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Abstract
Insects are the most important global pollinator of crops and play a key role in maintaining the sustainability of natural
ecosystems. Insect pollination monitoring and management are therefore essential for improving crop production and food
security. Computer vision facilitated pollinator monitoring can intensify data collection over what is feasible using manual
approaches. The new data it generates may provide a detailed understanding of insect distributions and facilitate fine-grained
analysis sufficient to predict their pollination efficacy and underpin precision pollination. Current computer vision facilitated
insect tracking in complex outdoor environments is restricted in spatial coverage andoften constrained to a single insect species.
This limits its relevance to agriculture. Therefore, in this articlewe introduce a novel system to facilitatemarkerless data capture
for insect counting, insect motion tracking, behaviour analysis and pollination prediction across large agricultural areas. Our
system is comprised of edge computing multi-point video recording, offline automated multi-species insect counting, tracking
and behavioural analysis. We implement and test our system on a commercial berry farm to demonstrate its capabilities. Our
system successfully tracked four insect varieties, at nine monitoring stations within polytunnels, obtaining an F-score above
0.8 for each variety. The system enabled calculation of key metrics to assess the relative pollination impact of each insect
variety. With this technological advancement, detailed, ongoing data collection for precision pollination becomes achievable.
This is important to inform growers and apiarists managing crop pollination, as it allows data-driven decisions to be made to
improve food production and food security.
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1 Introduction

Pollinators play a key role in world food production and
ecosystem management. Three out of four flowering plants
(Food & Agriculture Organization of the United Nation,
2019) and 35%of agricultural land (FAO, 2018) require some
degree of animal pollination. This includes over 87 high-
value food crops consumed by humans (Aizen et al., 2009).
The annual market value of pollinator contributions to global
food production is estimated to be in the range of 235–577
billion USD (Potts et al., 2016).

Recently, climate change and other anthropogenic pres-
sures have been implicated in declines in some pollinator
populations (Schweiger et al., 2010; Vanbergen & Initiative,
2013), threatening global food security. In many instances,
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pollinator population size is directly correlated with crop
yield (Rollin & Garibaldi, 2019), although the efficiency
of different pollinator populations varies between crops
(MacInnis & Forrest, 2019). Hence, improved understanding
and management of pollinator communities is important to
boost crop yield (Garibaldi et al., 2017), and for the long-term
viability of many farming projects (Garibaldi et al., 2020).
This need strongly motivates the research presented here to
describe the design and implementation of computer vision
facilitated spatial monitoring and insect behavioural analysis
for precision pollination.

Insect monitoring and sampling can help us to understand
different insect species’ roles in crop and other flowering
plant pollination. Traditional methods of insect monitoring
are straightforward to conduct but are time-consuming and
labour intensive. The use of human labour for traditional
sampling may unintentionally bias results (Dennis et al.,
2006; Simons & Chabris, 1999), increase processing lead
times, reduce reproducibility, and inhibit or interfere with
active pollination monitoring conducted simultaneously in
different areas of a site. Furthermore, conventional sampling
methods lack functional precision—the capacity to model
pollinator movements, motion paths and spatial distribu-
tions. This restricts their value as a means to understand
how insect behaviour effects pollination. Automated and
detailed pollination monitoring techniques with high func-
tional precision are needed that allow continuous assessment
of pollination levels.Mechanised efforts to count insects have
been attempted and improved over the last century, although
it is only with improved technology and Artificial Intelli-
gence that individual recognition in complex environments
has started to emerge as a realistic proposition (Odemer,
2022). In turn, this will facilitate the efficient management
of pollinator resources as agriculture increasingly embraces
data-driven, AI-enhanced technology (Abdel-Raziq et al.,
2021; Breeze et al., 2021; Howard et al., 2021).

Improvement in sensor technology has enabled the use of
inexpensive Internet of Things (IoT) devices, such as cam-
eras and miniature insect-mounted sensors, for pollination
monitoring. Insect-mounted sensors allow movement track-
ing of tagged insects over large areas (Abdel-Raziq et al.,
2021). However, the technique is unsuitable for agriculture
since tagging is laborious, itmay increase insect stress or alter
behaviour (Batsleer et al., 2020), and it is simply impractical
on a large enough scale to be relevant in this context. Camera-
based pollination monitoring can overcome these drawbacks
by tracking untagged insects using computer vision and deep
learning (Howard et al., 2021; Ratnayake et al., 2021a).

In this research, we introduce a novel computer vision
system to facilitate pollination monitoring for large-scale
agriculture. Our system is comprised of edge computing
multi-point remote capture of unmarked insect video footage,
automated offline multi-species motion tracking, as well

as insect counting and behavioural analysis. We imple-
mented and tested our methods on a commercial berry farm
to (i) track individual movements of multiple varieties of
unmarked insect, (ii) count insects, (iii) monitor their flower
visitation behaviour, and (iv) analyse contributions of differ-
ent species to pollination. Along with this article we publish
the monitoring software, a dataset of over 2000 insect tracks
of four insect classes, and an annotated dataset of images
from the four classes. We believe that these will serve as a
benchmark for future research in precision pollination, a new
and important area of precision agriculture.

The remainder of the paper is organised as follows. In
Sect. 2 we present a brief overview of related work con-
cerning computer vision for insect tracking in the wild. Sect.
3 presents our new methods and their implementation. In
Sect. 4 we describe experiments to evaluate the performance
of our approach and present the results of a pollination anal-
ysis to demonstrate our methods’ application. In Sect. 5 we
discuss the strengths and limitations of our approach and
suggest future work. Section 6 concludes the paper.

2 RelatedWork

Recently there has been an increase in the use of com-
puter vision and deep learning in agriculture (Kamilaris
& Prenafeta-Boldú, 2018; Odemer, 2022). This has been
prominent in land cover classification (Lu et al., 2017), fruit
counting (Afonso et al., 2020), yield estimation (Koirala
et al., 2019), weed detection (Su et al., 2021), beneficial
and insect pest monitoring (Amarathunga et al., 2021), and
insect tracking and behavioural analysis (Høye et al., 2021).
Applications of insect tracking and behavioural analysis
algorithms are usually confined to controlled environments
such as laboratories (Branson et al., 2009; Pérez-Escudero et
al., 2014; Walter & Couzin, 2021; Haalck et al., 2020), and
semi-controlled environments such as at beehive entrances
(Campbell et al., 2008; Magnier et al., 2019; Yang et al.,
2018). In these situations, image backgrounds and illumi-
nation under which insects are tracked vary only a little,
simplifying automated detection and tracking tasks. Polli-
nation monitoring of crops however, may require tracking
unmarked insects outdoors in uncontrolled environments
subjected to vegetation movement caused by the wind, fre-
quent illumination shifts, and movements of tracked and
non-target animals. These environmental changes, combined
with the complexity of insect movement under such variable
conditions, increases the difficulty of the tracking problem.
Recent studies attempted to address these issues through in-
situ insect monitoring algorithms (Bjerge et al., 2021a, b),
but were limited in the spatiotemporal resolution required
for efficient pollination monitoring.
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To overcome the difficulties listed above, we previously
presented a Hybrid Detection and Tracking (HyDaT) algo-
rithm (Ratnayake et al., 2021) and a Polytrack algorithm
(Ratnayake et al., 2021a) to track multiple unmarked insects
in uncontrolled conditions. The HyDaT algorithm uses a
hybrid detection model consisting of a deep learning-based
object detection model (YOLOv2 (Redmon & Farhadi,
2017)) and a foreground/background segmentation-based
detection model (K-nearest neighbours (Zivkovic &Van Der
Heijden, 2006)) to track individual insects. In HyDaT, the
deep learning object detection is used to detect insects at their
first appearance in the frame. The foreground/background
segmentation is used to detect insects’ position in subsequent
frames, provided that there are no multiple detections in the
foreground. If the environment is too dynamic and the fore-
ground/background segmentation cannot accurately identify
the position of the insect, the deep learning model is used for
the detection. This enables tracking unmarked and free-flying
insects amidst the changes in the environment. The Poly-
track algorithm (Ratnayake et al., 2021a) extended methods
in HyDaT to track multiple insects simultaneously. In addi-
tion, Polytrack includes a low resolution mode to improve its
video processing speed.

Although previous algorithms enable tracking unmarked
and free-flying insects amidst the changes in the environ-
ment, they are limited to one species and one study location at
a time. To gain a sophisticated understanding of agricultural
pollination, these constraints are limiting since analysis of the
behaviour of multiple insect species that contribute simulta-
neously, in multiple locations, to overall pollination levels or
deficiencies is important (Garibaldi et al., 2020; Rader et al.,
2016). Currently there is no computer vision facilitated sys-
tem, or any other practical system, capable of achieving this
goal. In addition, no previous method can identify and clas-
sify insect pollination behaviour across large-scale industrial
agricultural areas at a level of detail that permits sub-site-
specific interventions to increase farm yield via improved
pollination.

3 Methods and Implementation

In this section, we explain the methods and implementation
of our insect and pollinationmonitoring system.An overview
of the proposed methodology is shown in Fig. 1.

3.1 Multi-Point Remote Video Capture

Video footage of freely foraging, unmarked insects required
for insect tracking and behavioural analysis was collected
using edge computing-based remote camera trap devices
built on the Raspberry Pi single board computer. We used a
Raspberry Pi 4 and Raspberry Pi camera v2 (Sony IMX219

8-megapixel sensor) because it is widely available, cus-
tomisable, there’s a wide range of plug-in sensors, and it
is sufficiently low-cost for replication across a large area
(Jolles, 2021). Videos are recorded at 1920 × 1080 resolu-
tion at 30 f ps, which is the maximum possible frame-rate for
1920 × 1080 resolution on our devices. The system is pow-
ered using a 20000mAh battery bank. However, we do not
process videos to track pollinators in situ since the Raspberry
Pi is currently incapable of processing high quality videos in
real-time, and our key goals required detection of insects.
Reducing the video resolution or the capture frame-rate to
compensate for the lack of speed of the device is not currently
feasible within the limitations imposed by pollinator insect
speed and size. Video recording units were distributed across
nine data collection points in an experimental site (Sect. 3.4
below) and were programmed to continuously record sets of
footage clips of 10 min duration. The caption of each video
clip contained metadata on camera location, recording date
and recording time. (Refer to code availability for the soft-
ware used in the video recording unit.)

3.2 AutomatedMulti-Species Insect Tracking

We processed the videos captured remotely using an offline
automated video processing algorithm. Since food crops
are usually grown in uncontrolled or semi-controlled envi-
ronments subject to changes in illumination and foliage
movement caused by wind and/or insect and human activ-
ity, robust tracking of insects and flowers is essential for
accurate pollination and insect behavioural analysis. Here,
we build on methods presented in HyDaT (Ratnayake et
al., 2021) and Polytrack (Ratnayake et al., 2021a) algo-
rithms to develop an automated algorithm to track multiple
insect varieties simultaneously and detail their interactions
with flowers. Our algorithm uses a hybrid detection model
(adopted fromHyDaT (Ratnayake et al., 2021)) consisting of
a YOLOv4 (Bochkovskiy et al., 2020) deep learning-based
object detectionmodel and aK-nearest neighbours (Zivkovic
& Van Der Heijden, 2006) foreground/background segmen-
tationmodel to detect and identify insects in videos. Detected
insect positions are formed into a coherent trajectory using
the methods proposed in Polytrack (Ratnayake et al., 2021a).
This includes a low-resolution processing mode that rapidly
processes videos when no insects are being tracked. In addi-
tion, we introduce two novel algorithms to track flowers
and identify insect-flower interactions that enable insect
behaviour analysis. In the following sections we present the
technical details of our methods.

At the start of processing each video sequence, our algo-
rithm extracts the time and location at which the video was
captured from the sequence’s embedded metadata. Next,
the video is processed to track movement of insects and
their interactions with flowers. Pilot research revealed that

123



594 International Journal of Computer Vision (2023) 131:591–606

Fig. 1 Overview of the proposed methodology

the position of each respective flower being recorded varies
throughout a day due to wind and farm management activi-
ties, and flowers may physically move termed heliotropism
in some cases to track sunlight (Kevan, 1975; van der Kooi
et al., 2019). Therefore, it is essential to track flower position
within the frame to reliably identify insect-flower interac-
tions. The positions of all visible flowers are detected and
recorded at the start of a video sequence using the deep
learning-based object detector in the hybrid detection model.
The deep learning model was preferred for the flower detec-
tion over a segmentationmodel as it can be extended to detect
and identify different types of flowers in the frame. Flower
positions are updated in predefined user-specified intervals.
In the current implementation an update interval of 100 sec-
onds is used. A “predict and detect” approach is used to track
flower movement. The predicted next position of each flower
is initially identical to its current position, since the magni-
tude of flower movement within a short interval (e.g., ≈ 100
seconds) is assumed to be small.We then used the Hungarian
algorithm (Kuhn, 1955) to associate the predicted position of
each flower to a flower detection in order to form a contin-
uous flower movement track. If a flower being tracked is
undetected in a given frame, the last detected position is car-
ried forward. If a detected flower cannot be assigned to any
predictions it is considered to be a new flower. At the end
of a video sequence, the final positions of flowers and their
respective tracks of interacting insects are saved for later pol-
lination analysis and visualisation.

When an insect first enters the video frame, the deep
learning-based object detector of the hybrid detection model
detects its position and identifies its species. In addition, it
saves a snapshot of the insect for (optional human) visual
verification. After detection and identification of an insect, it
is tracked through subsequent frames using the methods pre-
sented in the Polytrack algorithm (Ratnayake et al., 2021a).
In each frame after the first detection of an insect, its position
is compared with the position of recorded flowers to identify

flower visits. If an insect is detected inside the radius of a
flower for more than 5 consecutive frames (at 30 fps this
ensures it is not flying over the flower at typical foraging
flight speeds (Spaethe et al., 2001)), the spatial overlap is
stored as a flower visit. The radius of a flower is computed
to include its dorsal area and an external boundary threshold.
This threshold is incorporated as some insects station them-
selves outside of a flower while accessing nectar or pollen.
Repeat visits to a flower that occur after an intermediate visit
to another flower are recorded as flower re-visits. When an
insect exits the video frame, the corresponding track is anal-
ysed to identify whether it originated from a false positive
detection made by the deep learning model. If a track has
not visited flowers and the length is less than a predefined
threshold value (10 pixels ≈ minimum radius of a flower), it
is considered a false positive. After the verification, a file
with data on camera location, time of capture and insect
trajectories with flower visitation information is saved for
behavioural analysis. The software and recommended track-
ing parameter values are available with the source code.

3.3 Insect Behaviour Analysis

We analysed insect flower visiting behaviour using the
extracted movement trajectories to infer likely pollination
events. This is appropriate since flowers have evolved struc-
tures that enable visiting insects to conduct pollen dispersal
and transfer between floral reproductive organs for fertil-
isation of ovules by pollen (Real, 2012). Metrics used to
analyse flower visitation behaviour and pollination are pre-
sented below.

Let S = {s1, s2, ..., s|S|} and F be the set of insects
belonging to different species (or varieties at any taxonomic
level) and the set of flowers in the experimental environment
respectively. Here, si = {si1, si2, ..., si|si |} denotes the subset
of insects in S that belong to the i th species type, and sij is

the j th insect in si . Here, if an insect exits a video frame (i.e.,
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it flies out of the camera view or under vegetation) and later
reappears, it will be counted as a new insect. |.| is the cardi-
nality of a given set – e.g., |S| is the number of species types,
|si | is the number of insects belonging to the i th species.

• The number of flowers visited by an insect species si is
defined as FV (si ), where n f sij

is the number of times

insect sij of species s
i visited flower f ∈ F .

FV (si ) =
|si |∑

j=1

∑

f ∈F
n f sij

(1)

• Total number of visits to a flower f from species si is
defined as V F( f , si ).

V F( f , si ) =
|si |∑

j=1

n f sij
(2)

• Total number of visits to a flower f is defined as V ( f ).

V ( f ) =
|S|∑

i=1

|si |∑

j=1

n f sij
(3)

• Number of flowers fertilised with visits from species si

is defined as Npol(si ), where V̂ is the number of visits
required to fully fertilise a flower.

Npol(s
i ) =

∑

f ∈F
[V F( f , si ) ≥ V̂ ] (4)

• Total number of fertilised flowers in a location defined as
Npol .

Npol =
|S|∑

i=1

∑

f ∈F
[V F( f , si ) ≥ V̂ ] (5)

3.4 Implementation

We implemented the proposed spatial monitoring and insect
behavioural analysis system on the commercial Sunny Ridge
farm in Boneo, Victoria, Australia (lat . 38.420942◦ S,
long. 144.890422◦ E) (Fig. 2a). Sunny Ridge grows straw-
berries in polytunnels covered with translucent LDPE dif-
fusing plastic and in open fields. We installed remote video
recording units over nine data collection points in straw-
berry polytunnels (Fig. 2 b) and manually adjusted camera
lenses to focus on strawberry flowers. These data collec-
tion points were selected to cover the edges and central
regions of the polytunnels because previous studies indicated

that edge effects might impact insect movement, foraging
behaviour and numbers within polytunnels (Hall et al., 2020;
Howard et al., 2021). Videos were recorded for a period of
6 days (between 8th and 17th March 2021) from 11 : 00
a.m. to 4 : 00 p.m. (≈ 5 hours) to coincide with the key
pollination period. The video frames covered an area of
∼ 700mm× ∼ 400mm which is thewidth of a planted straw-
berry row at the site (Fig. 2d).

The strawberry farm uses honeybees as managed polli-
nators but farm management staff had also observed other
insects visiting crop flowers. We monitored the behaviour of
four key insect types, honeybees (Apis mellifera), Syrphidae
(hover flies), Lepidoptera (moths and butterflies), and Vesp-
idae (wasps) that actively forage on the farm (Fig. 3). Moths
and butterflies were treated as a single insect pollinator class
(Lepidoptera) for pollination analysis because of their rela-
tively low numbers.

3.4.1 Training the Deep-Learning Model

The automated video processing system employs a deep
learning model YOLOv4 to detect insects and flowers. We
created a custom dataset of 3073 images, each capturing
multiple instances, divided into four classes: (i) honey-
bees/Vespidae (2231/371 instances), (ii) Syrphidae (204
instances), (iii) Lepidoptera (93 instances), and (iv) straw-
berry flowers (14,050 instances). Honeybees and Vespidae
were included in a single Hymenopteran class due to their
physical similarities and thedifficulty of automatically distin-
guishing between them using the low-quality video footage
extracted from the basic cameras (discussed further below).
The prepared dataset was manually annotated with bounding
boxes using theComputerVisionAnnotation Tool (Sekachev
et al., 2019). When annotating small insects such as Syrphi-
dae, videos associatedwith annotation images were carefully
referenced to minimise the possibility of false negative anno-
tations. The YOLOv4 model was then trained on this dataset
using TensorFlow (Abadi et al., 2016) with a learning rate
of 0.001. The pretrained YOLOv4 model and its evaluation
data are available with the software code.

3.4.2 Processing Videos

We processed all recorded videos to extract insect tracks and
insect-flower visiting behaviour using the methods described
in Sect. 3.2. Videos were processed on the MASSIVE
high performance computing infrastructure (Goscinski et al.,
2014) with Intel Xeon Gold 6150 (2.70 GHz) CPU, 55 GB
RAM, NVIDIA Tesla P4 GPU and CentOS Linux (7).
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Fig. 2 Implementation of the pollination monitoring system. a A map
of the SunnyRidge berry farm (implementation site near the city ofMel-
bourne, Victoria, Australia.). Locations of managed honeybee hives are
indicated with yellow hexagons. bNine data collection points in straw-

berry polytunnels. c Edge computing-based remote video capture units
placed over strawberry vegetation. d A sample image to indicate the
field of view captured by a monitoring unit. (The white ruler measures
31 cm end-to-end)

3.4.3 Insect Trajectory Dataset Preparation

We post-processed insect tracks extracted from the videos
to correct insect type identifications. Insect type identifica-
tion was performed on multiple still frames of each insect
assigned to a motion track. A further step was appended to
this process to manually classify Hymenoptera into two sep-
arate classes, honeybees and Vespidae. As reported above,
these insects were initially treated as a single class in train-
ing the deep learning model due to the difficulty of clearly
resolving morphological differences between them in flight

at low video resolution and 30 fps. If the insect type could not
be confidently identified through still images, the insect was
classified based on its movement behaviour after observing
the videos (e.g. if the insect visited flowers, it was identi-
fied as a honeybee as opposed to a Vespidae since relevant
Vespids are considered in study conditions to be predatory
insects (Spencer et al., 2020)). Trajectories that originated
through detections that do not correspond to insects were
identified as false positives and removed during this process.
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Fig. 3 Insect pollinator types foraging on the farm. Images of key insect
types a Apis mellifera sp. (Hymenoptera), b Syrphidae (Diptera), c
Lepidoptera, and d Vespidae (Hymenoptera) captured using the low-
cost edge computing-based remote video recording devices

4 Results

4.1 Experimental Evaluation

We evaluated the performance of our system for extract-
ing the trajectory and flower visitation behaviour of four
insect types (Fig. 3). Experiments were conducted using a
test dataset of 180,000 frames/100 min at 30 frames per
second (comprised of 10 sequential videos of 10 minutes
each). These videos were randomly selected from the set of
recordings unused in deep learning model training and cap-
tured from different polytunnel locations (Test video dataset
is accessible from Data Availability).

We measured the detection accuracy of our algorithm by
calculating precision (Eq. 6), recall (Eq. 7), and Fscore (Eq.
8) metrics (Barreiros et al., 2021) for tracked insects and
flowers.

Precision = TruePosi tive

TruePosi tive + FalsePosi tive
(6)

Recall = TruePosi tive

TruePosi tive + FalseNegative
(7)

Fscore = 2 × (Recall × Precision)

Recall + Precision
(8)

where, TruePosi tive is the total number of correctly
detected insect positions in a track. A detection was con-
sidered correct if the algorithm recorded the position of an
insect in an area that was in fact covered by the body of the
insect. FalseNegative is the total number of undetected
insect positions and FalsePosi tive is the total number of
incorrectly detected insect positions in a track.

The tracks and flower visits reported by our system were
compared against human observations made from the videos
for validation as we found no other existing monitoring sys-
tem against which to compare our software. Test videos were
observed by playing them on VLCmedia player at×5 speed
to record insects and flowers. When an insect appeared in the
frame, the video was analysed frame by frame to record its
flower visits. An insect landing on the dorsal side of a flower
was counted as a flower visitor. Insects that appeared inside
the frame of the video for less than 5 frames were ignored
since at 30 fps this time is too brief to be likely to have anybio-
logical impact on pollination. If an insect departed the frame
and later reappeared, or if it flew under the foliage and later
reappeared, it was considered as a “new” insect. Experimen-
tal results related to insect and flower detection are shown in
Table 1 and results on flower-visit detection are presented in
Table 2. Figure 4 shows the trajectories of insects recorded
in test videos. A detailed description of experimental results
is available in Supplementary Information.

In our test videos, the proposed algorithm tracked honey-
bees with a precision of 0.99, a recall of 0.92 and an F-score
of 0.95. The insect behavioural analysis component of the
algorithm accurately detected 97% of honeybee-flower inter-
actions, and 3% of flower interactions were not recorded due
to undetected flowers. Test videos comprised six appearances
of Syrphidae and the algorithm accurately detected five of
them resulting in a detection rate of 83%. The algorithm
tracked Syrphidae with high precision (1.00), but the recall
rate of 0.71 and F-score of 0.81 were lower than that of hon-
eybees. These lower values were due to the frames where
the insect was undetected (see Discussion). Tracking met-
rics related to Lepidoptera were similar to that of Syrphidae,
where the algorithmdetected and tracked 75%ofLepidopter-
answith precision, recall and F-score values of 0.99, 0.71 and
0.81 respectively. It also recorded all Lepidopteran flower
interactions. The algorithm detected and tracked all Vespidae
present in test videos with a precision rate of 1.00. However,
the recall rate and the F-score were 0.73 and 0.83, respec-
tively. This was because the video frame rate was too low
to track some high-speed Vespidae movements. The pro-
posed algorithm recorded identity swaps (multiple tracks
generated by the same insect) for honeybees, Syrphidae and
Lepidoptera. The study results did not contain false positive
tracks for any insect type, as the algorithm accurately identi-
fied and discarded tracks that originated from false positive
insect detections. The values of the detection evaluation met-
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Table 1 Results of the evaluations of detections for test video dataset.
“No. ofObs.” and “Visible Frames” shows the number of insects/flowers
and number of frames in which the insect/flower were fully visible as
observed through human observations. “Trackletts Generated” shows
the number of trackletts generated by the algorithm for each variety.
“TrackEvaluation” categorises the trackletts generated to TP=True Pos-

itive, FN = False Negative, FP = False Positive, and IS = Identity Swaps.
Multiple tracks generated by a single insect are considered as Identity
Swaps. “Evaluation Metrics” present the average precision, recall and
F-score metrics for tracked insects. A detailed description of experi-
mental results is available in Supplementary Information.

Insect/ Flower No. of obs. Visible frames Trackletts generated Track evaluation Evaluation metrics

TP FN FP IS Precision Recall F-score

Honeybee 20 16846 23 20 0 0 3 0.99 0.92 0.95

Syrphidae 6 3436 6 5 1 0 1 1.00 0.71 0.81

Lepidoptera 4 3158 5 3 1 0 2 0.99 0.71 0.81

Vespidae 10 589 10 10 0 0 0 1.00 0.73 0.83

Flower∗ 72 179306 68 68 4 0 0 1.00 1.00 1.00

∗ Flower positions were detected and recorded at 100 s (= 3000 frame) intervals

Table 2 Results of the experimental evaluations for flower visit detec-
tions for the test video dataset. TP = True positive, FP = False positive,
FN = False-negative “Visit Detection Evaluation” shows the evalua-
tion of flower visits automatically identified through the software for
tracked insects. “Observed Visits” shows the total number of insect
visits to flowers counted through human observations.

InsectType ObservedVisits Visit Detection Evaluation

TP FP FN

Honeybee 67 65 0 2∗

Syrphidae 5 4 1 1

Lepidoptera 6 6 1 0

Vespidae 0 0 0 0

∗ Resulted from undetected flower(s)

rics for flowers were high as there was little or no movement
of flowers apparent within test videos.

4.2 Insect Behavioural Analysis for Precision
Pollination

We applied our methods to analyse pollination in a com-
mercial berry farm to demonstrate its practical relevance for
precision pollination. The dataset for pollination analysis
consisted of 1805 honeybees, 85 Syrphidae, 100 Lepidoptera
and 345 Vespids. The complete trajectory dataset of insects
andflowers is accessible fromDataAvailability. The distribu-
tion of the trajectory lengths is shown in Fig. 5. An analysis
of the temporal variations in insect counts across the data
collection points is shown in Fig. 6.

Spatial monitoring and insect behavioural analysis can
help growers quantify pollination across different farm areas.
We compared pollination levels across farm strawberry poly-
tunnels using insect counts and the number of insect-flower
interactions recorded at each location. Research suggests that
a strawberry flower requires a minimum of four insect visits
to be fully fertilised (Garibaldi et al., 2020; Chagnon et al.,

1989). Therefore, the number of insect visits to a flower can
be used to predict its pollination level. We used the collected
spatial monitoring data to identify flowers that received at
least four insect visits during the biologically relevant data
collection period [5 hours] over which our system operated.
Analysis results are shown in Fig. 7.

Flower-visitation behaviour reflects insects’ crop polli-
nation contributions. We quantified this on the strawberry
flowers by calculating the percentage of flowers that received
visits from each insect type. We further analysed insect-
flower visits to evaluate the pollination efficacy of insect
types by calculating the proportion of flowers that received
the minimum of four insect visits required for fertilisation.
Results of this analysis are shown in Fig. 8.

At all data collection points, we recorded a higher num-
ber of honeybees than other insects (Fig. 7). These insects
contributed the most towards achieving the flower-visitation
targets required for fertilisation (Fig. 8). The next highest
recorded insect were the Vespids (341 tracks) (Fig. 7). How-
ever, Vespids were rarely observed to be visiting flowers – at
location 1 we did identify Vespidae flower visits; see Fig. 8.
This suggests that Vespids do not contribute much to straw-
berry pollination. Indeed Vespids may be a predator of other
insects (Spencer et al., 2020) and can act to inhibit pollina-
tion.We recorded relatively low Lepidopteran and Syrphidae
counts in most areas of the farm (Fig. 7). The contribu-
tion of these species towards achieving flower-visitor targets
required for pollination was observed to be much lower than
that of honeybees (Fig. 8). This effect is evident by the low
relative frequency with which these insects made successive
visits to flowers to meet the four required for optimal fer-
tilisation (Fig. 8). For example, the highest frequency of a
non-honeybee pollinator to meet four visits was Lepidoptera
at location 9where less than 15%of flowers achieve this level
of pollination; whilst at all locations honeybees significantly
exceeded this level of pollination performance (Fig. 8).When
pollination across all locations is considered, over 68% of the
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recorded strawberry flowers received the minimum of four
insect visits required for fertilisation, and 67% of flowers
attained this threshold through honeybee visits alone. This
data thus reconfirms which insects seem, at least as far as the
number of visits is concerned, to contribute the most towards
pollination at the site.

5 Discussion and FutureWork

Insect pollinationmonitoring can improve our understanding
of the behaviour of insects on crops. It can therefore poten-
tially boost crop yield on farms were it not currently heavily
constrained by the labour required for manual data collec-
tion. In this study, a novel multi-point computer vision-based
system is presented to facilitate digital spatial monitoring
and insect behavioural analysis on large scale farms. Our

system operates in real-world commercial agricultural envi-
ronments (Fig. 2) to capture videos of insects, identify them
(Fig. 3), and count the number of different varieties over
large areas (Fig. 7) across time (Fig. 6). Analysis of the insect
behavioural data allows comparison of the contributions of
different insect varieties to crop pollination (Fig. 7 and 8).
Here, we discuss the implications of our research for preci-
sion pollination.

5.1 Computer Vision for Insect Tracking and
Behavioural Analysis

Our methods remove the major constraints imposed by the
limitations of human observers for horticultural pollination
monitoring and the collection of high-resolution spatiotem-
poral data (Fig. 7) on insect behaviour. The approach
therefore also paves the way for computer vision and edge

Fig. 4 Trajectories of insects
and flower positions recorded in
test videos. Track colour
indicates insect variety. The
number of tracks recorded for
each insect type is shown in the
legend in brackets beside insect
type. Flower locations are
circled in yellow.

Fig. 5 The distribution of recorded track lengths (in seconds) for the four insect types. “N” in the legend shows the total number of tracks recorded
for each insect type
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Fig. 6 Temporal variation in insect counts. Figure show the frequency of the insects recorded in each hour of the day at each data collection point.
“T” and “F” in the title blocks show the total number of tracks and flowers recorded at each location

computing devices to identify insect species for other ento-
mological and ethological applications.

The use of relatively inexpensive Raspberry Pi edge com-
puting devices (Fig. 2) for remote recording provides a high
degree of scalability and customisability (Aslanpour et al.,
2021; O’Grady et al., 2019) for insect monitoring. How-
ever, the limited capabilities of these devices requiresmanual
focusing of cameras, confines the size of recorded study
areas (Fig. 2d) and offers only low frame rates and low
quality video. This reduced the system’s ability to detect
small Syrphidae, and resulted in issues with the detection
and tracking of fast-moving Vespids (Table 1). In addition,
the current implementation continuously recorded videos
on the Raspberry Pi even when there was no insect in the
camera frame. This wastes the limited storage and power
capacities available on edge computing devices. We aim to
address this drawback in future work by implementing an
in-situ algorithm on the edge-computing device for real-time
event processing. It is likely that with the rapid improve-
ment of camera technology, video quality and resolution will

overcome current limitations and enhance the accuracy and
efficiency of our methods.

We used a fixed camera setup covering a confined area to
recordvideos (Fig. 2d). This results in a subsamplingof insect
flower visitation and behavioural data.Wepropose that future
research should address this limitation by developing meth-
ods to extend study areas using multiple or moving cameras.
We applied our new methods to monitor insect pollination
behaviour in strawberry crops. Strawberry flowers bloom
within a narrow vertical spatial range and are usually visible
from above (Fig. 2d). By contrast, other crops, such as toma-
toes or raspberry, grow within complex three-dimensional
structures of vines or canes, making overhead camera track-
ing of insects problematic. Monitoring their behaviour in
such three-dimensional crops will require multi-view video
capture and three-dimensional tracking, which is currently a
highly complex and unsolved challenge.

Insect detection is an essential precursor to tracking and
monitoring. Our algorithm accurately detected honeybees
and Vespidae but performed relatively poorly on Syrphi-
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Fig. 7 Results of the spatial monitoring and insect behavioural analysis
for precision pollination. Bar charts above the plots indicate the number
of tracks, total number of flower visits (actual), total number of flower
visits normalised by the recorded number of tracks for each insect type
at each location, and number of flowers recorded at each location. Bar
colour for tracks and flower visits indicates the proportion of tracks
recorded for each insect type. Strawberry flowers typically require
four visits for full fertilisation (Garibaldi et al., 2020; Chagnon et

al., 1989). The dark grey portion of the flowers’ bar graph shows the
number of flowers with over four insect visits. “T” and “F” in the
title blocks are the total number of tracks and flowers recorded at
each location. Trajectory plots show all insect tracks recorded at each
location throughout the data collection period. Track colours represent
different insect varieties. Flower locations are indicated by yellow
circles
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Fig. 8 Contribution of different insect varieties towards strawberry
pollination. Bar chart shows percentage of flowers visited by each
insect type. The dark grey portion shows the percentage of flowers with
over four (number of visits required for strawberry flower fertilisation

(Garibaldi et al., 2020; Chagnon et al., 1989)) from each insect type.
The red dashed line in the plots show the total percentage of flowers
with more than four visits in a location

dae (Table 1). This is because of the relatively small pixel
area covered by the insect with our setup (Syrphidae covers
≈ 40±10 pixels compared to≈ 1001±475 pixels for a hon-
eybee) (Fig. 3). Future improvements in cameras and object
detection technologies (Stojnić et al., 2021) will help here.

We used a hybrid detection model consisting of a deep
learning-based and a segmentation-based detection model to
detect insects in videos. Using a segmentation-based detec-
tion model in tandem reduced the demand for the deep
learning model. This helped to achieve F-scores of 0.8 for
each variety (Table 1) even when trained with a limited and
unbalanceddataset (Ratnayake et al., 2021; 2021a).Our algo-
rithm uses deep learning to detect and classify insects as they
enter the video frame. The results of experimental evaluation
showed limitations in Lepidopteran detection and visually
similar insect detection (i.e. honeybees, Syrphidae and Vesp-
idae (Fig. 3 and Table 1)). Detection of Lepidopterans was
challenging because they sometimes appear similar in shape
to foliage and shadows in the environment. Also, both Lep-
idopterans and Syrphidae rested stationary on flowers for
extendedperiods, prompting the algorithm to classify themas

part of the background. Detection and classification of visu-
ally similar insects requires a deep learning model trained
with large annotated datasets. Although there is a consid-
erable increase in the number of open datasets for animal
classification (Van Horn et al., 2018), there is an absence of
suitable open annotated datasets for insect detection in ento-
mology (Høye et al., 2021). Hence, for the current study,
we built a dataset from scratch. However, our dataset was
unbalanced, since the number of instances in each class was
influenced by the relative abundance of insects recorded at
the site (Wang et al., 2016). We propose that future research
should use characteristics of insect behaviour, such as spatial
signatures of insect movement, to improve species classifi-
cation tasks (Kirkeby et al., 2021). This will help overcome
limitations associated with camera quality and deep learning
datasets. The insect trajectory and video data we publishwith
this article offers a starting point for such solutions.

We used the extracted insect trajectory data to monitor
insect flower visitation behaviour and infer pollination levels.
In our analysis, if an insect departed the frame and later reap-
peared, or if it flew under the foliage and later reappeared, a
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“new” trajectorywas generated.Although this does not affect
the flower-visitor counts, our approach could bias trajectory
counts for species with different behaviours or flight path
characteristics (e.g., flying under foliage and being occluded,
cornering sharply rather than turning smoothly). Our multi-
camera system will enable future research on these topics
especially when combined with emerging solutions for indi-
vidual insect identification.

A classic question in any data sampling is the tradeoff
between focused detail and global context. Our multi-point
system enables a view of what specific insect pollinators are
doing at flowers and also a holistic appraisal of how pol-
lination is enabled across an entire agricultural field. This
solution can be implemented in a variety of ways by choos-
ing different camera lens focal lengths and thus fields of view,
different numbers of cameras, and any field area, depending
upon the resolution required to answer a particular research
question.

5.2 Spatial Monitoring for Precision Pollination

Spatial monitoring and insect behavioural analysis can help
growers understand the distribution of pollinators across a
farm and their impact on pollination. We quantified polli-
nation by counting insect numbers and insect-flower inter-
actions (Fig. 7). Farm areas with many flowers and insects
will likely yield the most crop if there are a suitable number
of insect-flower interactions. Strawberry flowers require at
least four insect visits for full fertilisation (Garibaldi et al.,
2020; Chagnon et al., 1989). However, it is important to note
that crop yield and visitation rates have been observed to
have a non-linear relationship (Garibaldi et al., 2020), where
higher flower visitation rates can result in lower crop yield
(Rollin &Garibaldi, 2019; Garibaldi et al., 2020). Therefore,
it is beneficial to maintain insect flower visits at an optimum
value that depends on the crop type, pollinator species, and
environmental conditions (Garibaldi et al., 2020).

Although different behaviours and morphologies make
some insect species more effective pollinators of some flow-
ers than others, we compared the contribution of different
insect varieties to strawberry pollination using the number
of insect flower visits as a proxy (Fig. 8). The analysis sug-
gests that strawberries can obtain sufficient pollination solely
from honeybees (Fig. 8), even without the presence of other
insects. Whilst non-honeybee insect species do not reach the
threshold of four visits for high effectiveness (Fig. 8), it is
possible these insects may still contribute to pollination (Fig.
7 and 8). Indeed, the absolute volume of insects present may
impact how thresholds are achieved. Employing the com-
puter vision solutionswe share here in different environments
where insect abundance naturally varies will likely inform
researchers about what insects are most beneficial in specific
contexts. In addition, an agricultural system driven by a sin-

gle pollinator type may not be desirable. Pollinator diversity
and associated high flower visitor richness have been shown
to affect pollination and crop yield (Garibaldi et al., 2016).
Often the high abundance of a single pollinator species can-
not be used as a substitute for species richness (Garibaldi et
al., 2016; Fijen et al., 2018) as variations in behaviour and
foraging inherent to different insect species may be impor-
tant.

Compared to manual pollination monitoring, our meth-
ods provide high-resolution spatio-temporal behavioural data
classified by insect type. Our spatial monitoring results (Fig.
7) can assist farmmanagers to identify farm areas that require
immediate attention in order to maximise fruit set. The tem-
poral analysis of variations in insect counts (Fig. 6) can be
used as a guide to understand which duration or sampling
frequency is necessary for a site to understand pollinator
behaviour. Furthermore, the behavioural pollination contri-
bution analysis (Fig. 8) can provide tools and data to identify
efficient pollinator species for a particular crop, enabling
data-driven pollination management.

Pollination monitoring helps understand the impact of cli-
mate change and other anthropogenic activities on insect
populations (Settele et al., 2016). Recently, climate change
and other anthropogenic pressures, including intensive agri-
culture, have caused a decline in some pollinator populations
(Vanbergen & Initiative, 2013; Schweiger et al., 2010; Hall-
mann et al., 2017; Outhwaite et al., 2022) threatening global
food security and terrestrial ecosystem health. The most
impacted pollinator populations are native and wild insects
that must compete for food with managed pollinators while
coping with disease, pollution and habitat loss (Wood et
al., 2020). Digital pollination monitoring systems like that
described here, provide much-needed data for understanding
the impacts of climate change on insect biodiversity and can
ultimately provide a sound basis for conservation.

6 Conclusions

In this paper, we presented a computer vision facilitated sys-
tem for spatial monitoring and insect behavioural analysis
to underpin agricultural precision pollination. Our system
comprised of edge computing-based remote video capture,
offline, automated, unmarked multi-species insect tracking,
and insect behavioural analysis. The system tracked four
insect types with F-scores above 0.8 when implemented on a
commercial strawberry farm. Analysis of the spatial distribu-
tion of flower-visiting behaviour of different insect varieties
across the farm, allowed for the inference of flower fertilisa-
tion, and the comparison of insects’ pollination contribution.
We determined that 67% of flowers met or exceeded the
specified criteria for reliable pollination through honeybee
visits. However, alternative pollinators were less effective at
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our study site. This advancement of computer vision, spatial
monitoring and insect behavioural analysis, provides polli-
nator data to growers much more rapidly, broadly and deeply
than manual observation. Such rich sources of insect-flower
interaction data potentially enable precision pollination and
pollinator management for large-scale commercial agricul-
ture.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11263-022-01715-
4.
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