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Abstract
Aliasing refers to the phenomenon that high frequency signals degenerate into completely different ones after sampling. It
arises as a problem in the context of deep learning as downsampling layers are widely adopted in deep architectures to reduce
parameters and computation. The standard solution is to apply a low-pass filter (e.g., Gaussian blur) before downsampling
(Zhang in: ICML, 2020). However, it can be suboptimal to apply the same filter across the entire content, as the frequency of
feature maps can vary across both spatial locations and feature channels. To tackle this, we propose an adaptive content-aware
low-pass filtering layer, which predicts separate filter weights for each spatial location and channel group of the input feature
maps. We investigate the effectiveness and generalization of the proposed method across multiple tasks, including image
classification, semantic segmentation, instance segmentation, video instance segmentation, and image-to-image translation.
Both qualitative and quantitative results demonstrate that our approach effectively adapts to the different feature frequencies
to avoid aliasing while preserving useful information for recognition. Code is available at https://maureenzou.github.io/ddac/.

Keywords Computer vision · Anti-aliasing · Neural network consistency · Neural network architecture

1 Introduction

Deep neural networks have led to impressive breakthroughs
in visual recognition, speech recognition, and natural lan-
guage processing. On certain benchmarks such as ImageNet
and SQuAD, they can even achieve “human-level” perfor-
mance (Mnih et al., 2015; He et al., 2015; Tan & Le, 2019;
Rajpurkar et al., 2016). However, common mistakes that
these networksmake are often quite unhuman like. For exam-
ple, a tiny shift in the input image can lead to drastic changes
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in the output prediction of convolutional neural networks
(ConvNets) (Shankar et al., 2019; Azulay & Weiss, 2018;
Tan & Le, 2019). This phenomenon was demonstrated to
be in part due to aliasing when downsampling in ConvNets
(Zhang, 2020).

Aliasing refers to the phenomenon that high frequency
information in a signal is distorted during subsampling (Gon-
zales & Woods, 2002). The Nyquist theorem states that the
sampling rate must be at least twice the highest frequency
of the signal in order to prevent aliasing. Without proper
anti-aliasing techniques, a subsampled signal can look com-
pletely different compared to its input.Below is a toy example
demonstrating this problem on 1D signals:

001100110011
k=2, stride=2−−−−−−−→
maxpool

010101 (1)

011001100110
k=2, stride=2−−−−−−−→
maxpool

111111 (2)

Here k is the kernel size (1 × 2). Because of aliasing, a
one position shift in the original signal leads to a completely
different sampled signal (bottom) compared to the original
sampled one (top). As downsampling layers in ConvNets are
critical for reducing parameters and inducing invariance in
the learned representations, the aliasing issue accompanying
these layers will likely result in a performance drop as well as
undesired shift variance in the output if not handled carefully.
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Fig. 1 Toy example demonstrating the effect of adaptive filtering for
anti-aliasing. a Input image. b Result of direct downsampling. c Result
of downsampling after applying a single Gaussian filter tuned to match
the frequency of the noise. d Result of downsampling after applying
spatially-adaptive Gaussian filters (stronger blurring for background
noise andweaker for edges).We generate the background impulse noise
using a Bernoulli distribution (with P = 0.5) per pixel location with a

normal distribution determining the impulse noise magnitude. [We then
overlay the foreground image over the background noise. For (c), the
fixed filter value is generated by g(x, y) = 1

2πσ 2 e
−(x2+y2)/2σ 2

, where

σ is the standard deviation of the Gaussian filter, and (x, y) is the index
of the filter location with (0, 0) as the filter center. For (d), the filter
“strength” is varied by σ as well as the kernel size]

To tackle this, Zhang (2020) proposed to insert a Gaussian
blur layer before each downsampling module in ConvNets.
Though simple and effective to a certain degree, we argue
that the design choice of applying a universal Gaussian fil-
ter is not optimal—as signal frequencies in a natural image
(or feature map) generally vary throughout spatial locations
and channels, different blurring filters are needed in order
to satisfy the Nyquist theorem to avoid aliasing. For exam-
ple, the image in Fig. 1a contains high frequency impulse
noise in the background and relatively lower frequency edges
in the foreground. Directly applying a downsampling oper-
ation produces discontinuous edges and distorted impulse
noise shown in (b) due to aliasing. By applying a Gaussian
filter before downsampling, we can avoid aliasing as shown
in (c). However, as the high frequency impulse noise needs
to be blurred more compared to the lower frequency edges,
when using a single Gaussian filter tuned for the impulse
noise, the edges are over-blurred leading to significant infor-
mation loss. To solve this issue, what we need is to apply
different Gaussian filters to the foreground and background
separately, so that we can avoid aliasing while preserving
useful information, as in (d).

With the above observation, we propose a content-aware
anti-aliasingmodule, which adaptively predicts low-pass fil-
ter weights for different spatial locations. Furthermore, as
different feature channels can also have different frequen-
cies (e.g., certain channels capture edges, others capture color
blobs), we also predict different filters for different channels.
In this way, our proposed module adaptively blurs the input
content to avoid aliasing while preserving useful information
for downstream tasks. To summarize, our contributions are:

– We propose a novel adaptive and architecture inde-
pendent low-pass filtering layer in ConvNets for anti-
aliasing.

– We propose novel evaluation metrics, which measure
shift consistency for semantic and instance segmenta-
tion tasks; i.e., a method’s robustness to aliasing effects
caused by shifts in the input.

– We conduct experiments on image classification (Ima-
geNet), semantic segmentation (PASCAL VOC and
Cityscapes), instance segmentation (MS-COCO), video
instance segmentation (YoutubeVIS), and domain gen-
eralization (ImageNet to ImageNet VID, COCO to
YoutubeVIS). The results show that our method outper-
forms competitive baselines with a good margin on both
accuracy and shift consistency.

– We demonstrate intuitive qualitative results, which show
the interpretability of our module when applied to differ-
ent spatial locations and channel groups.

This paper expands upon our previous conference paper
(Zou et al., 2020) with the following new contributions:

– We propose a novel consistencymetric for video instance
segmentation and evaluate the robustness of our approach
to video natural perturbation on the YoutubeVIS dataset
(Sects. 4.5 and 4.8.3).

– We conduct experiments on the image-to-image trans-
lation task using pix2pixHD (Wang et al., 2018) as a
baseline. Results in Sects. 4.6 and 4.8.4 show that our
approach can generate more realistic images both quali-
tatively and quantitatively.

– We identify our adaptive filtering layer as a variant of
the sliding window self-attention in vision transformers
(Sect. 3.5).

– We give more comprehensive related work analysis in
Sect. 2.

– We discuss some limitations of our approach in Sect. 5.
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2 RelatedWork

Anti-aliasingAliasing is awell-knownproblem in signal pro-
cessing, and lowpass filters are often designed according to
the Nyquist theorem to counter it Shannon (1949); Proakis
andManolakis (1992). In addition, the phenomenon has been
studied under the scope of invariance in pattern recognition
(Wood, 1996; Caelli & Liu, 1988; Li, 1992).More recently, it
has been shown that aliasing alsowidely exists in deep neural
networks and has non-negligible effect on the network pre-
dictions. For example, Zhang (2020) made the observation
that network predictions are not consistent to shifting inputs
and pointed out that these phenomena are caused by aliasing
when a feature map is downsampled. Our subsequent work
(Zou et al., 2020) further proposed adaptive filtering lay-
ers in place of the fixed low-pass filtering layers proposed
in Zhang (2020) to better address the shift inconsistency
problem. Recently, several concurrent works have either
addressed aliasing issues in GANs using a continuous inter-
pretation (Karras et al., 2021), or target the design of truly
shift-invariant convnets with adaptive polyphase sampling
(Chaman et al., 2021). Anti-aliasing is also highly related
to geometric transformation invariance, which is explored in
several recent works (Zhang et al., 2019; Lee et al., 2019;
Bloem-Reddy & Teh, 2020; Rowley et al., 1998).

Network Robustness Current deep neural networks are
vulnerable to input perturbations without special training
recipes. These perturbations can be malicious such as adver-
sarial attacks (Szegedy et al., 2013; Kurakin et al., 2017), or
naturally occurring such as input translation (Mairal et al.,
2014; Bietti & Mairal, 2017; Ye et al., 2019; Zhang, 2020),
natural perturbations (Shankar et al., 2019), domain gaps
(Muandet et al., 2013; Li et al., 2017), or out-of-distribution
samples (Lee et al., 2017, 2018). One underlying reason is
that networks tend to pick up superficial patterns instead of
learning truly compositional representations (Geirhos et al.,
2019), and their vulnerability to input perturbations can also
lead to prediction inconsistencies. Adversarial defensemeth-
ods via novel training pipelines (Madry et al., 2018; Liao
et al., 2018), losses (Kannan et al., 2018) and architectures
(Xie et al., 2019) have been proposed to obtain adversari-
ally robust networks. Mairal et al. (2014); Bietti and Mairal
(2017) propose new algorithms to learn more shift-invariant
representations. In addition, data augmentation is an effec-
tive way to improve network robustness (Zhang et al., 2017;
Zhang, 2020; Yun et al., 2019) and generalization. Finally,
domain generalization methods (e.g., (Wang et al., 2019, ?;
Huang et al., 2020)) have been proposed to increase amodel’s
robustness to domain differences in the data.

Image Filtering Low-pass filters like box (Rosenberg, 1974)
and Gaussian (Gonzales &Woods, 2002) are classic content
agnostic smoothing filters; i.e., their filter weights are fixed

regardless of spatial location and image content. Bilateral
(Paris et al., 2009) and guided (He et al., 2010) filters are con-
tent aware as they can simultaneously preserve edge informa-
tion while removing noise. Recent works integrate such clas-
sic filters into deep networks (Zhang, 2020; Xie et al., 2019).
However, directly integrating thesemodules into a neural net-
work requires careful tuning of hyperparameters subject to
the input image (e.g., σs and σr in bilateral filter or r and ε in
guided filter). (Su et al., 2019; Jia et al., 2016) introduced the
dynamic filtering layer, whose weights are predicted by con-
volution layers conditioned on pre-computed feature maps.
Our method differs from them in two key aspects: (1) our
filter weights vary across both spatial and channel groups,
and (2) we insert our low-pass filtering layer before every
downsampling layer for anti-aliasing, whereas the dynamic
filtering layer is directly linked to the prediction (last) layer
in order to incorporate motion information for video recogni-
tion tasks. Finally, (Wang et al., 2019) introduces an adaptive
convolution layer for upsampling, whereas we focus on
downsampling with an adaptive low-pass filtering layer.

Applications The application of anti-aliasing covers a variety
of visual recognition tasks, ranging from classification (Deng
et al., 2009), dense prediction (He et al., 2017; Chen et al.,
2017), video analysis (Yang et al., 2019) to generation tasks
(Wang et al., 2018). We find that anti-aliasing techniques
are especially effective for dense prediction tasks including
instance segmentation (He et al., 2017; Zhou et al., 2019) and
semantic segmentation (Long et al., 2015; Chen et al., 2018).
These tasks require precise modeling of object boundaries,
so that pixels from the same object instance can be correctly
grouped together. Thus, while blurring can help reduce alias-
ing, it can also be harmful to these tasks (e.g., when the edges
are blurred too much or not blurred enough hence resulting
in aliasing). We investigate the effect of anti-aliasing in these
pixel-level tasks, whereas our closest work, (Zhang, 2020),
focused mainly on image classification. In addition, video
insconsistency caused by motion blur, natural perturbations,
etc. has also been widely observed (Shankar et al., 2019; Gu,
2021; Li et al., 2010).We specifically explore the consistency
problem in video instance segmentation (Yang et al., 2019) to
demonstrate the effectiveness of our approach. Finally, gen-
erativemodels also have sampling operations in their encoder
and/or decoder architecture (Wang et al., 2018; Richardson
et al., 2021; Park et al., 2019). Thus, we also investigate our
approach in this area.

3 Approach

To enable anti-aliasing for ConvNets, we apply the proposed
content-aware anti-aliasing module before each downsam-
pling operation in the network. Inside the module, we first
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Fig. 2 Method overview. (Left) For each spatial location and feature channel group in the input X , we predict a k × k filter w. (Right) We apply
the learned filters on X to obtain content aware anti-aliased features. See text for more details

generate low-pass filters for different spatial locations and
channel groups (Fig. 2 left), and then apply the predicted
filters back onto the input features for anti-aliasing (Fig. 2
right).

3.1 Spatial Adaptive Anti-aliasing

As frequency components can vary across different spatial
locations in an image, we propose to learn different low-pass
filters in a content-aware manner across spatial locations.
Specifically, given an input feature X that needs to be down-
sampled, we generate a low-pass filterwi, j (e.g., a 3×3 conv
filter) for each spatial location (i, j) on x . With the predicted
low-pass filter wi, j , we can then apply it to input X :

Yi, j =
∑

p,q∈�

w
p,q
i, j · Xi+p, j+q , (3)

where Yi, j denotes output features at location (i, j) and �

points to the set of locations surrounding (i, j) on which we
apply the predicted smooth filter. In this way, the network can
learn to blur higher frequency content more than lower fre-
quency content, to reduce undesirable aliasing effects while
preserving important content as much as possible.

3.2 Channel-Grouped Adaptive Anti-aliasing

Different channels of a feature map can capture different
aspects of the input that vary in frequency (e.g., edges, color
blobs). Therefore, in addition to predicting different filters
for each spatial location, it can also be desirable to predict
different filters for each feature channel. However, naively
predicting a low-pass filter for each spatial location and chan-
nel can be computationally very expensive. Motivated by the

observation that some channels will capture similar informa-
tion (Wu & He, 2018), we group the channels into k groups
and predict a single low-pass filter wi, j,g for each group g.
Then, we apply wi, j,g to the input X :

Y g
i, j =

∑

p,q∈�

w
p,q
i, j,g · Xc

i+p, j+q , (4)

where g is the group index to which channel c belongs. In
this way, channels within a group are learned to be similar,
as shown in Fig. 4.

3.3 Learning to Predict Filters

To dynamically generate low-pass filters for each spatial
location and feature channel group, we apply a convolu-
tional block (conv + batchnorm) to the input feature X ∈
Rn×c×h×w to output w ∈ Rn×g×k2×h×w, where g denotes
the number of channel groups and each of the k2 channels
corresponds to an element in one of k× k locations in the fil-
ters. For grouping, we group every c/g consecutive channels,
where c is the total number of channels. Finally, to ensure that
the generated filters are low-pass, we constrain their weights
to be positive and sum to one by passing it through a softmax
layer.

3.4 Analyzing the Predicted Filters

In this section, we analyze the behavior of our learned filters.
First, we analyze how the filters spatially adapt to differ-
ent image content. For this, we compute the variance of the
learned filter weights across different spatial locations. A
k × k average filter with 1/k2 intensity in each element will
have zero variance whereas an identity filter with one in the
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Fig. 3 Variance of the learned filter weights across spatial locations.
Lowvariance corresponds tomore blur,while highvariance corresponds
to less blur. Our model correctly learns to blur high frequency content

(e.g., edges) more to prevent aliasing, and blur low frequency content
less to preserve useful information

Fig. 4 Visualization of predicted feature maps within and across groups. The features within each group are more similar to each other than to
those in other groups. Each group captures a different aspect of the image (e.g., edges, color blobs) (Color figure online)

center and zeros everywhere else will have high variance.
From Fig. 3, one can clearly see that when the image content
has high frequency information (e.g., elephant background
trees, bird contours), the learned filters’ variance tends to be
smaller; i.e., more blur is needed to prevent aliasing. Con-
versely, the filters’ variance is larger when the content is
relatively smoother (e.g., background in bird images); i.e.,
less blur is needed to prevent aliasing. In this way, the learned
filters can reduce aliasing during sampling while preserving
useful image content as much as possible.

We next analyze how the filters adapt to different content
across different feature groups. Figure 4 shows this effect;
e.g., group 1 captures relatively low frequency information
with smooth areas, while group 2 captures higher frequency
information with sharp intensity transitions. In this way, the
learned filters can adapt to different frequencies across fea-
ture channels, while saving computational costs by learning
the same filter per group.

3.5 Relation with Self-attention

Recently, the transformer architecture (Vaswani et al., 2017)
has emerged as a state-of-the-art alternative to convolutional
networks on various vision tasks including classification
(Dosovitskiy et al., 2021), detection (Carion et al., 2020),
and segmentation (Xie et al., 2021). To deal with the trans-

former’s quadratic complexity to input length, more efficient
architectures such as the SwinTransformer (Liu et al., 2021)
and LongFormer (Beltagy et al., 2020) have been proposed.
Their key idea is to apply both sparse global and local atten-
tion. In this section, we show that our proposed anti-aliasing
module can be interpreted as a form of sliding window local
attention.

Given feature map X with dimension h×w ×d, a sliding
window local attention will apply local self-attention within
each k × k feature patch window. It can be represented by
the following equation:

Attention(xc) = so f tmax(
φq(xc)φk(x)T√

d
)φv(x) (5)

where x is the feature patch with size k × k × d, xc is the
center point of the feature patch x , and φ represents lin-
ear projection. The self-attention layer will first compute the
cross similarity between xc to each feature point in x (k2

total), apply a softmax to normalize the similarity values to
sum to one, and finally, use the resulting weights to compute
a weighted sum over the projected values (φv(x)) of the k2

points.
In the above equation, we can consider replacing the linear

projections (φq(·) and φk(·)) and the dot product between
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Table 1 Image classification accuracy, consistency on ImageNet (Deng et al., 2009), and domain generalization results ImageNet → ImageNet
VID (Deng et al., 2009). We compare to strong ResNet-101 (He et al., 2016) and LPF (low-pass filter) (Zhang, 2020) baselines

Accuracy Consistency Generalization

Methods Filter size Top-1 Abs Top-5 Abs Delta Abs Delta Abs Delta

ResNet-101 (He et al., 2016) – 77.7 93.8 – 90.6 – 67.6 –

LPF (Zhang, 2020) 3 × 3 78.4 94.1 +0.7 91.6 +1.0 68.8 +1.2

5 × 5 77.7 93.9 +0.0 91.8 +1.2 67.0 −0.6

Ours 3 × 3 79.0 94.4 + 1.3 91.8 +1.2 69.9 +2.3

5 × 5 78.6 94.3 +0.9 92.2 +1.6 69.1 +1.5

Our method shows consistent improvement in accuracy, consistency, and generalization
Bold values indicate statistical significance

them, with a conv layer to compute the summing weights:

Attention(xc) = so f tmax(conv(x))φi (x) (6)

where φi is identity projection. This equation exactly repre-
sents our proposed anti-aliasing module.

In both cases (Eqs. 5 and 6), the output is a weighted sum
of its input value tensor, and demonstrates that our approach
can be viewed as a form of sliding window self-attention.

4 Experiments

We first introduce our experimental settings and propose
consistency metrics for image classification, instance seg-
mentation, and semantic segmentation.We compare to strong
baselines including ResNet (He et al., 2016), Deeplab v3+
(Chen et al., 2018), Mask R-CNN on large scale datasets
including ImageNet, ImageNet VID (Deng et al., 2009), MS
COCO (Lin et al., 2014), PASCAL VOC (Everingham et al.,
2015) and Cityscapes (Cordts et al., 2016). We also conduct
ablation studies on our design choices including number of
groups, parameter counts, as well as filter types. Finally, we
present qualitative results demonstrating the interpretability
of our anti-aliasing module.

4.1 Image Classification

Experimental settingsWeevaluate on ILSVRC2012 (Deng et
al., 2009), which contains 1.2M training and 50K validation
images for 1000 object classes. We use input image size of
224×224, SGD solver with initial learning rate 0.1, momen-
tum 0.9, and weight decay 1e-4. Full training schedule is 90
epochs with 5 epoch linear scaling warm up. Learning rate
is reduced by 10x every 30 epochs. We train on 4 GPUs,
with batch size 128 and batch accumulation of 2. For fair
comparison, we use the same set of hyperparameters and
training schedule for both ResNet-101, LPF (Zhang, 2020)
baselines as well as our method. The number of groups is set

to 8 according to our ablation study.We extend the code base
introduced in Zhang (2020).

Consistency metricWe use the consistency metric defined in
Zhang (2020), which measures how often the model outputs
the same top-1 class given two different shifts on the same
test image:

Consist = EX ,h1,w1,h2,w2 I{F(Xh1,w1) = F(Xh2,w2)} (7)

whereE and I denote expectation and indicator function (out-
puts 1/0 with true/false inputs). X is the input image, h1, w1

(height/width) and h2, w2 parameterize the shifts and F(·)
denotes the predicted top-1 class.

Results and analysis As shown in Table 1, our adaptive
anti-aliasing module outperforms the baseline ResNet-101
without anti-aliasing with a 1.3 point boost (79.0 vs 77.7)
in top-1 accuracy on ImageNet classification. More impor-
tantly, when comparing to LPF (Zhang, 2020), which uses a
fixed blurring kernel for anti-aliasing, our method scores 0.6
points higher (79.0 vs 78.4) on top-1 accuracy. Furthermore,
our method not only achieves better classification accuracy,
it also outputs more consistent results (+0.2/+0.4 consistency
score improvements for 3×3 and 5×5 filter sizes) com-
pared to LPF. These results reveal that our method preserves
more discriminative information for recognition when blur-
ring feature maps.

4.2 Domain Generalization

Experimental settings ImageNet VID is a video object detec-
tion dataset, which has 30 classes that overlap with 284
classes in ImageNet (some classes in ImageNet VID are
the super class of ImageNet). It contains 3862/1315 train-
ing/validation videos. We randomly select three frames from
each validation video, and evaluate Top-1 accuracy on them
to measure the generalization capability of our model which
is pretrained on ImageNet (i.e. it has never seen any frame
in ImageNet VID). As a video frame may contain multiple
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 5 Our new consistency metrics. (b,c,d): mean Average Instance
Segmentation Consistency (mAISC). (e,f,g): mean Average Seman-
tic Segmentation Consistency (mASSC). Both metrics first crop
two patches from the input image (a) and then perform detec-

tion/segmentation (det/seg) on its content (b,c,e,f). Then, the overlap-
ping part from the two patches are selected out (d,g) for evaluating the
consistency score

Table 2 Instance segmentation
results on MS COCO. We
compare to Mask R-CNN (He et
al., 2017) and LPF (Zhang,
2020)

Mask Box

method mAP Delta mAISC Delta mAP Delta mAISC Delta

Mask R-CNN (He et al., 2017) 36.1 – 62.9 – 40.1 – 65.1 –

LPF (Zhang, 2020) 36.8 +0.7 66.0 +4.1 40.9 +0.8 68.8 +3.7

Ours 37.2 + 1.1 67.0 + 5.1 41.4 + 1.3 69.8 + 4.7

Our approach consistently improves over the baselines on both mask and box detection accuracy. Our model
performs especially well on shift consistency, with a 5.1 and 4.7 point improvement over Mask R-CNN on
mAISC mask and box, respectively
Bold values indicate statistical significance

objects in different classes, we count a prediction as correct
as long as it belongs to one of the ground-truth classes.

Results and analysisTable 1 reveals that our method general-
izes better to a different domain compared to the ResNet-101
baseline (+2.3% points increase in top-1 accuracy for 3× 3
filter) and LPFmodel (+1.1%)which adopts a fixed blur ker-
nel. We hypothesize that the better generalization capability
comes from the fact that we learn a representation that is less
sensitive to downsampling (i.e., more robust to shifts). This
is particularly useful for video frames, as they can be thought
of as having natural shift perturbations of the same content
across frames (Shankar et al., 2019).

4.3 Instance Segmentation

Experimental settings In this section, we present results on
MS-COCO for instance segmentation (Lin et al., 2014). MS-
COCO contains 330k images, 1.5M object instances and 80
categories. We use Mask R-CNN (He et al., 2017) as our
base architecture.We adopt the hyperparameter settings from
the implementation of Massa and Girshick (2018). When
measuring consistency, we first resize images to 800 × 800
and then take a crop of 736 × 736 as input.

Consistency metric (mAISC) We propose a new mean Aver-
age Instance Segmentation Consistency (mAISC) metric to

measure the shift invariance property of instance segmen-
tation methods. As shown in Fig. 5, given an input image
(a), we randomly select two crops (b) and (c), and apply an
instance segmentation method on them separately. M(b) and
M(c)denote the predicted instances in the overlapping region
of image (b) and (c). To measure consistency, for any given
instance mb in M(b) we find its highest overlapping coun-
terpart mc in M(c). If the IOU between mb and mc is larger
than a threshold (0.9 in our experiments), we regard mb as
a positive (consistent) sample in M(b). (A sample mc from
M(c) can only be considered a counterpart of any instance in
M(b) once.) We compute the final mAISC score as the mean
percentage of positive samples in M(b) over all input image
pairs.

Results and analysisWe evaluate mAP and mAISC for both
mask and box predictions. As shown in Table 2, while simply
applying a fixed Gaussian low-pass filter improves mAP by
+0.7/+0.8 points for mask/box, our adaptive content-aware
anti-aliasing module is more effective (further +0.4/ + 0.5
point improvement over LPF for mask/box). This demon-
strates that it is important to have different low-pass filters
for different spatial locations and channel groups.More inter-
estingly, by introducing our adaptive low-pass filters, mAISC
increases by a large margin (+5.1/ + 4.7 for mask/box over
the baseline, and +1.0/+1.0 over LPF). This result demon-
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Table 3 Semantic segmentation on PASCAL VOC 2012 (Everingham et al., 2015) and Cityscapes (Cordts et al., 2016)

PASCAL VOC Cityscapes

method mIOU Delta mASSC Delta mIOU Delta mASSC Delta

Deeplab v3+ (Chen et al., 2018) 78.5 – 95.5±0.11 – 78.5 – 96.0±0.10 –

LPF (Zhang, 2020) 79.4 + 0.9 95.9±0.07 + 0.4 78.9 + 0.4 96.1±0.05 + 0.1

Ours 80.3 + 1.8 96.0±0.13 + 0.5 79.5 + 1.0 96.3±0.07 + 0.3

We compare to Deeplab v3+ (Chen et al., 2018) and LPF (Zhang, 2020). Our approach leads to a large improvement in accuracy on PASCAL VOC
and Cityscapes (1.8 point and 1.0 point, respectively). Under the mASSC consistency metric, our approach also shows improvement upon the two
baselines. The results are averaged over three runs
Bold values indicate statistical significance

strates that (1) an anti-aliasingmodule significantly improves
shift consistency via feature blurring, and (2) edges (higher
frequency) are better preserved using our method (compared
to LPF) during downsampling which are critical for pixel
classification tasks.

4.4 Semantic Segmentation

Experimental settings We next evaluate on PASCAL
VOC2012 (Everingham et al., 2015) and Cityscapes (Cordts
et al., 2016) semantic segmentation with Deeplab v3+ (Chen
et al., 2018) as the base model. We extend implementations
from Hu et al. (2020, ?) and (aaa, 2020). For Cityscapes,
we use syncBN with a batch size of 8. As for PASCAL
VOC, we use a batch size of 16 on two GPUs without
syncBN.We report better performance compared to the orig-
inal implementation for DeepLab v3+ on PASCAL VOC.
For Cityscapes, our ResNet-101 backbone outperforms the
Inception backbone used in Chen et al. (2017).

Consistency metric (mASSC)We propose a new mean Aver-
age Semantic Segmentation Consistency (mASSC) metric to
measure shift consistency for semantic segmentation meth-
ods. Similar to mAISC, we take two random crops (e,f) from
the input image (a) in Fig. 5. We then compute the Semantic
Segmentation Consistency between the overlapping regions
X and Y of the two crops:

Consist(X ,Y )=Ei∈[0,h)E j∈[0,w) I[S(X)i, j = S(Y )i, j ] (8)

where S(X)i, j and S(Y )i, j denote the predicted class label
of pixel (i, j) in X and Y , and h, w is the height and width
of the overlapping region. We average this score for all pairs
of crops in an image, and average those scores over all test
images to compute the final mASSC.

Results and analysis As shown in Table 3, our method
improves mIOU by 1.8 and 1.0 points on PASCAL VOC
and Cityscapes compared to the strong baseline of DeepLab
v3+. Furthermore, our method also consistently improves
the mASSC score (+0.5 and +0.3 for VOC and Cityscapes)
despite the high numbers achieved by the baseline method

Fig. 6 Video instance segmentation consistency metric. For any two
consecutive frames, if the object is detected in both frames, we record
it as a positive pair

(95.5/96.0). Finally, to measure the variance of our mASSC
results, we report the standard deviation over three runs with
different random seeds.

4.5 Video Consistency

Experimental settings We next validate our method’s gen-
eralization to video data and its robustness to natural per-
turbations in video. For this, we perform the video instance
segmentation task on the YoutubeVIS dataset (Yang et al.,
2019) using the model trained in Sect. 4.3. We only evaluate
on the 20 overlapping classes between COCO and Youtube-
VIS. Since the validation set of YoutubeVIS does not have
ground-truth annotation for all frames, we randomly select
260 videos in the training set to validate video consistency.

Consistency metric (mAVISC) To measure an instance seg-
mentation model’s robustness to natural perturbations in
video, we propose a new mean Average Video Instance Seg-
mentation Consistency (mAVISC) metric. For each video
sequence, for all pairs of consecutive frames, and for each
object that appears in each pair of frames, we first determine
whether the object is detected according to a predetermined
IOU threshold. If so, we record it as a positive pair, as shown
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Table 4 Video instance segmentation consistency on YoutubeVIS (Yang et al., 2019). We evaluate video instance segmentation consistency for
IOU thresholds (α) ranging from 0.5 to 0.8

mAVISC

Method α = 0.5 Delta α = 0.6 Delta α = 0.7 Delta α = 0.8 Delta

Mask R-CNN (He et al., 2017) 90.09 – 89.29 – 88.14 – 87.29 –

LPF (Zhang, 2020) 90.11 + 0.02 88.96 −0.33 88.38 +0.24 87.32 +0.03

Ours 90.71 + 0.62 89.61 + 0.32 88.79 + 0.65 87.68 + 0.39

Our approach consistently increases video consistency with a good margin (+0.62/ + 0.32/ + 0.65/ + 0.39) for all IOU thresholds, whereas LPF
increases it with a relatively smaller margin (+0.02/ + 0.32/ + 0.03) or can even decrease video consistency (−0.33 when α = 0.6)
Bold values indicate statistical significance

Table 5 Image-to-Image translation results.

datasets Cityscapes Facades

methods FID ↓ Delta mIoU Delta mAcc Delta PSNR Delta SSIM Delta

pix2pixHD (Wang et al., 2018) / pix2pix (Isola et al., 2017) 52.21 – 71.23 – 78.97 – 60.33 – 1.08 –

LPF (Zhang, 2020) 52.68 +0.47 67.61 −3.62 75.61 −3.36 61.14 +0.81 1.37 +0.29

Ours (Zou et al., 2020) 50.21 −2.0 71.99 +0.67 80.23 1.26 61.50 +1.17 1.41 +0.33

On the Cityscapes dataset, the generated images of LPF have worse performance on both image quality and semantic segmentation, while the
images generated by our approach tend to be more realistic (FID) and semantically accurate (mIoU, mAcc). On the Facades dataset, for shifted
image pairs, our approach generates more consistent images compared to the baseline approaches for both pixel (PSNR) and patch (SSIM) metrics
Bold values indicate statistical significance

in Fig. 6. Below is the equation for computing mAVISC:

1

NMi Qi

N∑

i=1

Mi∑

j=1

Qi∑

t=1

I{I{I OU (GTi, j,t , Pi, j,t ) > α} =

I{I OU (GTi, j,t+1, Pi, j,t+1) > α}}
(9)

where N , Mi , Qi is the number of video sequences, objects
in the i’th video, and frames in the i’th video, respectively.
GT represents the ground truth video object bounding boxes,
P represents the bounding box predictions, and α is the IOU
threshold to determine whether the ground truth object is
detected.

Results Table 4 shows video consistency results on the
YoutubeVIS dataset for Mask R-CNN, Mask R-CNN with
LPF, and Mask R-CNN with our approach using the pro-
posed mAVISC metric. We evaluate on IOU thresholds
ranging from α = 0.5 to α = 0.8. (We do not include
α = 0.9 because at this very strict threshold, there are
too few correct detections for any method, making diffi-
cult to make reliable conclusions.) As shown in Table 4,
our approach consistently increases video consistency with a
goodmargin (+0.62/+0.32/+0.65/+0.39) across all IOU
thresholds, where LPF increases with fairly small margin
(+0.02/ + 0.32/ + 0.03) or even decreases video consis-
tency (−0.33 when α = 0.6).

4.6 Image-to-Image Translation

Experiment Settings We evaluate image-to-image transla-
tion on the Cityscapes (Cordts et al., 2016) and Facades
(Tyleček & Šára, 2013) datasets using Pix2PixHD (Wang
et al., 2018) and Pix2Pix (Isola et al., 2017) as the baseline
models, respectively. On Cityscapes, following (Wang et al.,
2018), we use 2976 images for training and 500 images for
evaluation. On Facades, we use a total of 400 images for
training and evaluation following (Isola et al., 2017). For
both Pix2Pix (Isola et al., 2017) and Pix2PixHD (Wang et
al., 2018), we insert our module before each downsampling
layer and upsampling layer following (Zhang, 2020). For
downsampling, we simply insert our adaptive module with
stride = 2. For upsampling, we first use nearest neighbor
interpolation to upsample the feature map and then apply our
adaptive filtering layer with stride = 1. We follow all the
training settings fromWang et al. (2018); Isola et al. (2017).

On the Cityscapes dataset, we focus on image generation
quality as well as our model’s generalization capability to the
segmentation task. We use mIoU, mAcc, and FID to evaluate
the generated image quality. For mIoU and mACC, we first
run the DeepLab V3+ semantic segmentation model (trained
in Sect. 4.4) on the generated images, following (Wang et al.,
2018).We compare the resulting segmentationmaps with the
ground truth segmentationmaps. ForFID,weuse thepublicly
available codebase at https://github.com/mseitzer/pytorch-
fid to compare the distributions of the generated image fea-
tures and the real image features. On the Facades dataset, we
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Fig. 7 Effect of number of groups on top-1 accuracy and consistency. As the group number increases, both Top-1 accuracy and consistency first
increase then decrease. The performance saturates with group number 8

Table 6 Filter ablations. Gaussian blur is better than no blur (ResNet)

Methods top-1 Acc Consistency

ResNet 66.5 79.1

Gaussian 66.7 79.8

Image Adaptive 66.7 78.7

Spatial Adaptive 67.7 80.3

Ours 68.0 80.9

Learning the blur filter globally (Image Ada.), spatially (Spatial Ada.),
and over channels (Ours) progressively does better
Bold values indicate statistical significance

follow (Zhang, 2020; Karras et al., 2021) to evaluate the shift
consistency of the image generation model. To evaluate the
similarity of two shifted images, we compute both PSNR and
SSIM to evaluate both pixel-wise and patch-wise similarity.
Results

In Table 5, we first compare pix2pixHD (Wang et al.,
2018), pix2pixHD together with LPF (Zhang, 2020), and
pix2pixHD with our approach on the Cityscapes dataset.
Overall, our approach generates more realistic images (e.g.,
FID score decreases by 2 points) and has better mIOU and
mAcc scores than both pix2pixHD and LPF. In addition, we
compare pix2pix (Isola et al., 2017), pix2pix together with
LPF (Zhang, 2020), and pix2pix with our approach on the
Facades dataset. The results show that ourmodel ismore con-
sistent on image shift compared to the baseline approaches.

4.7 Ablation Studies

Experimental settings For efficiency, we perform all ablation
studies using ResNet-18 with input image size 112×112 and
batch size 200 on ImageNet. All other hyperparameters are
identical to those used in Sect. 4.1.

Number of channel groups. We vary the number of chan-
nel groups and study its influence on image classification
accuracy. As shown in Fig. 7, the trend is clear – increas-

ing the number of groups generally leads to improved top-1
accuracy. This demonstrates the effectiveness of predict-
ing different filters across channels. However, there exists a
diminishing return in this trend – the performance saturates
when the group number goes beyond 8. We hypothesize this
is caused by overfitting.

Number of parameters. We further compare the effects of
directly increasing the number of parameters in the base net-
work vs adding more groups in our content-aware low-pass
filters. To increase the number of parameters for the base net-
work, we increase the base channel size in ResNet-18. We
find that directly increasing the number of parameters barely
improves top-1 accuracy—when the number of parameters
increases from 12.17M to 12.90M, top-1 accuracy increases
only by 0.1%. Also, with similar (or less) number of parame-
ters, our method yields a higher performance gain compared
to naively increasing network capacity (68.0%vs. 67.7% top-
1 accuracy for 12.60M vs 12.90M parameters). This shows
that our adaptive anti-aliasing method does not gain perfor-
mance by simply scaling up its capacity.

Type of filter. In Table 6, we ablate our pixel adaptive filtering
layers with various baseline components. Applying the same
low-pass filter (Gaussian, Image Adaptive) across the entire
image performs better than the vanilla ResNet-18 without
any anti-aliasing. Here, ImageAdaptive refers to the baseline
which predicts a single low-pass filter for the entire image.
By adaptively learning a spatially variant low-pass filter, per-
formance improves further (Spatial Adaptive). Overall, our
method achieves the best performance which demonstrates
the benefits of predicting filters that are both spatially varying
and channel adaptive.

Overhead Finally, with our spatial/channel adaptive filtering
added, the number of parameters increases by 2.9-7.8% for
ResNet models (e.g., 4% for R-101, 4.5M to 4.63M). As for
runtime, on a RTX2070 GPU, our method (R-101 backbone)
takes 6.4ms to forward a 224×224 imagewhereas a standard
ResNet-101 takes 4.3ms.
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Fig. 8 Visualization of learned filter weights at each spatial location.
We can see that the learned filter weight is adaptive to different visual
content. Specifically, our model tends to “grow” edges so that it is easier
for them to be preserved. For example, the learned filter tends to inte-

gratemore information from left to right (see center-left and bottom-left
weights in the second row of this figure) on the vertical tree branch and
thus grow it to be thicker. This way, it is easier for the tree branch
contours to be preserved after downsampling

Fig. 9 Qualitative results for semantic segmentation on Cityscapes. In
the first row, within the yellow box region, our method clearly dis-
tinguishes the road edge compared to Deeplab v3+ and LPF. Similar
behavior (better segmented road contours) is also observed in the sec-

ond row. This holds for other objects as well - the light pole has better
delineation compared to both baselines in the third row (Color figure
online)

Fig. 10 Qualitative results of video instance segmentation consistency.
As shown in the first three columns, our method produces more consis-
tent instance segmentation of the airplane wing whereas Mask-RCNN

and LPF producemore inconsistent results that fluctuate over frames. In
the last three columns, we observe the existence of redundant detections
for both Mask-RCNN and LPF
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Fig. 11 Qualitative results for image to image translation on
Cityscapes. In the first row, our approach generates clear boundaries
along the roof. In contrast, the other methods produce blurry bound-
aries. In the second row, our approach not only produces a clear edge
on the car, it also generates a very tiny traffic light (see region inside

the red rectangle). The other two methods fail in this situation. In the
last row, our approach clearly identifies the boundary between the wall
and bushes whereas the other two approaches’ produce very blurry and
dark generations (Color figure online)

Type of Backbone We compare Top-1 accuracy and Con-
sistency with two additional backbone networks, VGG
(Simonyan & Zisserman, 2015) and DenseNet-121 (Huang
et al., 2017), on theCifar-10 dataset (Krizhevsky et al., 2009).
For VGG, our approach achieves 94.0 Top-1 accuracy and
97.2 Consistency, and for DenseNet, our approach achieves
95.6 Top-1 accuracy and 97.4 Consistency. Similar to the
ResNet101 results, our approach improves Top-1 accuracy
with a goodmargin compared to the baseline network, which
does not have any anti-aliasing (+0.6 for VGG and +1.7
for DenseNet) as well as LPF (+0.4 for VGG and +1.1 for
DenseNet). Our method’s consistency is also improved upon
the baseline network (+0.6 forVGGand+0.1 forDenseNet)
although it does not outperform the LPF method (−0.4 for
VGG and−0.9 for DenseNet). As Cifar-10 has relatively low
resolution (322 pixels) images in comparison with ImageNet
(2242 pixels), there can be a trade-off between accuracy and
consistency. Specifically, we find that decreasing the content
frequency for anti-aliasing to improve shift consistency may
have a side effect on classification accuracy when the image
resolution is already very low. Thus, the consistency perfor-
mance may not be improved as much in comparison with
higher resolution images such as those in ImageNet, as we
had shown in Table 1.

4.8 Qualitative Results

4.8.1 Semantic Segmentation

We show qualitative results for semantic segmentation in
Fig. 9 to demonstrate that our module better preserves edge
information. For example, in the first row, within the yellow
box region, our method clearly distinguishes the road edge
compared to Deeplab v3+ and LPF. Similar behavior (better

segmented road contours) is also observed in the second row.
This holds for other objects as well—the light pole has better
delineation compared to both baselines in the third row.

4.8.2 Low-pass Filter Weights

To further understand our adaptive filtering module, we visu-
alize the low-pass filter weights for each spatial location. As
shown in Fig. 8, our model tends to “grow” edges so that
it’s easier for them to be preserved. For example, the learned
filter tends to integrate more information from left to right
(see center-left and bottom-left weights in Fig. 8 in the sec-
ond row) on the vertical tree branch and thus grow it to be
thicker. This way, it’s easier for tree branch contours to be
preserved after downsampling.

4.8.3 Video Instance Segmentation Consistency

In addition to image results, we also show qualitative results
on a video dataset. In Sect. 4.5, we quantitatively demon-
strated that our method provides additional robustness to
natural perturbations. Here we show qualitative results to
illustrate its effectiveness. In Fig. 10, each row represents a
different time stamp. In the left airplane example, we can
observe that while all three methods can detect the airplane’s
wing, the detections of Mask R-CNN (He et al., 2017) and
LPF (Zhang, 2020) fluctuate over time (e.g. multiple detec-
tions on the airplane’s wing) whereas our detections are quite
stable. In the right skiing example, both Mask R-CNN and
LPF generate lots of redundant detections compared to our
approach that is likely caused by the aliasing effects of down-
sampling.
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4.8.4 Image-to-Image Translation

Finally, we show qualitative results of applying our approach
to generativemodels. InFig. 11,we comparewith pix2pixHD
(Wang et al., 2018) and pix2pixHD together with LPF
(Zhang, 2020) on image-to-image translation using the
Cityscapes dataset. We find that our adaptive filters are bet-
ter at preserving boundaries in image generation. In the first
row, our approach generates clear boundaries along the roof.
In contrast, the other methods produce blurry boundaries. In
the second row, our approach not only produces a clear edge
on the car, it also generates a very tiny traffic light (see region
inside the red rectangle). The other two methods fail in this
situation. In the last row, our approach clearly identifies the
boundary between the wall and bushes whereas the other
two approaches’ produce very blurry and dark generations.
We attribute this property to the fact that with LPF or the
original conv filters, the filter weights are fixed at all spatial
locations. This means that it will be difficult for neighbour-
ing in the higher resolution output to have different values
within a small local region. And this could potentially cause
the unclear boundary effect shown in Fig. 11.

5 Limitations

We have shown in this paper that our approach is effective
for various discriminative and generative tasks. However, it
also has some limitations. First, although both the compu-
tation and parameter overhead is marginal, with our current
implementation, GPU memory overhead is not negligible as
it involves the unfold function in PyTorch which is memory
intensive. Second, we empirically found the optimal group
number of filter weights to be 8 for our tasks. However, it may
not be optimal for other tasks and thus is a hyperparameter
that needs to be tuned.

6 Conclusion

In this paper, we proposed an adaptive content-aware low-
pass filtering layer, which predicts separate filter weights
for each spatial location and channel group of the input.
We quantitatively demonstrated the effectiveness of the pro-
posedmethod across multiple tasks and qualitatively showed
that our approach effectively adapts to the different fea-
ture frequencies to avoid aliasing while preserving useful
information for recognition. Despite some of the limitations
observed in Sect. 5, we believe our work can be a promising
foundation for exploring anti-aliasing on other tasks (e.g.,
video recognition) as well as other forms of input noise.
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