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Abstract
Three-dimensional markerless pose estimation from multi-view video is emerging as an exciting method for quantifying
the behavior of freely moving animals. Nevertheless, scientifically precise 3D animal pose estimation remains challenging,
primarily due to a lack of large training and benchmark datasets and the immaturity of algorithms tailored to the demands
of animal experiments and body plans. Existing techniques employ fully supervised convolutional neural networks (CNNs)
trained to predict body keypoints in individual video frames, but this demands a large collection of labeled training samples to
achieve desirable 3D tracking performance.Here, we introduce a semi-supervised learning strategy that incorporates unlabeled
video frames via a simple temporal constraint applied during training. In freely moving mice, our new approach improves the
current state-of-the-art performance of multi-view volumetric 3D pose estimation and further enhances the temporal stability
and skeletal consistency of 3D tracking.

Keywords 3D pose estimation · Animal behavioral tracking · Semi-supervised learning · Markerless animal tracking

1 Introduction

In 3D pose estimation, the positions of user-defined body
keypoints are inferred from images to reconstruct body
kinematics (Desmarais et al., 2021). Precise pose measure-
ment is a long-standing computer vision research problem
with a myriad of applications, including to human-computer
interfaces, autonomous driving, virtual and artificial reality,
and robotics (Sarafianos et al., 2016). Specialized hardware
and deep learning empowered algorithmic advances have
inspired new developments in the field, with the ultimate goal
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to recover 3D body poses in natural, occlusive environments
in real time. While most research and development have thus
far focused on human body tracking, there has been a grow-
ing push in the biological research community to extend 3D
human pose estimation techniques to animals. Precise quan-
tification of animal movement is critical for understanding
the neural basis of complex behaviors and neurological dis-
eases (Marshall et al., 2022). The latest generation of tools
for animal behavior quantification ditch traditionally coarse
and ad hoc measurements for 2D and 3D pose estimation
with convolutional neural networks (CNNs) (Pereira et al.,
2019; Mathis et al., 2018; Pereira et al., 2022; Günel et al.,
2019; Bala et al., 2020; Gosztolai et al., 2021; Dunn et al.,
2021).

Nevertheless, the majority of state-of-the-art 3D animal
pose estimation techniques are fully supervised, and their
performance depends on large collections of 2D and 3D
annotated training samples. Large-scale, well-curated ani-
mal 3D pose datasets are still rare, making it difficult to
achieve consistent results on real-world data captured under
varying experimental conditions. Marker-based motion cap-
ture techniques (Mimica et al., 2018; Marshall et al., 2021)
enable harvesting of precise and diverse 3D body pose mea-
surements, but they are difficult to deploy in freely moving
animals and can potentially perturb natural behaviors. Man-
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ual annotation of animal poses therefore often becomes
mandatory. However, manual annotation is time-consuming,
and it can become difficult for human annotators to precisely
localize body landmark positions under nonideal lighting
conditions or heavy (self-) occlusion of the body. Although
the influence of label noise has not yet been closely examined
for pose estimation, overfitting to these inherently ambigu-
ous labels might adversely affect model performance, as it
does in image classification (Patrini et al., 2017). In addition
to issueswith data scarcity, fully supervised training schemes
are often limited by the quality of training data. Even when
using hundreds of training samples, the performance of fully
supervised 3D pose estimation models can be inconsistent
(Wu et al., 2020), especially when deployed in new environ-
ments and subjects.

This label scarcity has become a major bottleneck in the
current animal 3Dpose estimationworkflows, limitingmodel
performance, generalization to different environments and
species, and comprehensive performance analysis. In recent
years, the success of semi-supervised (Berthelot et al., 2019)
and unsupervised deep learning (He et al., 2020; Chen et
al., 2020) methodologies has presented new possibilities for
mitigating annotation burden. Rather than relying solely on
task-relevant information provided by human supervision,
these approaches exploit the abundant transferable features
embedded in unlabeled data, resulting in robustness to anno-
tation deprivation and better generalization capacity.

In this paper, we introduce a semi-supervised framework
which seamlessly integrates with the current state-of-the-art
3D rodent pose estimation approach (Dunn et al., 2021) to
enhance tracking performance in low annotation regimes.
The core of our approach is additional regularization of body
landmark localization using a Laplacian temporal prior 1.
This encourages smoothness in 3D tracking trajectorieswith-
out imposing hard constraints, while expanding supervisory
signals to include both human-annotated labels and the
implicit cues abundant in unlabeled video data. To further
reduce reliance on large labeled datasets, we also emphasize
a new set of evaluation protocols that operate on unlabeled
frames, thus providing more comprehensive performance
assessments for markerless 3D animal pose estimation algo-
rithms.Wehave collected and validated our proposedmethod
on a new multi-view video-based mouse behavior dataset
with 2D and 3D pose annotations, which have released
to the community. Compared to state-of-the-art approaches
in both animal and human pose estimation, our method
improves keypoint localization accuracy by 15 to 60% in
low annotation regimes, achieves better tracking stability and
anatomical consistency, and is qualitatively more robust dur-
ing identified difficult poses.

Our main contributions can be summarized as follows:

(1) We introduce a new state-of-the-art approach by leverag-
ing temporal supervision in 3D mouse pose estimation.

(2) We release a new multi-view 3D mouse pose dataset
consisting of freely moving, naturalistic behaviors to the
community.

(3) We benchmark the performance of a broad range of
contemporary pose estimation algorithms using the new
dataset.

(4) We designate a comprehensive set of evaluation metrics
for performance assessment of animal pose estimation
approaches.

2 RelatedWork

2.1 3D Animal Pose Estimation

There are currently three primary categories of 3D animal
pose estimation techniques. The first category encompasses
multi-view approaches based on triangulation of 2D key-
point estimates (Mathis et al., 2018; Günel et al., 2019; Bala
et al., 2020; Karashchuk et al., 2021). These are typically
lightweight in terms of model training and inference and are
improved by post hoc spatial-temporal filtering (Karashchuk
et al., 2021) when measuring freely moving behavior, where
occlusions are ubiquitous. The second category leverages
multi-view geometric information during end-to-end train-
ing. Zimmermann et al. (2020) and Dunn et al. (2021) use 3D
CNNs to process volumetric image representations obtained
via projective geometry, whereas (Yao et al., 2019) propose a
self-supervised training schemebasedon cross-viewepipolar
information. These techniques improve 3D tracking accuracy
and consistency by exploiting multi-view features during
training, although they are more computationally demand-
ing. The third category comprises learned transformations
of monocular 2D pose estimates into 3D space (Gosztolai et
al., 2021; Bolaños et al., 2021). Monocular 3D pose estima-
tion is an exciting and important advance in flexibility, but
unavoidable 3D ambiguities currently limit its performance
compared to multi-view techniques (Iskakov et al., 2019;
Bolaños et al., 2021).

Despite the recent acceleration in method development,
it remains challenging to build 3D animal pose estimation
algorithms that achieve scientifically precise performance
flexibly across diverse environments and species. Compared
tohumans, lab animals such asmice and rats aremuch smaller
in scale, less articulated, and bear higher appearance similar-
ities among different individuals (Moskvyak et al., 2020),
which limits the availability of discriminable features for
body part tracking and annotation. Because of the drastic dif-
ferences in animal body profiles across species, (e.g. cheetahs
vs. flies), it is also difficult to leverage the universal skele-
tonmodels and large-scale pretraining datasets that power the
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Fig. 1 Method overview. Our multi-view volumetric approach con-
structs a 3D image feature grid using projective geometry for each
timepoint in videos. A 3DCNN (UNet) processes batches of temporally
contiguous volumetric inputs and directly predicts 3D keypoint posi-
tions. We then combine a traditional supervised regression loss with an

unsupervised temporal consistency loss for training. While the regres-
sion lossLS is applied only on labeled video frames, which are sparsely
distributed across video recordings, the unsupervised temporal loss LT
operates over both labeled and unlabeled frames

impressive tracking performance in humans (Cao et al., 2019;
Wu et al., 2020). It is imperative that we develop algorithms
that more efficiently use the limited resources available for
animals.

2.2 Semi-supervised and Unsupervised Pose
Estimation

Semi-supervised and unsupervised learning schemes reduce
the reliance on laborious data annotation currently bottle-
necking large-scale supervised training. These schemes learn
from the implicit structure and distribution of unlabeled data
and can utilize knowledge of universal principles, such as
physics and geometry, to improve tracking performance.

Inspired by classic multi-view stereo 3D reconstruc-
tion, many works in 3D human pose estimation utilize
annotation-free geometric supervision in the form of multi-
view consistency (Rhodin et al., 2018; Kocabas et al., 2019;
Iqbal et al., 2020; Wandt et al., 2021), 3D-to-2D reprojection
consistency (Wandt & Rosenhahn, 2019; Chen et al., 2019),
and geometry-aware 3D representation learning (Rhodin et

al., 2018). Training constraints with respect to consistent
bone length, valid ranges of joint angles, and body symmetry
(Wu et al., 2020; Spurr et al., 2020; Dabral et al., 2018; Pavllo
et al., 2019) can also encourage biomechanically-plausible
tracking results. Exploiting temporal context is also effective,
as we discuss in the next section. Appropriate use of these
implicit supervision signals results in consistent and robust
pose estimates using only a small fraction of the labeled data
required for fully supervised approaches.

2.3 Temporal 3D Pose Estimation

The temporal nature of behavior provides information that
can be harnessed to improve 3D pose estimation. Intu-
itively, movement progresses continuously through time in
3D space, providing a strong prior for future poses given
their temporal history—body movement trajectories evolve
smoothly and are bounded by plausible, physiological veloc-
ities. The spatial displacement between consecutive poses
should therefore be small, exhibiting relative consistency or
smoothness along the time dimension. Pose estimates from
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static, temporally isolated observations ignore these intuitive
constraints.

Previous 3D pose estimation algorithms have incorpo-
rated temporal information in several different ways. Given
a sequence of pose predictions, temporal consistency can be
introduced as part of the post-processing optimization that
refines initial 2D (prior to triangulation) or 3D keypoint esti-
mates (Bala et al., 2020; Joska et al., 2021; Karashchuk et al.,
2021; Zhang et al., 2021). Temporal consistency assumptions
have also been used for filtering out invalid pseudolabels used
for self-supervision (Mu et al., 2020).

Another popular scheme for exploiting temporal infor-
mation for 3D pose estimation is to build models that infer
pose from spatiotemporal inputs, using either recurrent neu-
ral networks (Hossain et al., 2018), temporal CNNs (Pavllo
et al., 2019), or spatial-temporal graphical models (Wang
et al., 2020). Hossain and Little (Hossain et al., 2018) pro-
cessed 2D pose sequences using layer-normalized LSTMs to
produce temporally consistent 3D poses. Other works have
used temporal CNNs for similar purposes (Pavllo et al., 2019;
Liu et al., 2020). Temporal information can also be explicitly
encoded and appended to model input using apparent motion
estimations such as optical flow (Liu et al., 2021).

Other approaches incorporate temporal information as a
form of regularization during training. By employing a tem-
poral smoothness constraint, one enforces the assumption
that joint positions should not displace significantly over
short periods of time (Wu et al., 2020; Wang et al., 2020),
encouraging learned temporal consistency in pose predic-
tions. Critically, these temporal constraints can be applied to
unlabeled video frames, providing an avenue for semi- and
unsupervised learning. Chen et al. (2021) further exploited
temporal consistency in hand pose estimates along both for-
ward and backward video streaming directions to establish
an effective self-supervised learning scheme. Our approach
is most similar to Wu et al. (2020), in that we incorporate
a temporal smoothness constraint in the learning objective
to support a semi-supervised scheme. But we employ this
constraint with multi-view, volumetric 3D pose estimation
during freely moving, naturalistic behavior, rather than dur-
ing monocular 2D pose estimation in restrained animals.

2.4 Pose EvaluationMetrics

In this manuscript we also report a complementary set
of performance metrics that provides more comprehensive
benchmarks for sparsely labeled 3D animal pose data. The
cornerstone metrics of the field are Euclidean distance errors
relative to ground-truth 3D keypoints: mean per-joint posi-
tion error (MPJPE), and, sometimes, PA-MPJPE, which
evaluates MPJPE after rigid alignment of 3D predictions
to ground-truth poses. Although these evaluation protocols
convey an imperative assessment of a model’s landmark

localization capability, they fall short for most markerless
animal pose datasets, where 3D keypoint ground-truth is
derived from noisy manual labeling only in a small subset
of video frames.

Unlike in large-scale human benchmarks, in animals these
position error metrics do not reflect the large extant diversity
of possible poses and are prone to overestimating perfor-
mance. Human3.6M (Ionescu et al., 2013) and HumanEva
(Sigal et al., 2010) employmotion capture systems to acquire
comprehensive ground-truth labels over hundreds of thou-
sands of frames, spanning multiple human actors and dozens
of action categories. Similar evaluation is nearly impossible
for most markerless 3D animal pose datasets, where acqui-
sition of 3D labels requires laborious human annotation.

Single-frame position errors over sparsely labeled record-
ings also ignore whether models capture the continuous and
smooth nature of movement. Models with the same mean
position error on a small subset of samples candiverge signifi-
cantly, and pathologically, in unlabeled frames. We illustrate
this in Fig. 2a, which shows a set of synthetic movement
trajectories. The three noisy traces all have the same aver-
age position relative to 100 points sampled evenly from the
ground truth, yet the traces represent distinct, and erroneous,
movement patterns. The issue can become even more pro-
nounced when ground-truth labels are sparse and unevenly
distributed, as is the case with most animal datasets. The
fidelity of predictions on unlabeled data could be captured
using temporal metrics. To quantify the temporal consistency
of predictions (Pavllo et al., 2019). However, works in ani-
mal pose estimation do not typically incorporate quantitative
temporal metrics on unlabeled frames, although some have
presented qualitative comparisons to keypoint position (Wu
et al., 2020) or movement velocity traces (Karashchuk et al.,
2021) or reported quantitative errors withinmanually labeled
frames (Karashchuk et al., 2021).

Finally,manually annotated3Dposeground-truth is inher-
ently noisy and exhibits substantial intra- and inter-labeler
variability. We analyzed the coefficients of variation (CV =
σ
μ
) (Reed et al., 2002), which measures the degree of data

dispersion relative to its mean, for the lengths of 22 body seg-
ments connecting keypoints in our manually labeled mouse
dataset (details in Section 4.1). Although the keypoints are
intended to represent body joints, between which the lengths
of body segments should remain constant, independent of
pose, we found a 10% to 20% deviation in length for the
majority of segments (Fig. 2b). This aleatoric uncertainty in
the ground-truth labels will propagate to position errors.

Given these issues, we argue that it is important to estab-
lish more diverse evaluation protocols for markerless 3D
animal pose estimation. These protocols should ideally cap-
ture temporal and anatomical variances in both labeled and
unlabeled frames. In addition to our new semi-supervised
training scheme, we introduce two new consistency metrics
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Fig. 2 a Ambiguity in absolute position error analysis. In this simu-
lated example,we present three noisy trajectorieswith the same absolute
point position errors with respect the true spiral trajectory. bHistogram
of body segment length variation in manually labeled mouse data. We

compute the coefficient of variation (CV) for the lengths of 22 body
segments. While CV values should ideally be close to 0, we instead
observed notable amounts of length variation in all body segments.
This illustrates the noise present in manually labeled 3D poses

that resolve differences betweenmodels not captured by stan-
dard position errors, and these new metrics do not rely on
large numbers of ground-truth annotations.

2.5 3D Animal Pose Datasets and Benchmarks

Despite the critical importance of large-scale, high-quality
datasets for developing 3D animal pose estimation algo-
rithms (Jain et al., 2020), such resources are relatively
uncommoncompared towhat is available for 3Dhumanpose.
Animal datasets are not easily applied across species, due to
differences in body plans, and high-throughputmarker-based
motion capture techniques are challenging to implement in
freely-moving, small-sized animals. Nevertheless, multiple
3D animal pose datasets have been released in recent years,
including in dogs (Kearney et al., 2020), cheetahs (Joska et
al., 2021), rats (Dunn et al., 2021; Marshall et al., 2021), flies
(Günel et al., 2019), and monkeys (Bala et al., 2020). But
in mice, by far the most commonly used mammalian model
organism in biomedical research (Ellenbroek&Youn, 2016),
large-scale pose datasets are still lacking. The LocoMouse
dataset (Machado et al., 2015) contains annotated 3D key-
points in animals walking down a linear track. While being
a valuable resource for developing gait tracking algorithms,
the dataset does not represent the diversity of mouse poses
composing the naturalistic behavioral repertoire. Several 3D
mouse datasets also accompany publishedmanuscripts (Zim-
mermann et al., 2020), but they are limited in the number of
total annotated frames. Here we provide a new, much larger
3D mouse pose dataset consisting of 6.7 million frames with
310 annotated 3D poses (1860 annotated frames in 2D) on

5 mice engaging in freely moving, naturalistic behaviors,
which we make publicly available as a resource for the com-
munity. We also utilize the scale of our dataset to benchmark
a collection of popular 3D pose estimation algorithms and
assess the impact of temporal constraints on performance,
providing guidance on the development of suitable strategies
for quantifying mouse behavior in three dimensions.

3 Methods

3.1 Volumetric Representation

Following recent computer stereo vision methods (Kar et al.,
2017; Iskakov et al., 2019; Zimmermann et al., 2020; Dunn et
al., 2021), we construct a geometrically-aligned volumetric
input Vt from multi-view video frames at each timepoint t
and estimate 3D pose from them using a 3D CNN.

As memory limitations restrict the size of the 3D volume
(64 × 64 × 64 voxels in our case), to increase its spatial
resolution, we center the volume at the inferred 3D centroid
of the animal. This centroid is inferred by triangulating 2D
centroids detected in each camera view using a standard 2D
UNet (Ronneberger et al., 2015), except with half the number
of channels in each convolutional layer. For triangulation, we
take the median of all pairwise triangulations across views.
We then create an axis-aligned 3D grid cube centered at the
3D centroid position, which bounds the animal in 3D world
space. We use N = 64 voxels per grid cube side, resulting
in an isometric spatial resolution of 1.875 mm per voxel.
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Here, we briefly review the volume generation pro-
cess. After initialization, 3D grids are populated with 2D
image RGB pixel values from each camera using projec-
tive geometry. With known camera extrinsic (rotation matrix
R, translation vector t) and intrinsic parameters K , a 2D
image F can be unprojected along the viewing rays as they
intersect with the 3D grid. In practice, rather than perform-
ing actual ray tracing, the center coordinates of each 3D
voxel Xi, j,k is projected onto the target 2D image plane by
K [R | t]Xi, j,k and the value of Xi, j,k is set by bilinear
sampling from the image at the projected point (Kar et al.,
2017). The unprojected image volumes from different views
are concatenated along the channel dimension, resulting in
a N × N × N × (Ncam ∗ C)-sized volumetric input, where
C is the channel dimension size of each input view (C = 3
for RGB images). While we sample directly from 3-channel
RGB images to reduce memory footprint and computation
costs, other approaches unproject features extracted by 2D
CNNs (Iskakov et al., 2019; Tu et al., 2020; Zimmermann et
al., 2020).

The unprojected image volumes are then processed by
a 3D UNet (implementation details in Sect. 4.5), produc-
ing volumetric heatmaps associated with different keypoints.
The differentiable expectation operation soft argmax (Nibali
et al., 2018; Sun et al., 2018) is applied along spatial axes to
infer the numerical coordinates of each keypoint.

3.2 Unsupervised Temporal Loss

At high frame rates, the per-frame velocity of animals is low
and their overall movement trajectory should typically be
smooth. We encode these assumptions as an unsupervised
temporal smoothness lossLT (·) that can be easily integrated
with heatmap-based pose estimation approaches.

Consider the inputs to the network to be a set of tempo-
rally consecutive chunks T where each chunk Tn consists
of 3D volumetric representations constructed from c adja-
cent timepoints Tn = {Vti , . . . , Vti+c−1}, where c specifies
the time span covered by the unsupervised loss.

Given the 3D keypoint coordinates predicted by the 3D
CNN {Jt, j | ti ≤ t ≤ ti+c−1, 1 ≤ j ≤ NJ } from one
temporal chunk Tn , the temporal smoothness loss penalizes
the keypoint-wise position divergence across consecutive
frames, which is equivalent to constraining the movement
velocity within the temporal window.

LT ({Jt, j }) = 1

c

ti+c−1∑

t=ti

1

NJ

NJ∑

j=1

d(Jt, j , Jt+1, j ) (1)

where NJ is the number of 3D keypoints and d is the distance
metric used for comparing displacement across timepoints.

This general formulation does not enforce limitations on
the choice of distance metric, but empirically we found that
L1 distance performed better than L2-norm Euclidean dis-
tance. Though it is difficult to give a theoretical explanation
for this observation, the underlying reason could be simi-
lar to that for L1 total variation regularization in optical
flow estimation. Formulating the smoothness constraint as
a Laplacian prior allows discontinuity in the motion and is
well known to be more robust to data outliers compared to
quadratic regularizers (Wedel et al., 2009).We have therefore
used an L1 distance metric for all experiments presented in
the later sections.

3.3 Supervised Pose Regression Loss

The unsupervised temporal loss on its own is insufficient and
will result in mode degeneracy where the network learns to
produce identical poses for all input samples. We therefore
also include a standard supervised pose regression loss over a
small set of labeled frames during training.Given the ground-
truth and predicted 3D keypoint coordinates Jt and Ĵt , the
supervised regression loss is defined as

LS(Jt , Ĵt ) = 1

NJ

NJ∑

j=1

d(Jt, j , Ĵt, j ). (2)

We use L1 distance for computing the joint distances over
L2 distance metric based on empirical results, which agrees
with the results of Sun et al. on 3D human pose estimation
(Sun et al., 2018).

4 Experiments

4.1 Dataset

For performance evaluation, we collected a total of five
1152 × 1024 pixels color video recordings from 6 synchro-
nized cameras surrounding a cylindrical arena. We direct the
reader to “Appendix B” and Supplementary Video 1 for more
details on the 3D mouse pose dataset. Each set of recordings
corresponds to a different mouse (M1, M2, M3, M4, M5).
M1 and M2 were recorded for 3 minutes and M3, M4, M5
were recorded for 60minutes. The number ofmanually anno-
tated 3D ground-truth timepoints for 22 body keypoints is n
= 81, 91, 48, 44 and 46 from each recording, respectively
(486, 546, 288, 264, and 276 total annotated video frames).
Out of the 22 keypoints, 3, 4, 6, 6, and 3 are located on the
animal’s head, trunk, forelimbs, hindlimbs, and tail, respec-
tively. Notice that the two keypoints at the middle and end
of the tail were excluded from quantitative evaluations pre-
sented in this paper, as they were often cropped outside the
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bounds of the 3D grids. This results in a total of 20 body
keypoints and22 correspondingbody segments used for anal-
ysis.

We allocated n = 172 from M1 and M2 for training and n
= 48 from M3 for internal validation. We report all metrics
using data from M4 and M5 (n = 90 labeled timepoints, plus
unlabeled timepoints for additional temporal and anatomical
consistency metrics), which were completely held out from
trainingormodel selection.Wealso simulated lowannotation
conditions by randomly selecting 5% (n = 8), 10% (n = 17)
and 50% (n = 86) from the training samples and compared
with the full annotation 100% condition.

4.2 EvaluationMetrics

4.2.1 Localization Accuracy

Weadopt the three commonprotocols used in 3Dhumanpose
estimation for evaluating the landmark localization accuracy
of different models. Metric results are averaged over all the
labeled timepoints as described in Sect. 4.1.

• Protocol #1: Mean per-joint position error (MPJPE)
evaluates the mean joint-wise 3D Euclidean distances
between the prediction and ground truth keypoint posi-
tions. For J keypoints in a single frame,

MPJPE(J) = 1

NJ

NJ∑

j=1

‖Ĵ j − Jgtj ‖2

• Protocol #2: Procrustes Analysis MPJPE (PA-MPJPE)
reports the MPJPE values after rigidly aligning the
landmark predictions (translation and rotation) with the
ground-truth.

• Protocol #3: Normalized MPJPE (N-MPJPE) assesses
the scale-insensitive MPJPE estimation errors by respec-
tively normalizing the prediction and ground-truth land-
marks by their norm (Rhodin et al., 2018).

4.2.2 Temporal Smoothness

The aforementioned single-frame evaluation metrics are
inadequate for capturing the importance of temporal smooth-
ness in videos. We therefore also report a mean per-joint
temporal deviation (MPJTD) metric, which we define sim-
ply as the mean absolute value of first-order derivative of
predicted pose sequences. We used T = 10000 continuous
frames from recordings of mouse M5 for this evaluation.

MPJTD(J) = 1

T − 1

1

·NJ

NJ∑

j=1

T−1∑

t=1

|Jt, j − Jt+1, j |

4.2.3 Body Skeleton Consistency

Although not explicitly constrained during training, the
anatomical consistency of predictions is an important compo-
nent of model tracking performance. Inspired by the analysis
of (Karashchuk et al., 2021), we examined themean and stan-
dard deviation of the estimated length of 22 body segments
over 10000 continuous frames from M4 for this analysis.

4.3 Training Strategies

To evaluate the influence of temporal training, we designed
four different model training schemes that were each applied
to the 5%, 10%, 50% and 100% annotation conditions.

Baseline/DANNCE (Dunn et al., 2021) We employ the
multi-view volumetric method presented by Dunn et al. as
the baseline comparison. All baseline models are trained
solely with the supervised regression L1 loss over the labeled
frames.

Baseline + smoothingNo changes aremade during the train-
ing; instead, the predictions from the baseline models are
smoothed in time for each keypoint, with a set of different
smoothing strategies.

Temporal baseline During training, each batch contains
exactly one labeled sample with three additional unlabeled
samples drawn from its local neighborhood. This scheme
ensures a balance between supervised and unsupervised loss
throughout the optimization. The models were then jointly
trained with LS and LT .

Temporal + extra In addition to the partially labeled training
batches used in temporal baselinemodel training, the training
set contains Nu completely unlabeled, temporally consecu-
tive chunks included only in the unsupervised temporal loss.

For experiments conducted under lower annotation con-
ditions, 5%, 10% and 50%, we use respectively 95% (Nu =
163), 90% (Nu = 154) and 50%(Nu = 86) unlabeled chunks
with respect to the entire training set. This aimed tomatch the
number of samples used in the 100% baseline and temporal
baseline models. For experiments using 100% of the train-
ing data, we add 20% (Nu = 34) extra unlabeled temporal
chunks.

4.4 Comparison with State-of-the-Art Approaches

We compare the performance of our proposed approach
against other contemporary animal and human pose estima-
tion methods. Specifically, we have replicated and evaluated
the following approaches on the mouse dataset:

2D animal pose estimation DeepLabCut (DLC) (Mathis et
al., 2018) is a widely adopted toolbox for markerless pose
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Fig. 3 Qualitative comparison of landmark localization performance
over different annotation conditions. We randomly selected 5% (n = 8),
10% (n = 17) and 50% (n = 85) of the training set to simulate low annota-
tion regimes. Temporal supervision generally improved performance on

all three localization protocols compared to the baseline models, espe-
cially with limited access to the training data. Similar improvement
cannot be achieved via post hoc smoothing of the predicted movement
trajectories

Table 1 Quantitative
comparison with other
state-of-the-art 2D and 3D
animal and human pose
estimation methods

Protocol 1 (3D MPJPE, mm)
Training set fraction
5% 10% 50% 100%

2D pose estimation methods (+ post hoc triangulation)

DLC† (Mathis et al., 2018) 11.09 11.05 9.89 8.90

SimpleBaseline† (Xiao et al., 2018) 18.09 14.61 7.36 5.95

SimpleBaseline 18.56 16.58 8.35 6.69

DLC + soft argmax 11.03 9.22 6.35 6.47

DLC + 2D variant of our temporal constraint∗ 8.54 9.12 5.95 6.03

3D monocular pose estimation methods

Temporal Convolution∗ (Pavllo et al., 2019) – – – 17.63

3D multi-view pose estimation methods

Learnable Triangulation† (Iskakov et al., 2019) 18.77 15.66 8.97 6.31

DANNCE (Dunn et al., 2021) 12.87 10.90 4.99 4.36

Ours (temporal baseline)∗ 12.49 7.11 4.83 4.37

Ours (temporal + extra)∗ 8.17 6.69 5.04 4.14

We report the absolute 3D MPJPE in millimeters for each approach using four different fractions of training
data. The methods that use ground truth 2D bounding boxes during inference are masked by †. The methods
that use temporal information during training are masked by ∗. For the monocular approach, the reported
metric results are separately computed and averaged across all camera views

estimation of animals, which expanded on the previous state-
of-the-art method DeeperCut (Insafutdinov et al., 2016). We
followed the default architecture and training configurations
using ResNet-50 as the backbone and optimized the network
using a sigmoid cross-entropy loss. Following the same prac-
tice by (Mathis et al., 2018), the original frameswere cropped
around the mice instead of downsampling.

2D human pose estimation We implemented the Simple-
Baseline (Xiao et al., 2018) for its near state-of-the-art
performance in 2D human pose estimationwith simple archi-
tectural designs. This method leverages off-the-shelf object
detectors to first locate the candidate subject(s) and per-

forms pose estimation over the cropped and resized regions.
Compared to DLC/DeeperCut, additional deconvolutional
layers are added to the backbone network to generate higher-
resolution heatmap outputs.

Multi-view 3D human pose estimation Learnable Trian-
gulation (Iskakov et al., 2019) adopts a similar volumetric
approach except that features extracted by a 2D backbone
network, instead of raw pixel values, are used to construct
the 3D inputs. Similar to SimpleBaseline, a 2D backbone
network processes cropped and resized images, where the
resulting multi-view features are unprojected on-the-fly to
construct the volumetric inputs in the end-to-end training.
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Monocular 3D human pose estimation (Pavllo et al., 2019)
presented a training scheme for sparsely labeled videos that
also leveraged temporal semi-supervision. Instead of using a
smoothness constraint, temporal convolutions are performed
over sequences of predicted 2D poses obtained from off-
the-shelf estimators to regress 3D poses, with additional
supervision from a 3D-to-2D backprojection loss and a bone
length consistency loss between predictions on labeled and
unlabeled frames. Note that we did not specifically train a 3D
root joint trajectory model as in the original implementation
but directly used the ground truth 3D animal centroids for
convenience. Without easy access to off-the-shelf detectors
for our keypoint and view set in mice, we employed our best
performing 2D model to obtain initial 2D pose estimates.

In addition to the aforementioned approaches, we have
adapted a 2D variant of our proposed temporal constraint
and applied it to the DLC architecture, similar to Deep-
GraphPose (Wu et al., 2020). Instead of using a final sigmoid
activation and optimizing against target probabilitymaps, we
performed a soft argmax on the resulting 2D heatmaps and
applied both a supervised regression loss and an unsuper-
vised temporal loss as described in Sects. 3.2 and 3.3, except
in the 2D pixel space.

For all approaches, ResNet-50 was used as the backbone
network if not otherwise specified. The 2D mouse bounding
boxes were computed from 2D projections of ground-truth
3D poses. For 2D approaches, the 2D poses were first esti-
mated separately in each camera view and triangulated into
3D using the same median-based protocol as described in
Sect. 3.1. The Protocol 1 MPJPE results were reported for
each approach under different annotation conditions (5%,
10%, 50% and 100%).

4.5 Implementation Details

We implemented a standard 3D UNet (Ronneberger et al.,
2015) with skip connections to perform our method’s 3D
pose estimation. The number of feature channels is [64, 64,
128, 128, 256, 256, 512, 512, 256, 256, 128, 128, 64, 64]
in the encoder-decoder architecture, followed by a final 1 ×
1×1 convolution layer outputting one heatmap for each joint
position. The encoder consists of four basic blocks with two
3 × 3 × 3 convolution layers with padding 1 and stride 1,
one ReLU activation and one 2 × 2 × 2 max pooling for
downsampling. The decoder consists of three downsampling
blocks, each with one 2× 2× 2 transpose convolution layer
of stride 2 and two 3 × 3 × 3 convolution layers. The 3D
keypoint coordinateswere estimated by applying soft argmax
(Sun et al., 2018) over the predicted heatmaps. We did not
explore additional 3D CNN architectures, as this is not the
focus of the paper, but we expect that the semi-supervised
training strategy should generalize easily to different model

architecture, as demonstrated for 2D in later sections (Section
1).

We trained allmodels using anAdamoptimizer (β1 = 0.9,
β2 = 0.999, ε = 1e−7) with a constant learning rate of
0.0001 for a maximum of 1200 epochs. We used the model
checkpoint with the best internal validation MPJPE for eval-
uation on the test set.

Empirically, we found that a warm-start strategy that only
incorporated the unsupervised loss during a later stage per-
formed better for training the temporal+extra models. A
similar strategy was also used by Xiong et al. (2021). The
temporal+extra models were only supervised by the pose
regression loss during the first third of the training epochs,
and the unsupervised temporal loss was added afterwards.

5 Results and Discussion

In this section, we quantitatively and qualitatively evaluate
the performance gains of our semi-supervised approach.

5.1 Localization Accuracy

We first validated the performance of our semi-supervised
approach across 5%, 10%, 50% and 100% annotation condi-
tions using MPJPE and its two variants (Fig.3). Compared to
fully supervised models, the temporal consistency constraint
generally improved the keypoint localization accuracy, espe-
cially in the lowannotation conditions. The temporal baseline
models improved the MPJPE by 3.0% and 34.8% respec-
tively using 5% and 10% of the training samples. With
additional temporal supervision in “temporal+extra” mod-
els, our approach improved localization errors by 36.5% and
38.6% for the same low annotation condition.

To confirm that this improvement in localization accuracy
could not simply be obtained via post-processing, we tested
deliberate smoothing of baseline model predictions using
different smoothingmethods andwindow sizes (the full com-
parisons are presented in “AppendixA”).Despite the obvious
decrease in trajectory oscillations from temporal smooth-
ing (“Appendix A” Fig.7), no type of post hoc smoothing
improved localization accuracy more than 1%. This suggests
that the unsupervised temporal constraint encourages more
selective and flexible adaptation of the spatio-temporal fea-
tures, rather than naive filtering.

5.2 Temporal Smoothness

We first performed a qualitative examination of the move-
ment trajectories of four different keypoint positions over
1000 frames (Fig. 4a). Given the same amount of labeled
training data, the temporal approach produced noticeably

123



1398 International Journal of Computer Vision (2023) 131:1389–1405

Fig. 4 Analysis of temporal smoothness. a Selected coordinate veloc-
ities of four different keypoint positions (snout, medial spine, right
knee, left forehand) over 1000 consecutive frames from test mouse M4.
b Quantitative MPJTD results across different training schemes over

10,000 frames from test mouse M5. Our temporal models yield more
stable movement trajectories than the baseline fully supervised models

smoother keypoint movement trajectories compared to base-
line.

We then quantitatively evaluated MPJTD over a longer
period of 10000 frames (Fig. 4b). The inclusion of tempo-
ral supervision improved MPJTD by 15.6%, 29.6%, 18.4%
and 24.3% for each of the four annotation conditions and by
67.8%, 59.6%, 36.1% and 22.0% when additional unlabeled
chunks were added. Post hoc temporal smoothing achieved
superior trajectory smoothness as indicated byMPJTD (gray
lines), but only resulted inmarginal improvement inMPJTD.
Meanwhile, the temporal semi-supervised models improved
both MPJTD and MPJPE when compared to the baseline
models. This reiterates the importance of having a set of
comprehensive and complementary performance metrics:
MPJTD metric should not be interpreted alone but rather
in concert with basic localization accuracy metrics.

5.3 Body Skeleton Consistency

We also quantitatively analyzed the length variations of dif-
ferent body segments of 10,000 consecutive frames (Fig. 5).
For simplicity, we grouped the 22 body segments into four
general categories: head, trunk, forelimb and hindlimb, and
selected two from each category for presentation.

While the fully supervised models struggled to preserve
anatomical consistency in low annotation conditions, tem-
poral semi-supervision helped to produce more consistent
body structure. The temporal models exhibited less vari-
ability in predicted body segment lengths and more closely
matched ground-truth average values, especially for the head
and trunk. For body segments with higher coefficients of
variation in the ground-truth data (forelimb, hindlimb), the
addition of temporal supervision generally decreased such
variability.
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Fig. 5 Body segment length consistency. Plots reporting the statistics of
eight different body segment lengths. The solid black horizontal line in
each plot represents themean body segment length computed fromman-

ually labeled ground-truth, and the horizontal dashed lines encompass
corresponding standard deviations. Error bars are standard deviation

5.4 Qualitative Performance on Difficult Poses

In practice, we have identified that baseline models are prone
to producing inaccurate keypoint predictions in low annota-
tion regimes, especially for the limbs, when animals are in
specific rearing poses. Aside from changes in appearance,
such behaviors take place at lower frequencies than others
and are thus underrepresented in labeled training data. We
therefore also presented qualitative visualization results for
one example sequence of rearing behavior frames.

While the baseline 10% model predicted malformed
skeletons due to the limited label availability (Fig. 6 blue
bounding boxes), the addition of temporal supervision pro-
duced marked improvements in physical plausibility. With
supervision from additional unlabeled temporal chunks, the
“temporal+extra” model produced qualitatively better pre-
dictions, even when compared to the 100% baseline model.
In cases where the fully supervised baseline model made
inaccurate estimates of difficult hindlimb positions (Fig. 6
red bounding box), the semi-supervised approach, with only
10% of the labeled data, better recovered the overall posture.

5.5 Quantitative Comparisons with Other
Approaches

We quantitatively examined the proposed method’s perfor-
mance against other widely-adopted animal and human pose
estimation approaches, as summarized in Table 1.

Methods for post hoc triangulation of 2D poses Our pro-
posed method consistently outperforms approaches that first
independently estimate 2D pose in each camera view and
reconstruct the 3D poses via post hoc triangulation. Com-
pared to implicit optimization against heatmap targets, we
observed that adapting existing 2D architectures to direct
regression of keypoint coordinates effectively improved the
overall metric performance (Table 1 “DLC + soft argmax”).
While approaches like SimpleBaseline appeared sensitive to
the quality of 2D bounding boxes, the soft argmax approach
was able to operate robustly over full-sized images (i.e no
cropping or resizing). Applying the 2D variant of our pro-
posed temporal semi-supervision method further improved
the performance under all annotation conditions, which
implies that the temporal constraint behaves as a powerful
prior for recovering plausible poses in both 2D and 3D.

The monocular 3D pose method Considering the inher-
ent ambiguities in monocular 3D representations, it was
expected that the precision of monocular estimation would
be lower than for multi-view methods. We observed that
even with 100% of the training data and temporal regular-
ization, monocular estimation performed worse than many
of the multi-view approaches we tested even when using just
5% of the training data. These observations are consistent
with what has been reported in previous literature (Iskakov
et al., 2019; Bolaños et al., 2021).

Multi-view 3D pose estimation methods We did not
observe particular advantages of using 3D volumes con-
structed from 2D features maps vs. raw pixel values. This
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Fig. 6 Qualitative visualization on difficult rearing poses. All 3D visu-
alizations are plotted on the same spatial scale.With 10% of the training
samples, the fully supervised baselinemodel consistently yields inaccu-
rate predictions (blue bounding boxes). Even with 100% of the training

samples, the model is still prone to making mistakes on limb landmarks
(red bounding box). Many of these errors are corrected via tempo-
ral supervision when using just 10% of the labeled data (Color figure
online)

likely implies that feature-based volumetric approaches
require more accurate 2D feature extraction, via backbone
networks pretrained on large-scale 2D pose datasets (Tu et
al., 2020). For the human pose case, strong off-the-shelf 2D
pose estimators already exist, whereas such options are lim-
ited for animal applications. Our results suggest that volume
construction directly from pixels, i.e., the strategy used in
our temporal semi-supervision method, is the more suitable
choice for 3D animal pose estimation in cases where species-
specific training data are scarce. This conclusion should

nevertheless be re-evaluated in the future once larger 2D ani-
mal pose datasets become available.

6 Conclusion

In this paper, we present a state-of-the-art semi-supervised
approach that exploits implicit temporal information to
improve the precision and consistency of markerless 3D
mouse pose estimation. The approach improves a suite of
metrics, each providing a complementary measure of model
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performance, and the approach is particularly effective when
the labeled data are scarce. Along with the newly released
mouse pose dataset, these enhancements will facilitate ongo-
ing efforts to measure freely moving animal behavior across
different species and environments.

Supplementary information We provide a video file that
demonstrates one example multi-view sequence from the
released 3D mouse pose dataset. The original videos are
slowed down by 0.3x for better visualization.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11263-023-01756-
3.
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Appendix A. Additional Quantitative Results

We provide additional metric evaluation results using dif-
ferent smoothing strategies as discussed in section 5.1. We
also qualitatively demonstrate the effects of such post hoc
smoothing on the original trajectories (see Table 2 and Fig.
7).

Table 2 Complete localization metric comparison

Baseline MovAvg
5

MovAvg
10

MovAvg
15

MovAvg
20

MovAvg
25

MovAvg
30

G 5 G 10 G 15 G 20 G 25 G 30 Temp,
baseline

Temp.
+extra

MPJPE (mm)

5% 12.87 12.83 12.80 12.79 12.79 12.78 12.78 12.83 12.82 12.81 12.80 12.79 12.78 12.49 8.17

10% 10.90 10.87 10.85 10.81 10.79 10.78 10.78 10.88 10.86 10.83 10.82 10.80 10.79 7.11 6.69

50% 4.99 4.97 4.98 5.00 5.05 5.11 5.19 4.97 4.96 4.96 4.97 5.00 5.03 4.83 5.04

100% 4.36 4.31 4.33 4.35 4.41 4.47 4.56 4.33 4.31 4.31 4.33 4.35 4.38 4.37 4.14

PA-MPJPE (mm)

5% 10.80 10.77 10.75 10.74 10.74 10.73 10.73 10.78 10.76 10.75 10.74 10.74 10.74 11.07 6.68

10% 9.48 9.43 9.39 9.35 9.33 9.33 9.33 9.44 9.41 9.38 9.36 9.35 9.34 6.49 5.88

50% 4.81 4.78 4.77 4.78 4.80 4.84 4.88 4.79 4.78 4.77 4.77 4.77 4.79 4.65 4.76

100% 4.28 4.23 4.21 4.21 4.23 4.27 4.31 4.25 4.22 4.21 4.20 4.21 4.22 4.28 3.97

N-MPJPE (mm)

5% 12.70 12.66 12.63 12.62 12.61 12.60 12.59 12.66 12.65 12.63 12.62 12.61 12.61 12.39 8.00

10% 10.84 10.80 10.78 10.74 10.71 10.70 10.69 10.82 10.79 10.77 10.75 10.73 10.72 7.06 6.64

50% 4.99 4.97 4.98 5.01 5.05 5.11 5.18 4.98 4.97 4.97 4.98 5.00 5.03 4.87 5.04

100% 4.39 4.35 4.37 4.38 4.43 4.49 4.57 4.37 4.35 4.35 4.36 4.38 4.40 4.41 4.16

We recorded the changes inMPJPE, PA-MPJPE and N-MPJPE after applying 12 different post hoc smoothing strategies. We used either moving average smoothing (“MovAvg”)
or Gaussian smoothing (“G”), with window size of 5, 10, 15, 20, 25 or 30 frames
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Fig. 7 Visualization of different smoothing strategies. The thick green line corresponds to the original trajectory predicted by the 10% baseline
model (Color figure online)

Appendix B. TheMulti-view 3DMouse Pose
Dataset

We provide supplementary figures that demonstrate the
released 3D mouse pose dataset (see Figs. 8 and 9).

Fig. 8 Multi-view captures from the released mouse dataset
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Fig. 9 Multi-view captures from the released mouse dataset (overlaid with ground-truth annotations)
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