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Abstract

In southeastern North America, Indigenous potters and woodworkers carved complex, primarily abstract, designs into wooden
pottery paddles, which were subsequently used to thin the walls of hand-built, clay vessels. Original paddle designs carry rich
historical and cultural information, but pottery paddles from ancient times have not survived. Archaeologists have studied
design fragments stamped on sherds to reconstruct complete or nearly complete designs, which is extremely laborious and
time-consuming. In Snowvision, we aim to develop computer vision methods to assist archaeologists to accomplish this goal
more efficiently and effectively. For this purpose, we identify and study three computer vision tasks: (1) extracting curve
structures stamped on pottery sherds; (2) matching sherds to known designs; (3) clustering sherds with unknown designs.
Due to the noisy, highly fragmented, composite-curve patterns, each task poses unique challenges to existing methods. To
solve them, we propose (1) a weakly-supervised CNN-based curve structure segmentation method that takes only curve
skeleton labels to predict full curve masks; (2) a patch-based curve pattern matching method to address the problem of partial
matching in terms of noisy binary images; (3) a curve pattern clustering method consisting of pairwise curve matching, graph
partitioning and sherd stitching. We evaluate the proposed methods on a set of collected sherds and extensive experimental
results show the effectiveness of the proposed algorithms.

Keywords Curve-pattern segmentation - Design identification - Curve-pattern matching - Curve-pattern clustering - Swift
creek complicated stamped pottery

1 Introduction

Hand-made pottery was widely produced throughout the pre-
industrial world (Fu, 2019; Smith & Knight, 2012; Talcott,
1935; Snow, 1998). Almost universally in late stages of
coiled vessel manufacture and occasionally in vessels that
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were thrown on a potter’s wheel, wooden paddles were used
by potters to thin pottery vessel walls and finalize vessel
form Roux (2019). In a subset of regions that used paddles
in this way, particularly in southeastern Native North Amer-
ica, potters and woodworkers carved linear and curvilinear
geometric designs into wooden paddles in stylistically coher-
ent forms and transferred those designs to pottery vessels
during the paddle stamping stage. Although these wooden
paddles have not survived in the archaeological record, care-
ful study of the pottery sherds bearing these stamps can lead
to the reconstruction of unique paddle designs. These designs
provide rich historical and cultural information on commu-
nities of learning and practice, migrations and smaller scale
movements of people, and stylistic norms and creative con-
ventions. In this paper, we present the Snowvision project and
our efforts to digitally preserve and analyze paddle-stamped
pottery produced throughout southeastern North America.
We focus on the Swift Creek Complicated Stamped pottery
type, created during the Middle and Late Woodland periods
between roughly AD 100 and 800 (Smith et al., 2010). Fig-
ure 1(b) shows four such pottery fragments from the period
350-650 AD, when the stylistic tradition of carving wooden
paddles was at its most complex (i.e., multiple different
design elements arranged and combined in unique ways on
the paddle).

Carved paddle designs were primarily composed of con-
nected and intertwined curved lines. The same paddle was
usually applied to many different locations on the pottery ves-
sel’s exterior surface to achieve the desired decorative effect.
Also, the same paddle may be applied to many different ves-
sels, and sometimes applied to pottery found at different sites,
indicating the movement of paddles and/or people. Current
existing designs were composed manually by experienced
archaeologists (Broyles, 1968; Snow, 1975). With access to
extensive collections from key excavation sites, the archae-
ologists assembled sherds belonging to the same paddles,
traced or measured sherd curves on individual sherds, and
looked for regions with overlap but also with new design
information. Slowly the sherd information is complied until
a paddle design is complete. An example of design recon-
struction is illustrated in Fig. 1(b). The archaeologists first
visually identify a number of pottery sherds from the same
paddle (top left), and then match the curve patterns on the
sherd surfaces to construct larger design pieces (top right)
until the final full design is constructed (bottom left). More
fragmented pottery sherds can then be identified as belonging
to their complete designs by matching their curve patterns to
a set of composed designs (Gamble, 2004), as its procedure
illustrated in Fig. 1(c). The association between the pottery
sherds and their underlying designs provides unique evidence
of interactions among potters in Native Societies of south-
eastern North America. An important problem in our project
is to facilitate this process using computer-vision techniques,
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for manually assessing a large number of objects can be
extremely time-consuming, especially when these objects are
highly fragmented.

Snowvision, a project named after the archaeologist
Frankie Snow (Snow, 1975), is an interdisciplinary effort
for leveraging state-of-the-art computer vision techniques to
explore and study paddle designs from large collections of
pottery sherds. It provides standards and guidelines for dig-
itizing sherds and developing rich and accurate metadata, a
frontend website from which archaeologists at different insti-
tutions can submit and share their sherds, and a set of backend
advanced computer vision algorithms to assist archaeolo-
gists to more efficiently explore the underlying designs of
the sherds. An acquisition procedure including sherd digi-
tization and preprocessing is developed, and a collection of
pottery fragments and reconstructed designs is available to
the public for study. At the core of the backend processing
are three important computer-vision tasks with unique chal-
lenges:

— Task I: Accurately segmenting sherd images for the
stamped curve pattern;

— Task II: Identifying whether the curve pattern on a sherd
matches a known design;

— Task III: Identifying and grouping sherds with the same
but unknown design.

The curve patterns produced in Task I are fed to Tasks II
and III and archaeologists can take the identification results
produced by Tasks II and III for design study, including dis-
covering and reconstructing new designs.

These three computer-vision tasks are challenging for sev-
eral reasons. First, sherds are highly fragmented and often
only show a small portion of the underlying full design. While
multiple sherds may have the same design, i.e., stamped by
the same paddle, they are usually from different vessels and
cannot be assembled by fitting their sherd boundaries as in
many other studies. Second, a paddle is usually applied to
the vessel multiple times with partial overlap and varying
orientations. As a result, segmented curves from a sherd can
be a composite pattern, which can not be directly matched as
a portion of a full design, as shown by an example in Fig. 2.
This way, even between a sherd and its underlying full design,
the curve-pattern matching can be partial-to-partial instead of
partial-to-global. Finally, the sherds can be eroded, deformed
and/or faintly stamped. They usually produce many false pos-
itives and negatives in Task I, which further increases the
difficulty of matching and identification in Tasks II and III.

By considering these challenges, in this paper we develop
new computer vision algorithms to address the three tasks,
respectively. In Task I, we try to segment weakly stamped
curve structures from the depth images of pottery sherds.
The blurry boundary and various noises make the segmen-
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Fig.1 An illustration of a the lifecycle of a paddle design; b the reconstruction of a paddle design from sherds; and ¢ the identification of a design
on a sherd. (Vessel in (a) and original designs in (b) and (c) reproduced with permission, courtesy of Frankie Snow, South Georgia State College.)
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Fig.2 An illustration of matching a sherd with a single pattern and b
composite pattern to their ground-truth designs. The sherd with compos-
ite pattern contains two single patterns that each matches to the design
atits own location. (Original designs reproduced with permission, cour-
tesy of Frankie Snow, South Georgia State College.)

tation difficult for traditional non-learning-based methods.
Recent CNN-based methods are robust to noise, but they
require a large number of pixel-wise ground-truth masks for
training, which are very difficult to obtain. By learning and
incorporating the curve geometry implied in the underlying
designs, we propose a weakly supervised CNN-based method
which could learn curve structure segmentation from skele-
ton labels. It can achieve much better sherd segmentation with
significantly reduced annotation costs. More specifically, we
train a Fully Connected Network (FCN) to detect the skele-
tons of the curve patterns in the depth images of sherds. Then
we train a dense prediction convolutional network to identify
and prune false positive skeleton pixels. Finally, we recover

the curve width by a scale-adaptive thresholding algorithm
to get the final segmentation, in the form of a binary curve-
pattern image.

In Task II, we match the curve pattern segmented from a
sherd to every known paddle design and then select a small
set of designs with the highest matching scores for archae-
ologists to make the final assessment. Since binary images
of noisy curve patterns could not provide consistent and dis-
criminative image features, it is very difficult for traditional
keypoint-based methods to achieve good performance. Other
matching methods cannot handle the challenges caused by
partial matching and composite patterns. To address this
problem, we propose a patch-based matching method by
decomposing curve patterns into patches and establishing
dense patch correspondence in the deep feature space. It
combines the advantages of template matching and key-
point matching by finding local matching without detecting
keypoints. Specifically, we apply uniform sampling for con-
structing patches and employ a learning-based curve feature
descriptor to derive a heatmap for local similarity between
the sherd and the design. We consider both the heatmap value
and the overlap area in deciding the matching between sherd
and designs.

In Task III, given a collection of sherds with unknown
designs, we cluster them in terms of their underlying
(unknown) designs. With the goal of identifying and recre-
ating new designs, we expect the sherds in the same cluster
to show only partial/local overlap or even no overlap but
local similarity to other common sherds in the cluster. Many
existing clustering algorithms rely on global image features
and therefore cannot handle our problem well. In this paper,
we formulate pottery sherd clustering as a graph partitioning
problem and propose a new iterative clustering pipeline con-
sisting of pairwise matching, graph partitioning and sherd
stitching. The proposed algorithm integrates local feature
matching into the image clustering pipeline. In specific,
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given the segmented curve-pattern images of a collection
of sherds, we first conduct patch-based pairwise matching
between each pair of sherds to construct a fully connected
graph, and then partition it into subgraphs using an adaptive
thresholding algorithm. We last propose an iterative cluster
refining strategy, with curve-pattern stitching in the iteration,
for identifying and refining the sherd clustering.

In the experiments, we quantitatively evaluate our pro-
posed algorithms for the three tasks on a collection of pottery
sherds from key excavation sites. We also report comparison
experiments with other state-of-the-art methods to justify the
effectiveness of the proposed algorithms. Preliminary result
of Task I has been published in a conference (Lu et al., 2018).

While our paper is focused on a specific application in
archaeology, which is important to the archaeology commu-
nity, we also make new contributions to the computer vision
community as below:

(1) We consider the unique challenges of the three tasks
and make new contributions in algorithm/model devel-
opment, e.g., weakly-supervised skeleton-aware seg-
mentation model in Task I, deep-learning-based patch
matching in Task II, and graph-based curve-pattern clus-
tering in Task III, as described above. The studied
problems extend the research scope of segmentation,
matching, and clustering in computer vision. The pro-
posed algorithms and methods may also benefit the
research on other applications involving curve-structure
images, such as pavement crack detection (Li et al.,
2018), vessel/nerve segmentation (Fu et al., 2020), and
footwear impression matching (Kong et al., 2019).

(2) We collect high-quality point clouds of thousands of real
pottery sherds, with manual annotations as ground truth.
This is highly laborious and time-consuming, and we will
release this dataset, together with the manual annotations
and the code of evaluation, to public. This will help pro-
mote the research in the computer vision community to
interesting problems in archaeology.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work. Section 3 briefly introduces
the Snowvision system and its components. Section4 elabo-
rates on the developed algorithms for addressing the above-
mentioned three computer-vision tasks. Section 5 introduces
the evaluation dataset and the experimental results, followed
by a brief conclusion in Sect. 6.

2 Related Work

In this section, we briefly review prior works related to the
Snowvision project and the proposed three computer-vision
tasks.

@ Springer

Snowvision aims to leverage computer-vision techniques
to explore pottery sherds that are important to archaeologists.
Many prior projects, such as CATA (Martinez-Carrillo, 2008)
and ArchAIDE (Gualandi et al., 2021; Anichini et al., 2020),
employ the profile, color, texture, rotational axis, and geo-
metric shape information to classify and determine whether
different sherds are fragments of the same vessel (Lucena et
al., 2016; Banterle et al., 2017; Han & Hahn, 2014; Makridis
& Daras, 2012; Ostertag & Beurton-Aimar, 2020; Smith et
al., 2010; Kampel & Sablatnig, 2003; Rasheed & Nordin,
2018) and then develop matching algorithms to reconstruct
the whole vessel by assembling the involved sherds (Kam-
pel & Sablatnig, 2003; Son et al., 2013; Stamatopoulos &
Anagnostopoulos, 2016; Willis et al., 2003; Willis & Cooper,
2004). One may think of these prior works as solving a jigsaw
problem. However, Snowvision handles sherds that are usu-
ally not from the same vessel. Even if sherds were from the
same vessel, it is not productive from a design perspective to
use them to reconstruct a partial or whole vessel because the
design would still be incomplete. In Snowvision, we focus on
the curve patterns on sherds and try to identify/reconstruct the
full paddle design underlying each sherd. Most jigsaw algo-
rithms based on the fragment-shape fitting and color/texture
consistencies are incompatible with our problem.

Our Task I is focused on curve-pattern segmentation,
which has been studied in many specific applications, such as
crack detection from pavement images (Zou et al., 2012), and
the segmentation of blood vessels (Lorigo et al., 2001) and
outer-cortex sulcals (Tao et al., 2002) from medical images.
The images in these applications are mainly RGB or gray-
scale ones, and the corresponding segmentation algorithms
usually rely on specific domain knowledge not applicable to
Snowvision, where the inputs are scanned depth images of
pottery sherds. General-purpose image segmentation such as
low-level methods based on edge detection (Arbelaez et al.,
2011; Wang et al., 2004), region growing/splitting (Tremeau
& Borel, 1997), pixel clustering (Li & Chen, 2015), or graph
cuts (Shi & Malik, 2000; Wang & Siskind, 2003); and mid-
level methods, such as active contours (Chan & Vese, 2001;
Vese & Chan, 2002), LevelSet (Vese & Chan, 2002; Li et
al., 2010), or GrabCut (Rother et al., 2004) can be adapted
to handle our problem of segmenting the depth images by
treating depth value as image intensity. However, their seg-
mentation performances are usually poor given weak stamps
and noise on the sherd.

Deep-learning based segmentation algorithms have been
developed by learning high-level features of the desired seg-
ments in a supervised way (Badrinarayanan et al., 2015;
Zheng et al., 2015), such as Fully Convolutional Network
(FCN) (Longetal., 2015), DeepLab (Chenetal., 2016, 2018)
and HRNet (W. et al., 2020). However, the performance when
directly applying these deep-learning algorithms to our sherd
depth image is also not satisfactory without considering the
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the curve-geometry and curve-pattern features. By consid-
ering more geometry information, Deep-Skeleton (Shen et
al., 2016) uses DNNs for skeleton extraction, which, how-
ever, is not specifically developed for curve patterns and may
produce many false positive skeletons when used for seg-
menting our sherd depth images. In this paper, we propose
a new CNN-based network to better segment curve patterns
by considering more curve geometric features.

Atthe core of our Task Il is actually a curve-pattern matching

problem that has been studied for a long time in computer
vision. For example, Frenkel and Basri (2003) proposed
to match two curves by deforming them into one identical
curve and then a graph-based fast-marching algorithm is used
to find the optimal deformation as the curve matching cost.
However, this method requires all the curves to be represented
by a set of sampled points with a consistent order, which is
infeasible in our problem given various image-segmentation
errors and the nature of partial matching. The low-level
matching algorithms, such as template matching (Brunelli,
2009), Chamfer matching (Barrow et al., 1977), and shape
context (Belongie et al., 2001) can be applied to match the
binary images of the curve patterns on sherd and design.
Howeyver, these methods are sensitive to noise and not able
to handle the partial-to-partial correspondence in compos-
ite patterns matching. The pipeline of keypoint detection,
description and matching has been widely adopted in natu-
ral image matching. Another typical approach is keypoint
matching. It includes handcrafted-feature-based methods,
such as SIFT (Brown & Lowe, 2007), SURF (Bay et al.,
2006) and ORB (Rublee et al., 2011); and learning-based
methods, such as LIFT (Yi et al., 2016), LF-Net (Ono et
al., 2018) and RF-Net (Shen et al., 2019). These meth-
ods could find partial-to-partial correspondence by matching
keypoints such as corners and edges. However, such key-
points are rare in texture-less binary curve pattern images.
There are also feature descriptors for texture-less objects,
such as BOLD (Tombari et al., 2013) and BIND (Chan et al.,
2017). But these methods are proposed for partial-to-global
object detection, and not applicable to our Task II.
Curve-pattern matching is also related to fingerprint
matching (Jain et al., 2001), in which minutiae features
are extracted at ridge bifurcations or ridge endings. How-
ever, the curve patterns on sherds usually carry much less
minutia than that in fingerprints and therefore, algorithms
developed for fingerprint matching usually perform poorly
on this task. Curve-pattern matching can also be regarded as
a region-based image retrieval (RBIR) problem (Carson et
al., 1999), of which the goal is to find regions in the target
image that share similar features with a specified region on
the query image. For example, Hinami et al. (2017) proposed
a region-based network whose multi-task CNN features can
jointly handle multi-aspect object specification. However,
these methods assume the region of interest is known on

the query image. In our study, without knowing the curve-
pattern composition in advance on a sherd, directly applying
these methods may fail in handling composite patterns. In
this paper, we develop a new patch-based matching method
based on deeply learned features to better address the pro-
posed curve-pattern matching problem.

In the ArchAIDE project (Gualandi et al., 2021; Anichini
et al., 2020), researchers study a shape-based recognition
problem of matching sherd profiles to vessel profiles, where
each profile consists of a single curve that is represented
by a sequence of sampled points along the profile in vec-
tor graphics. Differently, in our proposed matching tasks,
each curve structure consists of multiple disjoint curves and
curve width is also an important cue in matching. Besides,
profile matching in ArchAIDE is a partial-to-global match-
ing problem, while the proposed curve-pattern matching is
partial-to-partial.

Also related to our work is Pirrone et al. (2019), in
which a patch-based two-branch Siamese network, named
Papy-S-Net, was developed to check whether two papyrus
fragments are from the same papyrus piece. It tackles a prob-
lem more related to general-purpose image classification -
matched fragments (patches) show no spatial overlap and the
learned deep features reflect the general appearance and text
style present in image patches. Differently, the sherd/design
matching in our work indicates their (partial) structural over-
lap, embodied by the matching location and orientation.

Our Task IIT of identifying sherds from the same unknown
design can be formulated as a curve-pattern clustering prob-
lem. Cluster analysis is a long-studied topic, resulting in
many classical algorithms, such as K-means (Lloyd, 1982),
K-Means++ (Arthur & Vassilvitskii, 2006), Affinity Propa-
gation (Frey Dueck, 2007), MeanShift (Wu & Yang, 2007),
Hierarchical Clustering (Jain & Dubes, 1988), Spectral Clus-
tering (Shi & Malik, 2000), and more recent deep-learning
based algorithms, e.g., DeepCluster (Caron et al., 2018),
DAC (Chang et al., 2017), and DCCM (Wu et al., 2019),
ARO (Otto et al., 2017) and GCN Clustering (Wang et al.,
2019). Unlike conventional image clustering problems, the
curve-pattern clustering aims at finding sherds with common
partial curve patterns. Existing algorithms mostly take the
input image as a whole, thus they are not directly applicable
to our problem. In this paper, we combine the divide-and-
conquer strategy and deep metric learning, and proposed
a partial-feature-aware graph-based curve-pattern clustering
method to solve the problem of sherd identification.

3 Snowvision
Some 1,820 archaeological sites with Swift Creek pottery

have been recorded across the states of Alabama, Florida,
Georgia, and South Carolina (Smith & Stephenson, 2018).

@ Springer
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Hundreds of thousands of pottery sherds from these sites
reside in curation facilities and archaeological laboratories
across the Southeast. Making sense of these large and scat-
tered collections is a daunting task for researchers. The
Snowvision project takes on this challenge with state-of-
the-art research in computer vision and archaeology. At its
core, Snowvision is a backend study of these heritage objects
using identification and segmentation of curve patterns on the
pottery fragments. This involves the digital acquisition of
pottery fragments and reconstructed paddle designs. These
cultural heritage objects are stored in the free and public
World Engraved digital archive to centralize and share col-
lective knowledge about the diversity and geographical reach
of the designs over time.

World Engraved will act as an online repository to collect,
organize, and disseminate sherds and design reconstructions
from the many institutions that hold Swift Creek pottery.
To gain an understanding of the expected user group and
gather feedback on the World Engraved website, a two-part
user needs study was conducted between November 2019
and March 2020. All respondents were professional archae-
ologists interested in contributing sherd and design data, but
the user population is expected to include students, artisans,
curators, and collectors who may be members of the general
public or descendent Native Nations. Feedback from the user
needs study has helped refine the collected metadata, increase
usability of the World Engraved website, and has assisted in
the development of data policies. Data policies include the
protection of sensitive data from public view, data sharing
that meets the needs of users through a Creative Commons
license, and metadata collection that credits all contributors
and workers involved in a scanning project.

This section introduces the digitization pipeline of Snowvi-
sion and the architecture of World Engraved, the Snowvision
system where scientists can interactively share computing
resources, data, and expertise in an academic cloud system.
To date, the project has digitized more than 8,000 sherds
using this Snowvision digitization pipeline and is expected
to increase this number to at least 25,000 as the project con-
tinues to grow. More than 800 paddle design reconstructions
have been digitized, and 220 have been scaled by calibrating
them to the associated pottery sherd depth scans. Detailed
metadata about the sherds and design reconstructions is col-
lected and published with the objects. Subsets of the scanned
sherds and scaled designs were used in the later experiments.

3.1 Snowvision Digitization Pipeline

Common methods of digitizing cultural heritage objects
include RGB photography, depth imaging, point cloud, 3D
mesh, normal map, and many others. All known paddle
design reconstructions were manually drawn by archaeol-
ogists, primarily Bettye J. Broyles and Frankie Snow. The
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Snowvision digitization pipeline uses a digital camera and
a high-precision 3D scanner to collect high-quality RGB
images and depth scans of the surface of pottery sherds. The
RGB images are easier for the human eye to read than the
depth scans, but color differences in the RGB images due
to lighting, pottery manufacture, and depositional conditions
make them unsuitable for curve extraction. Therefore, RGB
photographs of the pottery sherds are collected for display in
World Engraved but not used in the proposed three computer-
vision tasks. Since the carved paddles impress ridges and
valleys on the surface of a vessel and depth imaging records
3-dimensional data from the pottery sherds, a depth scan
captures all the information required for analyzing curve pat-
terns.

The depth difference between the ridge and valley on the
surface of sherds is quite small, typically in the range of 1mm
to 3mm. The NextEngine Ultra HD, a linear array laser scan-
ner with an accuracy of £0.127mm, is used to capture this
low-level depth difference. A dense point cloud of the sherd
surface is captured and then converted into a depth scan. The
scanner is placed on a four-leg stand face-down to capture
sherds placed below on a flat surface, with the impressed
exterior sherd surface facing up towards the scanner. Multi-
ple sherds can be scanned at one time for efficiency, as long
as they are not too close to appear whole in the scanning
area. An example of three sherds scanned together is shown
in Fig. 3.

The 3D scanning process captures a point cloud with
density of 6, 200 points per cm?, and each scan takes approx-
imately 5 minutes. The points corresponding to the surface
below the sherds are removed using the 3D coordinates, and
the KD-tree is employed to obtain the point cloud of each
sherd when multiple sherds are scanned at one time. In KD-
tree, points are grouped for each sherd using a threshold of
Imm for the spatial distance. From the point cloud of each
sherd, a depth image is generated by grid sampling with a
resolution of 10, 000 pixels per cm? and the values of the
depth image are normalized to [0, 255]. A mask image is
also constructed to identify the irregular shape of the sherd.
Finally, as a fragment of a rounded vessel, the sherd surface is
curved instead of planar. An adaptive histogram equalization
method CLAHE (Pizer et al., 1990) is applied to enhance the
contrast between sherd regions so that the vessel curvature
can be removed from the depth scan.

As an alternative to depth scan, normal maps have been
used to digitize other cultural heritage objects (Yeh et al.,
2016; MacDonald, 2015). Comparing with depth scans, nor-
mal maps are good at preserving tiny bumps by focusing on
higher-order normal directions instead of depth values. How-
ever, on the excavated sherds in our work, normal direction is
more sensitive to local geometry change/noise on the surface
and normal directions along the curve structures may not be
consistent, which increases the difficulty of the segmenta-
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Fig.3 The Snowvision digitization pipeline

tion task. Therefore we choose depth scan over normal map
in Snowvision.

RGB photographs taken with controlled lighting and scale
cards are standard in archaeological data collection and dis-
semination so that information about the color and size of
an artifact can be communicated through digital imagery. A
digital SLR camera with a 60 mm lens is used to capture RGB
images. Like the 3D scanning process, multiple sherds are
placed on a flat surface with the camera above and face-down
and captured in one RGB image to expedite the digitiza-
tion process. A sherd splitting algorithm was developed to
divide a RGB image with multiple sherds into multiple RGB
images each with a single sherd, and then to match such
single-sherd RGB images to their corresponding depth scans.
Specifically, as illustrated in Fig. 3 (bottom), given a multi-
sherd RGB image, we binarize it and retrieve the boundaries
of sherds by intensity thresholding. We then conduct shape
matching between the sherd boundaries extracted from RGB
images and the sherd masks extracted from depth scans using
Hu-Moment values (Zuni¢ et al., 2010). This pre-processing
procedure can pair the RGB and depth images of the same
sherds in the Snowvision database.

3.2 Snowvision System Architecture

Our Snowvision system, called World Engraved, consists of
four major modules: a Ul frontend service, a UI backend ser-
vice, a storage service and a backend service. Its architecture
is illustrated in Fig. 4. The UI frontend service allows the
researchers to submit sherds for Snowvision processing and
provides an interface for users to view and search for designs
and sherds, as well as the segmentation and identification
results. The UI backend service serves as a hub to transfer
data between the UI frontend, the storage and the backend
services. The storage service stores all digital objects and

Binarization

Paired RGB & depth

N~ -E
[ N'q

RGB images & masks

their metadata. The backend service allows users to submit
unidentified sherds in RGB images and 3D scans with their
metadata. The point clouds will be first converted to depth
maps and separated into multiple individual sherds. RGB
images are separated as discussed above. Users can interact
with individual sherds to edit, publish, process sherds for
sherd segmentation (Task I), design identification (Task II),
sherd identification (Task III), result reviewing, or entry dele-
tion. When sherds are published, the images and metadata are
added to the World Engraved public archive.

4 Proposed Computer-Vision Methods

Given a set of query sherds, we take their scanned depth
images and carry out Task I of curve-pattern segmentation by
producing binary curve-pattern images, as shown in Fig. 4.
Then we carry out Task II of design identification by com-
paring the curve patterns segmented from each sherd with
each known design in a pairwise way. A high matching score
between a sherd and a design may indicate that this sherd
is probably stamped with the design, and we send them
to archaeologists for final confirmation. For the sherds that
cannot be matched to a known design, we carry out Task
III of sherd identification by clustering them into different
groups, expecting that each group consists of sherds with the
same (unknown) design. Clustering results are then sent to
archaeologists for confirmation and possible discovery and
reconstruction of new designs. In this section, we follow the
pipeline in Fig. 4 to introduce the computer-vision algorithms
developed for the above three tasks.

4.1 Task I: Curve-Pattern Segmentation

The proposed curve-pattern segmentation method consists
of three parts: (1) a fully convolutional network (FCN) for

@ Springer



2714

International Journal of Computer Vision (2022) 130:2707-2732

Sherd
metadata

Pottery sherd

digitization

UI backend service

UI frontend service

Paddle designs

Design
metadata

Task I: curve pattern segmentation
. (\ ) (I ("'\ {
Task II: design identification
e &

Task III: sherd identification

- A

Backend service

Fig.4 The architecture of Snowvision (Original designs reproduced with permission, courtesy of Frankie Snow, South Georgia State College)

simultaneously predicting the curve skeleton map and esti-
mating the curve width at each skeleton pixel, (2) a dense
prediction ConvNet for refining the curve skeletons, and (3)
an adaptive thresholding algorithm for the final segmentation
by restoring the curve width. We expect the use of deep neural
networks can improve the robustness to noise and errors in
the input depth images and the extraction and processing of
curve skeletons can better leverage the geometry and shape
information underlying the curve patterns.

4.1.1 Step 1: Detecting Curve Skeletons using FCN

We train an FCN to detect the skeleton of the curve pat-
terns from an input depth image, which is formulated as a
pixel-labeling problem: skeleton pixel has label 1 and non-
skeleton pixel has label 0. The FCN network architecture is
illustrated in Fig. 5, by following the encoder-decoder archi-
tecture developed in Long et al. (2015). Encoders 1 and 2 are
small ConvNets made up of two 3 x 3 convolutional layers,
two ReLu layers and one 2 x 2 max-pooling layer. Encoder 3
is a small ConvNet made up of three 3 x 3 convolutional lay-
ers, three ReLu layers and one 2 x 2 max-pooling layer. After
an encoder, the image size will be reduced to 1/4. Therefore,
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Fig.5 Network architecture of the FCN used for skeleton detection

the receptive field sizes of feature maps generated by the
three encoders are 2 x 2,4 x 4, and 8 x §, respectively. After
each encoder, a fully connected layer is employed to match
the number of feature maps with the number of labels. In
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order to generate pixel-wise prediction result, the fully con-
nected layers are implemented by 1 x 1 convolutional layers.
These results are denoted as Hi, H> and H3, respectively,
as shown in Fig.5. Note that the size of Hy, H> and H3 are
successively downsampled by factors of 2, 4, and 8 from the
original image size. The decoders are three deconvolution
layers with a kernel size of 4 x 4 and a stride of 2. The ker-
nels are fixed to perform bilinear interpolation (Xie & Tu,
2015).

The use of multiple encoders/decoders can extract image
features in different levels of details. To make full use of all
the extracted features, the decoders are organized in a way
of stepwise accumulation when fusing them together. The
output skeleton heat map H can be computed by:

H = softmax(W@ (H, + VO (H, + VO (H3))), (1)

where W indicates the upsampling operation performed by
the decoders and its associated superscript is the upsampling
factor, e.g., U indicates an upsampling of map by a factor
of 2. With the skeleton heat map H, we apply a common
image thinning algorithm (Lam et al., 1992) to generate the
single-pixel width skeleton map P.

Inspired by Shen et al. (2016), we can compare the three
score maps Hi, Hy and Hj3 to estimate the scale at each
detected skeleton pixel. The scale value at a skeleton pixel
reflects the local curve width at this pixel. More specifically,
since different encoders correspond to different receptive
field sizes, at each pixel the receptive field size of the encoder
with the largest score reflects the scale at this pixel. Before we
compare the score of different maps, we need to first upsam-
ple them to the original image size. This way, the scale s (x, y)
at the skeleton pixel (x, y) can be computed by:

s(r,y) = arg, min Hi(x, ), @

where Hy = \11(2k)(Hk) is the upsampled score map of Hy.
Later we will use the estimated scale values to help recover
the curve width.

4.1.2 Step 2: Refining Skeletons using Dense Prediction
ConvNet

While we expect the trained FCN can learn curve geometry
and pattern features, the detected skeletons may still contain
many false positives, which are difficult to remove by tuning
the FCN itself, as shown in Step 1 of Fig. 6. In Step 2,
we train a supervised classifier to identify and prune such
false positives by learning more curve features. Specifically,
centered at each skeleton pixel (x, y) detected by FCN, we
take its 45 x 45 neighboring region in the original depth
image as the input and train a dense prediction ConvNet to

Ground truth

Step 1

IripAut‘depth Step 2 Step 3

Fig. 6 Example results after each step of the proposed curve-pattern
segmentation method

determine whether (x, y) is a true skeleton pixel or a false
positive.

In practice, it is very difficult to perfectly localize the
ground-truth skeletons on the sherds at a pixel-level accuracy.
Instead of training a hard classifier, we train a soft classifier
to predict the probability of being skeleton pixels. There-
fore, we convert the ground-truth binary skeleton map to a
smoothed skeleton probability map by:

1

1+ min /(x—x)2+(y—y)?
(',¥)€G

Qx,y) = (€)

where G is the set of skeleton pixels in the ground-truth
skeleton map. Using Q to guide the training of the network,
the binary classification problem is converted to a regression
problem. Accordingly, we use sigmoid instead of softmax in
the last layer of the proposed dense prediction ConvNet.

In this paper, we propose to use a ConvNet consisting
of three convolutional layers, three max-pooling layers and
two fully connected layers. Its specific configuration is sum-
marized in Table 1. For a testing image, let the set of the
skeleton pixels detected by FCN be P and the skeleton prob-
ability map generated by ConvNet in this step be Q, we prune
the low-probability (< 0.5) skeleton pixels in P to achieve a
refined set of skeleton pixels as:

P ={(x,»)|(x,y) € PAQ(x,y) = 0.5). 4)

4.1.3 Step 3: Final Segmentation by Recovering Curve
Width

In the final step, we recover full curves from the refined skele-
ton map using estimated curve widths. Denote the original
depthimage by / and let P be the set of skeleton pixels refined
in Step 2. For each skeleton pixel (x, y) € P, we have a scale
value s(x, y) derived in Step 1. According the responses of
three encoders in Step 1, the scale values are roughly esti-

@ Springer



2716

International Journal of Computer Vision (2022) 130:2707-2732

Table 1 The configuration of the dense prediction ConvNet, where n, k,
st, pd are the number of output channels, kernel size, stride and padding
size, respectively. ReLu and BatchNorm layers are not included

Type Configuration

Sigmoid -

Fully connected n:2

Dropout ratio:0.5

Fully connected n:512

MaxPooling k2 x 2, st:2
Convolution n:128, k:3 x 3, st:1, pd:1
MaxPooling k2 x 2, st:2
Convolution n:64, k:3 x 3, st:1, pd:1
MaxPooling k2 x 2, st:2
Convolution n:32, k:3 x 3, st:1, pd:1
Input 45 x 45 gray-scale image

mated to be 1, 2 or 3, corresponding to the maximum curve
widths of 4, 8 and 16, respectively. Simply dilating skele-
tons with these rough widths will not generate accurate curve
masks. Instead, we construct the curve-pattern segmentation,
in the form of a binary map S of the same size as I, using the
following Algorithm 1.

The core idea of Algorithm 1 is to search curve pixels
in the neighborhood of skeletons using an adaptive thresh-
olding strategy. Around each skeleton pixel, we search in a
circular neighborhood with a radius of the predicted width,
in which curve pixels are supposed to have greater intensity
than non-curve pixels. Considering that the depth of differ-
ent curves may vary, we set an adaptive intensity threshold
around each skeleton pixel. Traditionally, the threshold can
be set as the average intensity of a neighborhood. But in
our circular neighborhood, we usually have more curve pix-
els than non-curve pixels, thus the average intensity can be
higher than the desired one. To address this issue, we use only
the intensity of the skeleton pixel and the smallest intensity in
the circular neighborhood to determine the threshold, as for-
mulated in the line 5 of Algorithm 1. This algorithm does not
require the detected skeleton to be exactly aligned with the
center line of the curves — a small dislocation between them
may not change the final segmentation — it only requires the
detected skeletons to be located inside the underlying curve
regions. Sample results after this step are shown in Fig. 6.

4.2 Task lI: Design Identification by Curve-Pattern
Matching

In the past decades, archaeologists have manually recon-
structed hundreds of complete designs from fragmented
pottery sherds. In this section, we address the problem of
identifying whether the curve pattern on a query sherd comes
from one of these known designs. For this we match the
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Algorithm 1 Curve-pattern segmentation by recovering
curve width

Input: Depth image /; Refined skeleton P; Scale values s

Output: Binary segmentation map S

1: Initialize all the elements in S to zero.
2: for each skeleton pixel (x, y) € P do
3:  Compute neighborhood:

N= [ Ve =7+ = )2 s 2e0),

4:  for each pixel (x’,y") € Ndo

s G,y > LEDI e 16D
6: S, y)=1

7: end if

8:  end for

9: end for

curve pattern segmented from the query sherd to each known
design and the best matched designs are identified and sent
to the archaeologists for confirmation. Since the query sherd
may exhibit composite patterns, this is not a partial-to-global
matching. Instead, it is a partial-to-partial matching, i.e., only
aportion of the curve pattern segmented from the query sherd
is matched to a portion of the underlying design, as illustrated
in Fig. 2. In this paper, we mainly consider possible trans-
lation and rotation transforms when matching a sherd to a
design, since the scales of them have been calibrated in their
digitization, as discussed in Sect.3.1.

To handle the partial-to-partial matching between sherd
and design, we proposed in this section a new patch-based
curve-pattern matching algorithm that consists of three steps:
(1) dividing and sampling the binary curve-pattern images of
the query sherd and the design for small image patches, (2)
employing a triplet CNN network to evaluate the pairwise
matching score between sherd and design, and (3) identifying
the matching portions by region growing. The whole sherd-
to-design matching process is shown in Fig. 7.

4.2.1 Step 1: Patch Sampling from Sherd and Design

For the query sherd, the proposed segmentation algorithm in
Sect.4.1 converts it to a 2D binary image of curve pattern.
The considered design also takes form of a binary image by
digitization. We first perform a thinning operation to con-
vert both binary images into skeleton images, which are also
binary. We then uniformly divide each of the skeleton images
to non-overlapping grids of size g x g. If a grid contains one
or more skeleton pixels, we take the skeleton pixel closest
to the grid center as the patch center, and then take its sur-
rounding p x p region as a patch, but on the curve-pattern
image before thinning. This process is briefly illustrated in
Fig. 8. With this patch sampling strategy, we obtain two sets
of sherd and design patches for matching. We only need to
consider one patch for each grid instead of for each pixel,
and so that the searching space can be significantly reduced.
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Fig. 8 Illustration of our patch sampling strategy. We first divide
the image into small grids. In each grid, we find the skeleton pixel
(red points) that is closest to the grid center. Around each selected
skeleton pixel (blue points), we crop a patch of size p x p on the curve-
pattern image. (Original designs reproduced with permission, courtesy
of Frankie Snow, South Georgia State College) (Color figure online)

Finally, considering the rotation transform, we augment each
patch constructed for the query sherd by rotating it 36 times
by 0°, 10°, - - -, 350°, respectively.

The patch size p is an important parameter that needs to
be pre-set. The smaller the value of p is, the more patches
we sample and compare, leading to higher computational
time. In addition, overly small patches may lack discrimina-
tive curve pattern features for design identification. On the
contrary, an overly large patch may still cover composite pat-
terns, which prevents the correct matching between a sherd
and its underlying design. In our experiment, we empirically
set p = 300 pixels such that each patch covers a 3cm x 3cm
region, on either the surface of query sherd or the design.

4.2.2 Step 2: Matching Score Estimation by Learning

After Step 1, both the query sherd and the consider design are
represented by a set of sampled and augmented patches, each
of which is a binary image of curve patterns. We match every
pair of patches sampled from the sherd and the design, respec-
tively, and evaluate their similarity by a matching score. The
proposed patch matching score shall be robust to not only

Table 2 Network architecture of the curve feature descriptor, where
n, k, st, pd are the number of output channels, kernel size, stride and
padding size, respectively. ReLu and BatchNorm layers are not included

Type Configuration

Convolution n:128, k:8 x &, st:1, pd:0
Dropout ratio:0.5

Convolution n:128, k:3 x 3, st:1, pd:1
Convolution n:128, k:3 x 3, st:2, pd:1
Convolution n:64, k:3 x 3, st:2, pd:1
Convolution n:64, k:3 x 3, st:2, pd:1
Convolution n:32, k:3 x 3, st:2, pd:1
Convolution n:32, k:3 x 3, st:1, pd:1

Input 300 x 300 curve-pattern image

the noise and deformation present in the images of sherd, but
also a certain level of displacement, i.e., translation and rota-
tion, because our patch sampling in Step 1 could not cover all
possible locations and rotations. For this purpose, we train
a CNN-based curve feature descriptor to compute pairwise
patch matching scores via deep embedding learning.

The network architecture of the curve feature descriptor is
illustrated in Table 2. In training, we optimize it in the form
of triplet network (Hoffer & Ailon, 2015), which consists
of three branches with shared weights and the three inputs
are an anchor sherd patch Ig, a positive design patch Ig
and a negative design patch I, respectively. The positive
I[J; refers to the ground-truth patch on the design D that
matches the sherd patch I and the negative /;, can be any
design patch that does not match /5. The three branches of
the network then produce three deep feature vectors Fs, F Z)’
and F,, respectively. We propose the following triplet loss
for network training:
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L= max (|Fs - F |, ~ | Fs = Py, +a.0).

where « is a constant margin value. This loss function aims
at minimizing the distance between Fg and F;', and maxi-
mizing the distance between Fg and F,.

The selections of I; and I, are crucial to the training of
triplet network. If we only use easy-to-discriminate / g and
I in training, the triplet loss is likely to be 0 and the trained
network may not be able to distinguish hard-to-discriminate
cases in testing. To address this issue, we adopt two strategies
to construct the training samples IZ)r and [, . First, to toler-
ate certain-level of displacement in matching, we spatially
transform the window of each positive patch IZ; and use it
to crop the design Ip for more augmented positive design
patches. More specifically, we construct 81 positive design
patches by taking the combination of rotation of —10°, 0°,
or 10°, scaling of factor 0.9, 1, or 1.1, horizontal transla-
tion of -10, 0, or 10 pixels, and vertical translation of -10,
0, or 10 pixels. Second, for each anchor sherd patch I, we
use template matching (Brunelli, 2009) to search from the
patches sampled from all the known designs, except for the
ground-truth design D, a set of 81 patches with the high-
est template-matching scores. We take them as hard negative
design patches I, for enhancing the triplet network training.
Using these two strategies, we also achieve a data balance
between positive and negative samples. In testing, for each
sherd patch /g and each design patch Ip, we can use the
trained network to compute their deep feature vectors and
calculate their cosine similarity as their matching score:

Fs - Fp

¢Us, Ip) = ———————,
I Fsll2 1 Fplla

(6)

where Fg and Fp are the extracted curve feature vectors of
Is and Ip, respectively.

4.2.3 Step 3: Matched-Region Identification

To help the visual examination and confirmation by archaeol-
ogists, following the results in Step 2 we further identify the
best the matched region between the query sherd S and the
design D. Let I and I}, be the best matched patches between
S and D. By corresponding the coordinate of the four corners
of these two patches, we can estimate an isometric trans-
formation T from sherd S to design D. We then overlay
the transformed sherd image 7 (S) (the binary curve-pattern
segmentation) to the design D for identifying their maximal
matched region by following a region-growing strategy.
More specifically, at each location, we can crop a p x p
patch on both 7' (S) and D and then apply the algorithm in
Step 2 to estimate their matching score. This way, we can
obtain a heat map for the area shared by 7'(S) and D, with
matching scores as heat values. We then take the location
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with the largest heat value as seed of the matched region and
check its neighboring locations — if their matching scores at
a neighboring location is no less than 90% of the matching
score at the seed location, they are included into the matched
region. We then take each of the newly included locations as
seed and repeat the above operation, until no more locations
can be added.

Denote the matched region between 7'(S) and D by R.
We finally take the average heat values in R as the matching
score ¢ (S, D) between S and D:

1
¢(S, D) = —

R Y. 6Us. Ip). (7)

Is,IpeR

Given a set of M query sherds and a set of N known designs,
we can compute this matching score between each pair of
them and construct a M x N similarity matrix. In Snowvi-
sion, for each query sherd S, we only return a small set of
designs D with ¢ (S, D) > t, with f being a pre-set threshold,
together with their best matched regions, to archaeologists
for confirmation, i.e., examining whether any of the provided
designs is the true one stamped on the query sherd.

If we have ¢ (S, D) < ¢ for all known designs D, we mark
the query S as a sherd with unknown design, which means
it may lead to new designs that have never been discovered.
For such sherds, we cluster them based on their underlying
curve patterns to facilitate the reconstruction of new designs,
which will be studied in Task III.

4.3 Task llI: Sherd Identification by Clustering

In this task, we take a group of sherds, actually their seg-
mented binary curve-pattern images, without known designs
and perform clustering, expecting that each cluster only con-
tains sherds with the same underlying design. The goal is
to provide clustering results to archaeologists for facilitating
the discovery and reconstruction of new designs.

Sherd clustering differs from conventional image clus-
tering in two aspects. On one hand, two sherds should be
assigned to the same cluster as long as part of them share the
same curve pattern, and their remaining parts can be differ-
ent. On the other hand, we do not require every pair of sherds
in each cluster to have the same curve pattern, but allow them
to be linked through other sherds. For example, if sherd A
and sherd B do not show any partial overlap, but both of them
can be matched to sherd C with certain overlap, then A and
B are still considered to have the same underlying design.

To address this problem, we formulate sherd clustering as
a graph partitioning process. The key idea is to take each input
sherd as a node of a fully connected graph, and then partition
the graph based on the linkage between each pair of sherds. In
general, our method can be divided into three steps: (1) con-
structing a sherd graph weighted by sherd-to-sherd matching
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Fig.9 The pipeline of the proposed sherd clustering method. Here we use an input of 4 sherds as an example

scores, (2) partitioning the graph into subgraphs/clusters by
adaptive thresholding, and (3) sherd stitching for iterative
clustering. An illustration using the proposed method to clus-
ter four input sherds is shown in Fig. 9.

4.3.1 Step 1: Constructing Sherd Graph

Given a set of N input sherds, in the form of their segmented
binary curve pattern images, S = {S, S2, - -+, Sy}, we first
construct a fully-connected undirected graph G = (S, W),
where W is the edge weight matrix that measures the linkage
of each pair of sherds. For each pair of sherds, their edge
weight is determined by the similarity of the best matched
parts between them. To find out their best matched parts, we
follow the patch sampling strategy proposed in Sect.4.2.1 to
sample a set of patches of size p x p from each sherd.

The cosine similarity of the extracted features was
employed in Task II as the similarity metric to rank design
patches. However, this metric is not sufficiently discrimina-
tive for Task III because the cosine similarities of positive
and negative patch pairs can be very close, which is not
desired in threshold-based graph partitioning. Therefore, we
train a curve similarity metric network M to directly predict
the similarity of two sherd patches. Specifically, on top of
the curve feature descriptor described in Table 2, we append
a global average pooling (GAP) layer, two fully-connected
(FC) layers, and a softmax layer. The output channels of two
FC layers are 128 and 2, respectively. The training of M
takes a pair of sherd patches and a 0/1 label that indicates
whether they are matched or not as input. We minimize the
cross-entropy loss to optimize the parameters of two FC lay-
ers, while the curve feature descriptor is fixed. In testing, the
edge weight W; ; of two sherds S; and S is the highest sim-
ilarity among all patch pairs sampled in these two sherds:

Algorithm 2 Sherd graph partitioning by adaptive threshold-
ing

Input: Sherd set S; Edge weight matrix W; Maximum cluster size 7.
Output: Sherd clusters C

1: Initialize the weight threshold #,, = min(W), the queue of undivided
clusters C' = {S}.
2: while C’ is not empty do

3:  Let C be the first element of C’ and pop out it

4:  Update the weight threshold by #,, <, + 0.1 % (1 —¢,,)

5. Partition C toasetof clusters C using the current weight threshold
ty

6:  for each cluster C; € Cdo

7: if |C;| < . then

8: Append C; to C

9: else

10: Append C; to C/

11: end if

12:  end for

13: end while

Wi, j = max max M(/s,, Is;). ®)

Is;€8i Is; €S; !
4.3.2 Step 2: Sherd Graph Partitioning

After obtaining the weight matrix W, we partition the fully-
connected graph G into sherd clusters. Intuitively, we can
cut all edges below a pre-set similarity threshold and take
the remaining subgraphs as clustering results. However, such
clustering result is very sensitive to the pre-set threshold.
To solve this problem, we adopt an adaptive thresholding
strategy (Zhan et al., 2018) to partition the graph, as shown
in Algorithm 2.

We first set the weight threshold to the lowest value of
W, and maintain a cluster queue initialized by S. Next, we
iteratively process each cluster in the queue in the order of
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Breadth First Search (BFS). The main idea is to adjust the
weight threshold to limit the size of output clusters to a size
threshold of #.. In each iteration, we gradually increase the
weight threshold, and partition the current cluster into sub-
clusters. The cluster partitioning is implemented by cutting
low-weight edges and grouping remaining connected sherds
by Union-Find. This process repeats until the cluster queue
is empty.

4.3.3 Step 3: Sherd Stitching for Iterative Clustering

We finally propose a strategy to iteratively refine the cluster-
ing result by introducing the stitched curve patterns. As a side
benefit of the patch-based matching in Step 1, we are able
to find the transformation between the two sherds, by align-
ing their best matched patches. This way, we can transform
the curve patterns of all sherds in the same cluster to a com-
mon coordinate system and stitch them together to obtain a
larger curve-pattern image, as shown in Fig. 9, by following a
similar process described in Sect. 4.2.3. Specifically, in each
cluster produced by the previous step, we stitch sherd pairs
in the order of their edge weights — from high to low. When
stitching two sherds, we overlay the larger one on the top of
the smaller one. Compared to curve patterns on individual
sherds, the stitched curve patterns bear more geometry infor-
mation of the underlying design, and we can put them back
as new graph nodes for clustering and they can help recall
sherds that were not clustered or not correctly clustered in
the initial clustering. This iterative clustering can be repeated
until there is no more change to the clustering result.

5 Experiments

In this section, we conduct experiments to evaluate the per-
formance of the proposed methods on three tasks. For each
task, we first compare our method with representative exist-
ing methods, and then conduct in-depth ablation study on the
proposed methods.

5.1 Datasets

For this study, we use the Snowvision digitization pipeline in
Sect. 3.1 to digitize 1604 pottery sherds from various archae-
ological sites located in southeastern North America. These
1604 sherds correspond to 133 unique paddle designs. Each
sherd has a curve pattern, either single or composite, from
only one design. Their ground-truth designs are manually
identified by archaeologists.

For Task I, we manually labeled the ground-truth curve
pattern mask for a subset of 621 sherds, in which 300 sherds
are randomly selected for training, and the rest 321 sherds
are used for evaluation. For Task II, we use all 1604 sherds
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and 133 designs in the design identification experiment. We
randomly split all sherds into 604 training sherds and 1000
test sherds. To generate meaningful ground-truth clusters for
Task III, we select 1091 sherds with sufficient curve pixels
(in the binary curve pattern images) from the whole dataset.
These 1091 sherds come from 129 different designs, corre-
sponding to 129 ground-truth clusters. Subsequently, all 129
clusters are randomly split into 60 training clusters and 69
test clusters. The 60 training clusters contain 510 sherds, and
the 69 test clusters contain 581 sherds.

Note that for all the sherd data used for the experiments
of Tasks II and III, we first apply the network model trained
in Task I for curve-pattern segmentation. We then use these
automatically segmented, imperfect curve-pattern images for
matching and clustering in Tasks II and III, respectively. This
way, the resulting performance can well reflect the practical
usefulness of the Snowvision system, for which we provide
more discussions in later Sect.5.5.

5.2 Task | Experiments on Curve-Pattern
Segmentation

As mentioned above, we select 621 depth images of sherds
with manually labeled ground-truth curve-pattern segmenta-
tion for Task I. We randomly divide them into 300 training
images and 321 testing images. To train the FCN in Step 1,
we thin all the ground-truth curve patterns to one-pixel width
skeletons, using a standard image thinning algorithm (Lam et
al., 1992). Data augmentation is employed here to generate
sufficient training data. Specifically, we first split the whole
image into small blocks with a size of 100 x 100. Then these
blocks are rotated, scaled and flipped with the same scheme
as in Shen et al. (2016). Finally, 141,696 blocks are used in
FCN training in Step 1. For Step 2, we randomly take 44,906
window images with a size of 45 x 45 around the skeleton
pixels identified in Step 1 for network training.

For the purpose of better training, the parameters of
encoders in the skeleton extraction network are initialized
with the FCN-8s model (Long et al., 2015) pretrained on
PASCAL VOC (Everingham et al., 2010). We then train it
using the SGD optimizer. The maximum number of training
iterations is set to 20,000, with a batch size of 10. The base
learning rate is 1 x 10~7 and decaysto 1 x 1078 after 10,000
iterations. Momentum and weight decay are set to 0.9 and
5 x 1074 respectively.

Considering the dense prediction ConvNet in Step 2 is
relatively lightweight, we choose to train it from scratch.
It is also trained using the SGD optimizer. The maximum
number of training iterations is set to 100,000, with a batch
size of 10. The base learning rate is 1 x 1073, and it decays
exponentially in training with the parameters of y = 1073
and power = 0.75. Momentum and weight decay are set to
be the same as the FCN in Step 1.
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Fig. 10 Examples of the curve-pattern segmentation result from the proposed method and all comparison methods

5.2.1 Comparison with Existing Methods

To justify the effectiveness of our method of curve-pattern
segmentation, we select eight widely-used segmentation
methods for comparison — Difference of Gaussian (DoG),
Level Set (Vese & Chan, 2002), GrabCut (Rother et al.,
2004), FCN (Long et al., 2015), DeepSkeleton (Shen et al.,
2016), DeepLab v1 (Chen et al., 2016), DeepLab v3+ (Chen
et al., 2018) and HRNet (W. et al., 2020). The experiment
is conducted on the 321 testing images as described above,

and the evaluation criteria is the traditional F-measure of
2-Precision-Recall
Precision+Recall *

For fair comparison, we tune the parameters of existing

methods on the same training set as ours, and then evalu-
ate on the test set. The detailed settings are introduced as
follows. (1) For DoG, we manually tune the kernel size k
and the standard deviation o of two Gaussian filters on 300
training images, and find the best parameter setting to be:
ki = kp = 45, 01 = 11, op = 5. (2) For LevelSet, we
adopt the implementation proposed in Li et al. (2010). We
tune two main parameters in the energy function, the weight
A of the length term and the weight « of the area term, and
finally choose & = 5 and o = 3. Other parameters use their
default values and the initial contour uses the square bound-
ary of image. (3) For GrabCut, we adopt the implementation
in OpenCV. It requires a foreground mask as initialization,
and we use the result of DoG, which can produce reasonable
curve masks. The number of iterations is set to be 10. (4) For
all learning-based methods FCN, DeepLab v1, DeepLab v3+,
HRNet and DeepSkeleton, we use their models pretrained
on PASCAL VOC as initialization, and then fine-tune on our
training sets with respect to their respective hyperparameters.
We randomly sample % training images as the validation set
to select the best model for each of them. Since the input
of these models is a 3-channel image, we simply duplicate
the input depth image to 3 channels and then normalize it
using our mean and standard deviation values. Besides, since
DeepSkeleton requires the ground-truth scale values of skele-
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Fig. 11 ROC curves and AUC values of all the methods in Task I

ton pixels as input, we obtain it by applying the distance
transformation on ground-truth segmentation masks.

The performance of all methods, averaged over all 321
testing images, are reported in Table 3. We can see that
the proposed method achieves the best F-measure, and out-
performs the second best result (DeepSkeleton) by 9.2%.
Figure 10 shows the segmentation results on three sample
images, using all methods. In these images, we can observe
that DoG actually enhances the difference between adjacent
pixels. As a purely low-level method, it may not capture deep
and shallow curves simultaneously. GrabCut was initialized
by DoG, but its performance becomes even worse. One major
reason might be that the data and smoothness energy defined
in GrabCut are not sufficiently discriminative to separate the
curve and non-curve regions in such a low-contrast image.
This is probably the same reason that makes Level Set fail.
As expected, the CNN-based comparison methods normally
achieve better performances than the low-level methods.
However, their segmentation results usually contain many
false positives and the boundaries of the segmented curve
patterns are quite rough. Moreover, they require the full curve
mask for training, while our method needs only the skeleton
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Table 3 Precision, recall and
F-measure of all the methods on

Task I

Method Precision Recall F-measure
DoG (Bundy & Wallen, 1984) 0.376 0.778 0.498
LevelSet (Li et al., 2010) 0.265 0.939 0.403
GrabCut (Rother et al., 2004) 0.362 0.671 0.450
FCN (Long et al., 2015) 0.593 0.494 0.527
DeepLab vl (Chen et al., 2016) 0.594 0.666 0.590
DeepLab v3+ (Chen et al., 2018) 0.622 0.638 0.627
HRNet (W. et al., 2020) 0.629 0.644 0.632
DeepSkeleton (Shen et al., 2016) 0.637 0.698 0.661
Ours 0.676 0.850 0.753

Bold font indicates the best performance

labels. Although the proposed method does not achieve the
first place in both precision and recall, it achieves the best
performance in the final F-measure.

For more comprehensive evaluation, we provide the
Receiver Operating Characteristic (ROC) curves and the
corresponding Area under Curve (AUC) values of all the
methods in Fig. 11. We obtain the ROC curve of our method
by changing the threshold of selecting skeleton pixels in Step
2 and keeping the Step 3 unchanged. The ROC curves of
LevelSet and GrabCut are absent, because they directly out-
put binary masks instead of probability maps. Both the ROC
curves and AUC values indicate the superiority of our method
in curve-pattern segmentation.

5.2.2 Ablation Study

Intuitively, the three steps of our segmentation method can
be replaced by other alternatives or simply ignored. To jus-
tify the usefulness of each step, we design three additional
experiments, in each of which, we modify or remove one step
of the proposed method, and then check its influence to the
final segmentation performance.

Modifying Step 1: Step 1 of the proposed method is skele-
ton extraction. Actually, the FCN we used in this step can
be trained to produce curve-pattern segmentation directly.
However, we choose to extract skeletons first, and then take
additional steps to recover the curve width. In this experi-
ment, we make several adjustments in the FCN in Step 1 to let
it output curve-pattern segmentation with width directly. For
this purpose, we directly use the ground-truth segmentation
as supervision, and remove the scale estimation and image
thinning operations. Sample results of this modified method
are shown in Fig. 12(b). We can see that these results contain
more false positives and rougher segmentation boundaries.
Quantitatively, F-measure of the proposed method decreases
from 0.753 to 0.681 if we make this modification to Step 1.

Using different encoders in Step 1: In Step 1, three
lightweight basic ConvNets are employed as our encoders.
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Fig.12 Sample segmentation results of the proposed method with mod-
ifications to each step. a Input depth image. b Segmentation result after
modifying Step 1. ¢ Segmentation result after removing Step 2. d Seg-
mentation result after modifying Step 3. e Segmentation result of the
proposed method without any modification. f Ground-truth segmenta-
tion

In this experiment, we change them to residual blocks to see
if our method can benefit from more sophisticated encoders.
Specifically, we use the ResNet-50 (He et al., 2016) as the
backbone, and three decoders are appended to the layer 2, 3
and 4 of it, respectively. Thus three encoders corresponding to
layerl+layer2, layer3 and layer4 of ResNet-50, respectively.
With the ResNet-50 model pretrained on ImageNet (Rus-
sakovsky et al., 2015) as initialization, we fine-tune it on
our training set using the same hyperparameters. The preci-
sion, recall and F-measure of the new encoders are 0.672,
0.847 and 0.751, respectively. In natural images, ResNet
backbones usually show better feature extraction capability
than the regular ConvNets (Minaee et al., 2021). However,
in the proposed curve-pattern segmentation, we find that the
two kinds of encoders have similar performances in terms
of F-measure. We speculate that there are two possible rea-
sons: (1) The ResNet-50 backbone has much more trainable
parameters than the original FCN (23M vs 7.6 M), while we
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Fig. 13 The performance of the proposed curve-pattern segmentation
method by using different thresholds in Eq.(4)

have only 300 training images. The larger ResNet-50 model
may be overfitted on the small training set; (2) Our depth
images have much less variations than natural images and
thus may not require complicated feature descriptors.

Removing Step 2: Step 2 of the proposed method employs
adense prediction ConvNet as a pixel-wise classifier to refine
skeletons extracted by FCN in Step 1. To justify its useful-
ness, we remove this step and recover curve width directly
from the skeletons generated in Step 1. Sample results are
shown in Fig. 12(c). We can see that the removal of Step 2
leads to more false positives. Quantitatively, F-measure of
the proposed method decreases from 0.753 to 0.676 if we
remove Step 2. The reason that the ConvNet could better
identify skeleton pixels than FCN is because it focuses on
local patch features instead of the whole image features, and
is more suitable for skeleton extraction. But it would be too
slow if we use ConvNet to classify every pixel, thus we only
use it to positive pixels selected by FCN.

Changing the threshold in Step 2: In Eq.(4) of Step 2, we
use a threshold of 0.5 to select skeleton pixels. In this exper-
iment, we test the sensitivity of our method to this threshold
by changing it from 0.1 to 0.9. The precision, recall and
F-measure of our method with different thresholds are illus-
trated in Fig. 13. We can see that the F-measure is reasonably
stable when the threshold varies from 0.4 to 0.6. It indicates
that our curve recovering method in Step 3 is able to tolerate
minor changes in the output of Step 2.

Modifying Step 3: Simple morphological dilation seems
to be a very intuitive approach to recover curve width in Step
3. In this experiment, we modify Step 3 by replacing it with a
dilation operation with a radius of 15 pixels, which is the best
parameter after we try and test all different values. Sample
results are shown in Fig. 12(d). While the dilation produces
very smooth curve patterns, they are not well aligned with
the ground truth. Quantitatively, F-measure of the proposed

method decreases by 3.5% if we make this modification to
Step 3.

5.3 Task Il Experiments on Design Identification

As mentioned above, we take all 1604 sherds for Task II
experiments—604 for training and 1000 for testing. We sam-
ple every sherd and design image in the training set with a
patch size set to 300 x 300 pixels. In total, 600k triplets were
sampled from the training set in the form of image patches.
The proposed curve feature descriptor is trained by Adam
optimizer with a base learning rate of 1073 and a momentum
of 0.9. We train it for 50k iterations with a mini-batch size
of 64. The margin value « in the triplet loss is set to 1. The
sherd and design images in testing were sampled with the
same patch size as in training.

In this task, we use the Cumulative Matching Char-
acteristics (CMC) ranking metric to evaluate the design
identification performance. In testing, for each sherd, we
match it against all 133 designs and obtain 133 matching
scores. We sort these 133 matching scores and pick the top
L designs with the highest scores. If the ground-truth design
of the sherd is among the identified top L designs, we treat
it as a correct design identification under rank L. We repeat
this identification for all 1,000 test sherds and calculate the
accuracy, i.e., the percentage of the sherds with correctly
identified designs, under each rank L = 1,2, - -+, 133. This
way, we can obtain a CMC curve in terms of rank L, as
shown in Fig. 14, to evaluate the performance of the overall
matching result.

5.3.1 Comparison with Existing Methods

To demonstrate the effectiveness of the proposed method
on design identification, we compare with nine represen-
tative existing image matching methods, including three
low-level matching methods template matching (Brunelli,
2009), Chamfer matching (Barrow et al., 1977), and Shape
Context (Belongie et al., 2001); one fingerprint matching
method (Tico & Kuosmanen, 2003); three handcrafted-
feature-based methods SIFT (Lowe, 1999), SURF (Bay et
al., 2006) and ORB (Rublee et al., 2011); and two learning-
based methods LF-Net (Ono et al., 2018) and RF-Net (Shen
et al., 2019).

The detailed settings of comparison methods are as fol-
lows: (1) For template matching, we take sherd images as
the source and design images as the target. Besides searching
along x, y directions, we also search for the angle of rotation
from 0° to 359°. The strides along these three dimensions
are set as 10. The sum-of-square-difference is employed as
the matching cost. (2) For Chamfer matching, we perform
image thinning on all sherd and design curve-pattern images
to get one-pixel-wide skeleton images, and compute the min-
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imum Chamfer matching cost using the distance transform
between each pair of sherd and design. The searching strat-
egy is similar to the one used for template matching. (3)
For fingerprint matching, we adopt the minutia-feature-based
algorithm implemented in Alilou (2020) and treat the sherd
images as query fingerprints and the design images as the fin-
gerprint database. We perform image thinning to all sherd and
design curves to make them 3-pixel-wide to reduce redun-
dant minutia on curve ridges. Euclidean distance is computed
as the matching cost by every minutia feature pair. By setting
a threshold cost of 15 on each feature pair, we compute the
number of matched features normalized over the number of
features as the matching score of each sherd-design pair. (4)
For Shape Context, we thin the curve structures of the sherd
and design to one-pixel wide. To deal with partial matching,
we use a sliding window technique to match a sherd curve
pattern to each window-cropped design curve pattern and
then choose the one with the lowest matching distance. The
sliding-window size is the same as the sherd image. The shape
context algorithm implementation directly comes from the
OpenCV package. The number of sampled points per sherd
is set to be 100. (5) For SIFT, SURF and ORB, we follow the
same identification method by taking the best matched design
in a design database for a sherd. Specifically, we use their
implementations in OpenCV. Keypoints are matched using
Brute-Force Matcher for SIFT and SURF, and FLANN-based
Matcher for ORB. Every feature in a sherd is compared to
all the features in a design, and we compute the L2-norm
distance of the feature pair for SIFT and SURF, and normal-
ized Hamming distance for ORB. Then the matching score
is computed as the number of best matched keypoint pairs
for a sherd-design pair. In searching for the best matched
keypoint pairs, the ratio of the best matched keypoint pair
and their second best matched keypoint pair is set to 0.75.
(6) Both LF-Net and RF-Net are learning-based methods. We
use their released pretrained models as initialization and fine-
tune them on the training set of Task II. LF-Net is pretrained
on the indoor dataset ScanNet (Dai et al., 2017), while RF-
Net is pretrained on HPatches (Balntas et al., 2017). Both
contain two networks, a detector and a descriptor. Training
the detector requires the ground-truth camera pose and the
calibration matrix, which are not available in our datasets.
Therefore, we fix the pretrained detectors, and fine-tune the
descriptors using their default hyperparameters but reduce
the learning rate by 10 times. In their source code, they con-
vert RGB images to grayscale images as input, so we do not
need to change the number of channels of our images.
CMC curves of the proposed method and all comparison
methods are shown in Fig. 14. The detailed CMC Rank-
1/5/10/20 values are reported in Table. 4. From Fig. 14
and Table. 4, we can see that: (1) The proposed method
achieves the best performance among all, and outperforms
the second best method by 13.7% in terms of CMC Rank-
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Fig. 14 CMC curves of all the methods in Task II

1 accuracy. (2) All comparison methods perform poorly in
this task, and several of them even have nearly diagonal
CMC curves, which is equivalent to random guessing. It
demonstrates the challenge of the curve-pattern matching
problem. (3) Template matching has the second best Rank-
1 accuracy among all. After checking the matching results,
we find that template matching works well on sherds with
single patterns, but performs poorly on composite pattern
matching; other low-level matching methods, such as Shape
Context and Chamfer Matching, are sensitive to noises and
perform poorly in both cases. (4) Keypoint-based matching
methods including handcrafted-feature-based and learning-
based methods do not produce satisfactory results, because
they cannot find proper keypoints in our low-texture binary
curve-pattern images. By explicitly considering the possible
composite patterns, as well as noise, errors, and deforma-
tion in curve-patterns images, the proposed method achieves
much better CMC performance than all other methods.

5.3.2 Ablation Study

Without patch sampling: Step 1 of the proposed method is
patch sampling on both sherd and design. As sherds may
contain composite patterns, the major purpose of Step 1 is to
address this challenge by cropping a patch with only a single
pattern that can be matched to a portion of its underlying
design. Here we try to directly match whole sherds to whole
designs without patch sampling. Specifically, for each pair
of sherd and design, we directly use the trained curve fea-
ture descriptor to obtain their global image features, and their
matching score is computed based on the global features. The
CMC accuracy of our method with and without patch sam-
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Tabled CMCaceuracey (%)0f Method Rank-1  Rank-5  Rank-10  Rank-20
Template matching (Brunelli, 2009) 15.8 253 33.7 45.5
Chamfer matching (Barrow et al., 1977) 0.5 4.7 17.1 432
Shape Context (Belongie et al., 2001) 1.7 4.4 9.3 18.7
Fingerprint matching (Tico & Kuosmanen, 2003) 0.8 8.4 15.0 314
SIFT (Lowe, 1999) 29 11.2 18.2 319
SURF (Bay et al., 2006) 1.6 6.4 16.5 322
ORB (Rublee et al., 2011) 0.5 3.0 8.4 16.6
LF-Net (Ono et al., 2018) 8.5 16.0 22.6 33.8
RF-Net (Shen et al., 2019) 25 5.1 7.6 14.7
Ours 29.5 46.5 55.1 66.7

Table 5 CMC accuracy (%) of the proposed curve-pattern matching
method with and without patch sampling

Table 6 CMC accuracy (%) of the proposed curve-pattern matching
method with different patch sizes

Rank-1 Rank-5 Rank-10 Rank-20 Patch size Rank-1 Rank-5 Rank-10 Rank-20

w/o patch 15.8 253 33.7 45.5 200 11.7 29.9 40.3 55.1
w/ patch 29.5 46.5 55.1 66.7 220 18.5 37.4 48.6 61.6
240 25.2 429 553 66.6

260 279 44.1 54.0 67.3

280 29.1 45.8 54.8 70.0

pling are compared in Table 5. The performance degrades 30 295 465 551 66.7
significantly after removing patch sampling. It indicates that 35, 28.6 46.4 571 66.2
curve-pattern matching is a partial-to-partial matching prob- 34, 28.4 45.1 535 653
lem and cannot be solved using global features. 360 271 33 519 632
' Changing the patch size: In Step 1, we use a fixed pa'tch 380 5.4 411 492 503
size p = 300 to sample patches from sherd and design 400 22 39,1 475 56.5

images. In this experiment, we try different patch sizes to
see its effect to the matching performance. Specifically, we
vary the patch size from 200 to 400 with a stride of 20,
and the detailed CMC accuracy is reported in Table 6. We
can see that our method achieves the best performance at
p = 300, and the matching performance is quite stable
for p € [260, 340]—CMC Rank-1 values vary from 27.9%
to 29.5%. In practice, overly small patches could not carry
sufficiently discriminative information for matching, while
overly large patches may contain composite patterns or non-
curve regions. Both cases may prevent the correct matching
between a sherd and its underlying design.

Using different feature descriptors: Although the sherd
and design patches are binary images with sparse texture,
measuring their curve pattern similarity is non-trivial. To
validate the discriminability of the curve feature descriptor
trained in Step 2, we try to replace it with other com-
monly used similarity metrics/feature descriptors to evaluate
curve pattern similarity. In specific, we compare with seven
representative methods, including two pixel-level similarity
metrics Sum-of-Square-Difference (SSD) and Normalized
Cross Correlation (NCC); three handcrafted feature descrip-
tors SIFT (Lowe, 1999), HOG (Dalal & Triggs, 2005), and
LBP (Ojala et al., 2002); and two learning-based feature

Bold font indicates the best performance
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Fig.15 CMC curves of using different feature descriptors in our curve-
pattern matching method for Task II

descriptors HardNet (Chao et al., 2019) and SKAR (Markus
et al., 2018). For SIFT, we adopt the implementation in
OpenCYV, but only compute the feature at the patch center
with a neighborhood size of 300 to get the patch features.
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Table7 CMC accuracy (%) of
the proposed curve-pattern

matching method with different SSD
feature descriptors

Descriptor Rank-1 Rank-5 Rank-10 Rank-20
6.3 11.5 16.0 23.1
NCC 17.4 30.6 40.5 53.7
LBP (Ojala et al., 2002) 0.0 5.5 12.4 20.8
SIFT (Lowe, 1999) 12.8 21.0 26.1 35.6
HOG (Dalal & Triggs, 2005) 19.8 355 43.2 56.5
HardNet (Chao et al., 2019) 20.0 394 51.1 66.0
SKAR (Markus et al., 2018) 15.6 28.9 33.7 57.0
Ours 29.5 46.5 55.1 66.7

For HOG, we divide each patch into 8 x 8 cells and use
16 bins. For LBP, we adopt the implementation of scikit-
image (Van der Walt et al., 2014). The radius of circle is 150,
and the number of points is set to be 8 times of the radius. For
HardNet and SKAR, we use their released models trained on
HPatches (Balntas et al., 2017). The CMC curves of using
all the methods are shown in Fig. 15, and the detailed CMC
Rank-1/5/10/20 values are reported in Table 7.

From Fig. 15 and Table 7, we can see that our curve feature
descriptor significantly outperforms other alternative meth-
ods, especially on the CMC Rank-1 accuracy. Pixel-level
similarity metrics and handcrafted features are not robust
to noises and the curve deformations between sherd and
design images, so they have inferior performances on this
task. Learning-based descriptors have better performance,
but they are not specifically trained for curve-pattern match-
ing. With the carefully designed training strategy, our curve
feature descriptor is more sensitive to curve structure dif-
ference and more robust to minor translation and rotation
perturbation.

Changing the similarity metric in Step 2: In Task II and
Task III, we use two different metrics to measure the sim-
ilarity of curve patterns — cosine similarity for the former
and the metric network M for the latter. In this experiment,
we replace the cosine similarity in Task II with the metric
network M. After changing the metric, the performance of
our method drops slightly. The CMC Rank-1/5/10/20 values
decrease from 29.5%, 46.5%, 55.1% and 66.7% to 28.9%,
46.0%, 54.7% and 66.6%, respectively. It indicates that,
although simple, the cosine similarity is more suitable for
Task II.

We use different metrics in Task II and Task III as they
have different goals. In Task II, we match each sherd to dif-
ferent designs, and the similarity scores incurred by different
sherds can be non-comparable. In Task III, the similarity
scores incurred by different sherds must be comparable —
they are embedded into a single fully-connected graph for
clustering. Therefore, we simply use the cosine similarity
for ranking in Task II, but train a more comprehensive metric
network for thresholding in Task III.

@ Springer

5.4 Task lll Experiments on Sherd Identification

As introduced in Sect. 5.1, a dataset of 1,091 sherds from 129
clusters (designs) is used in the experiment of Task III. The
training set includes 510 sherds from 60 clusters. To train the
similarity metric network, we sample 25k positive patch pairs
of size 300 x 300 from sherds with overlapped regions in the
same cluster. We also sample 25k negative patch pairs by
performing template matching on sherds randomly selected
from different clusters to mine hard negative pairs. The sim-
ilarity metric network is trained by Adam optimizer for 20k
iterations with a base learning rate of 1073, a momentum of
0.9, and a batch size of 32. The threshold on cluster size ¢, is
set to 20.

In testing, 591 sherds from 69 clusters are used to evaluate
the performance of the proposed sherd clustering method and
existing image clustering methods. Three commonly used
metrics are employed to evaluate the clustering results: (1)
Purity: The fraction of samples that belong to the same clus-
ter; (2) Adjusted Rand Index (ARI): The fraction of sample
pairs that are correctly assigned in the same or different clus-
ters; and (3) Normalized Mutual Information (NMI): The
mutual information between the ground-truth clusters and the
predicted clusters normalized by the sum of their entropy. For
all three metrics, higher value indicates better performance.

5.4.1 Comparison with Existing Methods

We compare our method with eight representative existing
clustering methods, including six traditional methods K-
Means (Lloyd, 1982), K-Means++ (Arthur & Vassilvitskii,
2006), Spectral Clustering (Shi & Malik, 2000), Mean-
Shift (Comaniciu & Meer, 2002), Agglomerative Hierarchi-
cal Clustering (AHC) (Jain & Dubes, 1988), Affinity Prop-
agation (Frey Dueck, 2007); and two deep-learning-based
methods Approximate Rank-Order Clustering (ARO) (Otto
et al., 2017) and GCN Clustering (Wang et al., 2019). For
the comparison methods in Task III, we use the curve-pattern
descriptor trained in Task IT to extract a 128-dimension vector
for each sherd and then perform clustering of these feature
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Table 8 Purity, ARI and NMI

of all the methods in Task III Method Purity ARI M1
K-Means (Lloyd, 1982) 0.313 0.016 0.174
K-Means++ (Arthur & Vassilvitskii, 2006) 0.344 0.017 0.196
Spectral Clustering (Shi & Malik, 2000) 0.23 0.013 0.143
MeanShift (Comaniciu & Meer, 2002) 0.165 0.001 0.041
AHC (Jain & Dubes, 1988) 0.27 0.028 0.18
Affinity Propagation (Frey Dueck, 2007) 0.3 0.011 0.158
ARO (Otto et al., 2017) 0.26 0.021 0.108
GCN Clustering (Wang et al., 2019) 0.353 0.017 0.198
Ours 1 0.148 0.644

vectors. We tune their parameters and settings on the training
set to maximize the Normalized Mutual Information (NMI).
Except for ARO and GCN clustering, all other methods adopt
the implementations in scikit-learn.

The detailed experimental settings of comparison methods
are as follows: (1) For K-Means and K-Means++, we provide
the ground-truth number of clusters in the test images as a
favor for them, and set the maximum number of iterations to
be 300. (2) For spectral clustering, we adopt the discretized
label assignment strategy, and construct the affinity matrix
by computing a graph of nearest neighbors. The ground-truth
number of clusters is also provided as a favor. (3) For Mean-
Shift, the bandwidth used in the RBF kernel is estimated by
a built-in function with a quantile of 0.3, and the maximum
number of iterations is set to be 300. (4) For AHC, we con-
struct a connectivity matrix for initialization using kNN, and
set the linkage criterion to minimize the variance of the clus-
ters being merged. The linkage distance threshold is set to be
0.7. (5) For affinity propagation, the damping factor is set to
be 0.5 and the number of iterations is set to be 200. (6) For
ARO, we adopt the implementation in Zhan et al. (2018).
It directly takes the feature vectors as input, and does not
require fine-tuning. We set the number of considered nearest
neighbors to be 30, and the clustering distance threshold as
2. (7) For GCN clustering, we use our own feature vectors
and train the clustering model from scratch using the default
hyperparameters, except that the numbers of 1-hop and 2-hop
nodes are changed to 20 and 5, respectively.

From Table 8, we can see that our proposed clustering
method achieves the best performance on all three metrics.
All the comparison methods produce poor performance on
this task, even if the ground-truth cluster number is given to
them. This demonstrates both the challenge of this task and
the effectiveness of the proposed method. We hypothesize
that the main cause of their failure is that they only leverage
the global image features of the sherds (curve pattern images)
in clustering, but cannot handle the special partial-to-partial
matching in this particular problem. We also notice that our
method achieves 100% purity while producing many single-

ton clusters with only one sherd. This is because we choose
high precision in the trade-off between precision and recall.
Archaeologists prefer to work on small and pure clusters,
rather than large clusters with sherds from many different
designs. In practice, we return only clusters with more than
2 sherds for design reconstruction.

We further examine our clustering results by mapping
each ground-truth cluster to a predicted cluster using the
Hungarian algorithm. After removing predicted clusters with
only one sherd, we find 61 predicted clusters correspond to
41 unique designs. By comparing each ground-truth cluster
with the corresponding predicted cluster, we can count the
number of found sherds (true positive), missed sherds (false
negative), and wrong sherds (false positive) for each design.
Averaged over all 41 designs, our method can find 41.3%
sherds, miss 58.7% sherds, and introduce 0 wrong sherd. In
general, our method works better on sherds with adequate
and clear curve patterns. Although many sherds are missed,
we return the most informative sherds to archaeologists to
reconstruct the full design. In Fig. 16, we display the sample
clustering results of three designs.

5.4.2 Ablation Study

Using different similarity metrics: In the first step of our
method, we train a curve similarity metric network M to
obtain edge weights of the sherd graph. To justify its effec-
tiveness, we replace it by directly computing the cosine
similarity of feature vectors extracted by the curve feature
descriptor. With this modification, we find the edge weights
of both positive and negative sherd pair mostly ranges from
0.8 to 1, which is too close for the adaptive thresholding in
Step 2. Accordingly, the purity, ARI and NMI of our method
decrease to 0.535, 0.125, and 0.499, respectively.

We also try to directly use the angle difference to measure
curve-pattern similarities by applying the arccos function to
the cosine similarity — arccos similarity varies in a larger
range than cosine similarity. With this metric, the result-
ing purity, ARI and NMI turn to 0.543, 0.128, and 0.502,
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Fig. 16 Examples of the clustering result of our method. For each
design, we show two found sherds and one missed sherd. (BBFCL025,
BBP18-1, and BBFCLO083 are names assigned by archaeologists to
identify three unique designs drawn by Bettye Broyles)

respectively. We can see that, although it performs slightly
better than the cosine similarity, it is still not comparable with
the metric network, of which the resulting purity, ARI and
NMI are 1, 0.148 and 0,644, respectively. Therefore, sim-
ply enlarging the varying range of similarity cannot solve
this problem, and it is beneficial to use the similarity metric
network to improve the discriminability.

Changing the graph partitioning strategy: In Step 2, we
partition the fully-connected sherd graph using an adaptive
thresholding strategy. A simple alternative approach is to use
a pre-set threshold to cut low-weight edges to partition the
graph. In this experiment, we compare the performance of
using two different thresholding strategies in our method.
Specifically, we evaluate the performance by using a naive
threshold, which varies from 0.1 to 0.9 with a step length
of 0.1 and the resulting curves of purity, ARI and NMI are
shown in Fig. 17. We can see that, when the threshold is
0.5, the proposed naive thresholding leads to the best perfor-
mance, resulting in the purity, ARI and NMI of 1, 0.156, and
0.643, respectively, which are close to the performance of
adaptive thresholding. But the finding of this optimal thresh-
old requires careful tuning on the test set, while the adaptive
thresholding does not require it. Therefore we choose to use
the adaptive thresholding strategy in our work.

Removing Step 3: As discussed above, after obtaining the
initial clustering result, an iterative strategy was adopted in
the proposed method to refine it by stitching curve patterns in
the same cluster. To justify its usefulness, we skip it and report

@ Springer

purity, ARI and NMI are 1.0, 0.12, and 0.631, respectively.
Comparing the results before and after the iterative refine-
ment, we find that 11 isolated sherds in the initial result are
assigned to their correct clusters in the second iteration, with-
out introducing additional false positives.

5.5 Usefulness of Snowvision

As described earlier, our problem and dataset come from
the practice of archaeology and contain many complexi-
ties and unique challenges, e.g., partial overlapping curves,
composite patterns, and incomplete/noisy data. We design
Snowvision to assist the archaeologists to process the data
and explore/discover the sherd patterns more efficiently,
instead of replacing the archaeologists with full automa-
tion, which is unachievable. From the above experiments, we
can also see that, while our proposed algorithms outperform
many existing state-of-the-art algorithms, their performances
in three tasks are still far from the level for achieving full
automation, e.g., fully automatic matching usually requires
very high CMC Rank-1 accuracy. However, even with the
current performance, our system is actually very useful to
archaeologists. In this section, we briefly discuss the useful-
ness of our system by comparing the time an archaeologist
might spend performing similar tasks to the time that those
tasks take with the current Snowvision system. We run our
system on an HP Proliant Server with dual Intel(R) Xeon(R)
Platinum 8260 CPU, 192GB memory and an Nvidia Tesla
P100 GPU card.

In Task I, we segment the depth images of sherds for
stamped curve patterns. In this paper, Task I is a data pre-
processing step for Tasks II and III on sherd curve matching.
Therefore, time on Task I is simply built into the estimates
provided below for Tasks IT and III. The training processes of
skeleton extraction network and dense prediction ConvNet
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in our method take about 1.5 and 3h, respectively. Once
the models are trained, our segmentation method takes on
average only 3.7 s to process one image in inference. On the
smallest sherd of size 218 x 272, the processing time is 1.3,
while on the largest sherd of size 794 x 903, the processing
time is 15.6s.

In Task II of sherd-to-design matching, the archaeologist
has a sherd and wishes to see if the sherd curves match to a
known design. If the archaeologist is very familiar with the
design, e.g., it is a common design at a site, then manually
matching a sherd to a design may go quickly. More often,
however, the design is not very common, or the archaeologist
may not have a lot of experience comparing sherds to designs.
In this case, manual comparison of one sherd to each design
may take as much as half a minute per design. With 133
designs to examine, manually comparing just one sherd to
each design could take as many as 33.3min to determine
if a match is present, assuming we find its true design at the
67th design on average. With Snowvision, the archaeologists
is presented with the top 20 matching results, with 66.7%
accuracy, and must decide whether a match is present in the
list. Such a streamlined sherd-to-design assessment will only
take approximately 1min by visualizing and examining the
patch-based matching results on average, to complete, which
is far more efficient than the fully manual approach. In Task
I1, it takes us about 2h to train the curve feature descriptor
on the augmented training dataset. In inference, each sherd-
to-design comparison with our trained models takes 0.823 s,
averaged over 1000 testing sherds and 133 designs.

If the design on the sherd is not in the database, and
the sherd has high quality curve data, then the curves can
form the basis for novel design reconstruction, as in Task III
of sherd-to-sherd matching. Traditionally the archaeologist
will attempt to identify or group sherds by individual paddle
design even though the paddle design is not known at the time
of grouping. For comparison with Snowvision, we assume to
identify and group 581 testing sherds of Task III, or 336,980
unique sherd-to-sherd comparisons. If half a minute is spent
on each comparison, it would take an archaeologist as much
as 2808h to process 581 sherds with unknown designs. In
Task III, we spend 1 h to train the similarity metric network.
In inference, each sherd-to-sherd comparison with our model
takes 0.5365s averaged over these 581 sherds. Clustering 581
sherds takes 50.2 h in total. Certainly, our clustering results is
not perfect, and not all sherds from a new design are present
in one cluster. However, such non-perfect clustering is still
very useful for archaeologists—archaeologists only need to
compare sherds in each cluster and a subset of sherds from
a new design in a cluster may be sufficient for an archaeolo-
gist to infer/recreate the new design. A singleton cluster may
indicate a standalone sherd, which is also useful information
to archaeologists.

The performance of all three tasks in Snowvision likely
can be improved with further research. Given the challenges
of the problem and dataset, however, we believe Snowvision
is unlikely to achieve full automation. Our final goal is to
make human effort to find matches more efficient.

6 Conclusion

In this paper, we introduced Snowvision, a multidisci-
plinary project to digitize, segment, identify, and disseminate
stamped curve patterns on unearthed pottery sherds. A
research pipeline was developed for different users to study
and share pottery sherds. At the core of Snowvision are
three important computer-vision tasks of curve-pattern seg-
mentation, design identification and sherd identification.
Considering the characteristics of Snowvision data and the
special needs of archaeologists, we developed a series of
new algorithms by leveraging both the recent deep neu-
ral networks and traditional computer-vision techniques to
tackle these three tasks. We evaluated the performance of
the developed algorithms on a collection of pottery sherds
with known paddle designs. Extensive experimental results,
including comparison results with many existing methods
and carefully-designed ablation studies, verified the effec-
tiveness of the proposed algorithms.

Our project illustrates how important questions in one dis-
cipline can drive technical developments in another, and vice
versa. Among the questions of import to archaeologists are
how people organized themselves into groups (e.g., house-
holds, communities of households, communities of learning
and practice), how those groups moved around on the land-
scape (e.g., through aggregation, mobility, and migration),
and how and why social organization and other aspects of
individual and group dynamics changed over time. Through
designs impressed on to pottery, Swift Creek material culture
offers us the chance to study the movement of people over the
lifespan of a paddle. Tracking the movement of paddles and
by extension people has significant potential to enhance our
understanding of hunter-gatherer-forager micro- and macro-
scale mobility in remote times. Snowvision facilitates this
research in new and exciting ways, and we are eager to con-
tinue to explore the possibilities that computer vision affords
the study of cultural heritage.
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