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Abstract
We present a flexible, general framework for few-shot learning where both inter-class differences and intra-class relationships
are fully considered to improve recognition performance significantly. We introduce complex-valued convolutional neural
networks (CNNs) to describe the subtle difference among inter-class samples and Dependable Learning to capture the intra-
class relationship. Conventional CNNs use only real-valued CNNs and fail to extract more detailed information. Complex-
valued CNNs, on the other hand, can provide amplitude and phase information to enhance the feature representation ability
based on the proposed complex metric module (CMM). Building upon the recent episodic training mechanism, CMMs
can improve the representation capacity by extracting robust complex-valued features to facilitate the modeling of subtle
relationships among few-shot samples. Furthermore, we use Dependable Learning as a new learning paradigm, to promote a
robust model against perturbation based on a new bilinear optimization to enhance the feature extraction capacity for very few
available intra-class samples. Experiments on two benchmark datasets show that the proposed methods significantly improve
the performance over other approaches and achieve state-of-the-art results.

Keywords Few-shot learning · Complex-valued CNNs · Dependable learning

1 Introduction

Great progress has been made on a variety of visual under-
standing tasks (He et al., 2016; Simonyan & Zisserman,
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2014; Szegedy et al., 2015; Zeiler & Fergus, 2014) due to the
advancement of deep learningmodels and the development of
large amounts of labeled training data. Although deep learn-
ing has made widespread breakthroughs, its performance is
significantly deteriorated in some scenarios due to limited
amounts of labeled data. In contrast, humans can recognize
new classes with a few labeled examples or samples of dif-
ferent but similar classes (Li & Fergus, 2006). One of the
ultimate goals of CNNs is to match or outperform humans
in any given task. It is imperative to have minimal depen-
dency on large balanced labeled datasets with which current
models can be successful. However, for other tasks where the
labeled data is scarce (few samples only), the performance of
the respective models drops significantly. Few-shot learning
aims to solve this problem by using deep learning to recog-
nize unlabeled samples with few labeled instances.

A variety of few-shot learning methods have been pro-
posed, roughly divided into meta-learning, data augmenta-
tion and metric learning. The meta-learning methods opti-
mize the (hyper) parameters of neural networks so that
the models can quickly and efficiently adapt to the new
task (Gidaris&Komodakis, 2018, 2019). Data augmentation
iswidely used to generatemore samples from a small number
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of available instances (Liu et al., 2019; Zhang et al., 2018).
With more training samples, data augmentation can signifi-
cantly alleviate the over-fitting problem. Metric learning is a
promising method for the few-shot classification problem. It
learns a mapping from images to an embedding space, where
samples from the same class become closer. To make full
use of the limited data, metric learning methods (Snell et al.,
2017; Sung et al., 2018; Vinyals et al., 2016) focus primarily
on learning accurate relationships among samples using dif-
ferent metrics. Meta-learning based methods attempt to train
a base learner, which can be quickly adapted in the presence
of a few novel class examples. The drawbacks of existing
methods are that they pay less attention to feature extraction,
which is a deterministic element for the final performance
(Szegedy et al., 2015). The traditional methods use only con-
ventional real-valued convolution neural networks (CNNs)
for feature representation. Due to the scarcity of samples in
few-shot learning, feature extraction and learning should be
more flexible and fully consider intra-class and inter-class
information in the same framework.

As illustrated in Fig. 1, we provide a new framework to
model inter-class and intra-class relationships. We introduce
complex-valued CNNs to enhance feature representation by
capturing subtle differences among samples to describe the
inter-class relationships better. Complex-valued CNNs pro-
vide amplitude and phase information. The proposed com-

plex metric module (CMM) (Liu et al., 2020) extracts phase
information and can enlarge the inter-class distance (Tra-
belsi et al., 2018). Dependable Learning is further introduced
to better describe the intra-class relationship based on a
new attention method that facilitates the extraction of the
correct features from a small number of samples. In partic-
ular, the attention can change the background distribution
and highlight the feature information of the object, just like
associating the representation of the object in different back-
grounds, to enhance the ability of the model to express the
intra-class relationship.

Unlike conventional few-shot learning methods based on
real-valued features, we introduce complex-valued CNNs
to enhance the discrimination ability of the feature repre-
sentation by using richer amplitude and phase information.
We also propose a unique metric learning method, which
can measure the embedding distances among samples with
amplitude and phase information. Using the distance met-
ric, we utilize the entire query set for transductive inference
to deal with the few-shot problem. Specifically, we develop
a novel Complex Metric Module (CMM) by combining
deep complex-valued CNNs and complex-valued distance
metrics in the same framework. First, we map the input
images to an embedding space using these complex-valued
CNNs. Then, we measure the sample relations using the
complex-valued metric and embedding. With a method of

(a) (b)

(c)

Fig. 1 An Illustration of few-shot learning based on complex-valued
CNNs and Dependable Learning. a The perturbation, which causes
attention to be lost from the twominions in the back. In (b), the complex-
valued features are used to recognize the difference between squares and

parallelograms and to correctly predict the label of the unlabeled inter-
class samples. c Dependable Learning leads to attention that can be
more effectively focused on information-rich areas and thus enhances
the intra-class feature representation ability
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transductive inference, we compute the cross-entropy loss
using the support-query and query–query scores. Finally,
we use the recent episodic training mechanism to update all
parameters end-to-end during back-propagation.

Another bottleneck in few-shot learning is that the intra-
class features clustering ability of the model is insufficient
when there are few training samples. To address this issue,we
introduceDependable Learning based on adversarial training
to directly incorporate adversarial examples into the training
process (Mustafa et al., 2019; Shafahi et al., 2019), lead-
ing to a new learning paradigm and a generic approach to
obtain intra-class information robustly. Due to the shortage
of training samples in few-shot learning, the image back-
ground has more influence on the model (Wang et al., 2020).
To address the issue, we do not want the perturbation to affect
the model’s learning of the intra-class relationship, which
requires attention to resist the sharp perturbation. To this end,
we backtrack the attention suffered from a sharp perturbation
to achieve a dependable feature representation. Our method
is easily implemented within the adversarial training frame-
work. This is which extends our conference version (Liu et
al., 2020) by including: (1) a Dependable Learningmethod is
introduced to associate the intra-class features with different
backgrounds; (2)more experiments conducted to validate the
effectiveness of our method; (3) a theoretical investigation
to show that our Dependable Learning can enhance causal
learnability (Amar et al., 2021) and provide a robustness
guarantee for the few-shot recognition. The main contribu-
tions of our work are as follows:

– We, for the first time, introduce complex-valued deep
neural networks into few-shot learning, which explore
the amplitude and phase information to enhance the dis-
crimination ability of feature representation.

– We introduce a Dependable Learning method to formu-
late the attention and perturbation as a bilinear optimiza-
tion problem, based on a backtracking method to obtain
a robust model against perturbations.

– Experimental results on the miniImageNet and tieredIm-
ageNet public datasets show that the proposed method
dramatically improves the 1-shot and 5-shot accuracy
over the state-of-the-art methods.

The rest of our paper is organized as below. Section 2
introduces few-shot learning, complex-valued CNNs and
adversarial training. In Sect. 3, a complex-valuedCNNarchi-
tecture for few-shot learning is proposed from the perspective
of increasing the inter-class distance. In Sect. 4, Dependable
Learning method is introduced to reduce the intra-class dis-
tance. In Sect. 5, metric learning and meta-learning tasks are
used to verify the proposed method, and a series of ablation
experiments are performed.

2 RelatedWork

2.1 Few-Shot Learning

In recent years, there has been a growing interest in few-
shot learning. In Lake et al. (2015), a hierarchical Bayesian
model was introduced to achieve human-level accuracy on
alphabet recognition tasks in the setting of few-shot learn-
ing. Gregory Koch et al. (2015) first introduced the Siamese
network, which computes the pair-wise distance between
samples to classify unlabeled samples by the k-nearest neigh-
bor algorithm for few-shot learning. In Snell et al. (2017), a
prototype representation of each class was built to describe
better few-shot samples based on themean of sample embed-
ding features. Flood Sung et al. (2018) considered that the
measurement method is also an essential part of the net-
work, which needs to bemodeled and trained using a relation
network (RelationNet) (such as CNN) to learn the measure-
ment method distance. More recently, meta-learning-based
approaches have been introduced. Sachin Ravi and Hugo
Larochelle et al. (2017) designed a model updating the
weights of a classifier using a Long Short-Term Memory
(LSTM) approach. In Finn et al. (2017), a model agnos-
tic meta-learning (MAML) algorithm was proposed to find
parameters sensitive to changes in the task with a small num-
ber of samples. Another line of few-shot learning research
directly solves the over-fitting problem by data augmentation
(Wang et al., 2020).

Metric learning (Fehervari et al., 2019) is one of the most
effective categories of few-shot learning approaches. The
approach first learns a representation of a sample or class (it
depends on whether inter-class information is considered)
and then calculates the relation scores between query sam-
ples and support samples using a metric method. Siamese
networks (Koch et al., 2015) can be used to extract features
embedded in a supervised way. Calculating the distances of
sample pairs estimates whether they belong to the same class
and generates the corresponding probability distributions.
Matching network (Vinyals et al., 2016) included different
encoders for the support set and the query set, and the out-
put of the final classifier is a weighted sum of the predicted
relation values of the support and query samples. Prototype
network (Snell et al., 2017) was based on the idea that there
is a prototype representation for each class, and the prototype
of the class is the mean of the support set in the embedding
space. Then, the classification problem becomes finding the
nearest neighbor in the embedding space. Flood Sung et al.
(2018) believed that the metric is an essential part of the
model, and a single fixed distancemetric may not be optimal,
so they trained a network to learn a better distance metric.
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2.2 Complex-Valued Neural Networks

Complex-valued neural networks recently receive increasing
attention (Trabelsi et al., 2018; Zhang et al., 2017), due to
their potential to enable easier optimization (Nitta, 2002),
better generalization (Hirose & Yoshida, 2012), and fast
learning (Arjovsky et al., 2016). They are proved to have
a richer representational capacity than real-valued models.
These models can extract complex-valued features which
consist of both amplitude and phase messages. The phase
component is important from a biological point of view and
a signal processing perspective. The amount of information
present in The phase of an image is sufficient to recover the
majority of the information encoded in its magnitude (Zhang
et al., 2006). The phase describes objects by encoding shapes,
edges, and orientations (Trabelsi et al., 2018). Using com-
plex parameters has many advantages from computational
and biological perspectives (Trabelsi et al., 2018; Zhang
et al., 2017). In terms of computation, Ivo Danihelka et
al. (2016) showed that holographic reduced representations
store more information with complex-valued parameters and
to efficient and stable retrieval from an associative memory.
Unitary-RNN (Arjovsky et al., 2016) learns a unitary weight
matrix, a complex generalization of orthogonal weightmatri-
ces with the absolute value of the eigenvalues equal to 1.
Comparedwith other orthogonal counterparts, Unitary-RNN
(Arjovsky et al., 2016) can be easier optimized, provide a
richer representation, and show the potential in demand-
ing tasks involving long-term dependencies. Using complex
weights in neural networks is also biologically meaningful
(Reichert & Serre, 2014) where a neural network formula-
tion based on complex-valued neuronal units is introduced.
These units are attributed with a fire rate and a phase, which
can build richer and more versatile networks. The complex-
valued formula allows one to express the output of neurons
according to their firing rate and relative time of activity.
The amplitude of a complex neuron represents the former,
and its phase represents the latter. Moreover, input neurons
with similar phases are viewed as synchronous since they add
constructively,while asynchronous neurons increase destruc-
tively. Also, David P Reichert and Serre (2014) showed that
this flexible mechanism of neuronal synchrony fulfills mul-
tiple functional roles in deep networks.

Existingworks (Trabelsi et al., 2018;Mönning&Manand-
har, 2018) perform over-fitting analysis on complex-valued
CNNs. In Trabelsi et al. (2018), complex-valued CNNs are
used in three different tasks and all the loss curves have a trend
of regular decline like that of real-valuedCNNs,which shows
that the complex-valued CNNs are not easier to over-fitting
compared to real-valued CNNs. Besides, Mönning andMan-
andhar (2018) conducts a detailed comparison of over-fitting
based on the network structure of complex-valued neu-
ral networks and real-valued neural networks. Specifically,

Mönning and Manandhar (2018) deepens complex-valued
neural networks and their real-valued counterparts by adding
the hidden layers continuously, and then compares the test
performance. The results show that there is no obvious dif-
ference in over-fitting between complex-valued models and
real-valued models.

2.3 Adversarial Training

The success of deep learning models has been demonstrated
on various computer vision tasks, such as image classifica-
tion, instance segmentation, and object detection. However,
existing deepmodels are sensitive to adversarial attacks (Car-
lini &Wagner, 2017; Goodfellow et al., 2015; Szegedy et al.,
2013), where adding an imperceptible perturbation to input
images causes the models to perform incorrectly. Further-
more, Szegedy et al. (2013) observes that these adversarial
examples are transferable across multiple models such that
adversarial examples generated by one model might mis-
lead other models. Therefore, models deployed in real-world
scenarios are susceptible to adversarial attacks (Liu et al.,
2016). After discovering adversarial examples by Szegedy et
al. (2013), Goodfellow et al. (2015) proposes the Fast Gradi-
ent Sign Method (FGSM) to generate adversarial examples
with a single gradient step. Later, in Kurakin et al. (2016),
the researchers propose the Basic Iterative Method (BIM),
which takes multiple and smaller FGSM steps to improve
FGSM, but BIM renders the adversarial training very slow.
This iterative adversarial attack is further strengthened by
adding multiple random restarts into the adversarial training
procedure. In addition, the projected gradient descent (PGD)
(Madry et al., 2018) adversary attack, a variant of BIM with
uniform random noise as initialization, is recognized as one
of themost powerful first-order attacks (Athalye et al., 2018).
Other popular attacks include the Carlini andWagner (2017),
Momentum Iterative Attack (Dong et al., 2018), and Diverse
Input Iterative Attack (Xie et al., 2019). Among them, Car-
lini andWagner (2017) devises state-of-the-art attacks under
various pixel-space l p norm-ball constraints by proposing
multiple adversarial loss functions.

Manymethods have been proposed to defend against these
attacks (Szegedy et al., 2013; Cubuk et al., 2017). A category
of defensemethods improves the network’s training regime to
counter adversarial attacks. The most common way is adver-
sarial training (Kurakin et al., 2016; Na et al., 2017; Tramèr
et al., 2017) with adversarial examples added to the train-
ing data. In Madry et al. (2018), the researchers propose a
Min-Max optimization defense method, which augments the
training datawithfirst-order attack samples.Wang andZhang
(2019) investigates the fast training of adversarially robust
models to perturb both images and the labels during train-
ing. There are also some model defense methods (Athalye et
al., 2018; Gupta & Rahtu, 2019; Liao et al., 2018; Wang &
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(a) (b)

Fig. 2 Illustration of the motivation for complex-valued networks. S
means support samples, and Q means query samples. Large geome-
try represents real features, and small geometry represents extracted
features. a A real-valued feature extractor extracting only amplitude
features cannot find the difference between squares and parallelograms

and make a wrong prediction of the unlabeled sample. b A complex-
valued feature extractor that extracts phase features can recognize the
difference between squares and parallelograms and correctly predict the
class of the unlabeled inter-class sample

Zhang, 2019; Ye et al., 2019). that target removing adversar-
ial perturbation, by transforming the adversarial images into
clean images before they are fed into the classifier. How-
ever, the adversarial samples can be associated with clean
samples to improve the performance of classification (Wang
et al., 2022). In Das et al. (2017), the researchers study the
effect of JPEG compression on removing adversarial noise.

This paper introduces complex-valued CNNs to enhance
the feature representation based on phase and amplitude
information. We build upon the recent episodic training
mechanism (Liu et al., 2019) and extract robust complex-
valued features tomodel subtle relationships among few-shot
samples. Moreover, we propose Dependable Learning to
obtain a robust model against perturbation to enhance the
extraction of the correct features for very few available sam-
ples.

3 Complex-Valued Architecture

We illustrate complex CNNs in Fig. 2 which shows that
with the phase information, our complex-valued model can
correctly find the subtle difference of inter-class samples.
These samples include ellipses, circles, squares, and paral-
lelograms, therefore facilitating the prediction of unlabeled
samples. The proposed method is illustrated in Fig. 3,
which utilizes both the amplitude and phase information of
complex-valued CNNs to improve the performance for the
few-shot classification problem.

3.1 Problem Definition

Typically, for few-shot classification tasks, there are two
datasets: training set Dtrain and test set Dtest , which do
not share the same categories. Generally speaking, Dtrain

contains many classes, each of which has multiple sam-
ples. In the training stage, we randomly select C categories
in Dtrain , K samples of each category as the labeled data

which form the support set (SS), and then select Q samples
from the remaining data of these C categories as unla-
beled data, which forms the query set (SQ). The model
must learn to distinguish these C ∗ Q samples in the C
categories. Such a task is called the C-way K -shot prob-
lem. In each task, the selected data are (SS, yS, SQ, yQ) =
(I1, I2, . . . , IC∗(K+Q); y1, y2, . . . , yC∗(K+Q)),whereIi and
yi denote an image and its label respectively.

Each episode (Vinyals et al., 2016) samples differentmeta-
tasks in the training process, including various combinations
of classes. This mechanism enables the model to learn the
common knowledge of different meta-tasks, such as extract-
ing important features, comparing samples, and forgetting
the task-related parts. Through this learning mechanism,
samples can be classified for new meta-tasks.

3.2 Complex Metric Module

The proposed Complex Metric Module (CMM) features a
complex-valued convolution neural network and a complex
metric unit to measure relationships between samples.

3.2.1 Complex-Valued Feature Representation

To fully use limited samples, we employ complex con-
volutions and other corresponding components, including
complex batch-normalization, complex pooling, and com-
plexRelu strategies (Trabelsi et al., 2018) for complex-valued
CNNs. The rule is different from traditional CNNs. We
assume there is an input I = X + Y i , and a complex filter
matrix W = A + i B. X is an image matrix, Y is initialized
to 0. A and B are real matrices since we simulate complex
arithmetic using real-valued entities. Specifically, the rule of
complex convolution is

[
R(I ∗ W)

I(I ∗ W)

]
=

[
A −B
B A

]
∗

[
X
Y

]
. (1)
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Fig. 3 The overall framework of our model is one in which a sample-wise parameter learns amplitude and phase information. It comprises four
components: complex-valued feature representation, complex-valued metric, transductive inference, and loss generation

Complex Relu (CRelu) and complex Pooling (CPooling)
both act on the real and imaginary parts of a neuron sep-
arately.

CRelu(z) = Relu(R(z)) + iRelu(I(z)), (2)

CPooling(z) = Pooling(R(z)) + iPooling(I(z)). (3)

We standardize the complex data to the standard normal com-
plex distribution by scaling the data with the square root of
their variances. Specifically, we multiply the 0-centered data
(x − E[x]) by the inverse square root of the 2×2 covariance
matrix V as

x̂ = (V )−
1
2 (x − E[x]), (4)

Similar to the real-valued batch normalization algorithm,
β and γ are used in complex-valued batch normalization.
The complex batch normalization is defined as

CBN(x̂) = γ x̂ + β. (5)

The chain rule for complex-valued neural networks is also
used in the back-propagation process. Let L be a real-valued
loss function and z be a complex variable such that z = a+ib
where a, b ∈ R

D . Then

∇L(z) = ∂L

∂z
= ∂L

∂a
+ i

∂L

∂b
= ∂L

∂R(z)
+ ∂L

∂I(z)

= R(∇L(z)) + iI(∇L(z)).
(6)

To make a fair comparison in the experiments, the feature
extractor fθ follows the same architecture as in the latest
works (Finn et al., 2017; Snell et al., 2017), which consists

of four convolutional blocks (see Fig. 4). Each block begins
with a 2D complex-valued convolutional layer with a 3 ×
3 kernel and 64 filters and also includes a complex batch-
normalization layer, a complex Relu nonlinearity, and a 2 ×
2 average pooling layer.

3.2.2 Complex-Valued Metric

Different from other methods for few-shot learning, the
extracted complex-valued features xi = fθ (Ii ) = R(xi ) +
iI(xi ), R(xi ),I(xi ) ∈ R

D , in CMM have both amplitude
and phase information, where D is the number of feature
dimensions. We design a unique metric learning method to
measure relationships between samples. Our complex metric
module contains two parts: complex-valued parameter gen-
eration and sample relation metric.

To use the amplitude and phase information in the feature
embedding, we choose a commonly usedGaussian similarity
function based on a learnable complex-valued network gφ to
produce a sample-wise length-scale parameter σi ,

σi = gφ( fθ (Ii )) = gφ(R(xi ) + iI(xi )), (7)

where σi = R(σi ) + iI(σi ) and σi is generated by the
amplitude and phase information of feature embedding. The
detailed architecture is illustrated in Fig. 4. Then, our rela-
tionship matrix is defined below as

Ai, j = exp

(
−1

2
d

(
M

(
xi
σi

)
,M

(
x j
σ j

)))
, (8)
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Fig. 4 The detailed architecture
of CMM. a The detailed
architecture of a
complex-valued convolutional
block. b The detailed
architecture of the feature
extractor fθ . c The detailed
architecture of the network gφ

(a)

(b)

(c)

where d denotes the distance function, andMmeans the L2

norm. We can also use the real and imaginary parts of xi and
σi to define the operation as

xi
σi

= R(xi ) + iI(xi )

R(σi ) + iI(σi )

= R(xi )R(σi ) + I(xi )I(σi ) + i(R(σi )I(xi ) − R(xi )I(σi ))

R2(σi ) + I2(σi )
.

(9)

Then, we normalize A, and the overall sample relationship
is defined as

R = D−1/2
A AD−1/2

A , (10)

where DA is the diagonal matrices with the (i, i)-value to be
the sum of the i-th row of A. We test our method based
on the transductive inference (Liu et al., 2019). A, R ∈
R

(C×(K+Q))×(C×(K+Q)) denote all support and query sam-
ples. We only keep the k-max values in each row of R to
reduce the noise. We empirically set k = K + Q + C that
guarantees that the model can learn label information of K
support samples and Q query samples of the same class.

3.3 Transductive Method

In the transductive inference process, we learn the query sam-
ple labels from the support sample labels. Different from
the transductive inference of Liu et al. (2019), we learn the
labels with both support and query samples. In this way, we
can learn more accurate inter- and intra-class relationships.
Let R ∈ R

(C×(K+Q))×(C×(K+Q)) denote the learned relation

matrix whose (i, j)-value is the relationship between the i th
sample and the j th sample. Define an initial relation matrix
I as

Ii, j =
⎧⎨
⎩
I(yi == y j ), if xi , x j ∈ SS,
1/C, if xi , x j ∈ SQ,

0, otherwise,
(11)

where I is the indicator function. Starting from the initial
matrix I defined in (11), we iteratively learn the query sam-
ples labels from the union set SS ∪ SQ as

Yt+1 = (1 − α)RYt + αI, (12)

where Yt denotes the predicted labels at t , R denotes the
normalized relation matrix, and α controls the amount of the
learned information. Also, it is well known that the sequence
{Yt } has a closed-form solution as

Y ∗ = (I − αR)−1I, (13)

where Y ∗ denotes the last predicted relationship between
samples.

3.4 Label Prediction and Loss Generation

After computing the last learned relation matrix Y ∗, we can
directly convert the relation matrix Y ∗ to label scores using
softmax as

PQS(ỹi = j |Ii ) = exp(
∑K

z=1 Y
∗
i,z+K ( j−1))∑C

l=1 exp(
∑K

z=1 Y
∗
i,z+K (l−1))

, (14)
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where ỹi denotes the final predicted label for the i th sample
of the query set. And then, we compute classification loss
between the predictions of the query set and the ground-truth
labels of the support and query sets union to update all param-
eters end-to-end. First, we split the classification loss into two
parts: query-support (QS) and query-query (QQ) classifica-
tion losses. Experiments in Sect. 4 show that considering the
relation among query samples can make the model learn a
better relationship and perform better. The QS classification
loss is defined as

LQS =
C(K+Q)∑
i=CK+1

C∑
j=1

−I(yi == j)log(PQS(ỹi = j |Ii )),

(15)

where yi is the ground-truth label of Ii . Similar to the QS
classification loss, the QQ loss is defined as

PQQ(ỹi = j |Ii )=
exp(

∑Q
z=1 Y

∗
i,NK+z+Q( j−1))∑C

l=1 exp(
∑Q

z=1 Y
∗
i,NK+z+Q(l−1))

, (16)

LQQ =
C(K+Q)∑
i=CK+1

C∑
j=1

−I(yi == j)log(PQQ(ỹi = j |Ii )).

(17)

Then, the overall loss is the sum of the QS and QQ losses as

LCMM = LQS + LQQ . (18)

Note that PQQ is only used during the training process to
learn a better inter- or intra-class relationship, while PQS

will be used both in the test and training process.

4 Dependable Learning

4.1 Background

Traditional adversarial training algorithms indiscriminately
add the adversarial perturbation on the whole input image,
which deteriorates the feature representation capacity for
clean or natural images (Dong et al., 2020). However, we find
that adding the adversarial perturbation to the background
can strengthen the intra-class feature extraction capability,
especially for few-shot learning. We lead a new adversarial
training method to improve the intra-class modeling ability
by segmenting the background part from the input image
and then attacking it, in which the model associates the clean
samples with the adversarial samples to diversify the limited
samples. The technique can achieve a better feature represen-
tation for few-shot learning by introducing a new attention
method to locate the foreground part and background part

robustly. In particular, attention can be interpreted as a
means of biasing the allocation of available computational
resources towards the most informative components of a sig-
nal (Olshausen et al., 1993; Itti et al., 1998; Itti & Koch,
2001; Larochelle&Hinton, 2010;Mnih et al., 2014; Vaswani
et al., 2017). Attention mechanisms have demonstrated their
utility across many tasks, including localization, understand-
ing in images (Cao et al., 2015; Jaderberg et al., 2015)
and image segmentation (Rassadin, 2020). This work intro-
duces a dependable attention method to effectively segment
the foreground and background by considering the linear
(bilinear) relationship between the attention map and the
perturbation. We fully consider their interaction, and lead
a highly robust attention map for few-shot learning. The pro-
cess is shown in Algorithm 1 and we explain its optimization
and the working pipeline in detail.

Algorithm 1: Dependable Learning
Input: Training data, validation data, hyper-parameters ξ1 = 0.1,

ξ2 = 0.1, K=0 and S=65;
Create model weights W and spatial attentionMsp

Output: The network model with dependable attentionMd;
Training an architecture for epochs;
while (K ≤ S) do

Inference,
According to Fig. 5, update the spatial attentionMsp,
According to Eq. 29, backtracking Msp,
Return Md,
Add perturbation to the data via Eq. 19,
Use Eq. 20 to calculate the object function,
Back propagation,
Update weights W,
K ← K + 1.

end

4.2 Selective Attack

We start by explaining the existence of adversarial examples.
The typical adversarial input is x′ = x + η, where η is the
perturbation or attack of the input data. We focus on η that
made up of two parts as

η = k(M) ◦ δ, (19)

where M ∈ R
M×M is an attention map and ◦ denotes the

Hadamard production. The kernel function k(·) is the selec-
tive mask, which is designed for a selected attack, e.g.,
selecting background k(M)= (1−M◦M). Noted that differ-
ent from random-erasing (Zhong et al., 2020), our approach
is to attack the background part of the image guided by
the attention map. The images of the objects in different
backgrounds are simulated by associating clean images and
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Fig. 5 The flow chart of
Dependable Learning. Msp
denotes the spatial attention
obtained from the input x1. x′

1
denotes the adversarial input for
local attack viaMsp,Md

denotes the dependable attention
that Msp is backtracked by
perturbation δ. x2, x′

2 denote the
output with and without
perturbation, respectively.
k(Md) = (1 − Md ◦ Md),which
guides the background attack

adversarial images, which help the model to better extract
features.

Since the attention inherits from the input data, if there is
a perturbation in data, attention’s role in locating the critical
areas of the image will be affected. In other words, the atten-
tion and perturbation are coupled. As a result, we formulate
attention and perturbation as a bilinear model better against
perturbation. Bilinear optimization models are cornerstones
of many computer vision algorithms. The optimized objec-
tives or models are often influenced by two or more hidden
factors that interact to produce the observations (Heide et al.,
2015; Yang et al., 2017). A fundamental bilinear optimiza-
tion problem (Mairal et al., 2010) attempts to optimize the
following objective function as

argmin
M

G( f{W ,M,δ}(x), y), (20)

where f{W ,M,δ} is the CNN model with three sets of param-
eters {W ,M, δ}, M ∈ R

M×M and δ ∈ R
M×M are bilinear

variables to be optimized. G is the cross-entropy loss func-
tion, and x and y represent the input image and its label
respectively. δ is an improved attack method based on Good-

fellow et al. (2015) as

δ = ε · sign(−∇xL( fW (xi ), yi )), (21)

where ε ∈ R
M×M , the elements εi, j ∈ [−ε,+ε], ε is a

constant which will be described in the experimental sec-
tion, xi denotes the i-th input and yi denotes the i-th label.
By adding an imperceptibly small vector whose elements
are equal to the sign of the gradient of the negative cost
function concerning the input, we can change the image’s
classification and add more examples to sufficiently train the
network. Adversarial learning is implemented to simply and
effectively improve the robustness and generalization of the
model. In adversarial training, we need to add perturbation
to increase the robustness of the training, but we do not want
perturbation to affect the model’s learning of critical areas in
the data. To this end, we introduce the dependable attention,
which is robust to the perturbation and elaborated below.

4.3 Dependable Attention

We propose the dependable attention Md which is an
improvement of spatial attention Msp (Woo et al., 2018).
Figure 5 shows that dependable attention is calculated in two
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steps. First, traditional spatial attention is generated from
noiseless inputs. The dependable attention is then achieved
by backtracking the attention suffering from a strong pertur-
bation. The detailed derivation is shown below.

We calculate the dependable attention from a new per-
spective such thatMsp and δ are coupled. Based on the opti-
mization objective defined in Eq. 20, the chain rule (Petersen
et al., 2008) and its notations, we have

Md = Msp − ξ1
∂G(Msp)

∂Msp − ξ2Tr

((
∂G(δ)

∂δ

)T
∂δ

∂Msp

)
,

(22)

where ξ1 denotes the learning rate of Md, ξ2 denotes the
backtracking rate of Md, Tr(·) represents the trace of the
matrix, which means that each element in the matrix ∂G

∂Msp

adds the trace of the corresponding matrix related to Msp.
We further define

Ĝ(δ,Msp) =
(

∂G(δ)

∂δ

)T

/Msp, (23)

where Ĝ is defined by considering the bilinear optimization
problem (Zhuo et al., 2020) as in Eq. 20. Then we have

∂G(δ)

∂Msp = Tr

[
MspĜ

∂δ

∂Msp

]
. (24)

We denote Ĝ = [ĝ1, . . . , ĝM ]. Assuming that δm and
Mspn are independent whenm 
= n, where δm andMspn are
column vectors, we have

∂δm

∂Msp
=

⎡
⎢⎢⎢⎢⎢⎣

0 . . . ∂δm
∂Msp1,m

. . . 0

. . .

. . .

. . .

0 . . . ∂δm
∂MspM,m

. . . 0

⎤
⎥⎥⎥⎥⎥⎦

, (25)

and

MspĜ =

⎡
⎢⎢⎢⎢⎣

Msp1ĝ1 . . . Msp1ĝn . . . Msp1ĝM
. . .

. . .

. . .

MspM ĝ1 . . . MspM ĝn . . . MspM ĝM

⎤
⎥⎥⎥⎥⎦ . (26)

We combine Eq. 25 and Eq. 26, and get

MspĜ
∂δm

∂Msp
=

⎡
⎢⎢⎢⎢⎢⎣

0 . . . Msp1
∑M

n=1 ĝn
∂δm

∂Mspn,m
. . . 0

. . .

. . .

. . .

0 . . . MspM
∑M

n=1 ĝn
∂δm

∂Mspn,m
. . . 0

⎤
⎥⎥⎥⎥⎥⎦

.(27)

After that, the trace of Eq. 22 is then calculated by

Tr [MspĜ
∂δ

∂Mspm
] = Mspm

M∑
l=1

ĝl
∂δm

∂Mspl,m
. (28)

Defining M̂sp = Msp − ξ1
∂G(δ,Msp)

∂Msp , dependable attention
is calculated by combining Eq. 22 and Eq. 28 as

Md = M̂sp − ξ2

⎡
⎢⎢⎢⎢⎢⎣

∑M
n=1 ĝn

∂δ1
∂Mspn,1

.

.

.∑M
n=1 ĝn

∂δM
∂Mspn,M

⎤
⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

Msp1
.

.

.

MspM

⎤
⎥⎥⎥⎥⎦

= M̂sp − ξ2

⎡
⎢⎢⎢⎢⎢⎣

< Ĝ, ∂δ1
∂Msp1

>

.

.

.

< Ĝ, ∂δM
∂MspM

>

⎤
⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎣

Msp1
.

.

.

MspM

⎤
⎥⎥⎥⎥⎦

= M̂sp − ξ2 � Msp

= P(M̂sp,Msp),

(29)

where � represents the Hadamard product, ξ2γ denotes
the step size of backtracking. To simplify the calculation,

∂δ
∂Msp can be approximated by Δδ

ΔMsp . Equation 29 shows our
method is actually based on a projection function for gradient
update. In thismethod,we build our dependable attentionMd

based onMsp and M̂sp. The procedure is finally summarized
in Algorithm 1

In this method, we consider the coupling information in
Msp to backtrack M̂sp and finally obtain the dependable
attention Md . To better resist the perturbation, Md needs
backtracking for the attention on the severely perturbed areas
in the updating process. To this end, we introduce the trig-
gering condition for backtracking, defined as

Md
m,n =

{
P(M̂sp

m,n,Mspm,n) i f R( ∂G
∂δm,n

) > ζ,

M̂spm,n otherwise,
(30)

where {·}m,n denotes the element at row m column n, P(·)
denotes the projection function as shown in Eq. 29, R( ∂G

∂δm,n
)

denotes the ranking of ∂G
∂δm,n

and ζ represents the threshold.

We define γ = c(Ĝ, k(δM ,MspM )), which implies the
coupling relationship between δM andMspM . Assuming that
the model convergence can be seen as a bounded stability,
where Md is stable, and c(k, Ĝ) = γ ≈ 0. The coupling
information in γ becomes independent from the training
loss. Thatmeans that the coupling relationship between atten-
tion and perturbation is independent of the training process,
according toAmar et al. (2021),which can enhance the causal
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learnability and improve the system robustness based on our
bilinear optimization method.

5 Experiments

We evaluate the effectiveness of our proposed CMM and
Dependable Learning by comparing other state-of-the-art
approaches on two datasets, miniImageNet, and tieredIm-
ageNet.

5.1 Datasets

5.1.1 MiniImageNet

The miniImageNet (Krizhevsky et al., 2012) is a subset of
ImageNet which has 100 classes selected randomly from
ImageNet, and each class has 600 images. Following the
split proposed by Ravi and Larochelle (2017), the dataset is
divided into training, validation, and test sets, with 64, 16,
and 20 classes, respectively.

5.1.2 TieredImageNet

The tieredImageNet (Krizhevsky et al., 2012) dataset is a
larger subset of ImageNet with 608 classes. Unlike miniIm-
ageNet, it has a hierarchical structure of broader categories
of high-level nodes in ImageNet. This set of nodes is parti-
tioned into 20, 6, and 8 disjoint sets of training, validation,
and testing nodes, and the corresponding classes form the
respectivemeta-sets. Therefore, the training classes have dis-
tinct semantical samples from the test classes, making them
more challenging and realistic for few-shot learning.

5.2 Results for Metric Learning

5.2.1 Experimental Setting

Following the recent work (Vinyals et al., 2016), we use
the same episodic training procedure to update our model
parameters. To be specific, during the training process, we
randomly select C classes in Dtrain and K samples in each
class as the supporting data, and then select 15 samples from
the remaining data of these C classes as the query data. In all
experiments, we set α to 0.01, ξ2 to 0.1, ζ to 0.05, i.e., the
top 5%of themaximumperturbation gradient is backtracked,
and use a weight decay of 5×10−4. We take Adam (Kingma
& Ba, 2014) as the optimizer with an initial learning rate
of 10−3 which is halved for every 25,000 episodes on both
miniImageNet and tieredImageNet.All experiments are done
without data augmentation.

5.2.2 Results and Analysis

Wecompareourmodelwith several state-of-the-art approaches
in various settings.As the proposedCMMbelongs to themet-
ric learning type, we mainly compare our model with other
state-of-the-art metric learning models, including Match-
ing Nets (Vinyals et al., 2016), Prototypical Nets (Snell
et al., 2017), Relation Nets (Sung et al., 2018), and Rep-
tile (Nichol et al., 2018).Moreover, we also choose TPN (Liu
et al., 2019) and use the simple transductive method named
MAML+Transduction designed by Liu et al. (2019), which
explicitly utilizes the query set. Experimental results, includ-
ing the combinations of 5 and 10 ways and 1 and 5 shots, are
shown in Tables 1 and 2. Each accuracy is the average of 600
randomly generated episodes from the test set Dtest and top
results are highlighted. The methods are divided into three
groups with three different inference methods. The first is
“N” for inference methods without transduction. The second
is “Y” for transductive inference methods, where all query
samples are simultaneously predicted. And third is “BN”
for query batch statistics used to share information among
test samples. The attention Md is selected as M in Eq. 19.
FGSM (Goodfellow et al., 2015) is selected as the adversar-
ial training method in Dependable Learning, in which the
perturbation bound ε = 8

255 .
The experiments show that the proposed CMM achieves

state-of-the-art results and outperforms other methods by
a large margin. For a 5-way 1-shot on miniImageNet, our
model can achieve high accuracy of 56.26%with a significant
improvement of 2.51%over the best-comparedmethod TPN.
Even in a more realistic scenario of 10-ways, the absolute
improvement of CMMcan also achieve 2.19% and 2.53% for
1-shot and 3.24%and 2.68% for 5-shot onminiImageNet and
tieredImageNet, respectively. Dependable Learning further
improves the model performance. In Tables 1 and 2, the per-
formance of various scenarios is improved by 0.16%–3.47%.
The results show that CMM and Dependable Learning effec-
tively improve the performance of few-shot learning.

Another observation is that LQQ can slightly improve
the accuracy of our model. In the process of transductive
inference, the loss of CMM consists of two parts, LQS and
LQQ . The first part can make our model learn the relation-
ships between support and query samples and predict the
labels of query samples in the test. The second part aims
to make our model learn better relationships among query
samples which can improve the performance of transductive
inference. Clearly, our model can perform better with more
accurate relationships among samples.
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Table 1 Few-shot classification accuracies on miniImageNet

Model Trans. Mini 5-way Mini 10-way
1-shot 5-shot 1-shot 5-shot

MAML (Finn et al., 2017) B 48.70 63.11 31.27 46.92

MAML+Trans. (Finn et al., 2017) Y 50.83 66.19 31.83 48.23

Prototypical Net (Snell et al., 2017) N 46.14 65.77 32.88 49.29

Maching Net (Vinyals et al., 2016) N 43.56 55.31 – –

Relation Net (Sung et al., 2018) B 51.38 67.07 34.86 47.94

Reptile (Nichol et al., 2018) N 47.07 62.74 31.10 44.66

Reptile+BN (Nichol et al., 2018) B 49.97 65.99 32.00 47.60

TPN (Liu et al., 2019) Y 53.75 69.43 36.63 52.32

CMM (QS) Y 56.21 70.53 37.68 55.39

CMM (QS+QQ) Y 56.26 70.98 38.82 55.56

CMM+dependable learning (QS+QQ) Y 59.73 72.07 39.14 55.78

Each result is an average of 600 test episodes
Bold values indicate the best results in each experiments

Table 2 Few-shot classification
accuracies on tieredImageNet

Model Trans. Tiered 5-way Tiered 10-way
1-shot 5-shot 1-shot 5-shot

MAML (Finn et al., 2017) B 51.67 70.30 34.44 53.32

MAML+Trans. (Finn et al., 2017) Y 53.23 70.83 34.78 54.67

Prototypical Net (Snell et al., 2017) N 48.58 69.57 37.35 57.83

Maching Net (Vinyals et al., 2016) N 54.02 70.11 - -

Relation Net (Sung et al., 2018) B 54.48 71.31 36.32 58.05

Reptile (Nichol et al., 2018) N 48.97 66.47 33.67 48.04

Reptile+BN (Nichol et al., 2018) B 52.36 71.03 35.32 51.98

TPN (Liu et al., 2019) Y 57.53 72.85 40.93 59.17

CMM (QS) Y 57.12 72.74 43.30 61.71

CMM (QS+QQ) Y 58.12 73.46 43.46 61.85

CMM+dependable learning (QS+QQ) Y 58.53 73.85 43.70 62.01

Each result is an average of 600 test episodes
Bold values indicate the best results in each experiments

5.3 Results for Meta-learning

5.3.1 Experimental Setting

We use a ResNet-12 (He et al., 2016) network as our base
learner to conduct experiments onminiImageNet, tieredIma-
geNet datasets. We use an SGD optimizer with a momentum
of 0.9 in all experiments. For miniImageNet and tieredIma-
geNet datasets, we set the initial learning rate ξ1 to 0.1, ξ2 to
0.1, ζ to 0.1, i.e., the top 10% of the maximum perturbation
gradient is backtracked, and use a weight decay of 5×10−4.
For experiments on miniImageNet datasets, we train for 65
epochs. The learning rate is decayed by a factor of 0.1 after
the first 60 epochs. We train for 60 epochs for experiments
on the tieredImageNet dataset. The learning rate is decayed
by a factor of 0.1 when the epoch is 30, 40, and 50. In this
part, we only adopt the complex-valued feature representa-

tion module of CMM. The attention M in Eq. 19 is selected
as Md. We use the FGSM (Goodfellow et al., 2015) with
the perturbation bound ε = 2

255 as the adversarial training
method in Dependable Learning.

5.3.2 Results and Analysis

We present our results on two popular benchmark datasets
in Tables 3 and 4, demonstrating that our method con-
sistently outperforms state-of-the-art (SOTA) meta-learning
methods on both 5-way 1-shot and 5-way 5-shot tasks.
Our method outperforms the baseline IER (Rizve et al.,
2021) method across all datasets for both 1-shot and 5-shot
tasks.We show results onminiImageNet and tieredImageNet
(Tables 3, 4), wherewe consistently improve the SOTAmeth-
ods by 0.41%–2.44%.
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Table 3 Average 5-way
few-shot classification accuracy
with 95% confidence intervals
on miniImageNet dataset

Methods Backbone 1-shot 5-shot

MAML (Finn et al., 2017) 32-32-32-32 48.70 63.11

Matching Net (Vinyals et al., 2016) 64-64-64-64 43.56 55.31

Proto-Net (Snell et al., 2017) 64-64-64-65 49.42 68.20

Relation Net (Sung et al., 2018) 54-96-128-256 50.44 65.32

R2D2 (Bertinetto et al., 2019) 96-192-384-512 51.20 68.80

SNAIL (Mishra et al., 2018) ResNet-12 55.71 68.88

AdaResNet (Munkhdalai et al., 2018) ResNet-12 56.88 71.94

TADAM (Oreshkin et al., 2018) ResNet-12 58.50 76.70

Shot-Free (Ravichandran et al., 2019) ResNet-12 59.04 77.64

TEWAV (Qiao et al., 2019) ResNet-12 60.07 75.90

MTL (Sun et al., 2019) ResNet-12 61.20 75.50

MetaOptNet (Lee et al., 2019) ResNet-12 62.64 78.63

Bossting (Gidaris et al., 2019) WRN-28-10 63.77 80.70

Fine-tuneing (Dhillon et al., 2020) WRN-28-10 57.73 78.17

LEO-trainval (Rusu et al., 2019) WRN-28-10 61.76 77.59

Deep DTN (Chen et al., 2020) ResNet-12 63.45 77.91

AFHN (Li et al., 2020) ResNet-18 62.38 78.16

AWGIM (Guo & Cheung, 2020) WRN-28-10 63.12 78.40

DSN-MR (Simon et al., 2020) ResNet-12 64.60 79.51

MABAS (Kim et al., 2020) ResNet-12 65.08 82.70

RFS-Simple (Tian et al., 2020) ResNet-12 62.02 79.64

RFS-Distill (Tian et al., 2020) ResNet-12 64.82 82.14

IER (Rizve et al., 2021) ResNet-12 66.82 84.35

CMM ResNet-12 67.37 84.58

CMM+dependable learning ResNet-12 68.45 85.02

Bold values indicate the best results in each experiments

Table 4 Average 5-way
few-shot classification accuracy
with 95% confidence intervals
on tieredImageNet dataset

Methods Backbone 1-shot 5-shot

MAML (Finn et al., 2017) 32-32-32-32 51.67 70.30

Proto-Net (Snell et al., 2017) 64-64-64-64 53.31 72.69

Relation Net (Sung et al., 2018) 54-96-128-256 54.48 71.32

Shot-Free (Ravichandran et al., 2019) ResNet-12 63.52 82.59

MetaOptNet (Lee et al., 2019) ResNet-12 65.99 81.56

Boosting (Gidaris et al., 2019) WRN-28-10 70.53 84.98

Fine-tuneing (Dhillon et al., 2020) WRN-28-10 66.58 85.55

LEO-trainval (Rusu et al., 2019) WRN-28-10 66.33 81.44

AWGIM (Guo & Cheung, 2020) WRN-28-10 67.69 72.82

DSN-MR (Simon et al., 2020) ResNet-12 67.39 82.85

RFS-Simple (Tian et al., 2020) ResNet-12 62.02 79.64

IER (Rizve et al., 2021) ResNet-12 71.87 86.82

CMM ResNet-12 72.15 87.01

CMM+dependable learning ResNet-12 72.65 87.33

Bold values indicate the best results in each experiments
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Fig. 6 The comparison of IER, baseline with CMM, baselinemounted with Dependable Learning and baselinemounted with both onminiImageNet
dataset for a 5-way 1-shot and b 5-way 5-shot

Fig. 7 The comparison of IER, baselinewithCMM,baselinemountedwithDependable Learning and baselinemountedwith both on tieredImageNet
dataset for a 5-way 1-shot and b 5-way 5-shot

Table 5 Few-shot classification
accuracies on miniImageNet
with different metric methods

Methods 5-way Acc 10-way Acc

1-shot 5-shot 1-shot 5-shot

TPN-64 53.75 69.43 36.62 52.32

TPN-128 54.75 69.79 37.08 53.53

RI 54.99 70.02 37.03 54.43

AP 56.26 70.98 38.82 55.56

Each result is an average of 600 test episodes. RI measures sample distances using the real and imaginary
parts of features. AP measures sample distances using the amplitude part of features
Bold values indicate the best results in each experiments

In Fig. 6, we compare the following: (1) baseline (IER
(Rizve et al., 2021)), (2) baseline with CMM, (3) base-
line mounted with Dependable Learning, and (4) baseline
mounted with CMM and Dependable Learning on the mini-
ImageNet dataset. We can see that both CMM and Depend-
able Learning can improve the performance with respect to
the baseline respectively. Furthermore, the combination of
CMMandDependable Learning leads to better performance.
In the case of 5-way 1-shot, the results of the four methods

are 66.82%, 67.37%, 67.52%, and 68.45%. In the case of
5-way 5-shot, the results of the four methods are 84.35%,
84.58%, 84.72%, and 85.02%. On tieredImageNet dataset,
we get the same conclusion as shown in Fig. 7. In the case
of 5-way 1-shot, the results of the four methods are 71.87%,
72.15%, 72.33%, and 72.65%. In the case of 5-way 5-shot,
the results of the four methods are 86.82%, 87.01%, 87.08%,
and 87.33%.
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Fig. 8 Dependable attention
versus spatial attention (ξ2 = 0).
The results of few-shot learning
on miniImageNet show that the
system performance is improved
by backtracking, especially
when ξ2 = 0.1

Fig. 9 The impacts of various types of k(M) on the few-shot learning process on miniImageNet for a 5-way 1-shot and b 5-way 5-shot

5.4 Ablation Experiments

5.4.1 The Complex Metric Unit

AP . To validate the effectiveness of the proposed complex
metric unit named AP , we design a commonly used metric
method named RI, which measures the real and imaginary
parts of sample features separately. Especially, our complex
metric unit generates a complex value, which learns from
amplitude and phase information of the feature embedding.
Different from the complex metric unit AP , RI measures
theGaussian distance of the real and imaginary parts between
samples and then directly sums themup. Thismethod is com-
monly used tomeasure sample distances inSung et al. (2018),
Vinyals et al. (2016) and Liu et al. (2019). Furthermore, to
eliminate the influence of the number of parameters on the
comparison, we design a TPN-128 with the same number
of parameters as CMM. The experimental results are listed
in Table 5, which shows that the proposed complex metric

unitAP has a better performance than commonly used met-
ric methods. Even with the same number of parameters and
fewer filters, CMM still has a higher classification accuracy
than TPN.

5.4.2 The Backtracking Rate

ξ2. Besides, we verify the effectiveness of the backtracking
operation in Dependable Learning. We perform an ablation
study on the meta-learning task with miniImageNet by vary-
ing the value of ξ2, which is based on CMM model, and
k(M) = (1 − M ◦ M). We present the experimental results
in Fig. 8, which demonstrates that the performance of our
method improves with the increasing ξ2, but reaches its max-
imum when ξ2 = 0.1. It should be noted that when ξ2 is
dropped to zero, dependable attention degrades to general
spatial attention. Based on results in Fig. 8, we set the value
of ξ2 to 0.1.

123



400 International Journal of Computer Vision (2023) 131:385–404

5.4.3 The Effects of Different

k(M). During the adversarial training process, we apply dif-
ferent ways to make selective attacks. We set the selective
mask k(M) as 1,Md, (1−Msp ◦ Msp) and (1−Md ◦Md),
and perform experiments respectively. k(M) = 1 (base-
line) represents that there is no attention information used
to guide the attack. When k(M) = Md, the perturbation will
be added to the foreground pae. k(M) = (1−Msp ◦ Msp) and
k(M) = (1−Md ◦Md) are background masks. We only use
Dependable Learning to conduct 5-way 1-shot task on mini-
ImageNet. The experiment setting is the same as Sect. 5.3.
As shown in Fig. 9, the performance varies according to the
guided mask k(M). It is worth mentioning that Dependable
Learning degrades to the general FGSM attack method when
k(M) = 1. Compared with IER in Fig. 6, the model accu-
racy decreased after FGSM attack. Besides, the effectiveness
of foreground attack (k(M) = Md) is lower than baseline,
which indicates that attack on foreground part is not helpful
to few-learning learning. The results achieved by background
attacks, i.e., k(M) = (1 − Md ◦ Md) are better than other
methods. In our experiments, the attack using (1−Md ◦Md)

performs the best, meaning that Md is more accurate and
dependable for adversarial samples. It can guide background
attacks more effectively.

To verify the impact of different attack methods on
Dependable Learning, we use FGSM (Goodfellow et al.,
2015), BIM (Kurakin et al., 2016) and PGD (Madry et al.,
2018) with ε = 2

255 , step size of
2
255 and 10 iterative steps on

miniImageNet. We adopt an SGD optimizer with a momen-
tum of 0.9 and a weight decay of 5×10−4. In the experiment,
we use k(M) = (1 − Md ◦ Md) to carry out a background
attack. In Fig. 10, all these attacks are based on Dependable
Learning. The extensive experiments prove that Dependable
Learning is universal to attackmethods, which shows that the
performance of few-shot learning can be improved as long as
the background part is considered for attack methods, such
as FGSM, BIM and PGD.

To further prove the effectiveness of Dependable Learn-
ing, we compare Dependable Learning with other available
attack methods based on the CMMmodel. We test the 5-way
1-shot task on the miniImageNet dataset. The perturbation
degree ε = 2

255 and step size are 2
255 for all attack methods,

and 10 iterative steps are for BIM and PGD. As shown in
Fig. 11, the performance of CMM+Dependable Learning is
better than CMM with other attack methods.

In order to verify the influence of different degrees of per-
turbations on the model, we use k(M) = (1 − Md ◦ Md) to
guide FGSM to attack the background part on miniImageNet
dataset. The degrees of perturbations ε = 0, 1

255 ,
2
255 ,

8
255

and 16
255 . As shown in Fig. 12, with the increase of pertur-

bation, the accuracy of the 5-way 1-shot task continued to

Table 6 The comparison of real-valued CNN and complex-valued
CNN after training 200 epochs on CIFAR-10-LT dataset

Dataset CIFAR-10-LT

Imbalance factor 50

Baseline (real-valued ResNet-32) 82.07

Complex-valued counterpart 82.75

increase until ε = 8
255 . The model achieves the best perfor-

mance at ε = 2
255 on 5-way 5-shot tasks. The results show

that the perturbation helps to disrupt the background distri-
bution and can affect the few-shot learning performance.

5.5 The Discussion on Over-Fitting of
Complex-Valued CNN

The Complex-valued CNN has additional degrees of free-
dom which help in learning a better representation of the
metric latent space. However, the increased model capac-
ity also puts forward higher requirements for optimization.
To test whether Complex-valued CNN causes over-fitting
of the model on an imbalanced dataset, we compared
Complex-valued CNN with its real-valued counterpart on
the long-tailed versions of the CIFAR-10 dataset. We use an
imbalance factor β to describe the severity of the long-tailed
problem with the number of training samples for the most
frequent class and the least frequent class, e.g., β = Nmax

Nmin
.

The imbalance factor we use in the experiment is 50.We train
the ResNet-32 (He et al., 2016) as our backbone network by
SGD with the momentum of 0.9, weight decay of 2× 10−4.
We train all the models on a single NVIDIA 1080Ti GPU
for 200 epochs with batch size of 128. The initial learning
rate is set to 0.1 and the first five epochs are trained with the
linear warm-up learning rate schedule. The learning rate is
decayed at the 120th and 160th epoch by 0.1. The pipeline is
the same as those in Zhou et al. (2020). The results of both
models on CIFAR-10-LT dataset are shown in Table 6, in
which, the accuracy of complex-valued CNN is higher than
its real-valued counterpart. The loss curves of the twomodels
in the validation set are shown in Fig. 13. There is no obvi-
ous difference between the two curves, and the loss value of
validation set in the first ten epochs of complex-valued CNN
is higher than the real-valued counterpart, and then the two
models tend to be converged.We compared the average value
and variance of the loss on validation dataset, and the results
are shown in Table 7. The average value of complex-valued
CNN loss is slightly higher than its real-valued counterpart.
Despite this, the loss of Complex-valued CNN does not show
an increasing trend, nor does performance deteriorate. There-
fore, complex-valued CNN does not appear more obvious
over-fitting compared to its real-valued counterpart.
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Fig. 10 The comparison of background attack results with different attack methods guided by dependable attention for a 5-way 1-shot and b 5-way
5-shot

Fig. 11 The comparison of
5-way 1-shot between
Dependable Learning based on
CMM model and other attack
methods on miniImageNet

Fig. 12 The impacts of various
degrees of perturbations on
miniImageNet
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Fig. 13 The comparison of loss curves between complex-valued CNN
and real-valued CNN on CIFAR-10-LT validation set

Table 7 The loss average and loss variance of the two models

Loss average Loss variance

Real-valued CNN 1.13 0.11

CMM 1.22 0.11

6 Conclusions

We have introduced complex-valued CNNs and Dependable
Learning for the few-shot learning in this work. Our Com-
plex Metric Module (CMM) adopts complex-valued CNNs
to learn samples’ amplitude and phase information, improv-
ing the system performance. ADependable Learningmethod
is further introduced to enhance feature extraction. We add a
dependable attention mechanism based on a new parameter
update method, “backtracking”, which decouples perturba-
tion and attention to calculate the attention robustly. Overall,
we improve the robustness of the few-shot learning model
and achieve state-of-the-art results on miniImageNet and
tieredImageNet. In our future work, we will explore the
potential of our method on more applications, such as object
detection and segmentation.
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