , followed by a BNNeck (Luo et al., 2019)
and a classification head, which outputs identity logits p.
The network was supervised using both triplet (Weinberger
& Saul, 2009) and cross-entropy identity losses and we used
Adam and the FastReID codebase (Luo et al., 2019) to opti-
mize the model. We use the default FastReID baseline “bag
of tricks”, except that we do not use horizontal flipping aug-
mentation because bird identities depend on the ordering of
the left/right leg band colors, which would be swapped upon
reflection. During inference, we apply a softmax function to
the logits p to obtain a distribution over bird IDs for each
image.

6 Results and Experiments

6.1 Short-termTracking of Individual Birds in
Cluttered Scenes usingWILD

Experiment.We tested our tracker on the WILD dataset.
Among the 952 motion segments we evaluated against, 741
segments have short sequences of ≤ 100 frames, 186 seg-
ments have 100 ∼ 300 frames, and 25 have rather long
sequences of ≥ 300 frames. For each motion segment, we
provide the start and end locations of the target bird’s head
and tail points in 2D and 3D, as well as an iterator containing
the sequence of synchronized multi-view frames. The task is
to track the target bird and predict its 2D/3D position at the
end of the sequence. The experiment was conducted as fol-

lows. We ran our multi-object tracker on the provided frame
sequence and output a set of track hypotheses for all birds in
the scene. At the start frame, we established correspondence
between the target and the closest hypothesis based on 3D
Euclidean distance, and at the end frame, we measured the
3D distance between the target’s end location and the same
hypothesis. All remaining hypothesis that were not associ-
ated with ground truth were ignored.

WecomparedourPointcloudReconstructionbased tracker
with the Stereo Matching method introduced by Ling et al.
(2018). This method has been demonstrated to successfully
resolve multi-view optical occlusions and improve tracking
performance. The evaluation process for these two meth-
ods differs only in the point reconstruction stage, with the
rest - detection and tracking - remaining the same (see Fig.
1ABCD). One major difference of these two methods is the
way they represent each target in 3D. Taking only the cen-
ter of the detection mask/bounding box as input, the Stereo
Matching method reconstructs the target as only one single
point in space. The Pointcloud Reconstruction method, on
the other hand, reconstructs the target as a dense cloud of
points.

Evaluationmetric.The end position of the track hypothe-
sis retrieved by our tracking pipeline, see Fig. 4, is compared
with the ground truth end position. “AC0.X”, the fraction
of reconstructed hypotheses landing within 0.X meters of
the ground truth, is reported in Table 1; its ideal value is
equal to 100 percent.We chose this evaluationmetric because
distance based metrics were very sensitive to outliers. For
example, samples that were not tracked successfully can land
far away from the ground truth and end up dominating the
average and inflating the standard deviation. We also provide
an alternative evaluation metric in Table 3. In stead of using
metric meter as error measure, we use the average height of
the cowbirds (15 cm). For example, “AC2×” is the fraction
of tracks landingwithin 30 cm of the ground truth. We do not
evaluate the result using the standard CLEAR MOT evalua-
tion method of Bernardin and Stiefelhagen (2008), because
the MOT statistics are based on frame-by-frame annotations
and the production of frame-by-frame 3Dground truth trajec-
tories is currently severely limited by the amount of human
effort and expertise required for manual annotation.

Result Analysis. We present qualitative results of the
our tracker in Fig. 4. The quantitative results of both the
Pointcloud Reconstruction method and the Stereo Match-
ing method on the WILD dataset are reported in Table
1. The table shows that Pointcloud Reconstruction method
outperforms the Stereo Matching method in every cate-
gory. Video visualization shows that points reconstructed by
Stereo Matching are more unstable than pointclouds, as the
single-point representation is more sensitive to the quality
of detections. A slight change of the detection (box size and
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Fig. 4 Qualitative tracking results. a Examples of detected bird
instances with variations in pose, shape, lighting, scale, occlusion, and
motion blur. b Example of a successful short track (56 frames) followed
by its 2D projections in 3 different views. The green cube/circle is the
start 3D/2D position and the red cube/circle is the end position. Dots in

the 2D images are smaller/larger as the bird gets further away/closer.
c Example of a successful long track (375 frames). During flight, the
individual hops on the wall and briefly pauses for 1–2 seconds. Exam-
ples in (b) and (c) are from video segments drawn from different days,
demonstrating variable time of day and lighting

Table 1 Quality of the
trajectories retrieved by Stereo
Matching method and
Pointcloud Reconstruction
method. AC0.X denotes percent
tracks land within 0.X meter, of
the ground truth end position

Method Length (# frames) Segment Counts AC0.1 AC0.3 AC0.5 AC1.0

Stereo ≤ 100 741 0.17 0.34 0.41 0.52

100 ∼ 300 186 0.10 0.20 0.27 0.47

> 300 25 0.04 0.08 0.20 0.28

Pointcloud ≤ 100 741 0.44 0.60 0.67 0.75

100 ∼ 300 186 0.30 0.41 0.49 0.61

> 300 25 0.16 0.28 0.32 0.44

Table 2 Quality of the
trajectories by our tracker
assuming “oracle” matching
through ambiguities

Length (# frames) Segment Counts AC0.1 AC0.3 AC0.5 AC1.0

≤ 100 741 0.50 0.73 0.78 0.87

100 ∼ 300 186 0.45 0.62 0.67 0.76

> 300 25 0.36 0.44 0.44 0.60

shape) in the next frame will result in very different 2D loca-
tion of the center and resulting reconstructed 3D points.

As the tracking performance of the Stereo Matching
method is significantly limited by the single-point represen-
tation, we restrict the following discussion to the Pointcloud
Reconstruction method only. As Table 1 shows, most tracks
are either successful with low error (44% of the short tracks
land within 0.1m to the ground truth) or are not at all close
(33%of the short tracks landmore than 0.5m from the ground
truth). Increasing the threshold does not increase the overall
accuracy very much. Table 1 also shows that our tracker per-
forms better on short segments than on the longer ones. To
understand the influence of failures originating from ambi-

guities, we collected statistics of percent accuracy assuming
“oracle” matching through ambiguities. That is, we kept all
possible matches during the re-tracking stage, and linked
them to the tracking hypothesis to form a tree structure. We
counted a hypothesis as a success as long as one of it’s leaf
nodes landed within the threshold of the ground truth. Statis-
tics are reported in Table 2. As the table shows, accuracy of
the longer tracks has increased notably, indicating ambigu-
ities are an important source of failure. This problem could
be aided by re-ID or visual features as discussed in the next
section.

Assuming failures are solely due to accumulating errors
ambiguities or missed detections are encountered, if 44%
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Fig. 5 Challenges of multi-view multi-bird tracking. Yellow arrow indicates the target bird to track. Image borders denote the camera view and
correspond to large sphere colors in Fig. 3(c,d)
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Table 3 Alternative evaluation
metric for the proposed tracking
method, with the threshold for
correct track being 1×, 2× and
3× of the average height of
cowbirds. We used 15cm as the
average height

Length (# frames) Segment Counts AC1× AC2× AC3×
≤ 100 741 0.52 0.60 0.66

100 ∼ 300 186 0.37 0.41 0.47

> 300 25 0.20 0.28 0.32

Fig. 6 Failure cases. a Inseparable pointcloud due to occlusions. b
Merged/split clusters due to shape change of an individual at differ-
ent instants of time, which could result in ghost trajectories. c Identity
Switch. At first, the blue hypothesis is correctly tracking the ground

truth blue bird. After a few frames, though, the blue bird and the red
bird cross paths and blue hypothesis follows the wrong target. d Ghost
trajectory resulting from false positive detections, eg. shadows of a bird

of tracks are successful for 100 frames, then we can expect
only 19% of tracks to survive to 200 frames and 9% to sur-
vive to 300 frames. Because the performance is better than
this expectation, it is possible that the tracker is struggling
elsewhere. For example, during initialization, there might be
no track available to assign to the target start, or the wrong
track could be assigned to the target start. A discussion of the
failure cases is provided in the next paragraph.

Failure cases catalogue. Our tracker produced many
plausible results but also many failure cases, shown in Figs.
5 and 6. To better understand the nature of the complexity of
theWILD dataset, wemanually examined 20 failure cases by
looking into the outputs (detections, pointclouds, tracklets)
produced in each stage of the pipeline frame by frame. We
found that the tracker struggles in the following cases:

1. Missed detections: extreme poses, occlusions from poles
and other individuals, and extreme lighting conditions in
the aviary occasionally cause the detector to fail (Fig.
5ac).

2. False positive detections: shadows of birds, for example,
create ghost pointclouds and ghost trajectories (Fig. 6d).
Nests are often falsely detected as birds too (5b).

3. An inseparable pointcloud due to occlusions (Fig. 6a):
multiple targets in close 3D proximity can occlude each
other in all camera views. They then become recon-
structed as one pointcloud as awhole and share one track.

4. Merged and split pointclouds: when individuals change
shape or size (Fig. 6b), pointclouds can split into two
or more clusters. During flight, the appearance of a bird
changes dramatically in a very short period of time (Fig.
4a), which results in differently shaped clouds of points.
In many cases, points representing one bird are grouped
into multiple clusters (Fig. 6b), which introduces unsta-
ble and unpredictable ghost pointclouds. Such instability
increases the difficulty of tracking.

5. Identity switches: true identities of different hypothe-
ses can become switched, particularly if two individuals
remain directly next to each other for several seconds
(Fig. 6c).
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Fig. 7 Bird re-identification. We use a ResNet50 network supervised
with triplet and ID losses to predict the identity of perched birds. In an
example from the Bird15 test, a female with Yellow+Teal leg bands is
visible from views 2 (a) and 7 (b). From view 2 (a) only its left leg band
is initially visible, but the network has learned other features (such as tail
shape, or background features if the bird is in a repeatedly used location)
that allow it to correctly predict the identity. When no bands are visible
(second image from the left in (a), the confidence decreases. Once both
bands are visible (third and forth images) confidence increases again.

From another view (b), both bands are visible, but are in a shadow and
some initial color distortion causes the network to incorrectly predict
Pink+Green, Teal+Pink, and Yellow+Blue, albeit with low confidence.
As the bird reorients to face the other direction, both bands become
visible with better lighting and confidence increases. A normalized con-
fusion matrix (c) shows most birds are correctly identified 60–80% of
the time in the test set. Increasing the detection confidence threshold
from 0 to 0.8 improves accuracy from 0.68 to 0.97 while still correctly
identifying 52% of the examples in the Bird15 test set

6.2 Bird Re-identification

We evaluate the performance of the re-ID network using
the Bird15 test set, which we constructed using the ground
truth locations of perched birds. Overall, the network cor-
rectly identified 68% of examples in the test set and most
individuals are identified correctly 60–80% of the time (Fig.
7c). Instead of returning whichever bird corresponds to the
highest probability (even if it is very low), setting a detec-
tion confidence threshold to 0.8 increases the accuracy to
0.97 while correctly predicting 52% of samples in the test
set. Most confusion appears to be within females and within
males separately, with relatively low confusion between
males and females. Unless lighting is very poor, males can
usually be distinguished from females by their darker color.

When deployed on crop sequences from tracked birds
(Fig. 7a,b), probability trajectories over time reveal interest-
ing patterns of the re-ID network. From camera view 2 (Fig.
7a), the network predicts the correct identity despite only

being able to see one band (three other female birds have
yellow bands). When both bands are hidden, however, the
network becomes less confident. Interestingly, these obser-
vations suggest that the network has learned to rely on the
bands, but that it has also learned to rely on additional fea-
tures such as slight variations in bird color or patterning, or
perhaps features of the background behind the favorite perch
locations for each bird. This hypothesis could be tested by
training on a masked dataset, where the network receives
only pixels corresponding to the bird and no pixels from
the background. Improving the diversity of perch positions
by collecting additional annotations throughout the breeding
seasonmay also help improve the robustness of the bird re-ID
pipeline.

6.3 Social Network Analysis

Using our dataset we analyzed the birds’ social network and
investigated how birds’ behavior depends on social context.
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In addition to human labeled song annotations, we also added
“approach”, “stay”, “leave”, and “sing to” interactions using
the start and endpoints of the stationary sequences.Whenever
a bird flew to a location within an interaction distance (0.5
meters) of another, we added a “b1 approached b2” annota-
tion. Whenever a bird was within the interaction distance of
another and flew away we added a “b1 left b2” annotation.
Whenever amale sang, we added “b1 sang to b2” annotations
for all birds within the interaction distance. Finally whenever
a bird was approached, if it did not leave within one second,
we add a “b1 stayed with b2” annotation (Anderson et al.,
2021). After collecting the interactions between all pairs of
birds, we grouped interactions depending on social context
factors, such as those belonging to male-male interactions,
or those between a pair-bonded or non-pair-bonded male and
female. We defined a pair bond between a male and a female
whenever the female received more than 50% of her total
song interactions from that specific male (Anderson et al.,
2021). From the sets of interactions,we constructed transition
ethograms and inspected how the probabilities of interaction
transitions changed with social context. We focus our analy-
ses on two 15 minute segments with song annotations from
mid May.

From the patterns of approaches and leaves, we observed
differences in the overall activity levels of individuals (Fig.
8). Two females, F1 (TP_F) and F2 (YT_F), repeatedly
flew back and forth among perches within the interaction
distance of another female F3 (BT_F). The approach and
leave interactions among males revealed that M1 (PY_M)
frequently approaches other males (BG_M, BR_M, GT_M),
shown as the darker PY_M row in the approaches matrix. At
the same time, these three males frequently fly away from
M1, shown as the darker PY_M column in the leaves matrix.
These patterns clearly indicate thatM1 is dominant over these
other males.

From the song interaction data, we observed six pair
bonds between males and females. Male M1 was bonded
with two females (BP_F and YT_F). Similarly, male BG_M
was bonded with two females (PG_F and YB_F). Finally,
RG_M was bonded with RY_F, and TR_M was bonded with
PR_F. Based on these pair bonds, we split the set of inter-
action transitions into pair bond and non-pair bond groups
(Fig. 9). Inspecting the differences in transition probabili-
ties of pair-bonded birds relative to non-pair-bonded birds
(Fig. 9c) reveals that females are more likely to leave when
approached by non pair bond males than when approached
by their pair bond male. When a female stays with its pair
bond male, the male is more likely to sing to her and less
likely to leave than when a female stays near a non pair bond
male. When a female leaves her pair bond male, the male is
more likely to follow and approach her again, than when a
female leaves a non-pair bond male.

Fig. 8 Pairwise interactions. Approaches, songs, and leave interactions
occur frequently between individuals in the aviary. Each matrix shows
the frequency of interactions for each pair of individuals. The bird per-
forming the action is shown on the left axis (the approaching, singing,
or leaving bird) and the target or recipient of the action is shown along
the bottom axis (the approached, receiving, or remaining bird). Orange
indicatesmales and blue indicates females.Approaches and leaves show
relative movement between individuals and reveal differences in activ-
ity levels and dominance (see Sect. 6.3). We also observed six pair
bonds betweenmales and females, which are definedwhenever a female
receives more than 50% of songs from a single male (Anderson et al.,
2021)

It will be interesting to analyze how patterns of interaction
vary throughout time of day and over the breeding season.
For example, in one of the annotated 15 minute segments
in April, males were actively singing for nearly the entire
period, butwe recorded very fewflight sequences, leaves, and
approaches because most birds remained on their perches.
Without many more periods of observation, it will remain
unclear whether such differences in interaction patterns are
a normal part of social network formation, or whether they
can be explained by other environmental variables such as
time of day, temperature, and weather.

Finally, we anticipate that estimating the pose and shape
of individuals in the aviary (Badger et al., 2020) will allow us
to incorporate more fine-grained behaviors and interactions,
such as the head-up display shown in Fig. 10.

7 Conclusion

In this workwe develop a system for capturing the behavioral
interactions of a group of 15 songbirds. Although we found
that our pointcloud reconstruction method performed bet-
ter than a stereo matching method, there is still much room
for performance improvements on our difficult multi-view
multi-animal Where’d It LanD (WILD) dataset. We intro-
duce several complexities that arise when studying animals
that maneuver and interact in three dimensions. Tracking
many individuals across multiple sensors is a challenging
task with points of failure. The relative lack of flying birds
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Fig. 9 Interaction sequences. Interaction transition probabilities dif-
fer between pair-bonded (a, n = 163 transitions) and non-pair-bonded
(b, n = 187 transitions) males and females. For a given row, filled-in
cells show interactions that occurred next based on their frequency in
the dataset. Counts are normalized within rows and darker blue shows
greater probability. (c) The difference in transition probabilities for
bondedpairs relative to non-bondedpairs.Darker blue indicates a transi-

tion is more likely for a bonded pair than for a non-bonded pair; darker
red indicates a transition is more likely for a non-bonded pair than a
bonded pair. Transition probabilities reveal that pair-bonded females
are generally more receptive to approaches by their pair bond male than
by other males and that pair-bonded males are more likely to follow
females with which they have formed a pair bond

Fig. 10 Pose trajectories. Behaviors extracted from pose trajectories
can reveal fine-grained interactions such as head-up aggressive displays
bymales. In every other frame, a three dimensional parameterizedmesh
(Badger et al., 2020) is fit to multi-view anatomical keypoints. In this

example, the angle between horizontal and the vector from the mid-
point between the eyes to the bill tip (visualized in the plot) captures
this behavior well

in our detection dataset (birds spend most of their time sit-
ting perched) hindered our object detection pipeline and
lead us to add the additional complexity of a motion detec-
tor. Replacing this motion detector with a neural network
designed specifically for detecting objects in motion could
significantly improve our pipeline by reducing the number
of false positive detections (and ensuing ghost trajectories

and tracking failures) generated by background motion. We
also found that birds occluded each other much more than
expected because the perches were positioned only slightly
below plane of the top cameras. We plan to improve the lay-
out of the aviary in order to reduce such occlusions. We
also highlight the need for additional work that integrates
detection, tracking, re-ID, and pose estimation pipelines

123



International Journal of Computer Vision (2023) 131:1532–1549 1547

without relying on extensively annotated tracking datasets,
which become prohibitively expensive to create in multi-
view multi-animal settings. Using our system and dataset
of ground-truth identities, we developed a re-ID pipeline,
extracted detailed ethograms for all birds in the aviary, and
demonstrated that the presence of a pair bond changes the
interaction dynamics between males and females.
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