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Abstract
Learning-basedmulti-view stereo (MVS)methods have demonstrated promising results. However, very few existing networks
explicitly take the pixel-wise visibility into consideration, resulting in erroneous cost aggregation from occluded pixels. In this
paper, we explicitly infer and integrate the pixel-wise occlusion information in theMVS network via the matching uncertainty
estimation. The pair-wise uncertainty map is jointly inferred with the pair-wise depth map, which is further used as weighting
guidance during the multi-view cost volume fusion. As such, the adverse influence of occluded pixels is suppressed in the
cost fusion. The proposed framework Vis-MVSNet significantly improves depth accuracy in reconstruction scenes with severe
occlusion. Extensive experiments are performed on DTU, BlendedMVS, Tanks and Temples and ETH3D datasets to justify
the effectiveness of the proposed framework.

Keywords Multi-view stereo · Visibility · MVSNet

1 Introduction

Multi-view stereo (MVS) is one of the core problems in com-
puter vision, which is essential to a variety of applications
including image-based 3D modeling, city-scale survey and
autonomous driving. While the problem is mainly solved
by classical methods (Campbell et al., 2008; Furukawa &
Ponce, 2009; Tola et al., 2012; Galliani et al., 2015; Schön-
berger et al., 2016), recent learning-based methods (Yao et
al., 2018, 2019; Gu et al., 2020) have also shown competitive
results compared with previous state-of-the-arts. Learning-
based methods usually extract deep image features from
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input images, which implicitly introduces global semantic
such as specularity and reflection priors during the recon-
struction process. Moreover, MVS networks usually apply
3D convolution neural networks (CNNs) for the cost volume
regularization, which is more powerful than engineered cost
regularization in classical methods.

One critical factor in MVS is the pixel-wise visibility:
whether a 3D point is visible in given images. However, such
visibility information is unknown before the 3D model is
densely recovered, which implies a chicken-and-egg prob-
lem. In traditional MVS algorithms, the visibility issue is
well understood: some approaches simply reject patch pairs
according to pre-determined criteria, and then update the
cost aggregation with only the inlier patch pairs (Furukawa
& Ponce, 2009; Tola et al., 2012; Xu & Tao, 2019). More
advanced approaches, such as COLMAP (Zheng et al., 2014;
Schönberger et al., 2016), compute the visibility informa-
tion and aggregate the pair-wise matching cost based on a
probabilistic framework, where visibility and depth are alter-
natively updated in E-step and M-step.

However, very few of the current learning-based MVS
methods have acknowledged this problem and have explic-
itly handled the visibility issue. For example, MVSNet and
its followingworks (Yao et al., 2018, 2019; Chen et al., 2019;
Gu et al., 2020; Cheng et al., 2020; Yang et al., 2020) feed
multi-view features from all views into a variance-based cost
metric regardless of the visibility of the pixel. Other methods
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apply either averaging (Hartmannet al., 2017) ormaxpooling
(Huang et al., 2018) to aggregate the matching cost. While it
is possible that the network could implicitly learn how to dis-
card the invisible views for each pixel, the unsolved visibility
problem may inevitably deteriorate the final reconstruction.

In this work, we present an end-to-end network architec-
ture that takes pixel-wise visibility information into account.
The depth map is estimated from multi-view images in
a two-step manner. First, matching is performed for each
reference-source image pair and a latent volume represent-
ing the pair-wise matching quality is obtained. This volume
further regresses to an intermediate estimation of a depthmap
and an uncertaintymap, where the uncertainty is transformed
from the depth-wise entropy of the probability volume. Sec-
ond, to attenuate unmatchable pixels, we fuse all pair-wise
latent volumes to one multi-view cost volume by using
pair-wise matching uncertainties as weighting guidance. The
fused volume is regularized and regresses to the final depth
estimation. We also integrate several practical components
from recent MVS networks, including group-wise correla-
tion and Guo et al. (2019) coarse-to-fine strategy (Gu et
al., 2020) to further boost the overall reconstruction qual-
ity. Our network is end-to-end trainable and the uncertainty
part is trained in an unsupervised manner. In this case, we
can directly utilize existing MVS datasets with only ground
truth depth maps to train the visibility-aware MVS network.

The proposed Vis-MVSNet is evaluated on DTU (Jensen
et al., 2014), BlendedMVS (Yao et al., 2020) datasets, and is
benchmarked on Tanks and Temples (Knapitsch et al., 2017)
and ETH3D (Schops et al., 2017) datasets. Our method ranks
1st among all submissions in the Tanks and Temples online
benchmark (until May 1, 2020) and is the top-tier learning-
based method on both Tanks and Temples advanced set and
ETH3D high-res set. Comparisons with previous methods
and ablation studies in the experiment section demonstrate
the significant improvement bought by our approach, espe-
cially when the occlusion problem is severe in input images.
An example can be found in Fig. 1.

This paper extends Zhang et al. (2020a) with the following
contents:

• Detailed explanation of depth map filtering and fusion
(Sect. 3.8).

• Benchmarking on the large-scale Tanks and Temples
advanced set (Sect. 4.2).

• Benchmarking on the ETH3D high-res test dataset
(Sect. 4.3).

2 RelatedWork

Multi-view Stereo Multi-view stereo reconstructs surfaces
from multiple images mainly by checking the consistency of

the image projections.Adetailed review can be found in Seitz
et al. (2006). For example, Lhuillier and Quan (2005) and
Furukawa and Ponce (2009) directly produce point clouds
by iteratively propagating and densifying the points. If the
scene is represented by voxel grid, space carving (Kutulakos
& Seitz, 2000; Slabaugh et al., 2004; Furukawa & Ponce,
2006) can be applied to gradually discard non-photo con-
sistent voxels. Alternatively, a given surface can be further
refined by optimizing towards a more photo consistent solu-
tion (Grum & Bors, 2014). However, when processing large
scale scenes, whole scene reconstruction often suffers from
hugememory consumption and long processing time. In con-
trast, other methods (Tola et al., 2012; Campbell et al., 2008;
Galliani et al., 2015; Schönberger et al., 2016; Yao et al.,
2017) simplify the problem by only considering the surface
inside the camera frustum of a reference view and check-
ing photo consistency with only neighboring views. And the
reconstruction of the whole scene is obtained by fusing the
resulting depth maps of each view. In this paper, we follow
the latter strategy.
Learning-based MVS Learning-based methods have shown
great potentials to replace each step in traditionalMVS recon-
structions. The learnable multi-view cost metric (Hartmann
et al., 2017) is first proposed tomeasure themulti-viewphoto-
consistency between image patches. Later, SurfaceNet (Ji et
al., 2017) is proposed to learn the cost volume regulariza-
tion from geometry ground truth. The authors of LSM (Kar
et al., 2017) apply the differentiable projection in the net-
work and propose the first end-to-end learnable network for
low-resolution MVS reconstruction. DeepMVS (Huang et
al., 2018) reprojects images to 3D plane-sweeping volumes,
performs intra-volume aggregation, and applies inter-volume
aggregation to fuse the volumes and generate the depth map
output. RayNet (Paschalidou et al., 2018) encodes the camera
projection to the network, and utilizes the Markov Random
Field to predict the surface label.

Another recent popular network for MVS reconstruction
is MVSNet (Yao et al., 2018). MVSNet first extracts deep
image features and then warps these features into the refer-
ence camera frustum to build a cost volume via differentiable
homographies. To reduce the memory consumption during
the network inference, the follow-up R-MVSNet (Yao et al.,
2019) replaces the 3D CNNs regularization module with
a 2D GRU recurrent network. Point-MVSNet (Chen et al.,
2019) proposes a point-based depth map refinement network
to improve the output accuracy and MVS-CRF (Xue et al.,
2019) introduces the conditional random field optimization
during the depth map estimation. More recently, CasMVS-
Net (Gu et al., 2020), CVP-MVSNet (Yang et al., 2020)
and UCSNet (Cheng et al., 2020) integrate the coarse-to-fine
strategy to the learning-based MVS reconstruction. These
works preserve an image feature pyramid and generate an
initial depth estimationwith large depth interval at a low reso-
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Fig. 1 Illustration of the visibility-aware fusion. For each reference-source pair, the uncertainty map successfully estimates per pixel visibility.
During the fusion, occluded pixels are attenuated, resulting in a well reconstructed final depth map

lution. In following stages, cost volumes are constructedwith
a narrow depth range centering at the depth estimation from
previous stages. The coarse-to-fine architecture successfully
reduces memory consumption so that they support deeper
backbone networks and higher resolution outputs. However,
these methods all apply a variance-based cost metric, which
is under the assumption that a given pixel is visible in all input
images. As a result, an increasing number of input images
would lead to even a worse depth map estimation quality.

Visibility Estimation Visibility estimation is a well-
acknowledged problem in classic MVS reconstructions. Pre-
vious works include heuristic cost thresholding methods
(Furukawa&Ponce, 2009; Tola et al., 2012;Xu&Tao, 2019)
andmore complicated joint depth-visibility estimationmeth-
ods (Zheng et al., 2014; Schönberger et al., 2016). For latter
approaches, the per-pixel visibility is usually jointly recov-
ered during the depth map estimation process through an
EM-based method. However, these methods apply a proba-
bilistic frameworkwhich is hard to be directly integratedwith
deep neural networks. To handle the visibility issue in the
learning-based frameworks, we should consider other alter-
natives for joint depth map and visibility estimation.

Current deep learningmethods take visibility into account
in an implicit manner. MVSNet (Yao et al., 2018) reduces
the feature volumes from different source views by vari-
ance metric which considers each view equally and claims
that information from invisible pixels can be filtered out in
the regularization. Such implicit method heavily relies on
the regularization of the neural network. Besides, DeepMVS
(Huang et al., 2018) applies max pooling of multiple fea-
ture volumes to select the best latent representation, which
is expected to be generated from a matchable pair. However,
the fused volume is only related to the information from the
best view, which loses the advantage of MVS that a more

robust prediction can be produced by multiple observation.
Instead, we start from pair-wise cost volumes to identify the
pair-wise matching quality, and fuse the pair-wise volumes
by weighted sum where weights of unmatchable pairs are
reduced.

Uncertainty Estimation In our approach, visibility is indi-
cated by the matching uncertainty of the pair-wise depth
map. Uncertainty (or confidence) estimation for two-view
depth or disparity estimation has been widely studied for
classic methods by Hu and Mordohai (2012). The majority
of such methods examine the properties of the probability
distribution over all the depth or disparity hypotheses. End-
to-end deep neural networks (Poggi and Mattoccia, 2016;
Kim et al., 2018, 2019; Tosietal., 2018) are also applied to
estimate the uncertainty map for two-view stereo. Recently,
Kendall and Gal (2017) propose to jointly estimate the net-
work output and its uncertainty based on the Bayesian neural
network. However, this method cannot be directly adopted
in our framework because they operate on 2D outputs, while
we believe that it is more reasonable to estimate uncertainty
from the 3Dprobability volume. Thereforewe follow (Zhang
et al., 2020b) to use the depth-wise entropy of the probability
volume to explicitly measure the pair-wise matching uncer-
tainty.

3 Method

3.1 Overview

Our baseline architecture is similar to CasMVSNet (Gu
et al., 2020), where we apply a coarse-to-fine strategy
for multi-view depth map estimation. The outline of the
visibility-aware MVS network is illustrated in Fig. 2. Given
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Fig. 2 The proposed framework. For every reference-source pair, we
jointly infer the depth map and the uncertainty map. The latent volumes
are fused according to the uncertainty. And the fused volume is further

regularized for the final depth map regression. *F0, F1 and FNv are
he feature maps. The images here only show the original image of the
feature maps

a reference image I0 and a set of neighboring source images
{Ii }Nv

i=1, the framework predicts a reference depth map D0

aligned with I0. First, all images are fed into a 2D UNet
(Ronneberger et al., 2015) for the extraction of multi-scale
image features, which are used for depth estimation in three
stages from low to high resolutions. For the reconstruction at
the k-th stage, a cost volume is constructed, regularized and
used to estimate a depth map Dk,0 with the same resolution
to the input feature map. Intermediate depth maps from pre-
vious stages will be used for the cost volume construction
at next stages. Finally, D3,0 will be served as the final out-
put D0 of the system. Detailed network architectures of each
sub-networks are listed in Table 1.

3.2 Feature Extraction

In our network, deep image features are extracted by an
hourglass-shaped encoder-decoderUNet (Ronneberger et al.,
2015) architecture. The encoder generates a feature pyramid
of input images, and the number of scales of the pyramid is
equal to the length of the array Fenc. In each level of scale,
the feature map from previous layer is fed into a downsizing
residual block and Nenc − 1 ordinary residual blocks (He et
al., 2016). The numbers of channels in each level are listed
in the array Fenc in canonical order.

The decode upsamples feature maps back to the original
size as an inverse pyramid. In each level of scale, the fea-

ture map is fed into a transposed convolutional layer with
stride 2. The result is then concatenated with the feature
map that has the same size in the encoder pyramid along the
channel dimension. The concatenated feature map is further
processed by Ndec residual blocks. The numbers of channels
in each level are listed in the array Fdec in canonical order.

The extracted features at the last three scales in the decoder
part are further converted to 32 channels by additional convo-
lutions. These 32-channel feature maps are used to construct
cost volumes at different resolutions.

3.3 Cost Volume and Regularization

Weconstruct cost volumes at different scale stages. In the k-th
scale stage, instead of directly constructing a unified cost vol-
ume from all views, we first construct pair-wise cost volumes
for each reference-source pairs. For the i-th pair, by assuming
that the reference image has depth d, we can obtain a warped
featuremapFk,i→0(d) from the source view. Inspired byGuo
et al. (2019), we apply the group-wise correlation to calculate
a cost map between the reference and the warped source fea-
ture map. Specifically, given two 32-channel feature maps,
we divide all the channels into 8 groups eachwith 4 channels.
Then correlations are computed between each corresponding
pair of group, resulting in 8 values for each pixel. Then the
cost maps for all the depth hypothesis are stacked together as
the cost volume. The resulting cost volume Ck,i of the i-th
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image pair in the k-th stage is of size Nd,k × H × W × Nc,
where Nd,k is the depth hypothesis number in the k-th stage
and Nc = 8 is the group number of the group-wise corre-
lation operation. The set of the hypotheses is predetermined
for the first stage, and is dynamically determined for the sec-
ond and third stages according to the depth map output of the
previous stage. The calculation of the dynamic depth range
will be explained in Sect. 3.6.

As mentioned in Sect. 1, our cost regularization is per-
formed in a two-step manner. First, every pair-wise cost
volume is regularized to a latent volume Vk,i separately.
Then, all latent volumes are fused toVk which is further reg-
ularized to probability volume Pk and regresses to the final
depth map of the current stageDk,0 via soft-argmax (Kendall
et al., 2017) operation. The fusion of the latent volumes is
visibility-aware. Concretely, we first measure visibility by
jointly inferring pair-wise depth and uncertainty. Each latent
volume is transformed to a probability volume Pk,i through
additional 3D CNNs and the softmax operation. Then, the
depth map Dk,i and the corresponding uncertainty map Uk,i

are jointly inferred via soft-argmax and entropy operation,
which will be explained in Sect. 3.4. The uncertainty map
will be used as a weighting guidance during latent volume
fusion (Sect. 3.5).

3.4 Pair-wise Joint Depth and Uncertainty
Estimation

As stated in the previous section, pair-wise probability vol-
umes are obtained for joint depth and uncertainty estimation.
Similar to other current learning-based MVS methods, the
depth map is regressed from the probability volume via the
soft-argmax operation. For simplicity, the stage number k is
omitted below.We denote the probability distribution over all
the depth hypotheses as {Pi, j }Nd

j=1. The soft-argmax operation
is equivalent to computing the expectation of this distribution
and Di is computed as:

Di =
Nd∑

j=1

d jPi, j (1)

To jointly regress the depth estimation and its uncertainty,
we assume that the depth estimation follows the Laplacian
distribution (Kendall&Gal, 2017). In this case, the estimated
depth and the uncertainty maximize the likelihood of the
observed ground truth:

p(Dgt,i |Di ,Ui ) = 1

2Ui
· exp

( |Di − Dgt,i |
Ui

)
(2)

where Ui is pixel-wise uncertainty of the depth estimation.
Notice that the probability distribution {Pi, j }Nd

j=1 also reflects

the matching quality. We thus apply the entropy map Hi of
{Pi, j }Nd

j=1 to measure the depth estimation quality. And the
uncertainty mapUi is transformed fromHi by a function fu ,
which is presented as a shallow 2D CNN in the network:

Ui = fu

⎛

⎝Hi ) = fu(
Nd∑

j=1

−Pi, j logPi, j

⎞

⎠ (3)

The reason of adopting the entropy is that the randomness
of the distribution is negatively related to the uni-modal
distribution. And the uni-modality is an indicator of high
confidence of the depth estimation.

To jointly learn the depth map estimationDi and its uncer-
taintyUi , we minimize the negative log likelihood described
above:

L joint
i = 1

|I valid
0 |

∑

x∈I valid
0

− log

(
1

2Ui
exp

|Di − Dgt,i |
Ui

)

= 1

|I valid
0 |

∑

x∈I valid
0

1

Ui
|Di − Dgt,i | + logUi

(4)

Constants are omitted in the formula. For numerical stability,
in practice we infer Si = logUi instead of Ui directly. The
log uncertainty map Si is also transformed from the entropy
map Hi by a shallow 2D CNN.

The loss (Eq. 4) can also be interpreted as attenuation to
the L1 loss between the estimation and the ground truthwith a
regularization term. The intuition is that the interference from
the erroneous samples should be reduced during training.

3.5 Volume Fusion

In this section we introduce the visibility-aware volume
fusion. For simplicity, the stage number k is omitted. Given
the pair-wise latent cost volumes {Vi }Nv

i=1, a single volumeV
is fused from the volumes byweighted sum,where theweight
is negatively related to the estimated pair-wise uncertainty.

V =
(

Nv∑

i=1

1

exp Si

)−1 Nv∑

i=1

(
1

exp Si
Vi

)
(5)

Fromour observations, pixelswith large uncertainty aremore
likely to be located in occluded regions. Thus, these values
in the latent volume could be attenuated.

An alternative to the weighted sum is applying thresh-
old for Si and perform a hard visibility selection for each
pixel. However, without an interpretation of the value Si , we
can only do empirical thresholding that may not be univer-
sal. Instead, our weighted sum formulation naturally fuses
all views and considers the log uncertainty Si in a relative
manner.
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Table 1 Detailed network architecture

Name Layer Output

input H × W × 3

Feature Extraction

feat-conv0 5x5 conv, stride=2 1/2H × 1/2W × 16

feat-UNet Nenc = 2, Ndec = 1 Fenc = [32, 64, 128], Fdec = [64, 32] 1/2H × 1/2W × 32

feat-out1 conv on 1/8 scale, w/o BN, ReLU 1/8H × 1/8W × 32

feat-out2 conv on 1/4 scale, w/o BN, ReLU 1/4H × 1/4W × 32

feat-out3 conv on 1/2 scale, w/o BN, ReLU 1/2H × 1/2W × 32

Pair-wise Cost Volume

cost-volume Groupwise Correlation Nd × Hk × Wk × 8

Pair-wise Regularization

reg0-UNet Nenc = 1, Ndec = 0 Fenc = [8, 16], Fdec = [8] Nd × Hk × Wk × 8

Pair-wise Depth and Uncertainty Estimation

reg0-conv 3D conv w/o BN, ReLU Nd × Hk × Wk × 1

prob-volume softmax along Nd Nd × Hk × Wk × 1

pair-depth soft argmax along Nd on prob-volume (1×)Hk × Wk × 1

pair-entropy entropy along Nd on prob-volume (1×)Hk × Wk × 1

uncert-res residual block on pair-entropy Hk × Wk × 8

uncertainty conv w/o BN, ReLU on uncert-res Hk × Wk × 1

Volume Fusion

fused weighted average on all reg0-UNet Nd × Hk × Wk × 8

Post-fusion Regularization

reg1-UNet Nenc = 1, Ndec = 0 Fenc = [8, 16], Fdec = [8] Nd × Hk × Wk × 8

reg1-out 3D conv w/o BN, ReLU Nd × Hk × Wk × 1

Final Depth Estimation

final-prob-vol softmax along Nd Nd × Hk × Wk × 1

final-depth soft argmax along Nd (1×)Hk × Wk × 1

All convolutions are without bias, with a kernel size of 3 and a stride of 1, and are followed by Batch Normalization and ReLU unless otherwise
specified. Hk , Wk denote heights and weights at different scale stages

3.6 Coarse-to-Fine Architecture

Our coarse-to-fine architecture mainly follows the recent
Cas-MVSNet (Gu et al., 2020). In all stages, depth hypothe-
sis are uniformly sampled from a depth range. The first stage
takes image features at low resolution and constructs cost
volume with the predetermined depth range but with a larger
depth interval, while the following stages use higher spatial
resolutions, narrower depth ranges and smaller depth inter-
vals.

For the first stage, the depth range is [dmin, dmin + 2Δd)

and the depth number is Nd,1, where dmin , Δd and Nd,1 is
predetermined. For the k-th stage (k ∈ {2, 3}), the depth
range, sample number and interval are reduced. And the
ranges are centered at the depth estimation from the pre-
vious stage, which are different for each pixel. The depth
range for pixel x is [Dk−1,0 − wkΔd,Dk−1,0 + wkΔd) and
the depth number is pk Nd,k , where wk < 1 and pk < 1 are

the predefined scaling factors, and Dk−1,0 is the final depth
estimation of pixel x from the last stage k − 1.

3.7 Training Loss

For each stage, we compute the pair-wise L1 loss, the pair-
wise joint loss and the L1 loss of the final depthmap. The total
loss is the weighted sum of the losses from all three stages.
To normalize the scale in different training scenes, all depth
differences are divided by the pre-defined depth interval of
the final stage.

L =
3∑

k=1

λk

[
L f inal
1,k + 1

Nv

Nv∑

i=1

(L pair
1,k,i + L joint

k,i )

]
(6)

The pair-wise L1 losses are included because the uncertainty
loss tends to over-relax the pair-wise depth and uncertainty
estimation. The pair-wise L1 losses here could guarantee a
qualified pair-wise depth map estimation.
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3.8 Point Cloud Generation

After generating depth maps of all views, the final step of
the proposed method is to fuse all depth maps into a unified
point cloud. Following Yao et al. (2018), depth maps are
filtered and fused to ensure both photometric and geometric
consistency from different views.

Probability MapsBecause soft-argmax operation can always
generate a final estimation despite the quality of the prob-
ability distribution, we additionally generate probability
maps to filter out unreliable pixels. The total probabil-
ities of depth hypothesis within range [D − 2,D + 2],
i.elet@tokeneonedothypothesis around the final estimation,
are calculated as the probability map of a given depth map
output. Moreover, in our coarse-to-fine architecture, we con-
sider all probability maps at different stages, and the filtering
criterion is that a pixel in a reference view will be preserved
if and only if all probability maps from all three stages are
higher than the corresponding thresholds pt,1, pt,2, pt,3.

Geometric Consistency For a pixel pr in a reference depth
mapDr , we can obtain its reprojected pixel preproj and depth
dreproj from each source view by following steps: 1) back-
project the pixel with depth Dr (pr ) to space. 2) project the
space point to the source depth map Ds as pr→s . 3) back-
project Ds(pr→s) to space. 4) project the second space point
to reference view as preproj with depth dreproj . We con-
sider the estimated Dr (pr ) is geometrically consistent for
this source view if and only if ‖pr − preproj‖ < 1 and

|Dr (pr )−dreproj |
max(Dr (pr ),dreproj )

< 1%. During the filtering, pixels with less
than N f consistent views are discarded.

Geometric Visibility Fusion We follow the visibility-based
depth map fusion in Merrell et al. (2007). All the source
depth maps are projected to the reference view, where each
pixel in the reference depth map may receive different num-
ber of depth values. For each pixel, we calculate the following
metrics for each depth: (1) occlusion, which is the number
of depths occluding this one (depth value is smaller than this
one); (2) violation, which is the number of views in which
this depth will be in the free-space after projection (projected
depth is smaller than the value at the corresponding loca-
tion in source views); (3) stability, which is occlusion minus
violation. Finally the smallest depth value with non-negative
stability is selected as the new depth value of this pixel. More
details of occlusion, violation and stability can be found in
the original paper (Merrell et al., 2007). Compared with sim-
ply taking the median of depth candidates, we observe that
the visibility-based fusion slightly improves the point cloud
quality.

Geometric Average Fusion The noise of the estimated depth
values can be reduced by averaging the reprojected depths
from source views. For a pixel p0 in a reference depth map

Table 2 Fusion parameters used for the experiments on each datasets

Nv N f Prob. Threshold
pt,1 pt,2 pt,3

TnT Intermediate 7 4 0.8 0.7 0.8

TnT Advanced 20 3 0.3 0.4 0

ETH3D 20 2 0.1 0.1 0

DTU 5 2 0.6 0.6 0.6

with depth d0, we gather reprojected depths {di }i∈Ic from
all the consistent source views Ic. The depth from average
fusion is (d0 + ∑

i∈Ic di )/(|Ic| + 1).

Small Segment Filter Finally, we introduce the small segment
filter in our pipeline. We observe that small clusters of flying
points are usually noises in space. We can easily remove
them according to their cluster size, which can be done in
depth map level. Given a depth map, a graph can be built
where there is an edge between two adjacent pixels if both
pixels are valid and the depth difference is not large. Then
we remove the connected components with small number of
pixels. In practice, we use the threshold of depth difference
percentage as 0.05% and cluster size as 10.

Fusion Pipeline The whole filtering and fusion pipeline is
listed as follows: (1) Probability map filtering; (2) Geo-
metric consistency filtering; (3) Geometric visibility fusion;
(4) Geometric consistency filtering; (5) Geometric average
fusion; (6) Geometric consistency filtering; (7) Small seg-
ment filtering. If a pixel is filtered out, it will be excluded
in all the following steps. An illustration of the filtering and
fusion pipeline can be found in Fig. 3. The fusion parameters
used for each dataset is listed in Table 3.

4 Experiment

4.1 Implementation

Pre-selection of Source Images The considered source views
should be well-conditioned in the sense that the union of
the overlapped areas of the reference-source pairs can cover
most of the reference image. Therefore, all the source views
are sorted according to the score considering all the base-
line angle of the common tracks in the sparse reconstruction.
Generally, the source views that are close to the reference
view are preferred.

The selection criteria follows Yao et al. (2018). We use
sparse tracks from the structure from motion (SfM) step to
rate the closeness of each image pair. For a view pair i, j ,
we calculate a score s(i, j) = ∑

p G(θi, j (p)) that considers
the baseline angle θi, j (p) of all the common tracks p in this
view pair. The baseline angle can be derived as θi, j (p) =
(180/π) arccos[(ci − p) · (c j − p)], where c is the camera
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Fig. 3 Illustration of intermediate results during depth map filter and fusion (Sect. 3.8) on scan9 of DTU dataset

Fig. 4 Qualitative results of point clouds on the intermediate set of Tanks and Temples

center. G(θ) is a piecewise Gaussian function (Zhang et al.,
2015):

G(θ) =
⎧
⎨

⎩
exp(− (θ−θ0)

2

2σ 2
1

), θ ≤ θ0

exp(− (θ−θ0)
2

2σ 2
2

), θ > θ0
(7)

In all the experiments, θ0 = 5, σ1 = 1 and σ2 = 10.

Training Our network is trained on BlendedMVS (Yao et al.,
2020) training set for most experiments (Sects. 4.2 and 4.5)
and is trained on DTU training set (Jensen et al., 2014) for
DTU benchmarking (Sect. 4.4). For both training sets, we
use the input image size of 640× 512 and output depth map
size of 320 × 256. We set the number of source views to
Nv = 3 during training. For depth samples at different stages,

we set the depth hypothesis numbers to Nd,1, Nd,2, Nd,3 =
32, 16, 8, and depth range scaling factors to w2, w3 = 1

4 ,
1
16

respectively. The loss weights for each stage λ1, λ2, λ3 =
0.5, 1, 2. The network is trained for 160k iterations with a
batch size of 2 by an Adam (Kingma & Ba, 2014) optimizer.
The initial learning rate is 0.001 and is halved at the 100,
120 and 140k steps. All experiments are performed using
one NVidia V100 GPU.

4.2 Benchmarking on Tanks and Temples Dataset

We first evaluate our method on the Tanks and Temples
dataset (Knapitsch et al., 2017). As mentioned in Sect. 4.1,
we use theBlendedMVS training set (Yao et al., 2020) to train
the network. BlendedMVS is a recent MVS dataset contain-
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Table 3 Quantitative results of point clouds on the intermediate set of Tanks and Temples

Mean Family Francis Horse Light. M60 Panther Play. Train
Precision Recall F-score ↑

COLMAP Schönberger et al. (2016) 43.16 44.48 42.14 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04

MVSNet Yao et al. (2018) 40.23 49.70 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69

Point-MVSNet Chen et al. (2019) 41.27 60.13 48.27 61.79 41.15 34.20 50.79 51.97 50.85 52.38 43.06

SurfaceNetPlus Ji et al. (2020) 51.86 50.30 49.38 62.38 32.35 29.35 62.86 54.77 54.14 56.13 43.10

R-MVSNet Yao et al. (2019) 39.80 71.96 50.55 73.01 54.46 43.42 43.88 46.80 46.69 50.87 45.25

PatchmatchNet Wang et al. (2021) 43.64 69.37 53.15 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81

CVP-MVSNet Yang et al. (2020) 51.41 60.19 54.03 76.50 47.74 36.34 55.12 57.28 54.28 57.43 47.54

UCSNet Cheng et al. (2020) 46.66 70.34 54.83 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89

PCF-MVS Kuhn et al. (2019) 49.82 65.68 55.88 70.99 49.60 40.34 63.44 57.79 58.91 56.59 49.40

CasMVSNet Gu et al. (2020) 47.62 74.01 56.84 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51

ACMM Xu and Tao (2019) 49.19 70.85 57.27 69.24 51.45 46.97 63.20 55.07 57.64 60.08 54.48

BP-MVSNet Sormann et al. (2020) 51.26 68.77 57.60 77.31 60.90 47.89 58.26 56.00 51.54 58.47 50.41

ACMP Xu and Tao (2020) 49.06 73.58 58.41 70.30 54.06 54.11 61.65 54.16 57.60 58.12 57.25

D2HC-RMVSNet Yan et al. (2020) 49.88 74.08 59.20 74.69 56.04 49.42 60.08 59.81 59.61 60.04 53.92

DeepC-MVS Kuhn et al. (2020) 59.11 61.21 59.79 71.91 54.08 42.29 66.54 55.77 67.47 60.47 59.83

Vis-MVSNet 54.44 70.48 60.03 77.40 60.23 47.07 63.44 62.21 57.28 60.54 52.07

Bold entries are the best results among the compared methods F-scores are shown for each scene. The proposed method achieves the best mean
F-score among all published works

Fig. 5 Qualitative results of point clouds on the advanced set of Tanks and Temples
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Table 4 Quantitative results of point clouds on the advanced set of Tanks and Temples

Mean Auditorium Ballroom Courtroom Museum Palace Temple
Precision Recall F-score ↑

Colmap Schönberger et al. (2016) 33.65 23.96 27.24 16.02 25.23 34.70 41.51 18.05 27.94

R-MVSNet Yao et al. (2019) 28.03 33.63 29.55 19.49 31.45 29.99 42.31 22.94 31.10

CasMVSNet Gu et al. (2020) 29.68 35.24 31.12 19.81 38.46 29.10 43.87 27.36 28.11

BP-MVSNet Sormann et al. (2020) 29.62 35.61 31.35 20.44 35.87 29.63 43.33 27.93 30.91

PatchmatchNet Wang et al. (2021) 27.27 41.66 32.31 23.69 37.73 30.04 41.80 28.31 32.29

Vis-MVSNet 30.16 41.42 33.78 20.79 38.77 32.45 44.20 28.73 37.70

ACMM Xu and Tao (2019) 35.63 34.90 34.02 23.41 32.91 41.17 48.13 23.87 34.60

DeepC-MVS Kuhn et al. (2020) 40.68 31.30 34.54 26.30 34.66 43.50 45.66 23.09 34.00

PCF-MVS Kuhn et al. (2019) 37.52 35.36 35.69 28.33 38.64 35.95 48.36 26.17 36.69

ACMP Xu and Tao (2020) 34.57 42.48 37.44 30.12 34.68 44.58 50.64 27.20 37.43

Bold entries are the best results among the comparedmethods F-scores are shown for each scene. The proposedmethod outperforms other end-to-end
learning-based methods

Fig. 6 Qualitative results of point clouds on the test set of ETH3D
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Table 5 Quantitative result (F-score) of point clouds on the test set of ETH3D

all ↑ Botani. Boulde. Bridge Door Exhibi. Lectur. Living. Lounge Observ. Old co. Statue Terrac.

Colmap Schönberger et al. (2016) 73.01 87.13 65.63 88.3 84.19 62.96 63.80 87.69 38.04 92.56 46.66 74.91 84.24

PatchmatchNet Wang et al. (2021) 73.12 83.18 60.85 79.63 78.57 64.13 71.73 79.81 51.20 85.97 57.40 76.36 88.66

LTVRE_ROB Kuhn et al. (2017) 76.25 88.60 64.38 79.24 89.12 70.76 69.79 87.86 49.09 93.20 56.21 80.16 86.65

PLC Liao et al. (2019) 78.05 91.88 67.80 88.19 89.46 64.33 69.87 88.38 53.66 93.58 58.86 82.73 87.86

PCF-MVS Kuhn et al. (2019) 80.38 87.71 68.99 83.65 91.46 63.00 77.77 90.28 66.10 95.09 61.40 88.22 90.94

ACMM Xu and Tao (2019) 80.78 89.31 68.37 89.99 91.60 70.28 77.25 89.66 53.37 93.53 74.24 82.85 88.85

ACMP Xu and Tao (2020) 81.51 89.42 68.69 89.97 91.50 74.46 75.04 90.41 53.82 94.54 77.56 82.91 89.86

MAR-MVS Xu et al. (2020) 81.84 91.32 71.53 89.82 90.92 69.77 78.50 86.21 62.36 94.52 65.36 92.05 89.77

CLD-MVS Li et al. (2020) 82.31 88.47 67.73 85.81 92.35 75.78 78.33 86.58 64.01 94.35 76.05 87.48 90.79

Vis-MVSNet 83.46 90.25 68.74 90.30 90.13 76.33 80.87 92.89 61.00 94.20 72.45 90.97 93.35

DeepC-MVS Kuhn et al. (2020) 87.08 91.16 72.32 90.31 93.94 77.12 82.82 94.23 72.13 97.09 84.83 95.37 93.65

Bold entries are the best results among the compared methods The proposed method is the second best among all the learning-based methods

ing 113 indoor and outdoor scenes with 16904MVS training
samples in total. The dataset is split into 106 training scenes
and 7 validation scenes. The trainedmodel is directly applied
to the Tanks and Temples benchmarking without fine-tuning.

Intermediate Set The Tanks and Temples intermediate set
contains 8 scenes captured with outside-look-in camera tra-
jectories.We use the original input image size of 1920×1080
for our evaluation. The source image number is set to
Nv = 7 for network inference and we choose N f = 4,
pt,1, pt,2, pt,3 = 0.8, 0.7, 0.8 for depth map filter and
fusion. Quantitative results are shown in Table 3 and corre-
sponding point cloud reconstructions are illustrated in Fig. 4.
OurVis-MVSNet achieves ameanF-score of 60.03 and ranks
1st among all methods in the benchmark (until May 1, 2020),
which outperforms all classical MVS methods (Schönberger
et al., 2016; Xu & Tao, 2019) and recent learning-based
approaches (Yao et al., 2018; Chen et al., 2019; Yang et al.,
2020; Cheng et al., 2020; Gu et al., 2020). Qualitatively, the
points are dense and accurate in well-textured regions. The
visibility handling mechanism improves the depth accuracy
so that more points survive in the point cloud fusion, which
improves both accuracy and recall. However, incompleteness
and noise are observed in non-Lambertian and textureless
regions such as the foundation of the statue and the edge
between the objects and the sky.
Advanced Set The advanced set contains 2 outdoor scenes, as
well as 4 indoor scenes captured with inside-look-out cam-
era trajectories. We still use the original image resolution.
Because the images are captured densely, we use Nv = 20
in order to enlarge the total overlap between reference image
and source images. Also because the depth range is larger
than the intermediate set, we double the depth sample num-
bers in all three stages. For depthmapfilter and fusion,we use
N f = 3, pt,1, pt,2, pt,3 = 0.3, 0.4, 0. Quantitative results
are shown in Table 4 and corresponding point cloud recon-
structions are illustrated in Fig. 5. Our Vis-MVSNet achieves

a mean F-score of 33.78, which outperforms other end-to-
end learning-based methods. Similar to the intermediate set,
well-textured regions are well reconstructed. But there is still
large incompleteness in the indoor scenes. One possible rea-
son is that the depth range of the indoor scenes is much wider
than the outdoor ones, which reduce the depth accuracy given
fixed number of depth hypothesis.

4.3 Benchmarking on ETH3D Dataset

We further evaluate our method on the ETH3D dataset
(Schops et al., 2017). ETH3D test set contains 12 scenes
captured from both indoor and outdoor scenarios. Number of
views varies from 10 to 100. Because of memory constraint,
we downsize the input images to 2400 × 1600. The number
of source views is still Nv = 20 but we additionally prune
the views with selection scores smaller than 10% of the best
score, which achieves a good balance between total overlap
coverage and quality of the source views. For depth map fil-
ter and fusion, we use N f = 2, pt,1, pt,2, pt,3 = 0.1, 0.1, 0.
Quantitative results are shown in Table 5 and corresponding
point cloud reconstructions are illustrated in Fig. 6. Qualita-
tively, the well and poorly reconstructed regions are similar
to the Tanks and Temples scenes. Quantitatively, our Vis-
MVSNet achieves a mean F-score of 83.46, which is the
second best among all the learning-based methods. Also, it
is noteworthy that the best performing method DeepC-MVS
(Kuhn et al., 2020) is additionally trained onETH3D training
set, while our method directly uses the model pretrained on
BlendedMVS.

4.4 Benchmarking on DTU Dataset

The proposed method is also benchmarked on the DTU eval-
uation set (Jensen et al., 2014). DTU dataset contains 128
scans under fixed camera trajectories and 7 sets of lighting
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Fig. 7 Qualitative results of the point clouds on the DTU dataset

Table 6 Quantitative result of the point cloud on the test set of DTU

Acc. Comp. Overall

COLMAP Schönberger et al. (2016) 0.400 0.664 0.532

MVSNet Yao et al. (2018) 0.396 0.527 0.462

Point-MVSNet Chen et al. (2019) 0.342 0.411 0.376

CVP-MVSNet Yang et al. (2020) 0.296 0.406 0.351

UCSNet Cheng et al. (2020) 0.338 0.349 0.344

CasMVSNet Gu et al. (2020) 0.325 0.385 0.355

Vis-MVSNet 0.369 0.361 0.365

Bold entries are the best results among the compared methods
The proposed method achieves comparable overall distance (mm) on
DTU

configuration. Every scan has 49 views with given camera
parameters. As suggested by previous methods (Ji et al.,
2017; Yao et al., 2018), DTU dataset is split into training
set, validation set and evaluation set. Our model is trained on
the DTU training set, which is mentioned in Sect. 4.1.

For depth map estimation, we use an input image size
of 1600 × 1200 and a fixed depth range of [dmin, dmax ] =
[425mm, 905mm] for all input images. The source image
number is set to Nv = 5. We choose N f = 2 and
pt,1, pt,2, pt,3 = 0.6, 0.6, 0.6 for the depth map filter and
fusion step. Quantitative results are shown in Table 6 and
corresponding point cloud reconstructions are illustrated in
Fig. 7. Our method achieves a overall score of 0.365, which
is comparable with other state-of-the-art methods. Qualita-
tively, the objects are mostly well-reconstructed because the
image capturing process is carefully controlled. But there
is still incompleteness in non-Lambertian and texture-less
regions.

4.5 Ablation Study

In this section, we discuss other alternative volume fusion
methods with implicit or explicit visibility awareness. To
keep the simplicity of the network and clear demonstrate
the effectiveness of the proposed component, we remove the
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Table 7 Quantitative result of the depth map on the validation set of
BlendedMVS with Nv = 7

Fusion Method Loss <1 (%) <3 (%)

base-var Variance 1.50 79.31 92.25

base-ave Average 0.999 83.03 94.95

base-max Max Pooling 0.956 84.71 95.19

base-vis Proposed 0.908 85.35 95.48

proposed + Coarse-to-fine 0.759 90.86 96.05

Bold entries are the best results among the compared methods
Among the configurations without the coarse-to-fine strategy, the set-
ting with the proposed fusion method achieves better result than others

coarse-to-fine architecture and directly use a MVSNet-like
network as our baseline. The ablation study is performed on
the BlendedMVS validation set and three types of evaluation
metrics are considered: (1) the average L1 loss between the
inferred depth map and the ground truth depth map; (2) the
percentage of pixels with L1 error smaller than 1 depth-wise
pixel (< 1 percentage); and (3) the < 3 percentage. Quanti-
tative results are shown in Table 7 and Fig. 8
Baseline In this setting (base-var), we directly use the vari-
ance metric to fuse the feature volumes into one cost volume.
The base-var setting is widely adopted by MVSNet and its
following works (Yao et al., 2018; Chen et al., 2019; Yang et
al., 2020; Cheng et al., 2020; Gu et al., 2020). However, the
variance operation is under the assumption that all pixels in
the reference should be visible from all views. As a result,
the increasing input image number would lead to even worse
evaluation metrics (see Fig. 8)
Averaging In this setting (base-ave), pair-wise cost volumes
are fused to one multi-view volume by direct element-wise
averaging. To fairly compare this setting with the proposed
setting, we also apply the two step regularization as in the
proposed framework. As is shown in Fig. 8, the <1 percent-
age accuracy of the base-ave is consistently increasing with
the input image number.We believe the visibility information
is implicitly encoded in the latent space and is dealt with by
the two-step regularization. However, such implicit visibil-
ity awareness is apparently inferior to the proposed visibility
fusion approach (see base-vis in Table 7 and Fig. 8).
Max Pooling In this setting (base-max), the fused volume is
obtained by finding the element-wise maximum of all pair-
wise volumes. This setting follows the fusion strategy of
only considering the best matching pair among all reference-
source image pairs. Similarly, all pair-wise losses are not
counted toward the final loss. As is shown in Table 7 and
Fig. 8, base-max outperforms base-ave but is still inferior to
the proposed base-vis.
Weighted Averaging This setting (base-vis) is the proposed
Vis-MVSNet without the coarse-to-fine architecture. Com-
pared with base-ave and base-max, this setting utilizes the

Fig. 8 Percentage of <1 of the depth maps on BlendedMVS w.r.t. Nv .
The visibility-aware systemsperformbetter than others anddonot suffer
from increasing Nv

intermediate uncertainty as the weighting guidance for the
pair-wise volume fusion. As the result, the significance of
invisible pixels will be explicitly reduced in the volume
fusion step.

The quantitative comparison is shown in Table 7 and Fig.
8. A significant improvement can be observed after intro-
ducing the two step regularization to the baseline (base-ave
and base-max v.s. base-var). In addition, the proposed fusion
further improves the result (base-vis v.s. base-ave and base-
max). Finally, the full model with coarse-to-fine architecture
outperforms others by a significant margin (proposed v.s.
others).

If we apply the coarse-to-fine strategy to the backbone net-
work, however, the improvement brought by the proposed
fusion method will be shadowed on BlendedMVS whose
images are relatively well-captured. Instead, we do the eval-
uations on the training set of Tanks and Temples whose
images are captured in the wild. The evaluation metrics fol-
low the benchmark method of Tanks and Temples described
inSect. 4.2.As shownbyTable 8, the proposed fusionmethod
outperforms the averaging and themax poolingmethod (pro-
posed v.s. cas-ave and cas-max). And the proposed system
achieves the best F-score in the majority of the scenes.

4.6 Memory and Time Consumption

In this section we discuss the memory and the time con-
sumption of the inference. Because the volume fusion can be
calculated online,we do not need to preserve previous feature
maps and pair-wise cost volumes. Therefore, the memory
consumption does not linearly increase with respect to the
source view number. However, the time consumption of the
pair-wise regularization increases linearly. Figure 9 shows
the results of inference on the intermediate set of the Tanks
and Temples (Knapitsch et al., 2017) dataset w.r.t. number of
sources. The size of the inputs is H × W = 1056 × 1920.
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Table 8 Quantitative result of the point cloud (F-score) on Tanks and
Temples with Nv = 20

Barn Caterpillar Church Courthouse

cas-ave 66.20 68.92 57.48 18.74

cas-max 63.84 66.75 31.26 20.80

proposed 68.00 67.90 58.60 18.95

Ignatius Meetingroom Truck Mean

cas-ave 91.72 46.79 63.00 58.98

cas-max 88.85 38.89 57.11 52.50

proposed 89.29 48.43 64.59 59.39

Bold entries are the best results among the compared methods
Among the configurations with the coarse-to-fine strategy , the setting
with the proposed fusion method achieves better result than others

Fig. 9 VRAM and time consumption of the inference on Tanks and
Templesw.r.t. Nv . Time consumption grows linearly, while the memory
consumption does not grow significantly

Note that thememory consumption is notmonotonic because
of some engineering issues of PyTorch.

5 Conclusion

We have presented a visibility-aware depth inference frame-
work formulti-view stereo reconstruction.We have proposed
the two-step cost volume regularization, the joint inference
of the pair-wise depth and the uncertainty, and the weighted
average fusion of pair-wise volumes according to the uncer-
tainty maps. The proposed method has been extensively
evaluated on several datasets. Qualitatively, the system can
producemore accurate anddense point clouds,which demon-
strates the effectiveness of the proposed visibility-aware
depth inference framework.
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