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Abstract
With the development of computer vision technology,many advanced computer visionmethods have been successfully applied
to animal detection, tracking, recognition and behavior analysis, which is of great help to ecological protection, biodiversity
conservation and environmental protection. As existing datasets applied to target tracking contain various kinds of common
objects, but rarely focus on wild animals, this paper proposes the first benchmark, named Wild Animal Tracking Benchmark
(WATB), to encourage further progress of research and applications of visual object tracking. WATB contains more than
203,000 frames and 206 video sequences, and covers different kinds of animals from land, sea and sky. The average length
of the videos is over 980 frames. Each video is manually labelled with thirteen challenge attributes including illumination
variation, rotation, deformation, and so on. In the dataset, all frames are annotated with axis-aligned bounding boxes. To
reveal the performance of these existing tracking algorithms and provide baseline results for future research on wild animal
tracking, we benchmark a total of 38 state-of-the-art trackers and rank them according to tracking accuracy. Evaluation results
demonstrate that the trackers based on deep networks perform much better than other trackers like correlation filters. Another
finding on the basis of the evaluation results is that wild animals tracking is still a big challenge in computer vision community.
The benchmark WATB and evaluation results are released on the project website https://w-1995.github.io/.
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1 Introduction

The development of machine learning and computer vision
makes it possible for ecologists to use computer vision tech-
nologies to extract key features from images, videos or other
visual data, so as to quickly classify animal species and count
individual animals (Tuia et al., 2022; Weinstein, 2018). And
these scientists also expect to do further research on ani-
mal behavior analysis on the basis of the visual information
collected from large datasets (Van der Zande et al., 2021;
Norouzzadeh et al., 2018), which consequently facilitates
the development of biodiversity conservation (Mathis et al.,
2018; Valletta et al., 2017).

Visual object tracking, being one of the key technologies
in computer vision, aims to consistently capture interested
targets from video sequences (Lu & Wang, 2019). It is a
fundamental vision task in many real-world applications
including animal recognition and behavior analysis (Lopez-
Marcano et al., 2021; Valletta et al., 2017; Risse et al.,
2017; Haalck et al., 2020; Fukunaga et al., 2015; Ravoor &
Sudarshan, 2020). In the past decades, researchers from the
computer vision community have intensively studied visual
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object tracking, leaving two main-stream methods, namely
correlation filter (CF) based trackers (Liu et al., 2021) and
deep learning based trackers (Li et al., 2018). Following the
development of tracking methods, tracking benchmarks play
an important role in trackers evaluation. It is well known
that OTB50 (Wu et al., 2013) is the first benchmark, and
has been widely adopted in the literature as a standard tool
to evaluate the performance of different trackers. It con-
tains 50 video sequences that cover various kinds of general
objects, including animals, vehicles, humans, body parts,
toys, etc. In Wu et al. (2015), the authors extend OTB50 to
100 video sequences, which provides a much bigger dataset
for trackers evaluation. In the following years, several other
benchmark datasets are released, including TC128 (Liang et
al., 2015), NFS (Galoogahi et al., 2017), LaSOT (Fan et al.,
2019), UAV123 (Mueller et al., 2016), GOT10K (Huang et
al., 2021), AMTSet (Wang et al., 2022) and TOTB (Fan et
al., 2021). These datasets have promoted the development of
visual object tracking.

However, when it comes to wild animals tracking, exist-
ing benchmarks are restricted due to the following reasons.
First,wild animals cover awide scopeof objects ranging from
land animals to marine animals, from insects to mammals.
Existing benchmarks do not include enough wild animal
sequences to evaluate the performance of a tracker. Second,
some existing benchmarks include several video sequences
related to animals, such as GOT10K and LaSOT, but most
of them are captive animals in zoos which are of less signifi-
cance than animals captured in the wild. In addition, most of
the sequences containing wild animals in those benchmarks
are very short which is insufficient for evaluating wild ani-
mals tracking. Third, the main challenges in wild animals
tracking are different from that of general object tracking.
According to our exploration, challenges like cameramotion,
similar object, deformation and rotation are very common in
wild animals tracking. When analyzing group of animals,
challenges like full or partial occlusions, out of view and
rotation are frequently appeared. For individual animal anal-
ysis, rotation and scale variation commonly exist.

In this paper, we build the first benchmark for wild ani-
mal tracking (WATB). WATB comprises 206 sequences and
covers a wide range of animal categories. The total frame of
WATB is over 203,000 while the average sequence length
is over 980 frames. All the sequences are labelled with 13
challenge attributes and manually annotated with axis-align
bounding boxes. To the best of our knowledge, WATB is the
first benchmark dataset specifically used for the research of
wild animal tracking. Sample frames from WATB is shown
in Fig. 2. We benchmark 38 state-of-the-art trackers for the
sake of understanding the performance of themandproviding
basic results for comparison in future research. Comprehen-
sive analysis of the evaluation results demonstrates that wild

animal tracking remains challenging in computer vision com-
munity.

The main contributions of our work are summarized as
follows:

(1) We propose the first benchmark dataset WATB dedicated
to the research of wild animal tracking and behavior anal-
ysis. WATB consists of 206 sequences with over 203,000
frames, which makes it large enough to support related
research. It covers a wide range of wild animal species
including molluscs, coelenterates, mammals, birds, rep-
tiles, amphibians, arthropods and fish.

(2) We evaluate 38 state-of-the-art trackers including deep
learning based trackers, such as Siamese network and
Transformer, and correlation filter based trackers with
hand-crafted and deep features. We give in-depth anal-
ysis in order to provide researchers evaluation results
for comparison in future research. We rank the evalu-
ated trackers to specify the top three in tracking accuracy,
which facilitates us to point out the research prospect or
development trends in wild animal tracking according to
the latest progress of tracking methods.

(3) All the sequences, annotations, attributes, evaluation
results and toolkit of WATB are released on the website
https://w-1995.github.io/. Researchers are encouraged to
evaluate their work on WATB.

2 RelatedWorks

2.1 Tracking Datasets

Tracking datasets are very important for the development of
visual object tracking. There are two standards to catego-
rize the existing benchmark datasets. In Fan et al. (2021),
the existing datasets are divided into two types: generic and
specific, while in Valmadre et al. (2018) the authors divide
existing datasets into long-term and short-term.

Generic datasets usually contain various objects collected
from general scenes, such as pedestrians, human body parts,
animals, vehicles, sports players, etc. OTB50 (Wu et al.,
2013) andOTB100 (Wu et al., 2015) are two standard generic
datasets that are widely used to evaluate current trackers in
the literature. Both of them contain 11 challenge attributes,
and include both color and gray sequences. TC128 (Liang
et al., 2015) is composed of 128 color sequences that focus
on testing the impact of color information on tracking per-
formance1. It also provides 11 challenge attributes for each
video sequence. NFS (Galoogahi et al., 2017) aims to evalu-
ate trackers on high frame rate videos. Each video sequence is

1 For the abbreviations, please refer to Table 7 in the supplementary
part.
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labelledwith 9 attributes. Recently, some large-scale datasets
are proposed for training deepmodels for visual object track-
ing. LaSOT (Fan et al., 2019) provides 1400 sequences with
1120 and 280 for training and testing, respectively. It covers
70 object categories including vehicles, person, pets, live-
stock, human body parts, clothes, captive and wild animals,
etc. Most of the animal videos are captured at zoo or home
and few of them are wild animals. GOT-10K (Huang et al.,
2021) provides about 10,000 video sequences while 9,340
for training, 420 for testing and 180 for validation. But its
average sequence length is only about 200 frames. OxUvA
(Valmadre et al., 2018) mainly focuses on long-term tracking
evaluation with 366 video sequences.

Specific dataset is usually constructed to evaluate track-
ing performance for specific goals. It is worth noting that our
WATB is a specific dataset forwild animals tracking.AMTset
(Wang et al., 2022) gives special attention to abrupt motion
tracking supplying 50 video sequences and a new evaluation
metric for performance evaluation. UAV123 (Mueller et al.,
2016) focuses on tracking objects captured using unmanned
aerial vehicle (UAV). It includes 123 video sequences that
cover several object categories including vehicles, person,
buildings, etc. In (Fan et al., 2021), the authors proposed
the first dataset for transparent object tracking (TOTB). Li
et al. (2019) propose the first RGB-thermal object tracking
benchmark, while in Xiong et al. (2020), the first dataset is
proposed for hyper-spectrum video object tracking.Wang et.
al. propose a benchmark dataset WAMI-226 for object track-
ing in the context of wide area motion imagery (WAMI).
WAMI-226 focuses on the main challenges induced by low
resolution, low contrast and low frame rate. There are also
several datasets developed for face tracking. 300-VW (Shen
et al., 2015) is composedof 100videoswhich is developed for
facial landmark tracking. MobiFace (Lin et al., 2019) dataset
consists of 80 sequences which is specially developed for
face tracking in mobile scenes. In Risse et al. (2017), Risse
et al. build a Wildlife Animal Tracking (WAT) dataset which
comprises only 12 videos (11 animal videos and 1 table ten-
nis video) covering a small range of wild animals including 1
Mammal video, 1 Bird video and 9 Arthropod videos. WAT
pays special attention to small target animals, such as ants,
dung beetles, woodlouse, etc., covering common challenges
in object tracking including occlusion, illumination varia-
tion, similar objects, clutters, and so on. Compared to WAT,
our proposedWTAB contains much more animal videos and
covers a wide range of animal species (as shown in Fig. 1).

2.2 TrackingMethods

In general, there are two main branches of tracking methods
occupying the community, that are correlation filter and deep
learning based methods. The former is famous for its high
efficiency while maintaining good accuracy and robustness.

The latter is characterized by its high accuracy and robust-
ness under different challenging situations. Here, we briefly
review these two methods.

Correlation filter based tracking methods: MOSSE
Bolme et al. (2010) is the first CF-based tracking method
which brings researchers to a new direction. It shows high
tracking accuracy and speed. Following MOSSE, KCF
greatly improves its tracking performance by learning ker-
nelized CF on HOG features (Henriques et al., 2014). Staple
(Bertinetto et al., 2016) incorporates HOG and color fea-
tures to improve KCF, while SAMF (Li & Zhu, 2014) pays
much attention to scale estimation in CF based trackers. In
order to suppress the annoying boundary effects, SRDCF
(Danelljan et al., 2015) adopts a spatial weight coefficient
to punish the samples that are far away from the object cen-
ter. BACF (Kiani Galoogahi et al., 2017) tries to enlarge the
sampling area and draws real negative samples from back-
ground area which greatly improves the quality of samples
and suppresses the boundary effect. STRCF (Li et al., 2018)
introduces the temporal regularization into SRDCF to fur-
ther suppress boundary effect. In Dai et al. (2019), ASRCF is
proposed to improve SRDCF by introducing adaptive spatial
regularization which adapts to object appearance variation. It
learns a location filter and a scale filter using HOG and deep
features. GFSDCF (Xu et al., 2019, 2021), based on the spa-
tial consistency of multi-channel features, performs group
feature selection across spatial and feature channel dimen-
sions, learns correlation filters with spatial-channel group
sparsity, and compresses features from spatial and feature
channel dimensions.Li et al. (2020) propose to remove cosine
window from CF based trackers with spatial regularization
and to replace it with a binary and Gaussian shaped mask
functions.

Deep learning based tracking methods: The strong
power of deep neural network has brought the object track-
ing community to a newpeak.ConvolutionalNeuralNetwork
(CNN) (Nam & Han, 2016; Wang et al., 2015) and Siamese
Network (Bertinetto et al., 2016; Li et al., 2018; Guo et al.,
2020) are two popular deep tracking frameworks. MDNet
(Nam & Han, 2016) adopts large-scale annotated video sets
to train a CNN for general feature representation. Wang et al.
(2015) explore the representation ability of the features from
different CNN layers. The feature maps of different layers
are selected and refined to obtain more discriminative fea-
tures. SiamFC (Bertinetto et al., 2016) is the first Siamese
network based tracker which treats tracking as a similar-
ity learning problem. A Siamese network is trained off-line
to localize a sample region in a larger searching region.
SiamRPN (Li et al., 2018) is composed of a Siamese subnet-
work for feature extraction and a region proposal subnetwork
for predicting object position and confidence. SiamRPN++
(Li et al., 2019) adopts ResNet50 as the backbone network
to extract features. It largely alleviates the damage of trans-
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lation invariant brought by padding, and introduces a deep
network into the Siamese network, thus bringing significant
improvement in accuracy. SiamBAN (Chen et al., 2020) is
similar to SiamRPN++. The difference is that the princi-
ple of dilated convolution is introduced in SiamBAN, which
increases the receptive field and improves the tracking perfor-
mance. SiamCAR (Guo et al., 2020) is similar to SiamBAN
where the difference is the introduction of centerness branch
to better localize the object center. SiamAttn (Yu, 2020) uses
deformable Siamese attention network and a region refine
module to boost tracking performance.

3 Wild Animal Tracking Benchmark (WATB)

3.1 Video Collection

We aim to collect video sequences containing wild animals
that are moving naturally. Generally speaking, documen-
taries about wild animals contain a lot of footage about mov-
ing wild animals. Initially, we decided to select sequences
from existing general object tracking benchmarks, but very
few wild animals are included in these public benchmarks.
Thus, we collect a lot of such raw video sequences from
the Internet. These sequences are filtered and edited manu-
ally leaving those suitable for tracking analysis. Some of the
extra frames in the video are cut out, making the video focus
more on a specific wild animal of interest. In addition, we
also do some clips on some sequences in order to construct
certain tracking challenges. For example, a common chal-
lenge in object tracking is abrupt motion induced by rapid
camera motion or switching which are common in documen-
taries. We cut some of the frames to make the wild animals
move a larger distance between two adjacent frames.

We also aim to cover a wide range of wild animal species
including molluscs, coelenterates, mammals, birds, reptiles,
amphibians, arthropods and fish, which are from land, sea,
forest, grassland and mountain. At the same time, we try
to name the selected sequences based on the species of
the target animals in the sequences. Since we are not pro-
fessional zoologists, we use Baidu image recognition2 to
help us identify the wild animals in the sequence. For
this purpose, we select sample frames containing the tar-
get animals, and cut down the complete animal region as
the input to Baidu image recognition. The results are care-
fully analyzed to make sure the recognized animals are the
same as that from the video sequence. For some animals in
crowded scenes, for example, AcanthopagrusSchlegelii2
and Pomadasys Argenteus2, the recognition results are
not accurate enough. We have to try several times and cut
different regions of a frame as input to obtain satisfactory

2 http://graph.baidu.com/.

Table 1 Summary of statistics of the proposed WATB

Item WATB WAT

Number of videos 206 11

Total frames 203,836 3,760

Max frames 9061 710

Min frames 135 75

Avg. frames 989 342

Avg. duration 33 seconds –

Number of att. 13 8

Frame rate 30 fps –

Animal species 8 3

recognition results. We eventually collected 206 sequences
to form the WATB which is sufficient to evaluate a tracker’s
performance on wild animal tracking. We give the summary
of WATB in Table 1 and compare WATB with WAT.

3.2 Animal Categories

Among the 206 sequences in WATB, 29 of them contain
sea animals, 102 contain land animals and 75 contain flying
animals (shown in Fig. 1a). Most of the sequences in WATB
contain birds andmammals, because the rawvideo sequences
are mainly obtained from documentaries that focus much on
mammals and birds. There are 27 sequences containing fish
and all of them are marine animals. In Fig. 1b, we give the
plot of the distribution of the animal species in WATB. It
seems that the distribution of the animals in WATB is lack of
balance.But it isworth noting that, there are several standards
to categorize animals in zoology. We use a rough standard to
divide the 206 sequences into several branches. Sequences
of mammals can also be divided into several branches, but
detailed categorization is out of the scope of ourwork. As it is
difficult to capture wild animal videos by ourselves, existing
documentaries are the main source of WATB. We find that
wild animals fromAfrica are the favorite targets inmost of the
documentaries. In addition, some of the bird sequences are
from social media which are taken by amateur photography
enthusiasts.

3.3 Annotation

For the annotation step, we follow the standard in Fan et al.
(2019) to provide consistent bounding box annotation when
labelling most of the sequences. For a given video sequence,
the initial target animal is specified in the first frame. When
the target animal appears in a frame, the labeler will draw a
bounding box tightly including any visible part of the animal.
When it is fully occluded or out of view, the labeler will
assign an absent label to this frame.However, in order to build
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Fig. 1 Distribution of animals in WATB

certain challenge attributes in some sequences, we do not
label the whole body of the target animal, because labelling
the whole body cannot reflect certain challenge attributes.
For example, in Fig. 2, for the sequence GoldenEagle, we
annotate the head of the bird. For some animalswith long tails
or legs, take arthropods for example, annotating all the visible
parts will include too much background area. Therefore, we
only annotate the main body of such animals by omitting the
extra legs or tails. For example, in Fig. 2, row 3 column 4,
the right leg of the mantis is discarded from the bounding
box. Fig. 3 shows the distribution of the bounding box sizes
(target animal scale) in WATB. We plot the width (pixels)
and height (pixels) of the target animal in the first frame
of each sequence. It shows that the widths of the animals
approximately fall in the interval [30, 210], while the heights
fall in [30, 150].

In order to ensure the annotation quality, we organize a
labelling team and an inspection team. Both of them have
five members. The labelling team first annotates a sequence
and sends the labelled sequence to the inspection team. Then,
the inspection members will check all the annotated frames,
and any possible inappropriate annotation will be discussed
and sent back to the labelling team for refinement. Based on
the above principles and quality control measures, we finally
get the WATB benchmark dataset. Sample frames selected
from WATB are shown in Fig. 2.

3.4 Attributes

In order to enable researchers to do further in-depth analysis
of different trackers’ performance on wild animal tracking,

we label each video sequence with 13 challenge attributes,
that are: (1) illumination variation (IV), (2) out-of-plane
rotation (OPR), (3) in-plane rotation (IPR), (4) deformation
(DEF), (5) fast motion (FM), (6) scale variation (SV), (7)
camera motion (CM), (8) out of view (OV), (9) partial occlu-
sion (POC), (10) full occlusion (FOC), (11) low resolution
(LR), (12) similar object (SO), (13) motion blur (MB). The
definitions of these attributes are listed in Table 2 which are
similar to that in OTB100 and LaSOT. In Fig. 4, the distri-
bution of different challenge attributes in WATB is shown.
From this figure, it is clear that the top-ranked common chal-
lenges in wild animal tracking are scale variation, out-plane
rotation and partial occlusion. The animal behaviors in the
collected sequences influence the attributes of the sequences,
which can be directly reflected in documentaries. For exam-
ple, many animals tend to rotate their heads or body out of
the image plane. Consequently, the OPR attribute appears in
such sequences.

4 Evaluation

4.1 Evaluated Trackers

For the sake of evaluating existing trackers’ performance on
WATB, we test 38 tracking methods including CF and deep
learning based trackers. For CF based trackers, we select the
tracking methods with hand-crafted features, such as BACF
(Kiani Galoogahi et al., 2017), STRCF (Li et al., 2018),
SRDCF (Danelljan et al., 2015), and with deep features, such
as ASRCF (Dai et al., 2019), CF2 (Ma et al., 2015), GFS-

123



904 International Journal of Computer Vision (2023) 131:899–917

Fig. 2 Sample frames from WATB benchmark

Fig. 3 Distribution of bounding box sizes (object scale) in WATB.
The diameter of the bubbles represents the area (width×height) of the
corresponding bounding boxes

DCF (Xu et al., 2019). As for deep learning based trackers,
we select recent popular Siamese network based trackers,
such as SiamBAN (Chen et al., 2020), SiamCAR (Guo et al.,
2020), SiamAttn (Yu, 2020), SiamGAT (Guo et al., 2021),
STMTrack (Fu et al., 2021), and Transformer trackers, such
as Stark (Yan et al., 2021), TransT (Chen et al., 2021), HiFT
(Cao et al., 2021). All the tested trackers are listed in Table 3.

We run the codes released by the related authors to implement
all the trackers.

4.2 EvaluationMethodology

We use the general one-pass evaluation (OPE) criteria as in
Fan et al. (2021), Fan et al. (2019) to compare the trackers
using precision measure, normalized precision measure and
success measure.

The precision measure is computed as the Euclidean dis-
tance d between the estimated object center (xest , yest ) and
the center of the ground-truth bounding box (xgt , ygt ).

d =
√

(xest − xgt )2 + (yest − ygt )2 (1)

A distance threshold αd is first chosen to decide a successful
track in each frame (for example, 20 pixels). In a given frame,
if d > αd , it is defined as a successful track, which means the
tracker successfully captures the target animal. Thereafter,
for a tracker, the total successful tracks Fsuc divide by the
total frame number of the animal sequence Fall will generate
the precision score P which is used to rank different trackers.

P = Fsuc
Fall

(2)
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Table 2 Description of the
attributes in WATB

No. Attribute Description

1 CM Camera switching, sudden camera motion

2 DEF The shape of the target is changing during tracking

3 FM The distance between adjacent frames is larger than the target size.

4 FOC The object is fully occluded.

5 IPR The object rotates in the image plane

6 IV The lighting condition changes during tracking

7 LR The size of the object area is less than 1000 pixels

8 MB Blurred object region due to camera shaking or fast moving of object

9 OV The object is disappeared from the target region

10 OPR The object rotates out of the image plane

11 POC The object is partially occluded

12 SO Similar object appeared in the background

13 SV The size of the object area is beyond the interval [0.5,2]

Fig. 4 Sequence numbers of different challenge attributes

As the threshold αd varies in a given interval [0, 50], a preci-
sion curvewill be formed.On this plot, the trackers are ranked
based on the value of P with distance threshold αd = 20.

The normalized precision measure is adopted because the
precision measure is easily influenced by object size. It is
computed by normalizing the precision measure over the
size of the ground-truth bounding box. The distance between
the estimated object center (xest , yest ) and the center of the
ground-truth bounding box (xgt , ygt ) is computed as follow.

dn =
√( xest

w
− xgt

w

)2 +
( yest

h
− ygt

h

)2
(3)

where w and h are the width and height of the target animal,
respectively. They are defined in ground-truth bounding box.
Then, we set a normalized distance threshold αn to decide a
successful track. The definition of the normalized precision
score Pn is the same as that of P . To generate a normalized
precision curve, αn varies in a given interval [0, 0.5]. On this
plot, the trackers are ranked based on the value of Pn with
αn = 0.2.

As for the success measure, it is computed based on the
intersection over union (IoU) where the intersection means
the overlap area of the estimated region of target animal Rest

and ground-truth bounding box Rgt , and the union means the
union of Rest and Rgt .

I oU = Rest ∩ Rgt

Rest ∪ Rgt
(4)

We also need a threshold αI oU to determine a successful
track. Then, the success score S is obtained using the total
successful tracks to divide the total number of frames. As the
threshold αI oU varies in the given interval [0, 1], a success
plot is generated and the trackers on this plot are ranked based
on the area under curve (AUC) score.

4.3 Quantitative Results

4.3.1 Overall Performance

We extensively test 38 trackers on WATB. Each tracker is
run individually without any modification and re-training.
We employ the above-mentioned three measures for all the
tested trackers and draw corresponding plots to compare their
performance which are shown in Fig. 5.

From Fig. 5, it is clear that Stark obtains the highest pre-
cision score (0.580), normalized precision score (0.577) and
AUC score (0.512). In the precision plot (Fig. 5a), STMTrack
wins the second place (0.556) while TransT wins the second
runner-up (0.550). Dimp50 and Dimp18 occupy the fourth
andfifth placeswith precision scores 0.545 and0.540, respec-
tively. SiamAttn (0.539) and SiamBAN (0.538) are following
Dimp50. The other four Siamese network based trackers and
ATOM are following the top seven winners. The best CF
based tracker is GFSDCF with precision score 0.479 which
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Table 3 Evaluated trackers in our experiment

Trackers Description Language Trackers Description Language

Stark Yan et al. (2021) ICCV21 Python CSK Henriques et al. (2012) ECCV12 Matlab

STMTrack Fu et al. (2021) CVPR21 Python KCF Henriques et al. (2014) PAMI14 Matlab

TransT Chen et al. (2021) CVPR21 Python SAMF Li and Zhu (2014) ECCVW14 Matlab

Dimp50 Bhat et al. (2019) ICCV19 Python DSST Danelljan et al. (2014) BMVA14 Matlab

Dimp18 Bhat et al. (2019) ICCV19 Python fDSST Danelljan et al. (2016) PAMI16 Matlab

SiamCAR Guo et al. (2020) CVPR20 Python CF2 Ma et al. (2015) ICCV15 Matlab

SiamAttn Yu (2020) CVPR20 Python SRDCF Danelljan et al. (2015) ICCV15 Matlab

ATOM Danelljan et al. (2019) CVPR19 Python Staple Bertinetto et al. (2016) CVPR16 Matlab

SiamRPN++ Li et al. (2019) CVPR19 Python CFWCR He et al. (2017) ICCVW17 Matlab

SiamRPN Li et al. (2018) CVPR18 Python BACF Kiani Galoogahi et al. (2017) ICCV17 Matlab

SiamMask Wang et al. (2019) CVPR19 Python ECO Danelljan et al. (2017) CVPR17 Matlab

SiamGAT Guo et al. (2021) CVPR21 Python STRCF Li et al. (2018) CVPR18 Matlab

SiamBAN Chen et al. (2020) CVPR20 Python SKSCF Zuo et al. (2018) PAMI18 Matlab

HiFT Cao et al. (2021) ICCV21 Python DSARCF Feng et al. (2019) TIP19 Matlab

SiamFC Bertinetto et al. (2016) ECCV16 Python LADCF Xu et al. (2019) TIP19 Matlab

ACSDCF_HC Xu et al. (2021) IJCV21 Matlab ASRCF Dai et al. (2019) CVPR19 Matlab

MRCF Ye et al. (2022) TIE22 Matlab GFSDCF Xu et al. (2019) ICCV19 Matlab

MSCF Zheng et al. (2021) ICRA21 Matlab ARCF Huang et al. (2019) ICCV19 Matlab

AutoTrack Li et al. (2020) CVPR20 Matlab DRCF Fu et al. (2020) TGRS20 Matlab

is better than SiamFC (0.423). The other two deep learning
based trackers, SiamGAT and HiFT, do not achieve good
precision score because SiamGAT (0.344) focuses much on
aspect ratio changewhileHiFT (0.288) is good atUAVobject
tracking.

When it comes to the normalized precision plot (Fig.
5b), the top six winners are slightly changed. STMTrack
still stands on the second place with score 0.553 fol-
lowed by TransT (0.547). SiamAttn comes to the fourth
place with score 0.539 which is 0.001 higher than Dimp50
(0.538). SiamBAN (0.531) and Dimp18 (0.530) are follow-
ing Dimp50. The best CF based tracker GFSDCF (0.472)
obtains the 13th place and outperforms several deep learn-
ing based trackers including SiamFC (0.400) and SiamGAT
(0.333). The second best CF based tracker is ASRCF with
score (0.384) followed by ARCF(0.348) and CF2 (0.348).
As for the success plot, the top five winners do not change
much. TransT (0.492) comes to the second place followed
by STMTrack (0.486), Dimp50 (0.472) and Dimp18 (0.465).
SiamBAN, SiamAttn and ATOM stand on the sixth to eighth
places with AUC scores 0.455, 0.455, 0.450, respectively,
which outperforms SiamRPN++ (0.428), SiamCAR (0.423),
SiamRPN (0.413) and SiamMask (0.395). The best CF based
tracker is still GFSDCF (0.373) which outperforms SiamFC
(0.331), and the second best CF based tracker is ASRCF
(0.324). The rank of SiamGAT (0.322) in the success plot
gets a great improvement compared to that in precision plot
surpassing all the other CF based trackers.

4.3.2 Attribute-Based Performance

In order to detect the strengths and limitations of existing
trackers on wild animal tracking, we provide attribute-based
evaluation under the 13 challenge attributes of WATB. In
Fig. 6, the plots of the attribute-based performance onWATB
are shown which demonstrates Stark is the best tracker on
almost all the 13 attributes except similar object and illumi-
nation variation. STMTrack wins the champion on similar
object attribute.

The most common challenge in WATB is scale variation,
and Stark gets the best AUC score (0.504)which outperforms
the second best TransT (0.478) by 2.6%. STMTrack, Dimp50
and Dimp18 stand on the following three places. The best
two CF based trackers are GFSDCF and ASRCF with AUC
scores 0.333 and 0.280, respectively. Out-of-plane rotation is
the second most common challenge in wild animal tracking.
In this attribute, the top five trackers are almost the same as
those in scale variation with TransT (0.470) and STMTrack
(0.471) exchanging their places. GFSDCF, ASRCF, CFWCR
and CF2 are the best four CF based trackers.

When it comes to partial occlusion, the topfive trackers are
the same as those in scale variation, but the AUC scores show
severe decrease, which demonstrates that partial occlusion
remains a big challenge in wild animal tracking. It is worth
noting that GFSDCF (0.318) andASRCF (0.275) are the best
two CF based trackers. ASRCF outperforms SiamFC (0.270)
andHiFT (0.244) by 0.5% and 3.1%, respectively. On the fast
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Fig. 5 Overall performance of the trackers on WATB using precision, normalized precision and success measures

motion attribute, the overall AUC scores also show severe
decrease compared to scale variation, which means that fast
motion is another big challenge in wild animal tracking. Fast
motion is commonly induced by camera switching, sudden
dynamic change and fast moving of animals. Stark shows the
best performance with AUC score 0.465. It outperforms the
second best TransT (0.423) by a largemargin 4.2%.Dim50 is
the second runner upwith anAUC score 0.401which is 0.7%
higher than STMTrack and 2.2% lower that TransT (0.423).
The AUC score of the best CF based tracker GFSDCF is only
0.287 which is 17.8% lower than Stark. On the out of view
attribute, we can draw similar conclusions.

On the full occlusion attribute, the AUC scores of the
trackers decrease severely. The best tracker Stark only gets
0.385, which tells us that full occlusion is very challeng-
ing in wild animal tracking. We can get the conclusion from
the literatures that full occlusion is also challenging in gen-
eral object tracking. For similar object (background clutters),
STMTrack stands on the first place with AUC score 0.480
followed by TransT (0.478) and SiamAttn (0.470), while
Stark (0.469) falls to the fourth place. STMTrack wins the
second place on illumination variation attribute with AUC
score (0.448) which is 1.3% lower than Stark (0.461), and
TransT (0.445) is the second runner up exceeding Dimp18
and Dimp50. We can see that, all the deep learning based
trackers exceed CF based trackers except the best two track-
ers, i.e. GFSDCF (0.328) and ASRCF (0.288).

The ranking of the trackers in Fig. 6 clearly tells us that
deep learning based trackers are more efficient in dealing
with these challenge attributes in wild animal tracking, while
CF based trackers, with either deep features or hand-crafted
features, are less capable of handling these challenges.

The normalized precision scores of the evaluated trackers
over 13 attributes are given in Table 4. The results of deep
learning based trackers and CF based trackers are separated
and listed in different parts of the table. For deep learning
based trackers, the best three results are shown in red, blue
andgreen, respectively,while the best threeCFbased trackers
are shown in italic style using similar colors to deep learn-
ing based trackers. The scores show severe drop on FOC
attributes, which tells us that FOC is very challenging in
wild animal tracking. Similar conclusion can also be drawn
from Fig. 6. Stark gets the highest score on almost all of the
attributes except SO and IV,whileGFSDCF achieves the best
on all of the attributes amongCFbased trackers. ForCFbased
trackers, the top ranked ones, including GFSDCF, ASRCF,
CF2 and ECO, use deep features and hand-crafted features
together to enhance the tracking performance. The scores of
such trackers are better than those CF based trackers with
hand-crafted features. ASRCF wins the runner up on most
of the attributes except CM. Most of the CF based trackers
with hand-crafted features cannot obtain satisfactory results,
which demonstrates that deep features have better represen-
tation ability in wild animal tracking. We will give further
analysis in Sect. 4.4.

4.3.3 Species-Based Performance

As shown in Fig. 1b, there are 8 animal species in WATB. In
this section, we conduct species-based evaluation onWATB.
The success plots of the evaluation results are shown in Fig.
7. We do not give the success plots of Amphibians, Reptiles,
Molluscs and Coelenterates due to the fact that the sequences
of these animal species are very few (less than 4), but all of
them are released on our project website. Therefore, we only
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Fig. 6 Attribute-based performance of the trackers on WATB using success measure
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Table 4 Normalized precision score of different trackers over 13 challenge attributes (Color table online)

discuss the results of the other four species, i.e. Birds, Fish,
Mammals and Arthropods.

For Birds sequences, Stark (0.487), TransT (0.476) and
Dimp50 (0.474) occupy the top three places all of which are
transformer-based trackers. TheAUC scores of the following
5 deep learning based trackers, SiamBAN, Dimp18, ATOM,
SiamAttn, and STMTrack, are all higher than 0.450. GFS-
DCF (0.411), ASRCF (0.352) and CFWCR (0.348) are the
best three CF-based trackers on these sequences. The other
trackers following GFSDCF get lower AUC scores than 0.4.
When it comes to the Fish sequences, STMTrack (0.550)
wins the championship, following TransT (0.533) and Sia-
mAttn (0.505). The overall AUC scores of Fish sequences are
obviously much higher than Birds sequences, which tells us
that Birds sequences containmuchmore challenge attributes.
For Mammals sequences, Stark (0.525) returns to the first
place, leading the runner-up STMTrack with a large margin
(3.5%). The AUC scores of the trackers behind SiamRPN
(0.401) are all lower than 0.400 including all the CF based
trackers. There are only 5 Arthropods sequences in WATB
which ismuch fewer than the aforementioned 3 species. Stark
undoubtedly occupies the first place leading the runner-up
TransT a very large margin (16.7%). This success plot also
shows that all the trackers except Stark and TransT have

their AUCvalues below 0.4, which demonstrates that Arthro-
pods tracking is very challenging in wild animal tracking, but
the advanced Transformer-based trackers have shown a very
promising potential to overcome this problem.

In Table 5, the normalized precision scores of the track-
ers over 8 animal species in WATB are shown. We mark the
best three scores using the same appearance as that in Table
4. We do not mark the results of two species, Molluscs and
Coelenterates, considering that there are very few sequences
of these two species. For the marked 6 animal species, the
bestmethods are all Transformer-based trackers, which again
demonstrates their great potential in tracking different animal
species. ForArthropods, Stark gets the best score (0.637), but
the scores of the other 37 trackers show severe drop compared
to Stark, especially the CF based trackers. It is very difficult
for those CF based trackers to accurately track the target
Arthropod animals. This result also verifies the challenge
attribute of tracking Arthropod animals and the potential of
Transformers in conquering these challenges. On the other 5
animal species, GFSDCF showsmoderate performance com-
pared to the corresponding best three deep learning based
trackers, and leads the other CF-based trackers by a large
margin which can be attributed to the use of deep features as
in Sect. 4.3.2.
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Fig. 7 Species-based performance of the trackers on WATB using success measure

4.4 Deep and Hand-Crafted Features inWATB

As we have claimed in the previous section, compared to CF
based trackers with deep features, those with hand-crafted
features cannot deal well with the challenges in wild animal
tracking. In this section, we do ablation study usingGFSDCF
tracker (Xu et al., 2019).

As the baseline, GFSDCF uses both deep features from
ResNet50, andhand-crafted features includingHOGandCN.
HOG feature is wildly adopted in CF based trackers. CN fea-
ture is proven to be better than any other color features in
object tracking. The results are shown in Fig. 8 and Table 6,

which tells us that using single hand-crafted feature, HOG
or CN, cannot achieve good tracking performance. But when
they work together, the tracking performance is boosted with
a large margin. Consequently, the three measures increase
remarkably. When deep features from ResNet50 are incor-
porated, the precision score increases by 10.7%, normalized
precision score 12.9% and AUC score 7.4%. It clearly
demonstrates that using deep features can greatly improve the
tracking performance on WATB. Compared to single hand-
crafted feature, incorporating multiple hand-crafted features
can also boost the tracking performance to some extent.
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Table 5 Normalized precision score of different trackers over 8 animal species in WATB (Color table online)

Fig. 8 Plots of GFSDCF on WATB using hand-crafted and deep features
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Table 6 Ablation study of deep
and hand-crafted features in
WATB for GFSDCF

Trackers Precision Normalized Precision Success AUC

GFSDCF_HOG 0.312 0.294 0.263

GFSDCF_CN 0.321 0.292 0.243

GFSDCF_HOG+CN 0.372 0.347 0.299

GFSDCF_HOG+CN+ResNet50 0.479 0.472 0.373

4.5 Qualitative Evaluation

For qualitatively analyzing the existing trackers, we visual-
ize the tracking results of six typical trackers, Stark, TransT,
SiamBAN, GFSDCF, ASRCF, STRCF, which covers trans-
former trackers (Stark and TransT), Siamese network based
tracker (SiamBAN), CF based trackers with deep and hand-
crafted features (GFSDCF and ASRCF), and CF based
trackers with hand-crafted features (STRCF). We select
six typical animal sequences, BabyLion, Boar, Clownfish4,
Crane, Gazelle1, Lynxlynx. Each of the sequences contains
several challenge attributes and different animals. The results
are shown in Fig. 9.

For the BabyLion sequence, the target animal undergoes
frequent rotation, partial occlusion, and similar targets are
appeared to disturb tracking.When severe rotations appeared
(#0243), Stark, TransT and SiamBAN can accurately capture
its position and scale, while the CF based trackers cannot
adapt to the scale changes. After long-period partial occlu-
sions (#0988), Stark first recovers from failure and captures
the target animal accurately, followed by TransT (#1137),
but the other trackers drifts to other similar animals. The
Boar sequence covers several challenge attributes includ-
ing motion blur, abrupt motion, out of view, scale variation
and out-of-plane rotation. The results show that CF based
trackers can not well adapt to scale variations induced by
frequent rotations, while the three deep learning based track-
ers can deal well with these challenges. The Clownfish4 and
Crane sequences show some failure cases of the tracker Stark
when the target animals frequently interact with similar ani-
mals accompanying frequent occlusions, scale variations and
deformations. However, Stark can successfully recover from
such failures and show better performance in handling these
accompanied challenges. In frame #1196 ofCrane sequence,
all the trackers are distracted from the target animal. Similar
conclusion can bemade on theGazelle1 sequence. The Lynx-
lynx sequence is very challenging since it contains severe
deformation, scale variation and motion blur. The target
animal also does sudden jump to change its direction and
shape. We can see that GFSDCF and STRCF drift after the
first jump (#0149). After the third (#0179) and fourth jump
(#0211), Stark can still stably track the animal. The Nightin-
gale sequence contains the severe abrupt motion challenge
induced by camera switching. The target animal undergoes

large-scale position change. Given the consecutive frames
(#0194-#0197)where the target bird changes its position sud-
denly with large difference, all the trackers fail to capture it.
But Stark quickly recovers from failure and re-capture the
bird. TransT recovers at frame #224.

From the above qualitative analysis, we can draw the
conclusion that deep learning based trackers can deal with
various challenges in wild animal tracking better than CF
based trackers. Some of the challenges, for example, abrupt
motions induced by camera switching, frequent similar ani-
mal interactions, or frequent deformation, scale variation and
rotation, cannot be well handled by the CF based trackers.
There are some failure cases for the best deep learning based
trackers (Stark and TransT), which tells us that wild animal
tracking is far from well resolved.

5 Discussion

The main contribution of this paper is to provide the com-
munity a benchmark for evaluating trackers and boost the
research of wild animal tracking. We have successfully con-
structed the WATB and released all the resources on the
project website. WATB consists of 206 video sequences cov-
ering different kinds of animals that are usually appeared
in documentaries. According to zoologists, there are about
1.5 million known animals on earth. Therefore, we need to
extend WATB to cover more animal species. But finding all
of the wild animals in videos seems impossible. We will
supplement absent animal species to WATB in our following
work. In addition, we do not provide training set inWATB for
existing deep learning trackers because the 206 sequences in
WATB are very few compared to existing large scale training
set. According to our exploration, the existing training sets
for training object tracking models are very large, for exam-
ple, the training set of GOT-10K contains more than 9,300
sequences, LaSOT has more than 1,100 training sequences,
and TrackingNet has more than 30,000 training sequences.
Most of the existing deep learning based tracking models
are trained using the above-mentioned training sets. We will
consider to build a training set for wild animal tracking in
our future work.

According to our evaluation results, the strongest tracker
inWATB is Stark (Yan et al., 2021). But its scores of the nor-

123



International Journal of Computer Vision (2023) 131:899–917 913

Fig. 9 Qualitative evaluation results

malized precision and success AUC (0.577, 0.512) are much
lower than that on LaSOT dataset (0.770, 0.671 Yan et al.
(2021)). For STMTrack, its AUC score on OTB100 is 0.719
Fu et al. (2021) which is much higher than that on WATB
(0.486). It tells us that wild animal tracking is very challeng-
ing and is far from resolved. The declining performance of
these tracking algorithms on WATB datasets occurs for var-
ious reasons, including missing training data, characteristic
physical movements and constraints (e.g., biped, tetrapod,
polyped), irregular or homogeneous skin texture, and lim-
ited resolution caused by video compression. Therefore, a
series of innovations are required in the research of wild ani-
mal tracking, including wild animal appearance modeling,
designing more robust and efficient deep network, building
wild animal datasets for training, etc. Researchers from the
computer vision community are encouraged to take part in
the development of wild animal tracking.

6 Conclusion

In this paper, we introduce WATB, the first benchmark for
wild animal tracking. WATB includes more than 200 video
sequences with over 203,000 frames covering a wide range
of animal species. To the best of our knowledge,WATB is the
first benchmark released in the computer vision community
for evaluating object tracking methods in wild animal track-
ing. Details of the construction of WATB is described so as
to demonstrate our principles of building WATB. In order to
understand the performance of existing tracking methods on
WATB,we extensively evaluate 38popular trackingmethods,
covering emerging Transformer based trackers, Siamese net-
work based trackers, and traditional CF based trackers. We
select CF based trackerswith hand-crafted features, deep fea-
tures and both to do extensive evaluation. The quantitative
and qualitative results demonstrate that Transformer based
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Table 7 English abbreviation
control table

Abbreviation Full

WATB Wild animal tracking benchmark

CF Correlation filter

OTB Online tracking benchmark

NFS Need for speed

LaSOT Large-scale single object tracking

UAV123 Unmanned aerial vehicle 123

GOT10K Generic object tracking 10K

TC128 Temple color 128

AMTSet Abrupt motion tracking dataSet

TOTB Transparent object tracking benchmark

WAMI Wide area motion imagery

MOSSE Minimum output sum of squared error filter

KCF Kernelized correlation filter

STAPLE Complementary learners for real-time tracking

SAMF Scale adaptive kernel correlation filter tracker with feature integration

HOG Histogram of oriented gradient

CN Color naming

SRDCF Spatially regularized discriminative correlation filter

BACF Background aware correlation filter

STRCF Spatial-temporal regularized correlation filter

ASRCF Adaptive spatially-regularized correlation filter

GFSDCF Group feature selection discriminative correlation filter

CNN Convolutional nerual network

MDNet Multi-domain convolutional neural networks

SiamFC Fully-convolutional Siamese network

SiamRPN Siamese regional proposal network

SiamBAN Siamese box adaptive network

SiamCAR Siamese fully convolutional classification and regression

SiamAttn Deformable siamese attention network

trackers show better performance in handling different chal-
lenging factors inwild animal tracking than Siamese network
based trackers and CF based tracker. The results also tell us
that Wild Animal Tracking is far from well resolved. We
believe that WATB will ignite the interests in wild animal
tracking and consequently promote the development of wild
animal behavior analysis and wildlife preservation.

Supplementary Information

Some of the abbreviations and corresponding full names are
shown in Table 7.
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