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Abstract
Multi-animal tracking (MAT), a multi-object tracking (MOT) problem, is crucial for animal motion and behavior analysis
and has many crucial applications such as biology, ecology and animal conservation. Despite its importance, MAT is largely
under-explored compared to other MOT problems such as multi-human tracking due to the scarcity of dedicated benchmarks.
To address this problem, we introduceAnimalTrack, a dedicated benchmark for multi-animal tracking in the wild. Specifically,
AnimalTrack consists of 58 sequences from a diverse selection of 10 common animal categories. On average, each sequence
comprises of 33 target objects for tracking. In order to ensure high quality, every frame in AnimalTrack is manually labeled
with careful inspection and refinement. To our best knowledge, AnimalTrack is the first benchmark dedicated to multi-animal
tracking. In addition, to understand how existing MOT algorithms perform on AnimalTrack and provide baselines for future
comparison, we extensively evaluate 14 state-of-the-art representative trackers. The evaluation results demonstrate that, not
surprisingly, most of these trackers become degenerated due to the differences between pedestrians and animals in various
aspects (e.g., pose, motion, and appearance), and more efforts are desired to improve multi-animal tracking. We hope that
AnimalTrack together with evaluation and analysis will foster further progress on multi-animal tracking. The dataset and
evaluation as well as our analysis will be made available upon the acceptance.
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1 Introduction

In this paper, we are interested in multi-animal tracking
(MAT), a typical kind of multi-object tracking (MOT) yet
heavily under-explored. MAT is critical for understanding
and analyzing animal motion and behavior, and thus has a
wide range of applications in zoology, biology, ecology, and
animal conservation. Despite the importance, MAT is less
studied in the tracking community.

Currently, the MOT community mainly focuses on pedes-
trians and vehicles tracking, with numerous benchmarks
introduced in recent years (Dendorfer et al., 2020; Geiger
et al., 2012; Milan et al., 2016; Zhu et al., 2021). Compared
with MOT on pedestrians and vehicles, MAT is challenging
because of several following properties of animals:

• Uniform appearance Different from pedestrians and
vehicles in existing MOT benchmarks that usually have
distinguishable appearances (e.g., color and texture),
most animals have uniform appearances that visually
look extremely similar (see Fig. 1 for example). As a con-
sequence, it is difficult to leverage their visual features
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(b)Pedestrian targets (partial)(a)Vehicle targets (partial) (c)Animal (e.g., penguin) targets (partial)

Fig. 1 Comparison ofMOT on vehicle, pedestrian and animal. a Shows
multi-vehicle tracking from KITTI (Geiger et al., 2012), b Multi-
pedestrian tracking fromMOT17 (Milan et al., 2016) and cMulti-animal
tracking from the proposed AnimalTrack (Please note that, we only

show part of the targets in each image for simplicity). We can observe
that, animals are more difficult to be distinguished due to uniform
appearance compared to vehicles and pedestrians. Best viewed in color
and by zooming in for all figures in this paper (Color figure online)

only to distinguish different animals by using regular
association (e.g., re-identification) models.

• Diverse pose Animals often possess diverse poses in a
video sequence. For example, a goose may walk or run
on the ground, or swim in water, or fly in air, leading to
significantly different poses. This diverse pose variation
of animals may cause difficulties in detector design for
tracking.

• Complex motion In addition to the aforementioned chal-
lenges, animals also have larger-range motions due to
their diverse poses. For example, animals may frequently
change motions from flying to swimming, or inverse.
These complicated motion patters lead to higher require-
ment on motion modeling for when tracking animal
targets.

The above properties of animals bring in technical difficul-
ties for MAT, making it a less-touched problem. In addition,
another more important reason why MAT is under-explored
is the scarcity of a benchmark.Benchmark plays a crucial role
in advancing multi-object tracking. As a platform, it allows
researchers to develop their algorithms and fairly assess,
compare and analyze different approaches for improvement.
Currently, there exist many datasets (Bai et al., 2021; Dave
et al., 2020; Dendorfer et al., 2020; Du et al., 2018; Geiger
et al., 2012; Milan et al., 2016; Zhu et al., 2021) for MOT on
different subjects in various scenarios. Nevertheless, there is
no available benchmark dedicated for multiple animal track-
ing. Although some of the datasets (e.g., Bai et al., 2021;
Dave et al., 2020) consist of video sequences involved with
animal targets, they are limited in either video quantity and
animal categories (Bai et al., 2021) or number of animal
tracklets (Dave et al., 2020), which makes them not an ideal

platform for studying MAT. In order to facilitate MOT on
animals, a dedicated benchmark is urgently required for both
designing and evaluating MAT algorithms.

Contribution Thus motivated, in this paper we make the first
step for studying the MAT problem by introducing Ani-
malTrack, a dedicated benchmark for multi-animal tracking
in the wild. Specifically, AnimalTrack consists of 58 video
sequences, which are selected from 10 common animal cat-
egories in our real life. On average, each video sequence
contains 33 animals for tracking. There are more than 24.7K
frames in total in AnimalTrack, and every frame is man-
ually labeled with multiple axis-aligned bounding boxes.
Careful inspection and refinement are performed to ensure
high-quality annotations. To the best of our knowledge, Ani-
malTrack is the first benchmark dedicated to the task ofMAT.

In addition, with the goal of understanding how existing
MOT algorithms perform on the newly developed Animal-
Track for future improvements, we extensively evaluate 14
popular state-of-the-art MOT algorithms. We conduct in-
depth analysis on the evaluation results of these trackers.
From the results, not surprisingly, we observe that, most of
these trackers, designed for pedestrian or vehicle tracking, are
greatly degraded when directly applied for animal tracking
on AnimalTrack because of the aforementioned properties
of animals. We hope that these evaluation and analysis can
offer baselines for future comparison on AnimalTrack and
provide guidance for tracking algorithm design.

Besides the analysis on overall performance of different
tracking algorithms, we also independently study the impor-
tant association techniques that are indispensable for current
multi-object tracking. In particular, we compare and ana-
lyze several popular association strategies. The analysis is
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expected to provide some guidance for future research when
choosing appropriate association baseline for improvements.

In summary, we make the following contributions: (i) We
introduce theAnimalTrack,which is, to the best of our knowl-
edge, the first benchmark dedicated tomulti-animal tracking.
(ii)We extensively evaluate 14 representative state-of-the-art
MOT approaches to provide future comparison on Animal-
Track. (iii) We conduct in-depth analysis for the evaluations
of existing approaches, offering guidance for future algo-
rithm design.

By releasing AnimalTrack, we hope to boost the future
research and applications of multiple animal tracking. Our
project with data and evaluation results will bemade publicly
available upon the acceptance of this work.

The rest of this paper is organized as follows. Secion 2 dis-
cusses related trackers and benchmarks of thiswork. Secion 3
will illustrate the proposed AnimalTrack in details. Section 4
demonstrates the evaluation results on AnimalTrack. Sec-
tion 5 presents several discussions in this work, followed by
conclusion in Sect. 6.

2 RelatedWork

MAT belongs to the problem ofMOT. In this section, we will
discuss related MOT algorithms and existing benchmarks
that are related to AnimalTrack. Besides, we will also briefly
review other animal-related vision benchmarks.

2.1 Multi-Object Tracking Algorithms

MOT is a fundamental problem in computer vision and has
been actively studied for decades. In this subsection, we will
briefly review some representative works and refer readers to
recent surveys (Ciaparrone et al., 2020; Emami et al., 2020;
Luo et al., 2021) for more tracking algorithms.

One popular paradigm is called Tracking-by-Detection
which decomposes MOT into two subtasks including detect-
ing objects (Lin et al., 2017; Ren et al., 2015) in each
frame and then associating the same target to generate
trajectories using optimization techniques (e.g., Hungarian
algorithm Bewley et al. 2016 and network flow algo-
rithm Dehghan et al. 2015). Within this framework, numer-
ous approaches have been introduced (Bewley et al., 2016;
Chu et al., 2019; Shuai et al., 2021; Tang et al., 2017; Wojke
et al., 2017; Xu et al., 2019; Yin et al., 2020; Zhu et al.,
2018). In order to improve the data association inMOT, some
other works propose to directly incorporate the optimization
solvers in association into learning (Brasó & Leal-Taixé,
2020; Chu & Ling, 2019; Dai et al., 2021; Schulter et al.,
2017; Xu et al., 2020), which is greatly beneficial for improv-
ing tracking performance from end to end learning in deep
network.

In addition to the Tracking-by-Detection framework,
anotherMOTarchitecture named Joint-Detection-and-Tracking
has recently drawn increasing attention in the community
due to efficiency and simplicity. This framework learns
to detect and associate target objects at the same time,
largely simplifying the MOT framework. Many efficient
approaches (Bergmann et al., 2019; Liang et al., 2022; Lu et
al., 2020; Wang et al., 2020; Zhang et al., 2021b; Zhou et al.,
2020) have been proposed based on this architecture. More
recently, motivated by the power of Transformer (Vaswani et
al., 2017), the attention mechanism has been introduced for
MOT (Meinhardt et al., 2022; Sun et al., 2020) and demon-
strate state-of-the-art performance.

2.2 Multi-Object Tracking Benchmarks

Benchmarks are important for the development of MOT. In
recent years, many benchmarks have been propose.

PETS2009 PETS2009 (Ferryman & Shahrokni, 2009) is one
of the earliest benchmarks for MOT. It contains 3 videos
sequences for pedestrian tracking.

KITTIKITTI (Geiger et al., 2012) is introduced for autonomous
driving. It comprises of 50 video sequences and focuses on
tracking pedestrian and vehicle in traffic scenarios. Besides
2D MOT, KITTI also supports 3D MOT.

UA-DETRAC UA-DETRAC (Wen et al., 2020) includes 100
challenge sequences captured from real world traffic scenes.
This dataset provides rich annotations for multi-object track-
ing such as illumination, occlusion, truncation ration, vehicle
type and bounding box.

MOTChallengeMOTChallenge (Dendorfer et al., 2021) con-
tains a series of benchmarks. The first versionMOT15 (Leal-
Taixé et al., 2015) consists of 22 sequences for tracking.
Due to low difficulty of videos in MOT15, MOT16 (Milan et
al., 2016) compiles 14 new and more challenging sequences
compared to MOT15. MOT17 (Milan et al., 2016) uses the
same videos as in MOT16 but improves the annotation and
applies a different evaluation system. Later, MOT20 (Den-
dorfer et al., 2020) is presentedwith 8 new sequences, aiming
at MOT in crowded scenes.

MOTS MOTS (Voigtlaender et al., 2019) is a newly intro-
duced dataset for multi-object tracking. In addition to 2D
bounding box, MOTS also provides pixel mask for each tar-
get, aiming at simultaneous tracking and segmentation.

BDD100K BDD100K (Yu et al., 2020) is recently proposed
for video understanding in traffic scenes. It provides multiple
tasks including multi-object tracking.

TAO TAO (Dave et al., 2020) is a large-scale dataset for
tracking any objects. It consists of 2907 videos from 833
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categories. TAO sparsely labels objects every 30 frames. Its
average trajectories is 6.

GMOT-40 GMOT-40 (Bai et al., 2021) is a recently pro-
posed benchmark that aims at one-shot MOT. It consists of
40 sequences from 10 categories. Each sequence provides
one instance for tracking multiple targets of the same class.

UAVDT-MOT UAVDT-MOT (Du et al., 2018) consists of
100 challenging videos that are captured with a drone. These
videos mainly cover pedestrian and vehicle for tracking. The
goal of UAVDT-MOT is to facilitate multi-object tracking in
aerial views.

VisDrone-MOTSimilar toUAVDT-MOT,VisDrone-MOT(Zhu
et al., 2021) also focuses onMOTwith drone. The difference
isVisDrone-MOT introducesmore object categories,making
it more challenging.

ImageNet-Vid ImageNet-Vid (Russakovsky et al., 2015) is
one of the most popular benchmarks for visual recognition.
It provides more than 5,000 video sequences collected from
30 categories for various visual tasks including video object
detection and tracking.

YT-VIS YT-VIS (Yang et al., 2019) is a large-scale dataset
containing 2,883 videos from 40 categories. It provides mask
annotations for target objects and aims at facilitating the task
of video instance segmentation and tracking.

DanceTrack DanceTrack (Sun et al., 2022) is a large-scale
benchmark with 100 videos. The aim of DanceTrack is to
explore multi-human tracking in uniform appearance and
diverse motion.

Different from the above datasets for MOT on pedes-
trians, vehicles or other subjects, AnimalTrack focuses on
dense multi-animal tracking in the wild. Although some of
the benchmarks (e.g., TAO Dave et al. 2020 and GMOT-
40 Bai et al. 2021) contain animal targets for tracking, they
have limitations for MAT. For TAO (Dave et al., 2020), the
average trajectory is 6 and even lower for animal, the average
trajectory is 4. Nevertheless, in practice in the wild, it is very
common to see objects moving in a dense group. The sparse
trajectory inTAOmay limits its usage for dense tracking case.
In addition, TAO is sparsely annotated 30 frames, resulting in
difficulty for trackers in learning temporal motion. Despite
several animal videos, GMOT-40 (Bai et al., 2021) is lim-
ited in animal categories (4 classes) and video quantity (12
in total). Besides, GMOT-40 has a different aim for one-
shot MOT. Thus, no training data is provided. Compared to
TAO (Dave et al., 2020) and GMOT-40 (Bai et al., 2021),
AnimalTrack is dense in trajectories and annotation (i.e.,
per-frame manual annotation) as well as diverse in animal
classes.

We are also aware that there exist a few datasets (Betke et
al., 2007; Bozek et al., 2018; Khan et al., 2004) for animal

tracking.However, these datasets are usually small (e.g., with
1 or 2 video sequences) and limited to special animal category
(e.g., Khan et al. 2004 for ant, Betke et al. 2007 for bat, Bozek
et al. 2018 for bee), and therefore may not be suitable for
animal tracking in the deep learning era. Unlike these animal
tracking datasets, our AnimalTrack has more classes with
more videos.

2.3 Other Animal-RelatedVision Benchmarks

Our AnimalTrack is also related to many other animal-
related vision benchmarks outside MOT. The work of Cao
et al. (2019) introduces a large-scale benchmark for animal
pose estimation, which is later extended by Yu et al. (2021)
by adding more images and further increasing categories.
In Mathis et al. (2021), the authors introduce a benchmark
dedicated to horse pose estimation. The work of Bala et al.
(2020) proposes a 3D animal pose estimation benchmark.
The work of Parham et al. (2018) presents a new dataset for
animal localization in the wild. A benchmark for tiger re-
identification is proposed in Li et al. (2019). In Iwashita et
al. (2014), the authors build a benchmark for animal activity
recognition in videos. Different from these benchmarks, the
proposed AnimalTrack focuses on multiple animal tracking.

3 AnimalTrack

3.1 Design Principle

AnimalTrack expects to provide the community with a new
dedicated platform for studying MOT on animal. In partic-
ular, in the deep learning era, it aims at both training and
evaluation for deep trackers. To this end, we follow three
principles in constructing our AnimalTrack:

– Dedicated benchmark One motivation behind Animal-
Track is to provide a dedicated benchmark for animal
tracking. Especially, considering that current deep mod-
els usually require a large mount of data for training, we
hope to compile a dedicated platform containing at least
50 video sequences with at least 20K frames for animal
tracking.

– High-quality dense annotations The annotations of a
benchmark are crucial for both algorithm development
and evaluation. To this end, we provide per-frame man-
ual annotations for every sequence of AnimalTrack to
ensure high annotation quality, which is different than
many MOT benchmarks providing only spare annota-
tions.

– Dense trajectories In real world, it is common to see
animals moving in a dense group. AnimalTrack aims at
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Fig. 2 Number of video sequences for each animal class in Animal-
Track. Each category consists of at least 5 and at most 7 sequences

such dense tracking on animals and expects an average
video trajectory at least 25.

3.2 Data Collection

Our AnimalTrack focuses on dense multi-animal tracking.
We start benchmark construction by selecting 10 common
animal categories that are generally dense and crowded in
the wild. These categories areChicken,Deer,Dolphin,Duck,
Goose, Horse, Penguin, Pig, Rabbit, and Zebra, perching in
very different environments. Although TAO consists of more
classes than ours, many categories in TAO are not available
for dense multi-object tracking, which is different than our
aim in this work.

After determining the animal classes, we search raw
video sequences1 of each class from YouTube (https://www.
youtube.com/), the largest and the most popular video plat-
form in the world. Initially, we have collected over 500
candidate sequences. After a joint consideration of both
video quality and our principles, from these raw sequences
we choose 58 video clips that are finally available for our
task. For each category, there are at least 5 and at most
7 sequences, showing balance in category to some extent.
Figure 2 demonstrates the number of sequences for each cat-
egory inAnimalTrack. It is worth noticing that, in each single
video sequence, there is only one category of animal to track.
Because one of our goals is focused on dense multi-animal
tracking. During the data collection, such dense-scenario
videos with crowded animals usually contain one category
of animals. Because of this, we decide each video consisting
of one animal category for tracking in AnimalTrack.

Finally, we compile a dedicated benchmark for multi-
animal tracking by collecting 58 video sequences with more

1 Each video sequence is collected under the Creative Commons
license.

Table 2 Annotation format in AnimalTrack

Position Name Description

1 Frame number Frame in which
the target
appears;
starting from 1

2 Identifier An unique ID for
each trajectory

3 Box left Coordinate of
top-left corner
of annotated
object

4 Box top Coordinate of
top-left corner
of annotated
object

5 Box width Width of
annotated
object

6 Box height Height of
annotated
object

7 Confidence Flag that
indicates if the
box is
considered (1)
or ignored (−1)
for evaluation;
the confidence
for all targets in
AnimalTrack is
set to 1

8 Class Type of
annotated
object

9 Visibility Visibility ratio of
object; we
ignore it by
setting its value
to −1 in
AnimalTrack

than 24.7K frames and 429Kboxes. The average video length
is 426 frames. The longest sequence contains 2269 frames,
while the shortest one consist of 196 frames.The total number
of tracks in AnimalTrack is 1927, and the average num-
ber of tracks is 33. To our best knowledge, AnimalTrack
is by far the largest benchmark dedicated for animal track-
ing. Table 1 summarizes detailed statistics on AnimalTrack
and comparison with several popular MOT benchmarks and
animal videos in GMOT-40 and TAO.
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Fig. 3 Visualization of consecutive annotated example images at differ-
ent annotation frequencies of 1FPS (column 1–2), 15FPS (column 3–4)
and 30FPS (column 5–6) from each category in AnimalTrack (from
top to bottom: horse-3, deer-4, dolphin-6, duck-4, goose-5, chicken-2,

penguin-5, pig-5, rabbit-2 and zebra-4). We can observe that animals
from the same class usually have uniform appearances and complex
pose and motion patterns, which brings new challenges for tracking
animals
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Fig. 4 Statistics of object motion, area and aspect ratio change com-
pared to initial object and IoU on adjacent object boxes in AnimalTrack
and comparison with popular pedestrian tracking benchmarks includ-

ing MOT17 (Milan et al., 2016) and MOT20 (Dendorfer et al., 2020).
We can observe that the animals in our benchmark have more complex
pose and motions

3.3 Annotation

Weuse the annotation tool DarkLable2 to annotate the videos
in AnimalTrack. Following popular MOTChallenge (Den-
dorfer et al., 2021), we annotate each target in videos with
object identifier, axis-aligned bounding box and other infor-
mation. Table 2 demonstrates the annotation format for each
target in AnimalTrack. Note that, slightly different from
MOTChallenge, we do annotate the visibility ratio of each
target because it is hard to accurately measure the visibility
of the target in real world scenarios. However, we still keep
it (set to −1) for padding to MOTChallenge format.

Toprovide consistent annotations,we follow the following
labeling rules. For target object that is fully visible or partially
occluded, a full-body box is annotated. If the object is under
full occlusion, we do not label it.When this object re-appears
in the view in future, we annotate it with the same identifier.
For target objects out of view, they are assigned with new
identifiers when re-entering the view.

In order to ensure the high-quality annotations of videos
in AnimalTrack, we adopt a multi-round strategy. In specific,
a group of volunteers who are familiar with the tracking
topic and an expert (e.g., PhD student working on related
areas) will first participate inmanually annotating each target
object in the videos. After this, a group of experts will care-
fully inspect the initial annotations. If these initial annotation
results are not unanimously agreed by all the experts, they
will be returned to the original labeling team for adjustment
or refinement.We repeat this process until all annotations are
satisfactorily completed.

To show the quality of our annotations, we visualize a few
annotated sample from each category in AnimalTrack. In
particular, we demonstrate the annotated samples from two

2 The annotation tool is available at https://github.com/darkpgmr/
DarkLabel.

consecutive frames at different annotation frequencies of 1
FPS, 15 FPS and 30 FPS, as shown in Fig. 3. From Fig. 3, we
can see the annotations of our AnimalTrack are consistent
and high-quality.

3.4 Statistics of Annotation

To better understand animal pose and motion, we show rep-
resentative statistics of the annotation boxes of objects in
AnimalTrack in Fig. 4. In particular, we demonstrate the
object motion, relative area to initial object box, relative
aspect ratio (aspect ratio is defined as ratio of width and
width) and Intersection over Union (IoU) on object boxes in
adjacent frames. From Fig. 4, we can clearly observe that
the animal targets vary rapidly in terms of spatial pose and
temporal motions.

In addition, we compare AnimalTrack and popular pedes-
trian tracking benchmarks including MOT17 (Milan et al.,
2016) and MOT20 (Dendorfer et al., 2020). From the com-
parison in Fig. 4, we can see that animals have faster motion
than pedestrians.Moreover, the pose variations of animals are
more complex, which consequently causes new challenges
in tracking animals.

3.5 Dataset Split

AnimalTrack consists of 58 video sequences. We utilize 32
out of 58 for training and the rest 26 for testing. In specific, for
categorywith K videos,we select K /2 videos for training and
the rest for testing if K is a even number, otherwisewe choose
(K + 1)/2 videos for training and the rest for testing. During
dataset splitting, we try our best to keep the distributions of
training and testing set as close as possible. Table 3 compares
the statistics of training/testing sets in AnimalTrack. Note
that, the number of frames for the testing set is slightly more
than that for the training set. The reason is that the testing
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set contains more longer video sequences for challenging
evaluation. The detailed spilt will be released at our project
website.

4 Evaluation

4.1 EvaluationMetric

For comprehensive evaluation of different tracking algo-
rithms, we use multiple metrics. Specifically, we employ the
recently proposed higher order tracking accuracy (HOTA)
from Luiten et al. (2021), commonly used CLEAR metrics
from Bernardin and Stiefelhagen (2008) including multiple
object tracking accuracy (MOTA), mostly tracked targets
(MT), mostly lost targets (ML), false positives (FP), false
negatives (FN), ID switches (IDs) and number of times a tra-
jectory is fragmented (FM) and IDmetrics fromRistani et al.
(2016) such as identification precision (IDP), identification
recall (IDR) and related F1 score (IDF1) which is defined
as the ratio of correct detections to the average number of
GT and computed detections. Many previous works employ
MOTA as the main metric (e.g., for ranking). Nevertheless, a
recent study (Luiten et al., 2021) shows that MOTAmay bias
to target detection quality instead of target association accu-
racy. Considering this, we follow (Geiger et al., 2012; Sun et
al., 2022) to adopt HOTA as the main metric in evaluation.
For detailed definitions of these metrics, we refer readers
to Bernardin and Stiefelhagen (2008); Ristani et al. (2016);
Luiten et al. (2021).

4.2 Evaluated Trackers

Understanding how existing MOT algorithms perform on
AnimalTrack is crucial for future comparison and also bene-
ficial for tracker design. To such end, we extensively evaluate
14 state-of-the-art multi-object tracking approaches.

These approaches include SORT (Bewley et al., 2016)
(ICIP’2016), DeepSort (Wojke et al., 2017) (ICIP’2017),
IoUTrack (Bochinski et al., 2017) (AVSS’2017), JDE (Wang
et al., 2020) (ECCV’2020), FairMOT (Zhang et al., 2021b)
(IJCV’2021), CenterTrack (Zhou et al., 2020) (ECCV’2020),
CTracker (Peng et al., 2020) (ECCV’2020), QDTrack (Pang
et al., 2021) (CVPR’2021), ByteTrack (Zhang et al., 2021a)
(arXiv’2021),Tracktor++ (Bergmannet al., 2019) (ICCV’2019),
TADAM(Guoet al., 2021) (CVPR’2021),Trackformer (Mein-
hardt et al., 2022) (CVPR’2022), OMC (Liang et al.,
2022) (AAAI’2022) and TransTrack (Sun et al., 2020)
(arXiv’2020). Notably, among these approaches, TransTrack
and Trackformer are two recently proposed trackers using
Transformer. Despite excellent performance on pedestrian
tracking, these trackers quickly degrade in tracking animals
as shown in later experimental results.

In this work, following the popular MOT challenge,
we adopt a private-detection setting, where each tracker is
allowed to use its own detector, for performance evaluation
and comparison. In particular, for all the chosen trackers, we
use their architectures (including the detection component)
as they are, without any modifications, but train them on our
AnimalTrack. The reasons why we utilize their default archi-
tectures for training are two-fold. First, different approach
may need different training strategies, which makes it dif-
ficult to optimally train each tracker for best performance.
Moreover, inappropriate training settings may decrease the
performance for certain trackers. Second, the original config-
uration for each tracker has been verified by authors. Thus,
it is reasonable to assume that each tracker is able to obtain
decent results even without modification. It is worth noting
that, in this private setting, the detection component in each
tracker is trained as well on AnimalTrack for localizing fore-
ground target objects (i.e., objects in all animal categories in
AnimalTrack) for tracking. Once training on AnimalTrack
completed, these trackers will be evaluated.

4.3 Evaluation Results

In this work, the evaluation of each tracking algorithm is
conducted in “private setting” in which each tracker should
perform both object detection and target association.

4.3.1 Overall Performance

We extensively evaluate 14 state-of-the-art tracking algo-
rithms. Table 4 shows the evaluation results and comparison.

From Table 4, we observe that QDTrack shows the
best overall result by achieving 47.0% HOTA score and
TransTrack the second best with 45.4%HOTA score, respec-
tively. QDTrack densely samples numerous regions from
images for similarity learning and thus can alleviate the prob-
lem of complex animal poses in detection in some degree,
as evidenced by its best result of 55.7% on MOTA that
focuses more on detection quality. This dense sampling
strategy not only improves detection but also benefits later
association, which is shown by its best 56.3% IDF1 score.
TransTrack obtains the second best overall result with 45.4%
HOTA score. On IDF1, it also exhibits the second best result
with 53.4%. TransTrack utilizes the query-key mechanism
in Transformer for multi-object tracking. The competitive
performance of TransTrack shows the potential of Trans-
former for MOT. We notice that another Transformer-based
tracker Trackformer shows poorer performance compared
to TransTrack. We argue that the reason is because of its
relatively weaker detection module. Tracktor++ shows the
second best MOTA result with 55.2% owing to its adoption
of strongFasterR-CNN(Ren et al., 2015) for detection.Com-

123



506 International Journal of Computer Vision (2023) 131:496–513

Ta
bl
e
4

O
ve
ra
ll
ev
al
ua
tio

n
re
su
lts

an
d
co
m
pa
ri
so
n
of

di
ff
er
en
tt
ra
ck
in
g
al
go

ri
th
m
s
on

A
ni
m
al
T
ra
ck

T
ra
ck
er

H
O
TA

(%
)

M
O
TA

(%
)

ID
F1

(%
)

ID
P
(%

)
ID

R
(%

)
M
T

PT
M
L
↓

FP
↓

FN
↓

ID
s↓

FM
↓

SO
R
T
(B

ew
le
y
et
al
.,
20
16
)

42
.8

55
.6

49
.2

58
.5

42
.4

33
3

47
0

30
1

19
,0
99

86
,2
57

25
30

37
30

IO
U
T
ra
ck

(B
oc
hi
ns
ki

et
al
.,
20
17
)

41
.6

55
.7

45
.7

51
.9

40
.7

38
8

45
4

26
2

25
,2
06

77
,8
47

46
39

52
59

D
ee
pS

O
R
T
(W

oj
ke

et
al
.,
20
17
)

32
.8

41
.4

35
.2

49
.7

27
.2

21
3

45
2

43
9

14
,1
31

12
4,
74
7

35
03

45
27

JD
E
(W

an
g
et
al
.,
20
20
)

26
.8

27
.3

31
.0

51
.0

22
.0

10
6

41
4

58
4

17
,8
87

15
5,
62
3

31
87

50
31

Fa
ir
M
O
T
(Z
ha
ng

et
al
.,
20
21
b)

30
.6

29
.0

38
.8

62
.8

28
.0

14
3

46
2

49
9

17
,6
53

15
2,
62
4

23
35

54
47

C
en
te
rT
ra
ck

(Z
ho

u
et
al
.,
20
20
)

9.
9

1.
6

7.
0

8.
9

5.
8

26
5

42
3

41
6

32
,0
50

11
7,
61
4

89
,6
55

75
83

C
T
ra
ck
er

(P
en
g
et
al
.,
20
20
)

13
.8

14
.0

14
.7

35
.2

9.
3

20
31
3

77
1

13
,0
92

19
2,
66
0

34
37

80
19

T
ra
ck
to
r+
+
(B
er
gm

an
n
et
al
.,
20
19
)

44
.2

55
.2

51
.0

58
.5

45
.1

36
4

47
2

26
8

25
,4
77

81
,5
38

19
76

41
49

B
yt
eT

ra
ck

(Z
ha
ng

et
al
.,
20
21
a)

40
.1

38
.5

51
.2

64
.9

42
.3

31
0

46
5

32
9

31
,5
91

11
6,
58
7

13
09

35
13

Q
D
T
ra
ck

(P
an
g
et
al
.,
20
21
)

47
.0

55
.7

56
.3

65
.6

49
.3

36
7

42
0

31
7

22
,6
96

83
,0
57

19
70

56
56

TA
D
A
M

(G
uo

et
al
.,
20
21
)

32
.5

36
.5

37
.2

44
.4

32
.0

25
8

49
5

35
1

41
,7
28

11
0,
04
8

25
38

44
69

O
M
C
(L
ia
ng

et
al
.,
20
22
)

43
.0

53
.4

50
.3

61
.8

42
.4

32
4

47
8

30
2

15
,9
10

92
,5
70

49
38

71
62

T
ra
ck
fo
rm

er
(M

ei
nh
ar
dt

et
al
.,
20
22
)

31
.0

20
.4

36
.5

40
.9

32
.8

23
0

49
1

38
3

70
,4
04

11
8,
72
4

43
55

37
25

T
ra
ns
T
ra
ck

(S
un

et
al
.,
20
20
)

45
.4

48
.3

53
.4

63
.4

46
.1

32
7

41
6

36
1

28
,5
53

95
,2
12

19
78

64
59

T
he

be
st
tw
o
re
su
lts

on
ea
ch

m
et
ri
c
ar
e
hi
gh

lig
ht
ed

in
bo

ld
an
d
ita

lic
fo
nt
s

123



International Journal of Computer Vision (2023) 131:496–513 507

OMC SORT TransTrack Tracktor++ QDTrack
de
er

do
lp
hi
n

du
ck

go
os
e

ho
rs
e

pe
ng

ui
n

pi
g

ra
bb

it
ze
br
a

ch
ic
ke
n

Fig. 5 Visualization of top five trackers consisting of OMC (Liang et
al., 2022), SORT (Bewley et al., 2016), TransTrack (Sun et al., 2020),
Tracktor++ (Bergmann et al., 2019) and QDTrack (Pang et al., 2021)

based on HOTA scores on several sequences. Each color represents a
tracking trajectory. Please notice that, we only show two trajectories for
each tracker in the visualization for simplicity (Color figure online)
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Difficulty Comparison on AnimalTrack using HOTA
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(a)Difficulty comparison using HOTA (b) Difficulty comparison using DetA (c) Difficulty comparison using AssA

Fig. 6 Difficulty comparison of different categories in AnimalTrack using different metrics including HOTA (a), DetA (b) and AssA (c). The larger
the average score is, the less difficult the category is

pared with pedestrians, animal detection is more challenging
and the usage of two-stage detectors may be more suitable.

In addition, we see some interesting findings on Animal-
Track. For example, SORT and IoUTrack are two simple
trackers and outperformed by many recent approaches on
pedestrian tracking benchmarks. However, we observe that,
despite simplicity, these two trackers works surprisingly well
on AnimalTrack. SORT and IOUTrack achieve 42.8 and
41.6%HOTA score, respectively, which surpass many recent
state-of-the-arts such as JDE, FairMOT, and CTracker. This
observation demonstrates that more efforts and attentions
should be devoted and paid to the problem of multi-animal
tracking.

Besides quantitatively evaluating and comparing different
MOT approaches, we further show the qualitative results of
different trackers. Due to limited space, we only demonstrate
the qualitative results of top five trackers based on HOTA as
in Fig. 5.

4.3.2 Difficulty Comparison of Categories

We analyze the difficulty of different animal categories in
AnimalTrack. In specific, we simply average the scores of
all evaluated trackers on one category to obtain the score for
this category. Figure 6 shows the comparison. In Fig. 6, the
larger the average score is, and the less difficult the category
is. FromFig. 6, we can see that, overall, the category ofHorse
is the easiest to track while the class ofGoose is the most dif-
ficult to track based on the average HOTA score (see Fig. 6a).
We argue that Goose is the hardest because the gooses may
have the most complex motion patters, which results in diffi-
culties for detection (see average DetA score in Fig. 6b) and
association (see average AssA score Fig. 6c). It is worth not-
ing that, althoughGoose is easier thanDolphin to detect, it is
much more difficult to associate. As a consequence, Goose
is harder than Dolphin to track. By conducting this hardness
analysis, we hope that it can guide researchers to pay more
attention to the difficult categories.

4.3.3 Comparison of MOT17 and AnimalTrack

Currently, one of the main focuses in MOT community is to
track pedestrians. Different from pedestrian tracking, animal
tracking is more challenging because of uniform appearance
of animals. In order to verify this, we compare the perfor-
mance of existing state-of-the-art tracking algorithms on the
popular MOT17 and the proposed AnimalTrack. Notice that,
we only compare the trackerswhoseHOTA,MOTAand IDF1
scores are available on both MOT17 and AnimalTrack. Fig-
ure 7 displays the comparison results of these trackers.

From Fig. 7a, we can see that the best two perform-
ing trackers on MOT17 are ByteTrack and FairMOT that
achieves 63.0 and 59.3% HOTA scores. Despite this, these
two trackers degrade significantly when tracking animals on
AnimalTrack. Specifically, their HOTA scores decrease from
63.1 to 40.1% and from 59.3 to 30.6%, showing absolute
perform drops of 23.0 and 28.7%, respectively. Tracktor++
slightly performs worse on AnimalTrack than MOT17. This
tracker utilizes a strong detection for tracking and shows
competitive performance. Although QDTrack achieves the
best HOTA result, its performs degrades on AnimalTrack
compared to that onMOT17, which evidences again the chal-
lenge and difficulty we face in handling animal tracking. It is
worth noting that, CenterTrack has the largest performance
drop on AnimalTrack. We have carefully inspected the offi-
cial implementation to ensure its correction for evaluation.
After taking a close look at the implementation, we find that
the features extracted in CenterTrack are not suitable for ani-
mal tracking, resulting in poor performance.

In addition to overall comparison using HOTA, we com-
pare the MOTA score. From Fig. 7b, we can observe
that the best two trackers on MOT17 are ByteTrack and
TransTrack with 80.3 and 74.5%MOTA scores, respectively.
Nevertheless, when tracking animals on AnimalTrack, their
MOTA scores are decreased to 37.9% (42.4% absolute per-
formance drop) and 48.3% (26.2% absolute performance
drop), respectively, which shows that the animal detection
is more challenging compared to human detection. Besides
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(b)

(a)

(c)

Fig. 7 Comparison of different trackers on pedestrian tracking bench-
mark MOT17 and the proposed AnimalTrack in terms of HOTA (a),
MOTA (b) and IDF1 (c). We note that, compared to MOT17, all track-
ers become degenerated on all metrics on AnimalTrack, which shows
that multi-animal tracking is more challenging than pedestrian tracking
and there is a long way for improving animal tracking

Fig. 8 Visualization and comparison of appearance features for re-
identification between pedestrians and animals using t-SNE (Van der
Maaten & Hinton, 2008). The same target object is represented as dots
with the same color. We choose the first 30 target objects in the first
200 frames for visualization. We can clearly see that the appearance
features of animals are more difficult to distinguish compared to pedes-
trian appearance features, resulting in new challenge for animal tracking
(Color figure online)

the best two trackers on MOT17, other approaches become
degenerated on AnimalTrack, which further reveals the gen-
eral difficulty of detection on AnimalTrack. We notice that
Tracktor++ perform consistently on both AnimalTrack than
MOT17 (55.2% v.s. 56.3%). We argue that this is attributed
to its powerful regressor in detection.

Moreover, we also demonstrate the comparison of IDF1
score of each tracker onMOT17 and AnimalTrack in Fig. 7c.
As shown, we find that the best two trackers on MOT17 are
ByteTrack and FairMOT with 77.3 and 72.3% IDF1 scores.
Compared to their performance on AnimalTrack with 51.0
and 38.3% IDF1 scores, the absolute performance drops are
22.3 and 33.5%, respectively, which highlights the severe
challenge in associating animals with uniform appearances.
Furthermore, in addition to these two trackers, all other
trackers including the best performing tracker QDTrack on
AnimalTrack are actually greatly degenerated in IDF1 score,
demonstrating more efforts required for solving association
in animal tracking.

To further compare pedestrian and animal tracking, we
analyze the appearance similarities of different pedestrians
and animals on MOT17 and AnimalTrack. In particular, we
train two re-identification networks with identical architec-
tures onMOT17 andAnimalTrack, respectively. Afterwards,
we extract the features of pedestrians and animals and adopt
t-SNE (Van der Maaten & Hinton, 2008) to visualize these
features. Figure 8 shows the visualization of appearance fea-
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Table 5 Analysis on different association strategies

Association HOTA (%) MOTA (%) IDF1 (%)

❶ IOUTrack 41.6 55.7 45.7

❷ SORT 42.8 55.6 49.2

❸ DeepSORT 38.2 52.0 44.2

❹ ByteTrack 36.3 37.1 47.0

❺ QDTrack 47.0 55.7 56.1

The detection is provided by Faster R-CNN (Ren et al., 2015)

tures of pedestrians and animals. From Fig. 8, we can clearly
observe that the features of animals are more complex and
indistinguishable because highly similar appearances of ani-
mals compared to pedestrian appearances.

From the extensive quantitative and qualitative analysis
above, we can see that tracking animals is more challenging
and difficult than tracking pedestrians.Despite rapid progress
on pedestrian tracking, there is a long way for improving
animal tracking.

4.3.4 Analysis on Association Strategy

Association is a core component in existingMOTalgorithms.
In order to analyze and compare different association strate-
gies,we conduct an independent experiment. Specifically,we
adopt the classic and powerful detector Faster R-CNN (Ren
et al., 2015) to provide detection results on AnimalTrack.
Based on the detection results, we perform analysis on four
different association strategies.

Table 5demonstrates the comparison results. FromTable 5,
we can observe that QDTrack (see❺) obtains the best perfor-
mance with 47.0% HOTA score compared to trackers using
other association methods, which shows that the quasi-dense
matchingmechanism for association is robust in dealingwith
animal targets with similar appearances by considering more
possible regions of box examples and hard negatives. SORT
(see❶) and IOUTrack (see❷) simply usemotion information
instead of appearance to perform association but achieves the
second and the third best results with 42.8 and 41.6% HOTA
scores. This shows that taking into consideration the motion
cues in videos is beneficial for distinguishing targetswith uni-
form appearances. Compared to SORT, DeepSORT (see ❸)
adopts target appearance information for association but the
performance is degraded, which once again evidences that

appearance should be carefully designed when applied for
associating animals.ByteTrack (see❹) is a recently proposed
approach and demonstrates state-of-the-art performance on
multiple pedestrian and vehicle tracking benchmarks. The
main success on these benchmarks comes from its association
on all detected boxes. However, because animals have uni-
form appearances and it is hard to leverage their appearance
information as in pedestrian or vehicles to distinguish differ-
ent targets.More efforts are desired for designing appropriate
association for animal targets.

4.3.5 Detection on AnimalTrack

Object detection has been a crucial component for multi-
object tracking. Because of this, we have conducted an
experiment with Faster R-CNN (Ren et al., 2015) using
ResNet-101 (He et al., 2016) to demonstrate its detection
capacity on our AnimalTrack. The reason to choose Faster
R-CNN is because it is one of the most classic and popular
detection frameworks and used inmanymulti-object tracking
algorithms.

Following MS COCO (Lin et al., 2014), we adopt aver-
age precision (AP), AP50 and AP75 for detection evaluation.
Definitions of these metrics can be found in Lin et al. (2014).
Table 6 reports the overall and per-category detection results.
From Table 6, we can see that the overall AP, AP50 and AP75
scores are 16.1, 34.4 and 13.8%, respectively. Compared to
the performance of Faster R-CNN for generic object detec-
tion, there is still a large room for future improvements for
animal detection on AnimalTrack.

5 Discussion

5.1 Discussion on EvaluationMetric

Evaluation metric is crucial in assessing and comparing dif-
ferent tracking algorithms. In this work, we leverage the
common MOT metrics (see Sect. 4.1) for evaluation. How-
ever, thesemetricsmay neglect a fact that a videomay consist
of too many simple tracking scenes during evaluation, which
could impact the fairness in evaluating the abilities of trackers
in handling hard tracking scenes. In fact, this issue does not
only appear in multi-object tracking, but also in many other

Table 6 Overall and per-category detection results of Faster R-CNN (Ren et al., 2015) on AnimalTrack

All Chicken Deer Dolphin Duck Goose Horse Penguin Pig Rabbit Zebra

AP (%) 16.1 25.4 2.5 13.4 49.5 5.9 16.3 16.7 12.6 6.9 11.9

AP50 (%) 34.4 51.3 5.2 33.1 81.5 21.8 34.7 35.9 35.4 14.0 31.6

AP75 (%) 13.8 23.7 2.3 8.6 56.0 0.9 13.4 12.8 6.8 5.9 7.9
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Table 7 Statistics on the major animal motions

Motion Animal category

Eat Chicken, Duck, Horse, Pig, Zebra,

Flap Chicken, Duck, Goose, Penguin

Walk Chicken, Deer, Duck,
Goose, Horse,
Penguin, Pig, Rabbit,
Zebra

Run Deer, Horse, Pig, Rabbit

Flight Duck, Goose

Fly Duck, Goose

Swim Dolphin, Duck, Goose, Penguin, Zebra

Slide Penguin

tasks such as single-object tracking. In order to mitigate this
problem, a potential solution is to provide finer annotation
for the dataset for designing new metrics. For example, a
group of experts (e.g., three PhD students working in related
field) could offer extra weight information regarding the dif-
ficulty of scenes in each frame. The larger the difficulty of
the scene is for tracking, the higher the weight is, otherwise
the lower the weight is. With the weights for different diffi-
culty degrees available, we can then design difficulty-aware
metrics to improve existing measurements by paying more
attention to hard tracking scenes, e.g., assigningmore weight
to difficult frames when computing the overall performance.
In addition to the difficulty-aware overall performance, we
can respectively compare different algorithms under the sim-
ple and the hard frames as we know which frames are simple
and difficult, which enables in-depth analysis for different
scenes. However, currently this is beyond the goal of this
work. We leave it as our future work to explore more fair
metrics for evaluation.

5.2 Discussion on Animal Motions

One of the reasons why tracking animals is challenging is
because of their diverse motion patterns. In order to allow
readers better understand animal motions in our Animal-
Track, we provide a summary as in Table 7. From Table 7,
we can see that there exist eight major animal motions
in AnimalTrack. Compared to existing pedestrian tracking
benchmarks, themotion patterns of animals aremore diverse,
which results in difficulty for tracking.

6 Conclusion

In this paper, we introduce AnimalTrack, a high-quality
benchmark for multi-animal tracking. Specifically, Animal-
Track consists of 58 video sequences that are selected from

10 common animal categories. To the best of our knowl-
edge, AnimalTrack is by far the first and also the largest
dataset dedicated to multi-animal tracking. By constructing
AnimalTrack, we hope to provide a platform for facilitating
research of MOT on animals. In addition, to provide future
comparison on AnimalTrack, we extensively assess 14 pop-
ular MOT approaches with in-depth analysis. The evaluation
results show thatmore efforts are desired for improvingMAT.
Furthermore,we independently study the association compo-
nent for multi-animal tracking and hope that this can provide
some guidance for choosing appropriate baseline for target
association. Overall, we expect our dataset, along with eval-
uation results and our analysis, to inspire more research on
multiple animal tracking using computer vision techniques.
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