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Abstract
The ability to automatically estimate the pose of non-human primates as they move through the world is important for several
subfields in biology and biomedicine. Inspired by the recent success of computer vision models enabled by benchmark
challenges (e.g., object detection), we propose a new benchmark challenge called OpenMonkeyChallenge that facilitates
collective community efforts through an annual competition to build generalizable non-humanprimate pose estimationmodels.
To host the benchmark challenge, we provide a new public dataset consisting of 111,529 annotated (17 body landmarks)
photographs of non-human primates in naturalistic contexts obtained from various sources including the Internet, three
National Primate Research Centers, and the Minnesota Zoo. Such annotated datasets will be used for the training and testing
datasets to develop generalizablemodels with standardized evaluationmetrics.We demonstrate the effectiveness of our dataset
quantitatively by comparing it with existing datasets based on seven state-of-the-art pose estimation models.
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1 Introduction

Recent years have seen great advances in systems that can
automatically detect major landmarks in moving animals
without fiducial markers, that is, pose (Mathis & Mathis,
2020; Dunn et al., 2021; Wiltschko et al., 2015; Karashchuk
et al., 2020; Günel et al., 2019). Such pose estimation sys-
tems have greatly benefited research in fields that study the
tracked species (e.g., rodents, flies, and fishes). However,
the ability to estimate the pose of non-human primates has
lagged, rendering the primate order amajor outstandingprob-
lem in the field (Bala et al., 2020; Hayden et al., 2021). At the
same time, non-human primates remain of great interest in
biomedicine and related fields, including in neuroscience and
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psychology, as well as in anthropology, epidemiology, and
ecology. Automated pose estimation can also benefit animal
welfare programs, veterinary medical practice and, indeed,
conservation projects (Knaebe et al., 2022).

Estimating pose of non-human primates (NHPs) is partic-
ularly challenging due to their homogeneous body texture
and exponentially large pose configurations (Bala et al.,
2020). Two major innovations are needed to solve the
pose estimation problem in NHPs. (1) Algorithmic inno-
vation: pose models are expected to learn a generalizable
visual representation that encodes the complex relation-
ship between the visual appearance and spatial landmarks,
which allows detecting poses in images with diverse pri-
mate identities, species, scenes, backgrounds, and poses
in the wild environment. Existing deep learning models
including convolutional pose machine (Wei et al., 2016),
stacked hourglass model (Newell et al., 2016), Deeper-
Cut (Insafutdinov et al., 2016), and AlphaPose (Fang et
al., 2017) incorporate a flexible representation with a large
capacity, which have shown strong generalization on human
subjects. However, these models are not applicable to the
image samples of NHPs from the out-of-training-distribution
due to their characteristics (homogeneous appearance and
complexpose). (2)Data innovation: the pose estimationmod-
els learn the visual representation from a large annotated
dataset that specifies the locations of landmarks. Exist-
ing publicly available datasets including OpenMonkeyPose
(200K multiview macaque images in a specialized labora-
tory environment) (Bala et al., 2020) andMacaquePose (13K
in-the-wild macaque images) (Labuguen et al., 2021) are
important resources for the development of pose estima-
tion algorithms, and as such, extend the boundary of pose
tracking performance of NHPs. However, due to limited
data diversity (appearance, pose, viewpoint, environment,
and species), existing datasets are currently insufficient for
learning generalizable estimation models (See Figure 8 for
model generalization across datasets).

Here we describe a novel dataset consisting of 111,529
images of NHPs in natural contexts with 17 landmark anno-
tations. These datasets are obtained from various sources
including the Internet, three National Primate Research Cen-
ters, and the Minnesota Zoo. Our motivation for developing
this dataset includes inspiration from the recent success of
computer vision models for human pose estimation (von
Marcard et al., 2018), object detection (Lin et al., 2014),
and visual question answering (Antol et al., 2015), enabled
by standard benchmark challenges. For instance, the COCO
benchmark challenges on object detection, segmentation,
and localization have facilitated collective community effort
through an annual competition, which in turn has been a
driving force to advance computer vision models (Lin et
al., 2014). In these domains, such datasets have served as
a common comparison for friendly competitions, as a goal

for experimentation, and as a benchmark to evaluate inno-
vations. At the same time, such datasets tend to be difficult
and expensive to generate, so sharing them makes economic
sense for the field. Making them public greatly lowers the
barriers to entry for new teams with innovative ideas.

With our dataset, we present a new benchmark challenge
called OpenMonkeyChallenge for NHP pose estimation
(http://openmonkeychallenge.com). It is an open and ongo-
ing competitionwhere the performanceof eachmodel ismea-
sured by the standard evaluation metrics (MPJPE (Iskakov
et al., 2019) and PCK (Cao et al., 2019)). We leverage
our unprecedentedly large annotated dataset, which includes
diverse poses, species, appearances, and scenes as shown
in Fig. 1. We split the dataset into the training and testing
datasets where the testing dataset is used to evaluate the
performance of competing models. We demonstrate that our
dataset addresses the limitation on data diversity in the exist-
ing datasets. Specifically, we show the effectiveness of our
dataset quantitatively by comparing it with existing datasets
(e.g., OpenMonkeyPose and MacaquePose) based on state-
of-the-art pose estimation models.

We organize this paper in the followingway.We introduce
the OpenMonkeyChallenge dataset, including data format,
distribution, collection and annotation method in Sect. 3.
Based on the dataset, we formulate the evaluation proto-
col in Sect. 4. We validate the usefulness of our dataset
by comparing with existing datasets including Macaque-
Pose (Labuguen et al., 2021) and OpenMonkeyPose (Bala
et al., 2020), and study the estimation performance of exist-
ing models in Sect. 5.

2 RelatedWork

OpenMonkeyChallenge aims to advance non-human primate
pose estimation through community efforts facilitated by a
benchmark challenge.

2.1 Animal Pose Estimation

Understanding behaviors of animals is one of the main
goals of multiple research domains including medicine,
neuroscience, biology, and animal husbandry. For instance,
ethogramming (Sade, 1973) is a major tool in neuroscience
to categorize behavioral states and their transitions, e.g., sit-
ting, standing, and running. Standard ethogramming involves
manual annotations by experienced researchers. It is a costly
and labor-intensive process, which limits the repeatability
and makes it difficult to scale up. The difficulty of animal
pose estimation contrasts sharply with human pose estima-
tion, in which computer vision enables pose estimation at
massive scale in a fully automated fashion. There exists
various detection frameworks such as convolutional pose
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Fig. 1 We present an OpenMonkeyChallenge using 111,529 annotated
images of non-human primates (26 species), obtained from the Internet,
three National Primate Research Centers, and the Minnesota Zoo. 17
landmarks are manually annotated for each image. OpenMonkeyChal-

lenge aims to extend the boundary of pose estimation for non-human
primates across multiple species through an annual competition to build
generalizable pose estimation models

machine (Wei et al., 2016), hourglass network (Newell et
al., 2016), DeepCut / DeeperCut (Pishchulin et al., 2016;
Insafutdinov et al., 2016), Openpose (Cao et al., 2019),
DeepPose (Toshev & Szegedy, 2014), Densepose (Güler et
al., 2018), recurrent human pose (Belagiannis & Zisserman,
2017), and deep fully-connected part-based models (de Bem
et al., 2018), that have improved the performance boundary
of human pose estimation by leveraging large-scale bench-
mark datasets. Recently, equivalent CNN models have been
designed to estimate animal poses. DeepLabCut (Mathis et
al., 2018) retargeted a convolutional neural network (CNN)
trained from a generic image recognition task to detect pose
of animals given a partially labeled dataset. Due to the strong
generalizability of CNNs, unlabeled images can be success-
fully annotated. LEAP (Pereira et al., 2018) took a new
step by designing an efficient CNN architecture that can
be readily integrated in a realtime graphical user interface.
This allows users to easily interact with the CNN, facilitat-
ing semi-automatic pose annotation. These approaches are
agnostic to the animal kinematic structure, which allows esti-
mating poses of diverse species such as flies, cheetahs, fishes,
and mice. However, due to the nature of supervised learning,
it still requires substantial amount of data to annotate and
shows inferior performance when applying to a new target
video. Self-supervised learning can be a viable solution. For
instance, multiview self-supervision (Günel et al., 2019; Yao
et al., 2019; Bala et al., 2020) that uses multiview geom-

etry to constraint the pose, which allows using unlabeled
data for training. Notably, OpenMonkeyStudio (Bala et al.,
2020) designed a large multi-camera system called Open-
MonkeyStudio to track dexterous non-human primates by
multiview bootstrapping.

2.2 Animal and Primate Datasets

What makes human pose detection in computer vision dif-
ferent from that of other animals is the existence of a large
annotated dataset. In the human domain, the datasets such
as MPII (Andriluka et al., 2014), COCO (Lin et al., 2014),
FLIC (Sapp & Taskar, 2013), and PoseTrack (Iqbal et al.,
2017; Andriluka et al., 2018), HiEve (Lin et al., 2020) con-
stitute millions of images across diverse poses, appearance,
occlusion, and background. This allows learning a CNNpose
estimator that can be readily applicable to a new pose and
scene. Further, a benchmark challenge such as the COCO
keypoint detection challenge facilitates community effort
to improve the detector performance every year. We sum-
marize the different datasets in Table 1. Similar to human
pose estimation, there exists animal pose datasets with spe-
cific target objectives, such as benchmarks for Amur Tiger
re-identification (Li et al., 2020), and animal behavior under-
standing (Ng et al., 2022). However, due to the diversity of
species in the animal kingdom, size of animal datasets are
lacking in comparison to that of human datasets. Since non-
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Table 1 Overview of publicly available datasets for articulated human and primate pose estimation.

Dataset # of Poses Data type

We are family (Eichner & Ferrari, 2010) 3131 Humans

FLIC (Sapp & Taskar, 2013) 20,928 Humans

MS COCO Keypoints (Lin et al., 2014) 250,000 Humans

PoseTrack17 (Iqbal et al., 2017) 16,219 Humans

PoseTrack18 (Andriluka et al., 2018) 153,615 Humans

HiEve (Lin et al., 2020) 1,099,357 Humans

OMS (Bala et al., 2020) 195,228 Primates (Rhesus Macaque)

MacaquePose (Labuguen et al., 2021) 13,000 Primates (Rhesus Macaque)

Proposed (OMC) 111,529 Primates (26 species)

For each dataset we report the number of annotated poses and species

human primates play a pivotal role in biomedicine and related
fields, including neuroscience, psychology, anthropology
and ecology, the paper inherently focuses on non-human
primate pose estimation. Existing datasets, in particular, for
non-human primates, are rather small and domain specific,
which precludes learning a generalizable CNN model. For
example, OpenMonkeyStudio (Bala et al., 2020) included
200K multiview images that are captured from controlled
and specialized laboratory conditions, which is not gener-
alizable to primates in natural habitats. The MacaquePose
dataset (Labuguen et al., 2021) includes 13K annotated
images from the Internet that span diverse environments
and poses. However, it is limited to one species. This paper
presents a new large dataset of multiple primates including
26 species in natural habitats and formulates a benchmark
challenge to advance primate tracking in the wild.

3 OpenMonkeyChallenge Benchmark
Dataset

We collected 111,529 images of 26 species of primates
(6 New World monkeys, 14 Old World monkeys, and 6
apes), including Japanesemacaques, chimpanzees, and goril-
las from (1) internet images and videos, such as Flickr and
YouTube, (2) photographs of multiple species of primates
from three National Primate Research Centers, and (3) mul-
tiview videos of 27 Japanese macaques in theMinnesota Zoo
(Fig. 2b and d). For each photograph, for example, in Fig. 1,
we cropped the region of interest such that each cropped
image contains at least one primate. We ensured that all
cropped images have a higher resolution than 500×500 pix-
els.

We identify the region of interest (i.e., bounding box
detection) by bootstrapping with a weak monkey detec-
tor (Redmon & Farhadi, 2018) followed up by manual
refinement and use a commercial annotation service (Hive
AI) tomanually annotate the 17 landmarks.The17 landmarks

together comprise a pose. Our landmarks include Nose, Left
eye, Right eye, Head, Neck, Left shoulder, Left elbow, Left
wrist, Right shoulder, Right elbow, Right wrist, Hip, Left
knee, Left ankle, Right knee, Right ankle, and Tail. Each
data instance is made of a triplet, image, species, pose as
shown in Fig. 2a.

We split the benchmark dataset into training (66,917
images, 60%), validation (22,306 images, 20%), and test-
ing (22,306 images, 20%) datasets. We minimize visually
similar image instances across splits by categorizing them
using the time of capture, video and camera identification
numbers, and photographers. Fig. 2c illustrates the data dis-
tribution across species, and each species includes more than
100 annotated images. We also visualize the distribution of
bounding box sizes in Fig. 3. The bounding box sizes indicate
the diagonal length of the bounding boxes for each primate
instance in the image.

Data Statistics The OpenMonkeyChallenge dataset con-
tains a diversity of species, poses, and appearances. We
use Uniform Manifold Approximation and Projection
(UMAP) (McInnes et al., 2018) to reduce the high dimen-
sional pose (R34 for 17 landmarks) into two dimensions as
shown in Fig. 4. To generate a spatially meaningful distri-
bution, we normalize the pose coordinates. Specifically, the
coordinates of each pose (17 landmarks) are normalized by
centering the root landmark (hip joint), i.e., the landmark
coordinate is relative with respect to the hip joint. These rel-
ative coordinates are normalized by the size of the bounding
box to account for different sizes of images. Further, we align
the orientation such that all poses have the same facing direc-
tions. This results in coherent clusters with poses.

The primates are classified into three types based on their
families: New World monkeys, Old World monkeys, and
apes. Poses are distributed across species, which are highly
correlated with the semantically meaningful poses such as
sitting, standing, and climbing. For each cluster, we visual-
ize average images by aligning the poses. Overall, we find
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(a) (b)

(c) (d)

Fig. 2 a We annotated the 17 landmarks that describe the pose of the
primate in an image. b We collect image data from diverse sources:
Internet image searches and YouTube videos, professional photographs
from three National Primate Research Centers, and multiview videos
from the Minnesota Zoo. The original images are cropped to include
at least one primate and ensured to have higher than 500×500 resolu-

tion. c Our dataset is composed of 26 species of monkeys and apes, and
more than 100 images are annotated for each species. We split the data
into training, validation, and testing datasets, approximately 6:2:2 ratio,
respectively. d Primate taxonomy. Our dataset includes diverse species
of monkeys and apes

that the majority of data consists of sitting poses from a vari-
ety of views.

The clustering results also highlight the difference in loco-
motion patterns among primate families. For example, Old
World monkeys (orange) heavily outnumber the other two
families and dominate most of the clusters, and a few clus-
ters of which the average pose is vertical climbing are by
large composed of the apes (green). Other actions, such as
sitting, walking, and standing, are common in all the primate
families.

3.1 Data CollectionMethod

We collected images from three sources: internet images and
videos, photographs from National Primate Research Cen-
ters, and multiview videos from the Minnesota Zoo.

Internet images Approximately 59% of our dataset were
collected from the Internet through Image and video search
engines. For instance, we used the Flickr API to scrape the
list of image URLs and YouTube search engine to find rele-
vant videos using species name keywords. We ensure visual
diversity (shapes, poses, viewpoints, sizes, colors, and envi-

123



International Journal of Computer Vision

Fig. 3 We visualize the distribution of bounding box sizes, where the
bounding box sizes is the diagonal length of the bounding box

ronments) and quality (image resolution, blurriness, lighting,
and occlusion) of the scraped data via manual inspection. For
the common species such as rhesus macaque, mandrill, and
gorilla, image searches were sufficient. For the rarer species
such as marmoset, we leveraged the video search features
and extracted image frames from the videos. Not only does
this approach allow us to obtain more images of the rarer
species, but we also collected images that are less iconic
than those from search engines. We hired two annotators for
image and video searches. After image collections, we anno-
tated the bounding boxes that contain the primate instances.
For a subset of internet images, we do not own the copyright
of the images. We specify the terms and conditions of use in
the website.

Photographs from national primate centersWe made use
of high quality images of primates photographed by staff
at two National Primate Centers: Emory National Primate
Research Center and the Oregon National Primate Research

Center. The photographers were asked to capture primate
images from diverse viewpoints and poses at high resolution
(>2K pixel resolution) and often made use of a tele-zoom
lens. 10,500 images are captured from the professional pho-
tographers across the primate centers. Further, we collected
videos from California National Primate Research Center.
Still images were extracted from a video library developed at
the California National Primate Research Center (Machado
et al., 2011; Bliss-Moreau et al., 2013). Video footage of
monkeys behaving was recorded at the center’s large 0.5
acre outdoor enclosures and from images of monkeys in the
laboratory. Videos were edited to be 30 s in duration and
included a range of behaviors, including aggression, groom-
ing, feeding, resting, and affective displays. Still imageswere
captured from the videos for use in this project.

Multiview videos from the Minnesota Zoo We used video
cameras to capture video images of a large troop (n = 27
individuals) of snow monkeys (Macaca fuscata) at the Min-
nesota Zoo (Apple Valley, MN) for a long duration (1 week).
Unlike the images taken by photographers who precisely
control focal length and viewpoint to ensure high resolution
images, these video cameras passively observe the scene. The
monkeys inhabit a large arena that facilitates natural social
interactions among them. It is a large open space (bigger than
600 m2), which leads to a new challenge as monkeys appear
small in images (10–50 pixel size) if a wide field of view lens
is used to cover the large area. We address this challenge by
using a multi-camera system made of 20–30 cameras where
each camera observes a small area (up to 5×5m) using a
narrow field of view (long or tele-zoom focal length). We
identified the regions of the enclosure that frequently involve
diverse activities (e.g., trails, ponds, and playgrounds) to

Fig. 4 We visualize a distribution of poses of the OpenMonkeyChallenge dataset using UMAP for dimension reduction. For each cluster, we show
an average image overlaid with the median pose to illustrate its visual pattern
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Fig. 5 We show the 3D reconstruction of the Minnesota Zoo macaque arena using the multiview cameras mounted along the enclosure for data
capture. The multiview images and four arbitrary cropped images superimposed with the projection of the reconstruction are also shown

maximize themonkey appearance in images. Because videos
were multiview videos, we used a monkey bounding box
detection algorithm to identify the monkeys and then refined
these boxes manually. We collected the image data from two
seasons (winter and spring) to maximize diversity of back-
ground visual appearance (Fig. 5).

3.2 Semi-automatic Annotation

Identifying images that contain primate instances from
videos and annotating their landmarks are prohibitively labor
intensive tasks. For instance, fewer than 2% of the frames in
the videos from narrow field of view (FOV) cameras used in
the zoo data contain primate instances.Watching every frame
in videos to annotate bounding boxes for primate instances
is time-consuming, e.g., one day zoo videos is equivalent
to approximately 5000 hours (∼6,000,000 images) of labor.
Instead, we leverage an iterative bootstrapping approach to
address the bounding box annotation task.

Bounding box proposal We trained a weak primate detec-
tor that can predict the bounding box of a primate instance
given an image. The bounding box (left-top corner coordi-
nate, width, and height) of 3000 internet images aremanually
annotated, and used to train a YOLOv3 model (Redmon &
Farhadi, 2018) that can recognize primate bounding boxes.
We use a lower threshold for bounding box detection such
that the false positives are slightly more common than the
false negatives. This bounding box prediction automates
identifying image frames that contain primate instances, so
that a majority of image frames without primates can be
pruned, which significantly reduces the required labor. Fur-
ther, it provides bounding box candidates for each image.

Bounding box refinement Given the bounding box pro-
posals, we designed a graphic user interface to visualize and
refine bounding boxes as shown inFig. 6. The interface shows
an image with bounding box candidates. The annotators are

asked to find false positives and redundant poses from the
previous frames (green bounding box with red cross). Fur-
ther, they can add bounding boxes (red bounding boxes).
Human helpers can perform this task in 5∼15 seconds per
image. With this manual refinement, we ensure all cropped
images include at least one primate. Oncewe have the refined
bounding boxes, we incrementally increase the size of data
to re-train the bounding box detection model to adapt to the
target environments.

Landmark annotation Given the bounding box annota-
tions, we used a commercial annotation service (Hive AI) to
annotate 17 landmarks from cropped images.When the land-
marks are occluded, the annotators are instructed to specify
the best guess location and to indicate visibility.

Every one of the photographs that were annotated pro-
fessionally was checked by hand by two experts who have a
background in neuroscience or primatology. Photographs for
which there was doubt about accuracy were removed from
the dataset, or else in some cases returned to the annotation
service for re-annotation. We estimate that the proportion of
photographs that failed this test was about 1%.

4 Benchmark Evaluation Protocol

The annotations for the training and validation datasets
are publicly available while that for the testing dataset
is hidden. We have established the evaluation server to
automatically evaluate the performance of the competing
models on the testing dataset and maintain the leader.
Specifically, the species landmark detection result on train-
ing/validation/testing datasets is uploaded to the evaluation
server in a pre-defined file format, and the evaluation result
is generated by the server. Users are asked to post their
results in the leaderboard that sorts the performance based
on three standard keypoint metrics: mean per joint position
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Fig. 6 We design a graphic user interface to refine bounding boxes.
Given an image and bounding box proposals (green boxes) from a weak
detector, the annotators are asked to remove false positives and redun-

dant poses from previous frames (green bounding boxes with red cross)
and to add false negatives (red bounding boxes) (Color figure online)

error (MPJPE), probability of correct keypoint (PCK) met-
ric at error tolerance, and average precision (AP) based on
object keypoint similarity (OKS).

Mean per joint position error (MPJPE) (Iskakov et al.,
2019) measures normalized error between the detection and
ground truth for each landmark (the smaller, the better):

MPJPEi = 1

J

J∑

j=1

‖̂xi j − xi j‖
W

where MPJPEi is the MPJPE for the i th landmark, J is the
number of image instances, x̂i j ∈ R2 is the i th predicted
landmark in the j th image, xi j ∈ R2 is its ground truth
location, and W is the width of the bounding box. Note that
MPJPE measures the normalized error relative to the bound-
ing box sizeW , e.g., 0.1 MPJPE for 500×500 bounding box
corresponds to 50 pixel error.

Probability of correct keypoint (PCK) (Cao et al., 2019) is
defined by the detection accuracy given error tolerance (the
bigger, the better):

PCK@ε = 1

17J

J∑

j=1

17∑

i=1

δ

( ‖̂xi j − xi j‖
W

< ε

)

where δ(·) is an indicator function that outputs 1 if the state-
ment is true and zero otherwise. ε is the spatial tolerance

for correct detection. Note that PCK measures the detection
accuracy given the normalized tolerance with respect to the
bounding boxwidth, e.g., PCK@0.2with 200 pixel bounding
box size refers to the detection accuracy where the detection
with the error smaller than 40 pixels is considered as a correct
detection.

For the sake of rigor, we also provide results for different
variations of PCK.The formulation for the same can be found
as below,

PCKd@ε = 1

17J

J∑

j=1

17∑

i=1

δ

( ‖̂xi j − xi j‖
d

< ε

)

Note that PCKd measures the detection accuracy with
respect to the diagonal length of the bounding box (d). PCKh
measures the detection accuracy with respect to the head size
(hs). For the purpose of this paper, hs is calculated using the
ground truth head and neck landmarks.

PCKh@ε = 1

17J

J∑

j=1

17∑

i=1

δ

( ‖̂xi j − xi j‖
hs

< ε

)
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Average precision (AP) measures detection precision (the
bigger, the better):

AP@ε = 1

17J

J∑

j=1

17∑

i=1

δ(OKSi j ≥ ε)

where OKS measures keypoint similarity (Lin et al., 2014):

OKSi j = exp

(
−‖̂xi j − xi j‖2

2W 2k2i

)

where OKSi j is the keypoint similarity of the j th image of
the i th landmark. ki is the i th landmark relative tolerance.
UnlikePCK,OKSmeasures per landmark accuracy by taking
into account per landmark variance ki (visual ambiguity of
landmarks), e.g., eye is visually less ambiguous than hip. We
define ki based on COCO keypoint challenge and augment
the tail landmark such that ktail = kwrist .

We created a website http://openmonkeychallenge.com/
that shares the dataset and benchmark challenges. The train-
ing/validation/testing datasets can be downloaded from the
website. The annotations are available for the training and
validation datasets. The testing results (landmark detection
on the testing data) from the developed models can be sub-
mitted to the evaluation server in JSON file format:

{\image_id’’ = int,
\file_name’’ = str,
\landmarks’’ = [x1,y1,...,x17,y17]}

where xi and yi are x , y coordinates of the i th landmark. The
evaluation server will return the performance on the testing
data using MPJPE, PCK, and AP metrics. The evaluation
results will be posted in the leaderboard that sorts the algo-
rithms based on the performance. Optionally, the users can
opt out. The website includes step-by-step description of the
evaluation process, file format, and visualization code.

5 Dataset Evaluation

WeevaluateOpenMonkeyChallengedata in three aspects: (1)
generalization across datasets via cross-dataset evaluation;
(2) data performance gap between humans and primates; and
(3) baseline performance across state-of-the-art pose estima-
tion.

5.1 Cross-dataset Evaluation

To evaluate the generalizability of our dataset, we con-
duct a cross-dataset evaluation with OpenMonkeyPose (Bala
et al., 2020) and MacaquePose (Labuguen et al., 2021).
OpenMonkeyPose (Bala et al., 2020) consists of 195,228

annotated images simultaneously captured by 62 precisely
arranged high-resolution video cameras. The dataset involves
inanimate objects (barrels, ropes, feeding stations), twoback-
ground colors (beige and chroma-key green), and four rhesus
macaque subjects varying in size and age (5.5–12 kg).
MacaquePose (Labuguen et al., 2021), a dataset with more
than 13,083 images of macaque, is collected by searching
for images with a ‘macaque’ tag in Google Open Images and
captured in zoos and the Primate Research Institute of Kyoto
University.

We split each dataset into training (60%), validation
(20%), and testing (20%) sets. We train a convolutional pose
machine (CPM) (Wei et al., 2016) using the trainingdata from
one of the datasets with spatial data augmentation (transla-
tion and rotation) until it starts to overfit based on the model
performance on the validation data, and test that model on
the testing data from each dataset. Fig. 7 summarizes the
performance in MPJPE. The CPM model trained by the
OpenMonkeyChallenge dataset achieves the lowest MPJPE
on theOpenMonkeyChallenge andMacaquePose (Labuguen
et al., 2021) test datasets, which indicates that the diversity
and generalizability of our training dataset (outperforming
MacaquePose own testing data). For the OpenMonkeyPose
testing dataset, it achieves the second best close to the
OpenMonkeyPose. This is mainly caused by the domain dif-
ference: the images of OpenMonkeyStudio were captured by
a controlled lab environment that has a homogeneous back-
ground and monkey texture. For the same reason, this model
has poor performance on the other two datasets due to its low
generalizability.

Each dataset has its own bias, i.e., it is expected to per-
form best on the model trained on its own training dataset,
e.g.,MP trainedmodel onMP testing data. Therefore, for fair
comparison, we employ the cross data evaluation, e.g., both
MP and OMC trained models on OMP testing data, while
unfair comparison would be comparing the performance of
cross evaluation with that of self evaluation, e.g., comparing
the performance of OMC trained model on MP testing data
with that of MP trained model on MP testing data. Given
the comparison protocol, the model trained on OMC signif-
icantly outperforms on other datasets as shown in Fig. 8:
(1) Compared to the model trained on MP, the OMC trained
model outperforms with 72% error reduction on the OMP
dataset; (2)Compared to themodel trainedonOMP, theOMC
trained model outperforms with 25% error reduction on the
MP dataset.

The model trained on OMC performs competitively: (3)
OMC trainedmodelwhen tested onMP testing dataset results
in 4% error reduction compared to MP trained model tested
on MP dataset; (4) Compared to the model trained on OMP,
the OMC trained model underperforms with 13% greater
error on the OMP testing dataset. Given the comparison,
introduction of OMC dataset is not a trivial addition. Its data

123

http://openmonkeychallenge.com/


International Journal of Computer Vision

Fig. 7 Three detection models are trained on OpenMonkeyChallenge
(OMC), MacaquePose (MP), and OpenMonkeyPose (OMP), respec-
tively. In each box, we visualize three violin plots corresponding to
the detection models. Each violin plot shows the normalized error his-

togram of landmarks on training (blue) and testing (brown) data (first
row: OMC dataset; second row: MP dataset; third row: OMP dataset).
The model trained on OMC (left violin plot in each box) is the most
generalizable (inverted T shape histogram) (Color figure online)

Fig. 8 We summarize the cross-dataset evaluation to show the gener-
alizability using the normalized error in a confusion matrix, e.g., the
second row of the third column shows the normalized error of the MP
testing data for the model trained on OMC training dataset. The model
trained on OMC dataset shows the smallest error or comparable to the
model that is testing on its own training data

diversity substantially improves the generalizability of the
model. In addition, we show the analysis of the performance
of a model trained on the three datasets together. This has
been indicated in the Fig. 9b. We also evaluate the impact
of pre-training as human datasets can be beneficial for train-
ing low level features. In Fig. 9b, a key observation is that
the impact introduced by pre-training is minimal because

OpenMonkeyChallenge dataset is sufficiently large to prop-
erly learn low level features.

5.2 Comparison with Human Pose Estimation

The distal goal of our benchmark challenge is to achieve
a performance comparable to human pose estimation. For
instance, a state-of-the-art human pose detector (CPM)
trained on the COCO-keypoint dataset (Lin et al., 2014)
produces 0.061MPJPEor 0.849PCK@0.2 (upper boundper-
formance). Without a nontrivial modification, a CPM trained
on our dataset achieves 0.074 MPJPE or 0.761 PCK@0.2 as
reported in Fig. 9a. In other words, there exists a consid-
erable performance gap between human and primate pose
estimation. The major performance gap is attributed to the
size and diversity of the dataset. COCO dataset includes 250
k annotated image instanceswhileOMCdataset includes 111
k instances. The OMC dataset is precise as each annotation
was reviewed by at least two experts on neuroscience and
primatology. Monkeys and primates are, in general, more
agile, producing diverse poses than humans. Further, unlike
humans who wear clothes that provide a strong semantic cue
for joint localization, the appearance of monkeys and pri-
mates is, largely, homogeneous. This poses a main challenge
of identifying the landmark locations. The goal of this paper
is to identify this performance gap, and proposes a commu-
nity effort to develop semi-supervised learning frameworks
that can leverage unlabeled data to address this limitation.

Further, we evaluate the human detection model on our
dataset, which achieves 0.197MPJPE or 0.265 PCK@0.2 for
reference (lower bound performance). We propose that the
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(c) (d)

(b)(a)

Fig. 9 a We use PCK to measure keypoint detection performance on
CPMmodels. The black solid line shows the performance of the human
landmark detector (train and test on COCO) that forms the upper bound
of the primate landmark detector. The black dotted line shows the test-
ing performance of the human landmark detector (trained on COCO)
on OMC data without retraining, which forms the lower bound. OMC
dataset allows us to train a primate specific model that shows significant
performance improvement from the lower bound. Yet, there still exists
a large gap between the human and primate landmark detectors. We
also visualize the performance improvement as increasing the number
of OMC training data. b We use PCKd to measure keypoint detection

performance onHRNetmodels. The plot comprises of curves generated
using similar experimental setup as shown in Fig. 9a. The solid green
line shows the performance of primate landmark detector trained using
pretrained model weights on OMC dataset. We also visualize the per-
formance of the primate landmark detector (trained on OMC, OMS and
MP dataset) on different datasets. c Six state-of-the-art pose estimation
models are trained with OMC datasets. These are PCK curves in the test
set from these models. d We show the average precision (AP) of state-
of-the-art models as a function of the number of model parameters. If
the data size is large enough, a larger model is likely to learn complex
visual patterns
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Table 2 Model comparison with MPJPE metric of each landmark with top-down and bottom-up methods on the OpenMonkeyChallenge test set

Method Eye Nose Head Neck Shoulder Elbow Wrist Hip Knee Ankle Tail Mean

Top-down

DeepLabCut 0.042 0.044 0.056 0.066 0.079 0.090 0.115 0.107 0.096 0.117 0.158 0.089

CPM 0.022 0.024 0.048 0.060 0.077 0.093 0.112 0.081 0.075 0.087 0.118 0.074

Hourglass 0.018 0.019 0.040 0.064 0.084 0.093 0.089 0.082 0.070 0.081 0.108 0.069

HRNet-W48 0.016 0.018 0.042 0.055 0.076 0.082 0.082 0.076 0.065 0.077 0.096 0.064

HRNet-W32 0.017 0.020 0.042 0.059 0.078 0.086 0.089 0.082 0.066 0.080 0.102 0.067

SimpleBaseline (ResNet152) 0.017 0.020 0.043 0.054 0.078 0.083 0.085 0.077 0.067 0.079 0.099 0.065

SimpleBaseline (ResNet101) 0.021 0.025 0.031 0.094 0.094 0.111 0.117 0.102 0.079 0.094 0.136 0.083

Bottom-up

HigherHRNet-W32 0.035 0.040 0.022 0.119 0.128 0.162 0.108 0.151 0.069 0.110 0.183 0.102

HigherHRNet-W48 0.023 0.034 0.034 0.109 0.122 0.126 0.098 0.124 0.086 0.100 0.161 0.092

The values represented in bold signify the performance of the best model for a given metric/landmark

major benefits associated with human pose estimation is the
progress in developing, efficient and generalizable models
with self-supervised methods (Yang et al., 2021; Sumer et
al., 2017; Jakab et al., 2020; Ludwig et al., 2021; Wan et
al., 2019; Ren & Lee, 2018). We anticipate that a similar
algorithmic innovation will close the gap.

We also conduct an ablation study to evaluate the impact
of large data, i.e., how the amount of training data affects the
landmark detection accuracy on the testing dataset. Given
the training data, we incrementally reduce the amount of
the training images used for model training by 20% at each
time and measure the model performance using PCKmetric.
Fig. 9a shows the impact of the data increments, i.e., the
model trained on 100% training data achieves the highest
PCK result, outperforming the model with 20% of training
data by 15% at PCK@0.2.

In addition to CPM, we evaluate the dataset using
HRNet (Sun et al., 2019) as shown in Fig. 9b. HRNet has
a higher capacity, which allows learning a more generaliz-
able model, achieving higher accuracy (PCKd@0.1: 0.895).
Nonetheless, the trend remains the same: OpenMonkeyChal-
lenge dataset is far smaller than the human dataset, which
introduces a fundamental performance gap between humans
and primates.

5.3 State-of-the-art DetectionModel Performance
Evaluation

We conduct a comparative study on the performance of the
state-of-the-art pose detection models using the OpenMon-
keyChallenge dataset. We train nine pose estimation models
until it starts to overfit based on the performance on the
validation data. Thesemodels can be categorized into the top-
down methods and the bottom-up methods. The top-down
models (DeepLabCut with ResNet (Mathis et al., 2018),

CPM (Wei et al., 2016), Hourglass (Newell et al., 2016),
HRNet-W32 (Sun et al., 2019), HRNet-W48, SimpleBase-
line with ResNet101 (Xiao et al., 2018), and SimpleBaseline
with ResNet152) detect the keypoints of a single primate
given the bounding box. In contrast, the bottom-up models
(HigherHRNet-W32 (Cheng et al., 2020) andHigherHRNet-
W48) localize the landmarks without a bounding box and
group them to form poses, specialized for multi-primate
detection. For all models, we use their own pretrained model
and training procedural protocol, i.e., theDeepLabCutmodel
is pretrained on ImageNet. The top-down models, in gen-
eral, show stronger performance because of resolution while
it shows weaker performance when multiple primates are
present. Table 2 summarizes the normalized MPJPE of each
landmark in the testing dataset predicted by sixmodels across
models. Table 3 reports the PCK@0.2 of each landmark in
the testing dataset, and Fig. 9c shows the PCK curve of
each model. In short, there is no clear winner. All models
use a variant of high capacity convolutional neural networks
that can effectively memorize and generalize the training
data through fully supervised learning. SimpleBaseline (Xiao
et al., 2018) slightly outperforms other models (the low-
est MPJPE and the highest PCK@0.2). Fig. 9d shows AP
comparison as a function of the model parameters. In gen-
eral, when the number of data is sufficiently large, larger and
deepermodels outperform small and shallowmodels because
more complex visual patterns can be learned. Table 4 reports
the performance of each model based on the OKS of each
landmark. Table 5 reports the PCK@0.1 of each landmark
for models trained on varying training sets.

One of the major characteristics of OpenMonkeyChal-
lenge data is a wide range of poses across diverse species.
Each species has at least more than 100 annotated images
as shown in Fig. 2c. We evaluate the model performance for
each species using PCKmetrics. In Fig. 10, we plot the accu-
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Table 3 Model comparison with PCK@0.2 metric of each landmark with top-down and bottom-up methods on the OpenMonkeyChallenge test
set

Method Eye Nose Head Neck Shoulder Elbow Wrist Hip Knee Ankle Tail Mean

Top-down

DeepLabCut 0.938 0.936 0.926 0.922 0.907 0.875 0.812 0.855 0.865 0.818 0.747 0.871

CPM 0.995 0.994 0.960 0.945 0.887 0.847 0.800 0.892 0.909 0.878 0.809 0.896

Hourglass 0.997 0.996 0.960 0.925 0.852 0.830 0.836 0.869 0.896 0.872 0.814 0.890

HRNet-W48 0.997 0.996 0.951 0.940 0.872 0.857 0.855 0.885 0.908 0.885 0.842 0.903

HRNet-W32 0.997 0.996 0.958 0.934 0.867 0.851 0.836 0.867 0.910 0.876 0.830 0.897

SimpleBaseline(ResNet152) 0.997 0.996 0.954 0.942 0.866 0.857 0.849 0.883 0.907 0.881 0.838 0.901

SimpleBaseline (ResNet101) 0.995 0.994 0.983 0.877 0.829 0.787 0.776 0.827 0.884 0.848 0.756 0.863

Bottom-up

HigherHRNet-W32 0.971 0.981 0.978 0.856 0.730 0.672 0.793 0.710 0.898 0.812 0.633 0.818

HigherHRNet-W48 0.986 0.985 0.965 0.860 0.759 0.754 0.826 0.779 0.869 0.831 0.715 0.844

The values represented in bold signify the performance of the best model for a given metric/landmark

Fig. 10 We show the accuracy for different species with respect to the
number of pose annotations in the training set

racy for each species, observed using HRNet, with respect
to the number of pose annotations in the training set. We see
that our dataset is able to predict the different species with an
accuracy greater than 80%. The variety in species and anno-
tations observed in the training dataset does aid in improving
pose accuracy across species.

6 Discussion

Herewe present a new resource, a very large (111,529 images
of 26 species) and fully annotated database of photographs of

non-humanprimates. The primates come in a range of species
and poses, and with a range of backgrounds. The primary
goal of this resource is to serve as a training tool for scholars
interested in developing computer vision approaches to iden-
tifying pose in the primate order. This resource can be found
on our new website (http://openmonkeychallenge.com). The
website also presents a new benchmark challenge for pri-
mate landmark detection. In parallel with our resource and
the challenge, and as a baseline for modeling efforts, we
provide some analyses of existing models. These analyses
reveal that non-human primate detectors have substantially
worse performance than human ones. We propose that our
large dataset will be a critical tool in closing that performance
gap.

We know of only two existing large datasets of anno-
tated primate images, OpenMonkeyPose (Bala et al., 2020)
and MacaquePose (Labuguen et al., 2021). OpenMonkey-
Pose, which our group developed, consists of nearly 200,000
annotated (13 landmarks) multiview (62 cameras) images of
rhesus macaques in a specific carefully controlled laboratory
environment. That dataset has a very different purpose than
the present one—its chief virtue is its robust characterization
of a single environment and species, and its multiview aspect
for 3D motion capture. However, it is highly limited for the
general purpose of pose identification because of its narrow
number of backgrounds, species, individuals, and poses. The
MacaquePose dataset, which consists of 13,000 images, is
likewise limited to a single species and is also substantially
smaller. Our analyses confirm that these datasets cannot be
used to train robust models that can identify pose in gen-
eral contexts nearly as well as this one can. These results,
then, argue for the value of large variegated datasets like the
one we present here. More generally, they demonstrate the
critical importance of variety when training robust detection
networks.
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Table 4 Model comparison with AP metric based on OKS of each landmark with top-down and bottom-up methods on the OpenMonkeyChallenge
test set

Method # Params AP@0.5 AP@0.6 AP@0.7 AP@0.8 AP@0.9 AP

Top-down

DeepLabCut 24.4M 92.3 89.7 83.9 74.1 52.6 73.2

CPM 31.4M 91.8 86.1 78.9 69.6 54.2 72.9

Hourglass 21M 91.3 85.7 80.8 74.7 63.8 74.5

HRNet-W32 28.5M 89.4 80.6 71.0 64.6 65.7 70.7

HRNet-W48 63.6M 90.2 85.7 80.8 74.7 63.8 76.5

SimpleBaseline (ResNet152) 68.0M 89.5 84.9 81.2 76.9 67.8 78.5

SimpleBaseline (ResNet101) 53.0M 97.2 82.6 65.9 46.9 31.4 65.3

Bottom-up

HigherHRNet-W32 28.6M 88 79.5 57.3 32.0 20.0 59.1

HigherHRNet-W48 63.8M 91.5 82.6 65.9 46.9 31.4 65.3

The values represented in bold signify the performance of the best model for a given metric/landmark

Table 5 Model comparison with different metrics of each landmark obtained from models trained on varying training sets

Method t Nose Shoulder Wrist Knee Mean

Train: 100%OMC; Test: OMC PCK@0.1 0.971 0.758 0.786 0.736 0.778

Train: 100%OMC+pretrained; Test: OMC PCK@0.1 0.975 0.769 0.806 0.754 0.793

Train: 100%OMC+OMS+MP; Test: OMC PCK@0.1 0.954 0.713 0.757 0.683 0.739

Train: 100%COCO; Test: COCO PCK@0.1 0.975 0.892 0.888 0.859 0.894

Train: 100%COCO; Test: OMC PCK@0.1 0.635 0.212 0.199 0.180 0.239

Train: 100%OMC; Test: OMC PCKh@0.1 0.915 0.568 0.661 0.576 0.633

Train: 100%OMC+pretrained; Test: OMC PCKh@0.1 0.913 0.553 0.672 0.574 0.651

Train: 100%OMC+OMS+MP; Test: OMC PCKh@0.1 0.830 0.529 0.599 0.517 0.575

Train: 100%COCO; Test: COCO PCKh@0.1 0.884 0.652 0.653 0.595 0.685

Train: 100%COCO; Test: OMC PCKh@0.1 0.491 0.168 0.133 0.136 0.169

Train: 100%OMC; Test: OMC PCKd@0.1 0.989 0.911 0.878 0.877 0.895

Train: 100%OMC+pretrained; Test: OMC PCKd@0.1 0.990 0.918 0.888 0.888 0.904

Train: 100%OMC+OMS+MP; Test: OMC PCKd@0.1 0.984 0.898 0.867 0.847 0.878

Train: 100%COCO; Test: COCO PCKd@0.1 0.994 0.971 0.956 0.956 0.967

Train: 100%COCO; Test: OMC PCKd@0.1 0.502 0.586 0.316 0.290 0.364

A key finding from our comparative study is that the state-
of-the-art designs of convolutional neural networks (CNNs),
including DeepLabCut, perform, by large, on a par with each
other. These CNNs effectively learn a visual representation
of primates from sufficiently large and diverse image data in a
fully supervised manner where generalizable image features
can be learned. This closes the gap between models. On the
other hand, this finding implies that there is a fundamental
limitation to the supervised learning paradigm. That is, our
results indicate that the CNN models overfit to the training
data; the distribution of the training data differs considerably
from that of the testing data. As a consequence, the general-
ization is strictly bounded, which leaves a large performance
gap between human and primate landmark detections. This
requires employing the new semi- or unsupervised learn-

ing paradigm, which allows utilizing a potentially unlimited
amount of unlabeled, or weakly labeled primate images,
which can close the domain difference.

Through the OpenMonkeyChallenge, we aim to derive
two major innovations to solve challenging computer vision
problems. First, algorithmic innovation can lead to substan-
tial performance gain by learning an efficient representation
from limited annotated data. Transfer learning, or domain
adaptation, used in DeepLabCut is one of such kinds that
leverage a pre-trained generic model learned from a large
dataset (e.g., ImageNet). Such approaches have shown a
remarkable generalization over frames within a target video
while showing limited performance when applying to new
videos with different viewpoints, poses, illumination, back-
ground, and identities. Second, data innovation can lead
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to great advances in generalization by being agnostic to
algorithms and representations. For example, the field has
witnessed such gains from the object detection community,
e.g., from a few hundreds of images in Caltech-101 and Pas-
cal VOC datasets to millions of images in ImageNet and
COCO datasets (Torralba & Efros, 2011). OpenMonkey-
Challenge facilitates these two indispensable innovations for
developing a generalizable primate detector through commu-
nity effort.

Acknowledgements We thank Lin Huynh, Peeyush Samba, Justin
Aronson, and Jen Holmberg for help on image acquisition. We thank
the staff at the Minnesota Zoo for copious help, especially Tom Ness,
Kathy Schlegel, Jamie Toste, Laurie Trechsel, and Kelli Gabrielson.

Funding This work is partially supported by NSF IIS 2024581 (HSP,
JZ, and BYH), NIH P51 OD011092 (ONPRC), NIH P51 OD011132
(YNPRC), NIH R01-NS120182 (JR), and K99-MH083883 (CJM).

Declarations

Conflict of interest The authors declare no conflicts of interest. All
procedures were performed in compliance with the guidelines of the
IACUC of the University of Minnesota.

Ethical approval All procedures were performed in compliance with
the guidelines of the IACUC of the University of Minnesota.

Informed Consent Informed consent is not relevant because there were
no human subjects.

References

Andriluka, M., Pishchulin, L., Gehler, P., & Schiele, B. (2014). 2D
human pose estimation: New benchmark and state of the art anal-
ysis. In Computer Vision and Pattern Recognition.

Andriluka, M., Iqbal, U., Milan, A., Insafutdinov, E., Pishchulin, L.,
Gall, J., & Schiele, B. (2018). Posetrack: A benchmark for human
pose estimation and tracking. In Computer Vision and Pattern
Recognition.

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L.,
& Parikh, D. (2015). VQA: Visual question answering. In Interna-
tional Conference on Computer Vision.

Bala, P., Eisenreich, B., Yoo, S. B., Hayden, B., Park, H., & Zimmer-
mann, J. (2020). Automated markerless pose estimation in freely
moving macaques with openmonkeystudio. Nature Communica-
tions.

Belagiannis, V., & Zisserman, A. (2017). Recurrent human pose esti-
mation. In International Conference on Automatic Face &Gesture
Recognition.

Bliss-Moreau, E., Machado, C. J., & Amaral, D. G. (2013). Macaque
cardiac physiology is sensitive to the valence of passively viewed
sensory stimuli. PLoS One.

Cao, Z., Martinez, G. H., Simon, T., Wei, S.-E., & Sheikh, Y. A. (2019).
Openpose: Realtime multi-person 2d pose estimation using part
affinity fields. IEEETransactions onPatternAnalysis andMachine
Intelligence.

Cheng, B., Xiao, B.,Wang, J., Shi, H., Huang, T. S., &Zhang, L. (2020).
Higherhrnet: Scale-aware representation learning for bottom-up
human pose estimation. In Computer vision and pattern recogni-
tion.

de Bem, R., Arnab, A., Golodetz, S., Sapienza, M., & Torr, P. H. S.
(2018). Deep fully-connected part-based models for human pose
estimation. In Asian conference on machine learning.

Dunn, T., Marshall, J., Severson, K., Aldarondo, D., Hildebrand, D.,
Chettih, S., Wang, W., Gellis, A., Carlson, D., Aronov, D., Frei-
wald, W., Wang, F., & Olveczky, B. (2021). Geometric deep
learning enables 3D kinematic profiling across species and envi-
ronments. Nature Methods.

Eichner, M., & Ferrari, V. (2010). We are family: Joint pose estimation
of multiple persons. In European Conference on Computer Vision.

Fang,H.-S.,Xie, S., Tai,Y.-W.,&Lu,C. (2017).RMPE:Regionalmulti-
person pose estimation. In International conference on computer
vision.

Güler, R. A., Neverova, N., & Kokkinos, I. (2018). Densepose: Dense
human pose estimation in the wild. In Computer vision and pattern
recognition.

Günel, S., Rhodin, H.,Morales, D., Campagnolo, J., Ramdya, P., & Fua,
P. (2019). Deepfly3d, a deep learning-based approach for 3d limb
and appendage tracking in tethered, adult drosophila. eLife.

Hayden, B. Y., Park, H. S., & Zimmermann, J. (2021). Automated pose
estimation in primates. American Journal of Primatology.

Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., & Schiele,
B. (2016). Deepercut: A deeper, stronger, and faster multi-person
pose estimation model. In European conference on computer
vision.

Iqbal, U., Milan, A., & Gall, J. (2017). Posetrack: Joint multi-person
pose estimation and tracking. In Computer vision and pattern
recognition.

Iskakov, K., Burkov, E., Lempitsky, V., & Malkov, Y. (2019). Learn-
able triangulation of human pose. In International conference on
computer vision.

Jakab, T., Gupta, A., Bilen, H., & Vedaldi, A. (2020). Self-supervised
learning of interpretable keypoints from unlabelled videos. In
Computer vision and pattern recognition.

Karashchuk, P., Rupp, K., Dickinson, E., Sanders, E., Azim, E.,
Brunton, B., & Tuthill, J. (2020). Anipose: A toolkit for robust
markerless 3D pose estimation. In BioRxiv.

Knaebe, B., Weiss, C., Zimmermann, J., & Hayden, B. (2022). The
promise of behavioral tracking systems for advancing primate ani-
mal welfare. Animals.

Labuguen, R., Matsumoto, J., Negrete, S., Nishimaru, H., Nishijo, H.,
Takada, M., Go, Y., Inoue, K.-I., & Shibata, T. (2021). Macaque-
pose: A novel “in the wild” macaque monkey pose dataset for
markerless motion capture. Frontiers in Behavioral Neuroscience.

Li, S., Li, J., Tang, H., Qian, R., & Lin,W. (2020). ATRW:A benchmark
for amur tiger re-identification in the wild. In ACM International
Conference on Multimedia.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,
D., Dollár, P., & Zitnick, C. L. (2014). Microsoft coco: Common
objects in context. In European conference on computer vision.

Lin, W., Liu, H., Liu, S., Li, Y., Qian, R., Wang, T., Xu, N., Xiong,
H., Qi, G.-J., & Sebe, N. (2020). Human in events: A large-scale
benchmark for human-centric video analysis in complex events.
arXiv preprint arXiv:2005.04490.

Ludwig, K., Scherer, S., Einfalt, M., & Lienhart, R. (2021). Self-
supervised learning for human pose estimation in sports. In IEEE
International Conference on Multimedia Expo Workshops.

Machado, C. J., Bliss-Moreau, E., Platt, M. L., & Amaral, D. G. (2011).
Social and nonsocial content differentially modulates visual atten-
tion and autonomic arousal in rhesus macaques. PLoS One.

Mathis, A.,Mamidanna, P., Cury, K.M., Abe, T.,Murthy, V. N.,Mathis,
M. W., & Bethge, M. (2018). Deeplabcut: Markerless pose esti-
mation of user-defined body parts with deep learning. Nature
Neuroscience.

123

http://arxiv.org/abs/2005.04490


International Journal of Computer Vision

Mathis, M. W., & Mathis, A. (2020). Deep learning tools for the mea-
surement of animal behavior in neuroscience. Current Opinion in
Neurobiology.

McInnes, L., Healy, J., &Melville, J. (2018). Umap: Uniform manifold
approximation and projection for dimension reduction. arXiv.

Newell, A., Yang, K., & Deng, J. (2016). Stacked hourglass networks
for human pose estimation. In European conference on computer
vision.

Ng, X. L., Ong, K. E., Zheng, Q., Ni, Y., Yeo, S. Y., & Liu, J. (2022).
Animal kingdom: A large and diverse dataset for animal behavior
understanding. In Computer vision and pattern recognition.

Pereira, T. D., Aldarondo, D. E., Willmore, L., Kislin, M., Wang, S.
S. H., Murthy, M., & Shaevitz, J. W. (2018). Fast animal pose
estimation using deep neural networks. Nature Methods.

Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M.,
Gehler, P., & Schiele, B. (2016). Deepcut: Joint subset partition
and labeling for multi person pose estimation. In Computer vision
and pattern recognition.

Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improve-
ment. arXiv.

Ren, Z., & Lee, Y. J. (2018). Cross-domain self-supervised multi-task
feature learning using synthetic imagery. In computer vision and
pattern recognition.

Sade, D. S. (1973). An ethogram for rhesus monkeys i. Antithetical
contrasts in posture and movement. American Journal of Physical
Anthropology.

Sapp, B., & Taskar, B. (2013). Modec:Multimodal decomposable mod-
els for human pose estimation. In Computer vision and pattern
recognition.

Sumer, O., Dencker, T., & Ommer, B. (2017). Self-supervised learning
of pose embeddings from spatiotemporal relations in videos. In
International conference on computer vision.

Sun, K., Xiao, B., Liu, D., & Wang, J. (2019). Deep high-resolution
representation learning for human pose estimation. In Computer
vision and pattern recognition.

Torralba, A., & Efros, A. A. (2011). Unbiased look at dataset bias. In
Computer vision and pattern recognition.

Toshev, A., & Szegedy, C. (2014). Deeppose: Human pose estimation
via deep neural networks. In Computer vision and pattern recog-
nition.

vonMarcard, T., Henschel, R., Black,M., Rosenhahn, B., & Pons-Moll,
G. (2018). Recovering accurate 3D human pose in the wild using
imus and a moving camera. In European conference on computer
vision.

Wan, C., Probst, T., Gool, L. V., & Yao, A. (2019). Self-supervised
3D hand pose estimation through training by fitting. In Computer
vision and pattern recognition.

Wei, S.-E., Ramakrishna, V., Kanade, T., & Sheikh, Y. (2016). Convolu-
tional pose machines. In Computer vision and pattern recognition.

Wiltschko, A., Johnson, M., Iurilli, G., Peterson, R., Katon, J.,
Pashkovski, S., Abraira, V., Adams, R., & Datta, S. (2015). Map-
ping sub-second structure in mouse behavior. Neuron.

Xiao, B., Wu, H., & Wei, Y. (2018). Simple baselines for human pose
estimation and tracking. In European conference on computer
vision.

Yang, H., Dong, W., Carlone, L., & Koltun, V. (2021). Self-supervised
geometric perception. In Computer vision and pattern recognition.

Yao, Y., Jafarian, Y., & Park, H. S. (2019). Monet: Multiview semi-
supervised keypoint via epipolar divergence. In International
Conference on Computer Vision.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123


	OpenMonkeyChallenge: Dataset and Benchmark Challenges for Pose Estimation of Non-human Primates
	Abstract
	1 Introduction
	2 Related Work
	2.1 Animal Pose Estimation
	2.2 Animal and Primate Datasets

	3 OpenMonkeyChallenge Benchmark Dataset
	3.1 Data Collection Method
	3.2 Semi-automatic Annotation

	4 Benchmark Evaluation Protocol
	5 Dataset Evaluation
	5.1 Cross-dataset Evaluation
	5.2 Comparison with Human Pose Estimation
	5.3 State-of-the-art Detection Model Performance Evaluation

	6 Discussion
	Acknowledgements
	References


