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Abstract
Video analysis has been moving towards more detailed interpretation (e.g., segmentation) with encouraging progress. These
tasks, however, increasingly rely on densely annotated training data both in space and time. Since such annotation is labor-
intensive, few densely annotated video data with detailed region boundaries exist. This work aims to resolve this dilemma
by learning to automatically generate region boundaries for all frames of a video from sparsely annotated bounding boxes
of target regions. We achieve this with a Volumetric Graph Convolutional Network (VGCN), which learns to iteratively find
keypoints on the region boundaries using the spatio-temporal volume of surrounding appearance and motion. We show that
the global optimization of VGCN leads to more accurate annotation that generalizes better. Experimental results using three
latest datasets (two real and one synthetic), including ablation studies, demonstrate the effectiveness and superiority of our
method.

Keywords Video annotation · Semi-automatic annotation · Graph convolutional network · Automatic boundary finding

1 Introduction

Advances in deep learning techniques have brought about
remarkable progress in many computer vision tasks such
as detection, segmentation, tracking, and recognition. One
major caveat with most deep learning algorithms is that they
need to be trained with a huge amount of data that have been
carefully labeled with ground truth (Everingham et al., 2015;
Lin et al., 2014; Zhou et al., 2019). Furthermore, in many
applications such as autonomous driving, visual analysis has
to be done on every captured frame for real-time processing
or for tasks that require dense spatio-temporal information.
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For these, dense per-frame region-level annotation becomes
essential for training the models.

Manually annotating detailed region boundaries for every
video frame is a highly time-consuming, tedious, if not
impossible, task. To the best of our knowledge, no pub-
licly available dataset offers per-frame annotation. The lack
of densely annotated video data has limited the research
on detailed region-level video analysis and has forced
researchers to explore image-based models instead. Frame-
wise processing, however, misses the spatial-temporal rela-
tionships and can lead to inferior results. As such, dense
per-frame region annotation with an affordable and efficient
means becomes critical. Bounding box is a widely used
and rather cheap supervision. What if we only need anno-
tators to provide region bounding boxes for sparsely chosen
keyframes and then the annotation tool automatically gen-
erates boundaries for the region of interest in every frame,
as illustrated in Fig. 1? We introduce a novel dense video
annotation method that only requires sparse bounding-box
supervision. We fit an iteratively deformed volumetric graph
to the video sub-sequence bounded by two chosen keyframes,
so that its uniformly initialized graph nodes gradually move
to the key points on the sequence of region boundaries. The
model consists of a set of deep neural networks, includ-
ing normal convolutional networks for frame-wise feature
map extraction and a volumetric graph convolutional net-
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Fig. 1 Our goal is to derive a video region annotation tool that can automatically annotate dense per-frame region boundaries from sparse user-
provided bounding boxes given for sparse keyframes

work for iterative boundary point finding. By propagating
and integrating node-associated information (sampled from
featuremaps) over graph edges, a content-agnostic prediction
model is learned for estimating graph node location shifts.
The effectiveness and superiority of the proposed model and
its major components are demonstrated on three latest pub-
lic datasets: a large synthetic dataset Synthia and two real
datasets named KITTI-MOTS and BDD-MOTS capturing
natural driving scenes.

This paper extends our preliminary work (Xu et al., 2020)
by introducing additional motion features and additional
experimental validation that further demonstrates the effec-
tiveness of our method. Brief descriptions of our model
implementation are also provided in this version. To sum-
marize, we extend our preliminary work (Xu et al., 2020)

– By introducing temporal difference map as a newmotion
feature which is more stable than optical flow in real
images for contour finding;

– Bydesigning strict rules to generate our training sequences
from synthetic and real video data which leads to
sequences closer to real annotation scenarios and improves
the effectiveness of our learned model;

– And by showing additional ablation studies on the
effectiveness of the encoder network and the graph
convolutional network which demonstrate different gen-
eralization abilities of the two modules and show the
fundamental differences between different datasets.

2 RelatedWork

Region Annotation versus Segmentation Since one can easily
get confused by the relationship between our work and large
amounts of existing works on segmentation tasks (including

semantic segmentation (Li et al., 2019;Ding et al., 2020; Paul
et al., 2020; Nabavi et al., 2018), object segmentation (Jain
et al., 2017), and instance segmentation (Yang et al., 2019a),
we first clarify the difference. Annotation is the process of
labeling data to be used for machine learning algorithms,
including training and evaluation. Although there have been
many studies in learning from unlabeled data (Cho et al.,
2015; Wang &Gupta, 2015; Lee et al., 2017), many state-of-
the-art algorithms still need some sort of labeled data for
training, and in any case quantitative performance evalu-
ation generally requires ground-truth labels. On the other
hand, segmentation is the process of predicting pixel-level
class labels. The main difference between annotation and
segmentation is that annotation is for building a dataset and,
in contrast, segmentation is a vision task model trained on an
annotated dataset. As such, any segmentation method would
benefit from better annotated data and hence the annotation
tool. This work focuses on region annotation for videos, aim-
ing to alleviate the burden of the annotator to help make the
process of creating ground truth data easier, and thus support
the development of new video analysis models, including
those for image/video based segmentation.
Single-Image Annotation Tools In general, one can still
choose to annotate each frame using image annotation tools.
Representative works are briefly discussed here. One of the
earliest annotation tool that aimed to cut down the time
required to annotate was GrabCut (Rother et al., 2004)
which does interactive foreground/background segmentation
in still images using bounding boxes and foreground and
background marking strokes as its inputs. Polygon-RNN
(Castrejon et al., 2017) and Polygon-RNN++ (Acuna et al.,
2018) use a CNN-RNN architecture to sequentially trace
object boundaries given a bounding box. The RNN can only
output one vertex at a time which could mean slow inference
time depending on the number of vertices to be inferred. In
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subsequent work, Curve-GCN (Ling et al., 2019) attempted
to get around this limitation by modeling object annota-
tion as a boundary control point regression problem and
using graph convolutions to do the joint regression for all
the control points (i.e., graph nodes). It was demonstrated to
be faster and also more effective than Polygon-RNN. Like
Curve-GCN,DeepSnake (Peng et al., 2020) also regresses the
boundary starting from an initial contour. It uses a learned
snake model and achieves good results in the instance seg-
mentation task. Polytransform (Liang et al., 2020) combines
traditional instance segmentation methods with the afore-
mentioned polygon-based methods. It predicts a rough mask
with a segmentation network first, then converts the mask
into a polygon. Finally, it refines the vertices of the poly-
gon with a deforming network. The deforming network uses
the attention mechanism to propagate information within the
vertices of the polygon. The contour of an object can also be
described by triangular grids. Deformable Grid (Gao et al.,
2020) predicts deformed grids whose edges align well with
the object boundary.

Since thesemodels and tools do not use temporal informa-
tion across successive frames, simply extending them for the
desired video region annotation task is likely to be inferior
than our proposed solution. To demonstrate it, we build two
extensions of the state-of-the-art model Curve-GCN (Ling
et al., 2019) and compare them with our proposed model in
Sect. 4.

Video Annotation Tools Annotating objects in video is not as
straight-forward as annotating them in images as it requires
observing their motion paths and taking into account the pos-
sibility of change in shape over time. One of the earliest
video annotation tools publicly available is VATIC (Vondrick
et al., 2013) which uses inter-frame interpolation to gener-
ate bounding boxes automatically. Bounding boxes, however,
are not enough for detailed analyses including pixel-wise
segmentation. There have also been efforts on annotating
regions in videos using active contours (Wang et al., 2014),
approximation of closed boundaries using polygons (Bianco
et al., 2015) and partition trees (Giro-i Nieto et al., 2010).
Recent work ScribbleBox (Chen et al., 2020) provides an
interactive method for video annotation by optimizing both
the boxes and the masks. Despite the differences in getting
the region boundaries within a frame, all these tools con-
duct some kind of annotation propagation or interpolation
across video frames to achieve video annotation. In contrast,
our proposed model jointly optimizes the boundaries in all
frames.
Video Instance Segmentation andMulti-Object Tracking and
Segmentation Video annotation focus on finding the cor-
relation among all the frames, which is closely related to
Video Instance Segmentation (VIS). The goal of VIS is to
perform the detection, segmentation, and tracking tasks in

a video sequence simultaneously. Yang et al. (2019b) first
proposed VIS and by introducing a tracking branch to Mask
R-CNN (He et al., 2017). MaskProp (Bertasius & Torresani,
2020) uses amask propagation branch to propagate predicted
instance masks to all the other frames, which improves the
quality of segmentation and tracking. VisTR (Wang et al.,
2021) proposes an end-to-end framework based on Trans-
formers to generate all the masks of one instance at once.
The temporal information integration is also very impor-
tant for Multi-Object Tracking and Segmentation (MOTS).
Voigtlaender et al. (2019a) introducedMOTS and proposed a
baselinemethod called TrackR-CNN. TrackR-CNNextends
Mask R-CNNwith two 3D convolutions that exploit the tem-
poral information and uses an association head to handle
the tracking task. Annotating MOTS datasets is also time-
consuming. Porzi et al. (2020) propose a trackminingmethod
to extractmore training data.As a sequence-data-related task,
Transformer is a very natural choice. TrackFormer (Mein-
hardt et al., 2021) presents a tracking-by-attention pipeline
with Transformers. The tracking task is handled with the
Transformer encoder-decoder without using a traditional
matching strategy and motion modeling. These works give
us many good hints for temporal information modeling.

3 Volumetric Graph Convolutional Network
(VGCN)

Our aim is to automatically generate dense per-frame region
boundary labels for all the regions of interest in all video
frames.We assume that only the bounding boxes of the target
regions in sparse keyframes are given by the human anno-
tator(s). The whole task can be decomposed into subtasks
each of which focuses on a key step: generating dense per-
frame region boundary labels for a sub-sequence of video
frames bounded by two keyframes, where a single region
inside the target appears across all the frames, as shown in
Fig. 1. This is a reasonable setting as human annotators can
scan the whole video before annotation and place keyframes
to cut the whole sequence of the target region (object, object
part, or even stuff) into sub-sequences with reasonably con-
sistent region shapes.

We have three desiderata for a video annotation model.
First, besides the raw video data, the model can only assume
sparse bounding boxes as the input during testing and
inference. Second, the method should be applicable to arbi-
trary regions (of different shapes and contents) appearing
in sub-sequences of arbitrary lengths. Last, spatial-temporal
inference should be employed to ensure global joint opti-
mization. In this paper, we propose a novel model which
we refer to as Volumetric Graph Convolutional Network
(VGCN) that meets all three requirements. It takes as input a
pair of bounding boxes from two keyframes for data cropping
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Fig. 2 The overall framework of Volumetric Graph Convolutional Network (VGCN). Per-frame feature maps are illustrated on the right

and normalization, as well as initialization. Its local graph
connections (i.e., edges) and weight sharing over the same
types of connections allow uniform formulation and robust
modeling of arbitrary local shapes. The volumetric graph
convolutions integrate and propagate information spatially
and temporally, leading to global spatial-temporal inference
and the ability to handle arbitrary video of various lengths.

3.1 Overall Framework

As shown in Fig. 2, given an input video sub-sequence
bounded by two chosen keyframes, the annotator-provided
keyframe bounding boxes are used to crop the video frames,
normalize them [following Ling et al. (2019)], and extract
frame-wise feature maps whose contents are shown on the
right. The bounding boxes also help VGCN initialize the
locations of its volumetric nodes that correspond to the key-
points of desired boundaries of all video frames. Then the
model samples features from the feature maps according to
the node (i.e., boundary keypoint) locations, and such sam-
pled features are fed into a group of graph convolutional
blocks (8 of them in our implementation) for information
integration and propagation. A fully-connected (FC) layer
is adopted to map the updated features of each node to its
predicted location shifts. After the actual shifting of node
locations, another round of feature sampling and graph con-
volutions can be applied to predict a new round of location
shifts. This process can be iterated several times to ensure an
accurate fit to the actual region boundaries.

3.2 Boundary Initialization

We draw a circle at the center of the cropped image. The
diameter of this circle is 70% of the image height. We then
uniformly sample N points from this circle. In our paper, we
set N to 40.

3.3 Graph Structure

Suppose the sub-sequence where a target region exists is
bounded by two keyframes with a sparsity factor K indi-
cating the frame ID difference between them. The task is
to find the region boundary in each frame. The 1st frame
and the “K + 1”-th frame are the keyframes with bounding-
box supervision. Assume the shape of the region boundary
in each frame can be well-represented by N control points
Vk = {cp0k, . . . , cpN−1

k }, where k indicates the k-th frame
and cpik = [xik, yik]T is the location of the i-th control point
in this frame, we construct a volumetric graph Gv = (V, E)

covering all the frames of the sub-sequence, for which a
three-frame slice is illustrated in Fig. 3. Let V = ⋃K+1

k=1 Vk

denote the graph nodes which are the union of control points
from all the frames, we define the edge set E = Es ∪ Et by
introducing two types of connections for each node cpik . The
spatial connections Es cover both the node’s self-connection
and the links between the node and its four neighboring
nodes (the black lines in Fig. 3), while the temporal con-
nections Et link the node to its corresponding nodes in the
twoneighboring frames (cross-framegreen lines) andoption-
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ally also those nodes’ four spatial neighbors (orange lines).
Depending on the temporal links, the former case is called
“decomposable local connection” as the spatial and temporal
links are orthogonal, and the latter is called “full local con-
nection” or simply “full-connection.” These spatial-temporal
connections enable effective and efficient information inte-
gration and propagation among the graph nodes. For a better
model-data fit, we add onemore frame to each end of the sub-
sequence. As a result, our model deals with K + 3 frames
and has V = ⋃K+2

k=0 Vk .

3.4 Feature Extraction and Representation

With the two keyframe bounding boxes, we get the bound-
ing boxes for other frames with linear interpolation. Then a
15% margin is added to each size of the bounding box to
ensure a sufficient coverage of data even when the bounding
boxes are tight. The extended bounding boxes are used to
crop the frames and normalize the cropped areas to uniform
sizes (with spatial coordinates normalized to [0, 1] by [0, 1]).
Following Curve-GCN (Ling et al., 2019), we extract three
types of features from the normalized data as shown in Fig.
2: appearance features computed using the ResNet-50 (He
et al., 2016) model and boundary features computed using
additional branches to predict the probability of the existence
of an object edge/vertex on a 28 × 28 grid and position fea-
tures (normalized pixel coordinates).

We propose two means to add motion information: opti-
cal flow and temporal difference map. For optical flow, we
integrate it by concatenating the optical flow map [obtained
by FlowNet2.0 (Ilg et al., 2017)] to the original image data
before feature extraction. It contributes to the boundary
features via early fusion, making it motion-aware. For the
temporal difference map (Lipton et al., 1998), we also con-
catenate it with the original images. Given three consecutive
images I1, I2 and I3, two temporal difference maps are com-
puted by |I1 − I2| and |I3 − I2|. In the temporal difference
maps, boundaries of moving objects are easier to detect and
background regions are suppressed.Optical flow is computed
for the whole images, while the temporal difference map is
computed for cropped patches. Compared to an optical flow
map, a difference map is much faster to compute and doesn’t
require an extra model.

3.5 Graph Convolutional Block

Following Curve-GCN, we also adopt the multi-layer GCN
architecture, where each layer has a Graph ResNet structure
as shown in Fig. 4. Mathematically, the graph convolution

for an arbitrary node cpik can be formulated as
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where Wl
o, W

l
s , and Wl

t are the weight matrices at layer l to
be learned for transforming the control point’s own features,
the features of its spatial neighbors (i.e., the nodes connected
to cpik via edges in Es(cpik)), and the features of its tempo-
ral neighbors [(i.e., the nodes connected to cpik via edges in
Et (cpik)], respectively, and f̂ lk,i is the updated feature for cp

i
k

at layer l after one round of information propagation. Note
that in the “full-connection” case the two types of tempo-
ral edges (the ones connecting corresponding nodes, and the
others) have different weight matrices. After that, there is a
ReLU activation glk,i = ReLU ( f̂ lk,i ).

Then, there is another round of convolution
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where W̃ l
o, W̃

l
s , and W̃ l

t are the corresponding weight matri-
ces. Finally, the residual structure combines the updated
feature ĝlk,i and the original feature f lk,i to generate the input
feature for the next layer, together with a ReLU activation
f l+1
k,i = ReLU (ĝlk,i + f lk,i ).

After L layers (l = 0, . . . , L − 1), f Lk,i is fed into a
single fully connected layer to predict the location shift
(Δxik,Δyik) for cp

i
k . Then its coordinates can be updated as

c̃pik = [xik + Δxik, y
i
k + Δyik]T . With the new control point

location, we can get the new features f̃ l+1
k,i and have it go

through the whole VGCN module again to get another loca-
tion shift. Such shifting of control points can be done several
times to nudge the graph nodes to move to the actual region
boundaries.

As shown in Fig. 4, the convolution can be viewed as
spatio-temporal information integration and propagation.
When several blocks are applied, each node can get infor-
mation from a significantly larger area of the video.

3.6 Loss Function

We use the Normalized Bi-directional Chamfer Distance
(NBCD) as the loss to get supervision from the ground-truth
boundaries. It directly measures the accuracy of keypoints
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Fig. 3 Graph structures of two variants of VGCN, full local connec-
tion (recommended) and decomposable local connection (simplest),
illustrated with three adjacent frames. Note that all the nodes of an

intermediate frame will have exactly the same number of edges. Some
edges for “full local connection” are omitted for better visibility

Fig. 4 The graph convolutional block ofVGCN.Both full local connec-
tion (fullly-connected) and decomposable local connection (basic) are
illustrated. The right subfigure shows how the information from graph

nodes (boundary keypoints) is integrated spatially and temporally, using
the decomposable model as an example

and corresponds to the NBCD metric in our performance
evaluation.

3.7 Arbitrary Input FrameModel

If we have sufficient memory for computing, our model can
process arbitrary-sized video frames. Following the data for-
mat ofPytorch (Paszke et al., 2019), N framesofRGB images
with the shape of H ×W are organized in the order of [N ×
C × H ×W ]. The encoder network takes [N ×C × H ×W ]
data as input and outputs an [N × D × H/R × W/R] ten-
sor, where D is the feature dimension. We extract features
from this tensor according to the positions of P number of
nodes. The extracted feature is [N × P×D] and the adjacent

matrix in GCN is [P × D]. We extend the adjacent matrix
in GCN to [N × P × D] to support the information propa-
gation between neighboring frames. Every time we run the
GCN, it can receive information from two adjacent frames.
By running it multiple times, information can be propagated
within a sequence.

4 Experimental Results

4.1 Datasets and EvaluationMetrics

Datasets. Synthia (Bengar et al., 2019) is a recently released
synthetic driving dataset that has ground truth object bound-
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Table 1 Dataset description

Dataset setting Car Person (or Pedestrian) Truck Bus

Synthia-10 Synthetic dataset, 13 frames 20917/0.97 21320/0.89 5538/0.97 2548/0.99

KITTI-MOTS-4 Real dataset, 7 frames 18774/0.92 5068/0.87 –/– –/–

KITTI-MOTS-10 Real dataset, 13 frames 14976/0.84 3549/0.78 –/– –/–

KITTI-MOTS-18 Real dataset, 21 frames 11382/0.75 2394/0.69 –/– –/–

Dataset setting Pedestrian Bicycle Truck Car Bus

BDD-MOTS-4 10969/0.91 840/0.95 11263/0.94 10843/0.94 5222/0.94

Dataset setting Train Val Test

Synthia-10 2127 357 1404

KITTI-MOTS-4 2325 527 554

KITTI-MOTS-10 962 233 230

KITTI-MOTS-18 436 109 111

BDD-MOTS-4 3556 1088 947

Upper part: instance numbers and box mean Intersection over Union (mIoU) for each class in different datasets; lower part: sequence numbers for
different splits in the dataset. ‘–’ means that the number is not available due to the category missing in the corresponding dataset

aries for every frame. This dataset contains 178 training
video sequences captured at 25fps, with lengths ranging
from 15 seconds to 30 seconds. We consider dynamically
moving objects relevant to driving scenarios: person, car,
truck and bus. KITTI MOTS (Voigtlaender et al., 2019b) is
a real dataset for Multi-Object Tracking and Segmentation
(MOTS). It contains 21 training sequences (12 for training,
9 for validation), and 4 testing sequences are reserved for
MOTSChallenge. Thedataset only has twoobject categories:
pedestrian and car, with 99 pedestrians and 431 cars for train-
ing, 68 pedestrians and 151 cars for validation. We use the
12 training sequences for training and the validation set for
testing. Synthia is about 5 times larger in terms of frame/sub-
sequence numbers. BDD-MOTS (Yu et al., 2020) contains 60
training videos, 10 validation videos, and 20 testing videos.
It is about 2 times larger than KITTI-MOTS. We use cate-
gories ‘Pedestrian’, ‘Bicycle’, ‘Truck’, ‘Car’, and ‘Bus’ in
our experiments.
Evaluation Metrics Besides the widely used mIoU and F1-
score measure (Ling et al., 2019) that measures mask and
boundary matching accuracy, respectively, we also use the
Normalized Bi-directional Chamfer Distance (NBCD) to
directly measure the keypoint matching accuracy, so that the
performance can be checked from different perspectives.

4.2 Implementation Details

For an N -frame sequence, only two key-frames contain
ground truth bounding boxes and polygons for training our
VGCN, and the other frames provide no supervision. In test-
ing, the input is just two bounding boxes of the key-frames.

Synthia All the models are trained using Adam (Kingma
& Ba, 2015) with weight decay of 1e−5. We use a learning
rate of 3e−5 for 20 epochs, then use 3e−6 for 20 epochs.
The SGCN is trained with a batch size of 16. The VGCN
models are trained with a sequence with two annotated
keyframes. For those models with extra motion information
in the encoder network, we find it is hard to converge. So we
first train an SGCN for 1 epoch, then use the parameters of
SGCN to initialize our VGCN for warming up.

KITTI-MOTSWe use a learning rate of 3e−5 for 5 epochs,
then continue training with a smaller rate 3e−6 for 5 epochs.
All the models are pre-trained on Synthia.

BDD-MOTS We train the model from scratch. The learn-
ing rate and the number of epochs follow the setting of
Synthia.

4.3 Data Generation

Four rules are followed to generate sequences of images:
there are no overlapping images in different sequences; the
target object should appear in every frame in the sequence;
in every frame, the area of the target object should always
be larger than 100 pixels; all the objects should only contain
one component.

In the Synthia dataset, most of the instances are car or
person. To balance the ratio of different categories, we ran-
domly remove some of the car and person sequences. Objects
like bicycles are annotated by the regions their parts occupy
but not their holistic contours in the Synthia dataset, which
are hard to represent with a single polygon. In the final
data sequences, such objects do not exist. Since new data
sequences have better quality for training, the performance
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Table 2 Results on Synthia-10, measured by mean Intersection over Union (mIoU)

Model Car Truck Person Bus Average

Name Property (8.39k) (0.61k) (8.56k) (0.67k)

SGCN Frame-wise, based on Ling et al. (2019) 86.26 85.87 74.56 81.46 82.04

SGCN-smoothed Video-wise (indirect) 86.27 85.81 74.10 81.58 81.94

VGCN-basic Video-wise 86.86 87.09 76.53 83.29 83.44

VGCN-full + Optical-flow Video-wise, optical flow 87.53 87.98 76.16 83.88 83.89

VGCN-full + Difference-map Video-wise, difference map 87.78 88.25 76.36 85.05 84.36

Since different object categories have different amounts of samples, the number of frames in testing for each category is shown under its name
Bold values indicate the best result in the comparison

of our baseline SGCN is largely improved. Though VGCN
can handle sub-sequences of various lengths, we use equal
lengths by fixing K (default: 10) to easemodel transfer , com-
parisons across datasets and the ablation study on sparsity.
The training split is from the original training sets, while the
validation and test splits are from the original test sets.

For the KITTI-MOTS dataset, we also apply the afore-
mentioned four rules. In KITTI-MOTS, objects move much
faster, so the mIoU value between an interpolated box and
the corresponding ground truth box is generally larger. We
set the interval between key-frames K to 4 to keep a similar
expected mIoU value with that for Synthia , whose K is set
to 10. Note that the actual number of frames for a sequence
is K + 3, as shown in Table 1.

For BDD-MOTS dataset, K is set to 4. We keep the mIoU
of all interpolated boxes higher than 0.7, if not, we drop the
sequence. Since the ‘Car’ category is dominating, we only
use 1/11 of them to get a similar number to other categories.

Table 1 shows the box mIoU, instance numbers, and
sequence numbers of the training, validation, and test splits
for our experiments. For the KITTI-MOTS experiments,
models are trained on KITTI-MOTS-4, and then tested on
KITTI-MOTS-4, KITTI-MOTS-10 and KITTI-MOTS-18.

4.4 Results

4.4.1 Models for Comparison

Instead of video-wise joint boundary inference, onemay sim-
ply apply a frame-wise model (here we choose Curve-GCN
(Ling et al., 2019) as it is the state-of-the-art and also themost
relevant model) to each video frame with either the provided
bounding box (in case of keyframes) or some interpolated
bounding box (for a intermediate frame). We refer to this
model as Spatial Graph Convolutional Network (SGCN), as
it is also based on GCN and only does the graph convolu-
tions spatially. Despite its simplicity, SGCN has a natural
limitation of omitting the temporal relationships among suc-
cessive video frames. To overcome it, one may also think
about simply smoothing the results of SGCN on successive

video frames using a B-spline function, so that the overall
model can be made indirectly video-wise. Such a simple
solution is named ‘SGCN-smoothed’. However, we believe
that a direct modeling of temporal relationships in the model
like the proposed VGCN is necessary and superior. To better
show the performance difference of direct spatio-temporal
modeling and indirect result smoothing, we also test a sim-
plified version of VGCN named ‘VGCN-basic’, by only
keeping the minimal temporal connection (i.e., the decom-
posable local connection as shown in Fig. 3) and excluding
the motion features. Note that for a fair comparison, all the
compared models are trained with the same data which only
have ground-truth on the sparse key frames.

4.4.2 Effectiveness of VGCN

As shown in Tables 2 and 3, VGCN significantly outperforms
SGCN for all metrics on the Synthia dataset. Interestingly,
the negligible differences between the results of SGCN-
smoothed and SGCN also indicate that simple temporal
smoothing is not effective. We conduct the generalization
experiments onKITTI-MOTS by fine-tuning themodels pre-
trained on Synthia. On BDD-MOTS, to leverage the large
amount of data,we train bothSGCNandVGCNfromscratch.
As shown in Table 7, VGCN still outperforms SGCN for all
metrics. Even SGCN is better in mIoU for the ‘Bus,’ and
VGCN achieves a better score on NBCD.

4.4.3 Generalizability

Since our method makes no assumptions on the data, it can
be applied to arbitrary video data. We conduct two types of
experiments to validate the generalizability of VGCN and
compare its performance with those of relevant past works.
One directly applies models trained on Synthia to the test set
of KITTI-MOTS. Table 4 shows the results in the upper part.
The other is fine-tuning the pre-trained model (trained on
Synthia) on the training set of KITTI-MOTS-4 and then test-
ing the fine-tuned models on its test set. If we directly apply
themodels, VGCN-basic outperforms othermodels inmIoU.
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Fig. 5 Comparison of the generalizability of VGCN, and two representative failure cases

Fig. 6 Qualitative results on KITTI-MOTS
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Table 3 Results on Synthia-10 in Normalized Bi-directional Chamfer Distance (NBCD) and F1-score

Model NBCD Average

Car (8.39k) Truck (0.61k) Person (8.56k) Bus (0.67k)

SGCN 6.71 4.81 2.78 5.15 4.86

SGCN-smoothed 6.74 4.83 2.86 5.16 4.90

VGCN-basic 6.51 4.12 2.51 4.73 4.47

VGCN-full + Optical-flow 6.39 4.01 2.57 4.78 4.44

VGCN-full + Difference-map 6.36 4.04 2.52 4.48 4.35

Model F-score (1px/2px) Average

Car (8.39k) Truck (0.61k) Person (8.56k) Bus (0.67k)

SGCN 70.50/83.47 76.60/87.99 81.57/91.32 59.22/79.27 71.97/85.51

SGCN-smoothed 69.98/83.27 76.37/88.00 80.31/ 90.74 59.20/79.44 71.46/85.36

VGCN-basic 74.19/85.93 79.44/90.17 85.44/93.32 64.08/81.79 75.79/ 87.81

VGCN-full + Optical-flow 75.32/86.71 82.27/91.71 84.57/92.86 69.32/85.02 77.87/89.08

VGCN-full + Difference-map 75.76/86.78 82.01/ 91.81 84.83/93.07 71.19/84.47 78.45/89.03

Bold values indicate the best result in the comparison

Table 4 Results on
KITTI-MOTS-4

Model mIoU NBCD F1-score (1px/2px)

Car Ped Car Ped Car Ped

Directly applied

SGCN 79.97 71.76 6.85 5.28 52.59/73.12 49.68/68.86

VGCN-basic 80.97 72.92 6.66 4.95 54.08/74.67 50.48/71.02

VGCN-full + Optical-flow 79.41 72.52 6.94 5.03 55.12/75.01 52.00/72.04

VGCN-full + Difference-map 80.84 72.76 6.80 4.83 58.34/76.99 51.03/71.49

Fine-tuned

SGCN 86.81 77.85 5.21 4.27 70.23/86.96 62.42/79.83

VGCN-basic 86.87 79.61 5.09 3.93 72.42/88.81 67.87/83.87

VGCN-full + Optical-flow 86.64 78.97 5.21 4.15 71.89/87.18 66.48/82.73

VGCN-full + Difference-map 87.42 80.39 5.02 3.83 73.80/89.34 69.40/85.03

Upper part: directly applying the models trained on Synthia; lower part: fully fine-tuned models. ‘Ped’ stands
for ‘Pedestrian’
Bold values indicate the best result in the comparison

VGCN-full with optical flow and VGCN-full with difference
map perform better on Car and Ped in F1-score, respectively.
The basic version of VGCN generalizes better without fine-
tuning. For fine-tuned models, VGCN-full with difference
map outperforms all the other models. VGCN-full is still a
little worse than SGCN for Car instances. These findings
indicate that a model with optical flow performs compara-
tively worse in generalization than a model with difference
map. Our VGCN can handle more complex objects like Per-
son. Examples of how fine-tuning benefits VGCN are shown
in Fig. 5. The figure also shows two representative failure
cases: undesirable regions due to badly interpolated boxes
and extra part caused by object interaction. The qualitative
results are shown in Fig. 6. The regions in red are incorrect
predictions.

4.4.4 Running Time

Inference on a 13-frame sequence takes about 1.1s on a
NVIDIA RTX2080Ti GPU. Note that interactive correc-
tion can be much faster, as features can be pre-computed
and refinement is much faster than inference-from-scratch
as shown in (Ling et al., 2019). For this, we believe the com-
putational speed of our method would be sufficient for real
usage.

4.5 Ablation Studies

We add motion information to VGCN-basic for our ablation
studies. Besides fully fine-tuning the pre-trained models on
KITTI-MOTS dataset, we also fine-tune the encoder module
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Table 6 Ablation studies on VGCN components using KITTI-MOTS-4

Model mIoU NBCD F1-score (1px/2px)

Car Ped Car Ped Car Ped

Directly applied

SGCN 79.97 71.76 6.85 5.28 52.59/73.12 49.68/68.86

VGCN-basic 80.97 72.92 6.66 4.95 54.08/74.67 50.48/71.02

VGCN-basic + Optical-flow 81.40 71.47 6.74 5.48 56.80/76.49 50.48/70.09

VGCN-basic + Difference-map 79.77 71.32 6.69 5.33 51.86/72.87 49.19/69.01

VGCN-full (i.e., VGCN-basic + Full-connection) 80.47 71.83 6.44 4.84 55.73/75.44 49.53/70.25

VGCN-full + Optical-flow 79.41 72.52 6.94 5.03 55.12/75.01 52.00/72.04

VGCN-full + Difference-map 80.84 72.76 6.80 4.83 58.34/76.99 51.03/71.49

Encoder Fixed

SGCN 85.28 74.26 5.79 4.89 66.73/83.02 54.33/72.90

VGCN-basic 85.38 76.56 5.81 4.48 67.92/84.16 59.56/77.37

VGCN-basic + Optical-flow 85.22 74.59 5.86 5.04 66.37/82.37 56.39/74.37

VGCN-basic + Difference-map 85.97 76.48 5.54 4.59 69.74/85.13 59.82/77.78

VGCN-full (i.e., VGCN-basic + Full-connection) 84.98 76.23 5.75 4.52 66.81/83.26 59.23/77.24

VGCN-full + Optical-flow 85.75 75.22 5.74 4.86 67.79/83.75 56.54/74.89

VGCN-full + Difference-map 84.87 77.11 5.71 4.48 65.97/82.79 61.03/78.70

GCN Fixed

SGCN 87.05 77.67 5.12 4.28 70.48/87.25 62.22/79.65

VGCN-basic 87.54 79.70 4.98 3.94 74.11/89.46 68.56/83.95

VGCN-basic + Optical-flow 86.42 78.24 5.51 4.54 72.83/86.10 65.10/80.75

VGCN-basic + Difference-map 87.16 80.23 5.02 3.85 73.18/89.20 69.09/84.71

VGCN-full (i.e., VGCN-basic + Full-connection) 87.39 79.68 5.02 3.97 73.01/88.82 67.93/83.84

VGCN-full + Optical-flow 87.03 77.69 5.28 4.75 74.08/87.84 64.36/79.66

VGCN-full + Difference-map 87.31 80.26 4.98 3.90 73.95/89.55 69.01/84.68

Fully Fine-tuned

SGCN 86.81 77.85 5.21 4.27 70.23/86.96 62.42/79.83

VGCN-basic 86.87 79.61 5.09 3.93 72.42/88.81 67.87/83.87

VGCN-basic + Optical-flow 87.08 78.20 5.14 4.24 72.88/88.11 64.72/81.70

VGCN-basic + Difference-map 87.35 80.27 5.07 3.82 73.70/89.23 69.08/84.67

VGCN-full (i.e., VGCN-basic + Full-connection) 87.46 79.84 5.01 3.96 73.02/89.09 68.34/86.57

VGCN-full + Optical-flow 86.64 78.97 5.21 4.15 71.89/87.18 66.48/82.73

VGCN-full + Difference-map 87.42 80.39 5.02 3.83 73.80/89.34 69.40/85.03

Directly applied: directly applying the models trained on Synthia; encoder fixed: GCN fine-tuned models (pre-trained on Synthia); GCN fixed:
encoder fine-tuned models; fully fine-tuned: fully fine-tuned models. ‘Ped’ stands for ‘Pedestrian’
Bold values indicate the best result in the comparison

and GCN module separately to evaluate their generalization
abilities.

VGCN components As shown in Tables 5 and 6, both the
motion features and the full connection can help improve
the performance. None of the components can benefit all the
categories. VGCN-full outperforms VGCN-basic in Car and
Truck but gets worse results in Person and Bus in the Synthia
dataset. In KITTI-MOTS, fine-tuned VGCN-full with differ-
ence map is better than VGCN-full in Pedestrian, but it is
a little worse for Car. The diversity of object shapes makes
it impossible for a fixed model to achieve the best results

in all categories. VGCN-full with optical flow has similar
performance to SGCN in mIoU, however, the former model
is much better in F1-score. Since mIoU penalizes more for
bad cases, we can say VGCN-full with optical flow performs
better for good cases.

Effectiveness of encoder and GCN Table 4 shows results for
this comparisonoffine-tuning strategies. Ifwefix the encoder
module, the performance of every model will be similar. If
we fine-tune the encoder module only, our proposed model
will outperform the single-frame model. This indicates that
for these two datasets, the topological relationships of objects
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Table 7 Results on BDD-MOTS, measured by mIoU, NBCD and F-score

Model mIoU Average

Pedestrian (1.45k) Bicycle (0.07k) Truck (1.61k) Car (1.33k) Bus (0.28k)

SGCN 68.06 59.23 83.02 80.78 84.35 75.09

VGCN-full + Difference-map 69.71 63.63 83.14 81.08 83.96 76.30

Model NBCD Average

Pedestrian (1.45k) Bicycle (0.07k) Truck (1.61k) Car (1.33k) Bus (0.28k)

SGCN 7.88 15.30 16.08 11.74 15.25 13.25

VGCN-full + Difference-map 7.49 14.44 15.78 11.61 14.78 12.82

Model F-score(1px/2px) Average

Pedestrian (1.45k) Bicycle (0.07k) Truck (1.61k) Car (1.33k) Bus (0.28k)

SGCN 47.76/65.04 22.97/35.88 48.51/64.11 48.59/65.58 44.45/59.48 42.54/58.02

VGCN-full + Difference-map 50.69/68.01 26.48/39.26 48.59/64.20 50.17/66.70 43.51/59.59 43.89/59.55

Bold values indicate the best result in the comparison

Fig. 7 Performance changes w.r.t. annotation sparsity (keyframe interval K )

Table 8 The performance of
different iterations

Iteration number mIoU F-score(1px) F-score(2px) NBCD

Iter. 1 70.79 28.29 41.98 15.97

Iter. 2 74.97 37.94 53.49 13.71

Iter. 3 76.30 43.89 59.55 12.82

Bold values indicate the best result in the comparison
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are similar, while the appearance features are different. This
is why fine-tuning GCN is worse than re-training the encoder
module. VGCN-basic models also perform well in KITTI-
MOTS with a fixed encoder, a simple model may be easier
to fine-tune than a fully connected model.
Motion informationAs shown in Table 6, the temporal differ-
ence map achieves better accuracy than when using optical
flow. This is mainly due to the fact that the optical flow is
less accurate in KITTI-MOTS as it consists of real images
unlike Synthia. When an object moves fast, an optical flow
map may lose the motion information. In contrast, the tem-
poral difference map is computed for cropped images, and it
can still catch the object and find the background and non-
background regions for our interpolated boxes.Also shown in
Table 7, themodel with the temporal differencemap achieves
good performance on the BDD-MOTS dataset.
Sparsity As shown in Fig. 7, we directly apply our model
trained on KITTI-MOTS-4 to KITTI-MOTS-10 and 18. All
the models performworse when K is increased. VGCNmod-
els always outperform SGCN.
Graph Iteration Our model uses three iterations. As shown
in Table 8, all the metrics are improved after each iteration.
Note that the parameters are not shared for the model in each
iteration. A larger iteration number will lead to a larger final
model.

5 Conclusions

This paper presents a novel tool for video region annota-
tion that can generate dense per-frame region boundaries
with only bounding boxes on sparse keyframes provided by
the annotators. We believe our method opens a new avenue
of research for significantly extending video supervision for
general deep vision applications. An important future work
is to extend the method to allow interactive correction in a
human-in-the-loop annotation scheme.
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