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Abstract
The Josefina Ramos de Coxmuseum in Lima, Peru, decided to digitize hundreds of archaeological pieces from pre-Colombian
cultures to support further research and create virtual educational environments. However, the 3D scanning procedure led to
imperfections in the objects’ surface, mainly due to the difficulty of manipulating the fragile objects during the acquisition.
The problem was that many of the scanned artifacts do not contain the base because the contact surface during acquisition was
not visible to the scanner. This paper proposes a method to repair the digital objects’ surface using a data-driven approach.
We design and train a point cloud neural network that learns to synthesize the missing geometry in an end-to-end manner.
Our model consists of a novel architecture and training protocol that addresses the problem of point cloud completion. We
propose an end-to-end neural network architecture that focuses on calculating the missing geometry and merging the known
input and the predicted point cloud. Our method is composed of two neural networks: the missing part prediction network and
the merging-refinement network. The first module focuses on extracting information from the incomplete input to infer the
missing geometry. The second module merges both point clouds and improves the distribution of the points. Our approach
is effective in repairing pottery objects with large imperfections during the scanning. Besides, our experiments on ShapeNet
and Completion3D datasets show that our method is effective in a general setting for shape completion.

Keywords Cultural heritage restoration · Shape completion · Point cloud analysis · Shape analysis

1 Introduction

Three-dimensional digitization of archaeological objects is
gaining more interest in recent times. It enables the use
of digital cultural heritage (CH) objects in archaeological
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research and digital archival. The use of a digital counterpart
for CH objects prevents fragile pieces’ over-manipulation,
which could lead to critical deterioration over time. However,
the 3D acquisition process is not exempt from imperfections
that need to be addressed in a post-processing step through
specialized algorithms. Sometimes, objects are challenging
to manipulate; hence the scanner cannot get some portions
of the surface, which results in a partial representation of
the real shape. The challenge during acquisition can also be
attributed to measurement time limitations that makes diffi-
cult to scan complete objects. In this context, the problem is
the effective restoration of the 3Dobject’s surface that closely
reassembles the surface of the real object.

The restoration of cultural heritage objects can be cast as a
shape completion problem. In shape analysis, the shape com-
pletion problem consists of predicting the geometric shape
of an object from a partial observation. The problem is chal-
lenging because it can be seen as an inverse problem where
the solution space can be quite large. Typically, solutions
to this problem need to make assumptions (in the form of
geometric prior) to limit the search for feasible outputs. Nev-
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ertheless, meaningful progress in shape completion comes
from developing established techniques for surface analysis
and 3D shape geometry processing.

Two of themain ideas that have led to significant advances
are structure analysis and similarity-based approaches for
shape completion. To use these assumptions, we need to
assume that the underlying structure of a 3D object can be
interpreted as an invariant characteristic of the object or a
set of objects. Hence, there are two strategies commonly
adopted in previous works: the analysis of self-similarity and
the data-driven approach. The former states that an automatic
method might get enough information for the completion
process by analyzing the object’s structure. For example,
if one can detect an object’s symmetries, one can use the
symmetries to reproduce the missing information. The lat-
ter states that a method can recover the structure of a partial
observation from a set of objects with a similar structure. If
one can retrieve objects with similar geometry, one can use
the external objects to infer the partial observation’s missing
geometry.

This paper adopts the data-driven approach and proposes
a neural network that predicts the missing geometry of cul-
tural heritage objects with scanning defects. We choose the
data-driven approach due to several reasons. Although there
are significant contributions in the use of self-similarity for
shape completion, its applicability is limited to cases where
the symmetric structure is not affected by partiality. Besides,
the recent success of deep learning architectures in 3D shape
analysis tasks such as classification, segmentation, and rep-
resentation learning opens up a broad range of possibilities
to explore the identification of structural geometric patterns
in a large collection of objects. Therefore, we can use the
learned patterns to repair scanning defects in cultural her-
itage objects.

Our proposal is motivated by a real-world application: the
geometric restoration of archaeological objects with scan-
ning defects. The Josefina Ramos de Cox museum (Lima,
Peru) started a program to digitize cultural heritage artifacts
to maintain a digital record of the pieces for exhibition pur-
poses. The scanning used a desktop structured-light scanner,
where the objects are placed on a turntable to take the views.
Nevertheless, the scanning session gave limited results to the
museum due to the impossibility of capturing the objects’
base, mainly because this surface was in contact with the
turntable. The acquisition process mistakes are also related
to the fear of over-manipulation of the fragile objects in the
scanning setup. Consequently, the scanned objects have a
large portion of surface missing at their base, and our goal is
to predict the missing geometry with high precision.

We use our completion neural network to restore the
missing geometry of archaeological objects. We carefully
design and implement a training protocol for this applica-
tion. This protocol aims to take advantage of collections of

objects with a similar structure to that in cultural heritage
artifacts. Previous restoration methods assume that human-
made objects exhibit some structure and regularity (Sipiran,
2017; Pratikakis et al., 2018). If an algorithm can detect
symmetries in the object, we can apply the symmetric trans-
formation to synthesize what is missing. However, the main
drawback of this approach is the assumption of self-similarity
in the input object. Our neural network directly predicts the
missing geometry, which enables the restoration of the input
object. Besides, neural network training allows us to intro-
duce invariance to different geometries, which is beneficial
for a robust predictor.

Our method uses point clouds as a 3D representation.
Although there exist deep learning methods for several 3D
data such as multi-view images (Su et al., 2015), volumet-
ric (Maturana and Scherer, 2015), meshes (Hanocka et al.,
2019), or implicit representations (Gropp et al., 2020); point
cloud is a compact and effective representation to tackle the
problem of shape completion. Pioneering approaches such
as PointNet (Charles et al., 2017) and PointNet++ (Qi et al.,
2017) have opened the possibility of learning good high-
level representations from point clouds, which are now used
in almost every problem related to 3D (Fan et al., 2017; Liu
et al., 2019; Qi et al., 2020). Our work proposes using a
PointNet-based encoder-decoder architecture that learns to
predict the missing point cloud from the partial observation.
Subsequently, a second neural network integrates themissing
point cloud and the input point cloud in a single reconstruc-
tion that provides a smooth geometric transition between the
original object and the prediction. This particular design is
devoted to keep the original geometry (the archaeological
object) untouched and to predict a good complement (in the
geometric sense) for the restoration.

Nevertheless, although our design aims to restore CH
objects, our method is also general enough to tackle arby-
trary shape completion. We evaluate our method’s capability
and robustness for shape completion using the ShapeNet
dataset. This dataset contains a large variability of classes
and objects, and it is one of the standard benchmark used
to evaluate shape completion algorithms. Our comparison
against state-of-the-art methods shows that our approach has
a good generalization and robustness.

The contributions of our paper can be summarized as fol-
lows:

– We propose a method that predicts the missing part of the
analyzed point cloud with a learning process controlled
by a specific loss function.

– We propose a refinement strategy to guarantee a good
distribution of the final point cloud.

– We design a simple and effective overall architecture for
point cloud completion.
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– We perform a set of experiments to show our proposal’s
effectiveness and robustness using a standard dataset
(ShapeNet).

– We perform a set of experiments to show the application
of completion to restore cultural heritage objects.

– We alsomake publicly available the complete implemen-
tation and data used in all our experiments.1

Our paper is organized as follows. Section 2 shows the
relatedwork. Section 3 describes our architecture and the loss
function. Section 5 presents our experiments on the Comple-
tion3D benchmark to evaluate the ability of our method to
complete partial scans. Section 4 shows the experiments con-
ducted on the ShapeNet dataset to evaluate the ability of our
method to complete point clouds with missing parts. Sec-
tion 6 performs an ablation study to analyze the effect of the
key components of our proposal. Section 7 shows the results
of the application of the completion network in archaeolog-
ical objects. Finally, Sect. 8 concludes our paper.

2 RelatedWork

Wedivide thediscussionof the relatedwork to considermeth-
ods that specifically address the restoration of CHobjects and
methods that address the problem of shape completion in a
more general sense.

2.1 Restoration of CH Objects

Most algorithms for CH restoration are devoted to repair-
ing fractured or deteriorated objects (Papaioannou et al.,
2017). Several proposals assume the existence of a rotational
symmetry that can help us to synthesize missing geometry.
For example, Son et al. (2013) used the profile curve and
the symmetry axis of a shape to reassemble 3D potteries.
Similarly, Sipiran (2017) presented a method to detect the
symmetry axis of fractured CH objects by analyzing the heat
diffusion process over the surface of a shape. Also, Sipiran
(2018) described a method to detect the symmetric axis of
rotationally symmetric CH objects through the analysis of
high-curvature features.

Another proposal assumes the presence of reflective sym-
metries. For instance, Sipiran et al. (2014) described a
method to identify symmetric correspondences across reflec-
tive planes in a 3D shape. The symmetric transformation
derived from these correspondences helped to restore the
missing geometry in CH objects. Likewise, Li et al. (2014)
described a method to restore ancient Chinese architecture
using global reflective symmetries. Also, Mavridis et al.

1 https://github.com/ivansipiran/Data-driven-cultural-heritage.

(2015) formulated the completion problem as an optimiza-
tion solved by a registrationmethodwith sparsity constraints.

To the best of our knowledge, the first method in apply-
ing a data-driven approach for restoration is the predictive
scanning technique proposed by Pratikakis et al. The predic-
tive scanning is a computational tool that combines similarity
search and registration techniques to predict the overall shape
of an input partial scan. Moreover, the first method in explor-
ing a deep learning approach is the generative approach
proposed by Hermoza and Sipiran (2018). This method
trained a conditional GAN network that learns to map par-
tial observations to complete reconstructions. However, this
method has two limitations. First, the voxelized represen-
tation prevents the representation of details in shape. And
second, there is no guarantee that the reconstructed output
preserves the geometry of the partial observation. In contrast,
the method proposed in this paper overcomes both limita-
tions with a point cloud neural architecture designed to keep
the geometry of the original input while predicting the miss-
ing information with high precision. Besides, the data-driven
nature of our method ensures that we can learn the structure
information from a collection of shapes; hence, we do not
need to impose any assumption about symmetries or any
other prior knowledge.

2.2 Shape Completion

Several techniques have been proposed to address the prob-
lem of shape completion. Pauly et al. (2005) described a
method to restore a 3D scan using a similar object from an
external dataset. The reference object is registered to fit the
scan’s geometry and repair its surface. Also, Huang et al.
(2012) proposed a registration-based method that extrapo-
lates the missing geometry using feature-conforming fields.
The use of surface local descriptor also enabled the search
of self-similarities in 3D objects for repair (Harary et al.,
2014b, a). More specifically, the study of symmetries to
restore missing geometry has been a crucial research path
with outstanding results (Thrun and Wegbreit, 2005; Xu et
al., 2009; Zheng et al., 2010; Jiang et al., 2013).

Due to the rise of deep learning techniques and the avail-
ability of large-scale 3D benchmarks, many efforts devised
shape completion algorithms in a data-driven manner. The
first proposals took advantage of the progress of convolu-
tional neural networks (CNN) in the computer vision field to
manage volumetric representations. Dai et al. (2017) pro-
posed a 3D encoder predictor network that completes an
input scan. Similarly, Han et al. (2017) used an LSTM
network to provide a high-resolution volumetric comple-
tion. The same progress in CNN networks also enabled the
image-based representation of 3D shapes. Hu et al. (2019)
developed a generative adversarial network(GAN) that com-
pletes rendered depth-maps from incomplete point clouds.
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The reprojection of the completed depth-maps allows us to
reconstruct the original 3D incomplete shape. Also, Hu et al.
(2020) improved how to evaluate the loss of the depth-maps
generated by a GAN to introduce geometric consistency.

The success of the point cloud representation for a 3D
shape is mainly due to the advent of neural networks that
can directly process unordered sets. The core idea for all
the current progress in point cloud analysis is the Point-
Net architecture (Charles et al., 2017) and its hierarchical
variant PointNet++ (Qi et al., 2017). A significant result of
these architectures is the possibility of computing a high-
level feature vector that conveys the geometric information
of a point cloud in a condensed manner. Also, Achlioptas et
al. (2018) motivated the use of generative models for point
clouds. They showed the representational power of encoder-
decoder architectures for this kind of data. Yuan et al. (2018)
developed a completion algorithm in two stages to cope with
coarse and fine point cloud decoding. Similarly, Tchapmi et
al. (2019) proposed a tree-based decoder to give the com-
pletion task the multi-resolution capacity. Also, Liu et al.
(2020) presented a two-stage completion algorithm by mix-
ing a patch-wise folding decoder and a density sampling
merging to deal with a good distribution of the object sur-
face. Likewise, Xie et al. (2020) developed a neural network
architecture that transform a point cloud into an intermediate
3D grid representation. As a result, the reasoning about the
completion task occurs in this intermediate representation.

We have witnessed the rise of more elaborated approaches
to tackle point cloud completion. Most of these approaches
use modern strategies in deep learning, trying to surpass
the problem of generating visually appealing shapes. For
instance, Wang et al. (2020) proposed an algorithm to gen-
erate a coarse point cloud subsequently refined through a
lifting module that upsamples the generated point cloud.
Likewise, Huang et al. (2020) preferred to predict the miss-
ing region with a multi-resolution point pyramid decoder,
inspired by the feature pyramid network in computer vision
tasks. On the other hand, the attention mechanism’s idea to
guide the data generation is an important new idea to point
cloud completion. For instance, Sun et al. (2020) developed
a conditional generative model that includes an attention
mechanism toweight point features according to their impor-
tance in reconstructing the point cloud. Similarly, Wen et
al. (2020) devised an encoder-decoder architecture with an
attention mechanism and hierarchical folding-based decoder
to complete point clouds. More recently, Pan et al. (2021)
proposed a two-stage completion method that uses proba-
bilistic modeling to generate a coarse shape and refines the
solution with a relational structure module. Also, Wen et al.
(2021a) described an architecture that combines a partial-
to-complete and complete-to-partial mappings to ensure a
proper transfer of features between embeddings spaces of
complete and partial shapes. Wen et al. (2021b) presented a

model that learns displacements of points in the partial view
to cover the structure of the complete shape. It is also pos-
sible to find very recent proposals which take advantage of
transformers architectures for point cloud completion (Yu et
al., 2021; Xiang et al., 2021).

3 Method

The typical strategy to address the problem of point cloud
completion is the encoder–decoder model. In this model,
the encoder transforms the incomplete point cloud into an
intermediate representation that conveys the input’s main
geometric characteristics. Subsequently, the decoder con-
verts the intermediate representation into the completed point
cloud. Typically, this approach requires a refinement step to
ensure some output properties, such as level of resolution
or point distribution. Nevertheless, previous methods try to
reconstruct the complete point cloud from the input, which
may lead to undesired results such as the loss of the original
point cloud distribution.

In CH restoration, an ideal completion algorithm should
hold one crucial property: to keep the original incomplete
data unchanged as much as possible. This property is funda-
mental in our scenario, where the data comes from sensing
devices, and we could be interested in keeping the main
characteristics of the incoming geometry. Precisely, our pro-
posal addresses the point cloud completion problem taking
into account the property above. We propose an end-to-end
neural network that predicts the missing part from a par-
tial observation of a given object. By predicting only the
missing geometry, the input point cloud remains unchanged,
and therefore we can exploit its structure to produce a final
reconstruction. Our proposal still requires a refinement step
to improve the resulting point cloud’s overall distribution and
close the gaps between themissing part and the original input.
Nevertheless, our results show that preserving the original
incomplete point cloud leads to superior results compared to
previous approaches.

Let P be the point cloud representing a 3D shape. We
assume that P is split into the incomplete point cloud I and
the missing part M such that P = I ∪ M. Figure 1 shows
our proposed workflow to reconstruct P from the observed
point cloud I. Our method consists of three modules that
operate in an end-to-end manner to complete a given input.

The first module (missing part prediction) is a learned
parametric function that computes the missing part ̂M. Dur-
ing training, our method controls the learning process by
applying a loss function to measure the similarity between
the predicted missing part ̂M and the real missing part M.
Recently, the Point Fractal Network(PF-Net) (Huang et al.,
2020) also proposed to generate the missing part from the
incomplete input. The differences between our method and
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Fig. 1 Workflow of our method. It consists of three main stages. First,
the Missing Part Prediction Network (Sect. 3.1) takes an incomplete
point cloud I and outputs the corresponding missing part ̂M. Second,
the Merging and Sampling strategy concatenate and sample the incom-

plete input cloud and the predicted missing part (Sect. 3.2). Third, the
Point Refiner Network improves the distribution of the point cloud and
closes the gaps generated by the merging (Sect. 3.3)

PF-Net are two-fold: (a) our architecture is simple, and (b)
our explicit loss function for the missing part helps guide the
end-to-end learning. Our experiments confirm that the design
introduced by our method outperforms the performance of
PF-Net.

The second module (merging and sampling) performs the
union of the incomplete input I and the predicted missing
part ̂M. The simple concatenation of these two point sets
could lead to problems in the point distribution of the object
and the transition between both point sets. Therefore, this
module is responsible for improving the sampling of the
point set I ∪ ̂M using the recently proposed Minimum Den-
sity Sampling technique (Liu et al., 2020). The result of this
module is a sampled point set T .

The third module (point refiner) is a learned parametric
function that refines the sampled point set T . This function
computes a displacement fieldΔT that shifts the points of T
to the desired position to improve the point distribution. The
final output of our proposal is a point cloud T +ΔT . During
training, the learning process of this module is controlled
by a loss function that measures the similarity between the
predicted point cloud T + ΔT and the ground truth P .

Section 3.1 introduces the architecture of our neural net-
work for themissing part prediction. Section 3.2 describes the
merging and samplingmethod. Section3.3 presents the archi-
tecture of our refinement network. Finally, Sect. 3.4 defines
the joint loss function for training our model.

3.1 Missing Part Prediction Network (MPN)

The main goal of this network is to predict the missing
part from an incomplete point cloud. This task extracts fea-
tures from the incomplete input with an encoder network.

For efficiency, we adopt a PointNet (Charles et al., 2017)
based encoder; nevertheless, any feature extractor network
could be used. We then use a decoder network to obtain
the missing part from the feature vector. For the decoder,
we use a Morphing-based Decoder as proposed by Liu et
al. (2020). We also test a Multi-layer Perceptron decoder to
see the decoding’s impact on the missing part prediction.
In our experiments, the model that uses the morphing-based
decoder is namedMBD, and themodelwith theMLPdecoder
is named MLPD.

3.1.1 Missing Part Network Encoder

Weadopt a PointNet based encoder that obtains a feature vec-
tor FV from a N × 3 incomplete point cloud. The encoder
architecture consists of four block layers. The first (L1) and
second (L2) blocks consist of three layers: 1D-convolution,
batch-normalization, and ReLU activation function. In con-
trast, the third block (L3) has only a 1D-convolution layer
and a batch-normalization layer. The number of kernels for
1D convolutions in L1, L2, and L3 is 64, 128, and 1024. The
kernels have a size of one, a stride of one, and a padding
of zero. Finally, the fourth layer is a fully-connected layer
with 1024 neurons. The result is a global feature vector of
dimension 1024.

3.1.2 Missing Part Network Decoder

The decoder must transform the feature vector FV into the
desired missing part. We denote the output missing part as a
point cloud of sizeM×3. To compare the overall architecture
performance, we propose to use two different networks for
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Fig. 2 Point Refiner Network. It takes a labeled point cloud (the purple
column represents the label) and passes it through a PointNet Residual
Network (L1 expands the point cloud to 64, L2 to 128, and L3 to 1024)
to generate a global feature for the point cloud. Thenwe replicate it 1024

times and concatenate it with the result of L1. Layers L5, L6, L7, and
L8 reduce the concatenation and output a three-channel displacement
field

the decoder: AMulti-Layer Perceptron (MLP) and a Morph-
ing Based Decoder (MBD) (Liu et al., 2020).

The MLP decoder consists of three building blocks. Each
block Li consists of fully connected layers followed by a
ReLU activation except for the third block. The fully con-
nected layers have a number of neurons of 1024, 1024, M ×
3). For the Morphing-based Decoder, we use the architec-
ture described in Liu et al. (2020). This decoder consists of
K (16 in experiments) morphing networks. Each network
maps a 2D surface, sampled from the unit square [0, 1]2, to
a 3D surface. In each forward pass, we sample (M/k) points
in the unit square. The feature vector FV is then concate-
nated to each point coordinate before passing through the K
morphing networks. Each sampled 2D point is thus mapped
back to a 3D surface. The resulting is a point set of M points
describing the predicted shape.

Each morphing network has four blocks. The first three
blocks consist of a convolution, followed by batch normal-
ization and a ReLU activation function. The last block has a
convolution layer and a tanh activation function.

3.2 Merging and Sampling

The input (incomplete) point cloud I is concatenated to the
predictedmissing part ̂M. The concatenation result is a point
cloud of size 3

2 ×N×3.We realize that the concatenation has
two issues. First, the density of the missing part ̂M is higher
than the density of the input point clouds I. Second, the size
of our concatenated point cloud does not match the size of
the ground truth. We use a sampling method to adjust point
distribution and the size of the merged point cloud to address
these problems. We use the iterative farthest point sampling
(IFPS), which has been effectively applied in PointNet++ (Qi
et al., 2017).

3.3 Point Refiner Network (PRN)

The concatenation of the incomplete input I and the pre-
dicted missing part ̂M may produce a visible crack in the

resulting point cloud. Our refiner network’s goal is to solve
this issue by improving the transition between the merged
point clouds. Besides, the refiner network also can enhance
the final distribution of the points in the object. The Point
Refiner Network (PRN) architecture is in Fig. 2. The input
to the PRN module is the sampled point cloud of size N × 3.
Nevertheless, we augment the fourth channel to the input
point cloud to assign a label for each point. We give a zero
label to points belonging to the original incomplete point
cloud I, and one label to points belonging to the predicted
missing part ̂M. This augmented channel is used as extra
information by the refiner network to decide which points
require changes to improve the reconstruction.

The Point Refiner Network has eight layers. Layers L1,
L2, and L3 consist of 1D-convolutions, followed by a batch
normalization layer. A ReLU activation function also fol-
lows L1 and L2. The number of kernels of the first three
convolutional layers is 64, 128, and 1024. Layer L4 applies
a max-pooling operator to the output of L3 and replicates the
output N times. The resulting tensor of size (1024 × N ) is
then concatenated to the output of L1, resulting in a tensor
of size (1088 × N ), which is then passed through the next
1D-convolutions layers: L5, L6, L7, and L8. These layers
are followed by batch normalization and a ReLU activation
function, except the last layer L8, which has a Tanh activation
function. The number of kernels of the convolutional layers
L5, L6, L7, and L8, are 512, 256, 128, and 3.

The Point Refiner Network intends to predict a displace-
ment fieldΔT . The whole network’s final output is the point
cloud T + ΔT . Figure 3 shows the effect of the refinement
in our proposal.

3.4 Loss Function

One crucial step for the reconstruction is to define a proper
reconstruction loss. In point cloud analysis, there exist pre-
dominantly two loss functions: Earth Mover’s Distance
(EMD) and Chamfer Distance (CD). Given two point clouds
S1 and S2, CD measures the mean distance between each
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Fig. 3 Our solution takes an incomplete point cloud as input (left). A
MissingPart PredictionNetwork infers themissing part and concatenate
it with the input (center). Finally, a Point Refiner Network improves the
distribution of points and the geometric transition between the merged
sets (right)

point in S1 to its spatial nearest neighbor in S2 plus the mean
distance between each point in S2 to its spatial nearest neigh-
bor in S1.

In contrast, EMD is a metric between two distributions
based on the minimal cost of transforming one distribution
into another. Given two point clouds of the same size, the
loss EMD is defined as follows:

LEMD(S1, S2) = min
φ:S1→S2

1

|S1|
∑

x∈S1
‖x − φ(x)‖2 (1)

where φ is a bijection. Many works use the Chamfer distance
because it is less computationally intensive than EMD. Nev-
ertheless, EMD provides better reconstruction results due to
its one-to-one point mapping. In this work, we used the EMD
implementation presented in Liu et al. (2020), which has a
O(n) memory footprint.

In the proposed architecture, we have two losses calcu-
lated for both the MPN and the PRN networks. The first
loss estimates the EMD between the predicted missing point
cloud ̂M and the missing ground truth point cloud M. The
second loss compares the refined point cloud ̂P with the com-
plete ground truth point cloud P . Our joint loss is calculated
as

L = LEMD( ̂M, M) + LEMD(̂P, P). (2)

4 Experiments on ShapeNet

4.1 Data Generation and Training

We evaluate our proposal using the same protocol defined
inHuang et al. (2020). The dataset comprises 13 classes from
the ShapeNet-Part dataset (Yi et al., 2016): airplane, bag,

cap, car, chair, guitar, lamp, laptop, motorbike, mug, pistol,
skateboard, and table. The dataset contains 14,473 models
(11,705 for training and 2768 for testing). Before generating
the point clouds from the models, we normalize the input
shapes’ position and scale. We translate the objects so that
the object’s centroid is in origin. To normalize the scale, we
inscribe the input object inside a sphere of radius one. We
finally sample 8192 points from the surface for each CAD
model.

During training, for each epoch, we generate ten partial
point clouds for eachmodel. To produce a partial point cloud,
we randomly choose amodel’s point and a radius of r = 0.35.
Subsequently, we split the complete point cloud into two sets:
the points outside the sphere (partial point cloud) and the
points within the sphere (missing part ground-truth). Finally,
the complete point cloud is sampled to 2048points, the partial
point cloud is sampled to 2048 points, and the missing part
is sampled to 1024 points.

The implementation of our models is in PyTorch. We use
the ADAM optimizer with a learning rate of 0.001. We use
the O(n) variant of the EarthMover Distance as loss function
as proposed in Liu et al. (2020). The models were trained in
an NVIDIA GeForce RTX 2080 GPU for 200 epochs with a
batch size of 64.

4.2 Comparison with Previous Methods

We compare our methods with state-of-the-art techniques
and present quantitative and qualitative comparisons on the
ShapeNet-Part test data. In this comparison, MBD denotes
the our proposal that uses a morphing-based decoder for the
missing part prediction, andMLPD denotes our proposal that
uses an MLP as the decoder. We trained all the methods
with the same data partition and in the same setup for a fair
comparison. The methods used in our comparison are:

– Fully Convolutional Autoencoder (FCAE): We trained
an FCAE with the same encoder used in our methods
and a decoder resembling our vanilla decoder. The main
difference with our method is that the FCAE predicts
the complete point cloud (2048 points) rather than the
missing part. EMD is used as a loss function.

– Morphing and Sampling Network (MSN) (Liu et al.,
2020): We trained the MSN method to predict a coarse
complete point cloud (2048 points). This coarse point
cloud is further enhanced using a residual network. EMD
is used as a loss function.

– Point Fractal Network (PF-Net) (Huang et al., 2020):
PF-Net predicts the missing part rather than the overall
shape of the point cloud. To do so, it uses a multi-stage
completion loss and adversarial loss, whose input is the
incomplete point cloud (2048 points), and outputs are the
missing point cloud (1024 points). To compare against
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Table 1 Quantitative
comparison on ShapeNet dataset
using average Chamfer distance

Categories MSN PF-Net FCAE VRCNet MBD MLPD

Airplane 6.613 7.601 14.027 3.697 4.675 5.105

Bag 23.336 28.534 63.820 9.044 16.760 19.980

Cap 22.666 32.703 90.008 7.521 11.096 19.543

Car 15.435 12.849 35.532 6.055 9.466 11.199

Chair 10.368 10.577 30.141 4.247 6.629 8.100

Guitar 8.592 6.263 6.461 2.492 3.813 4.203

Lamp 29.692 34.701 60.401 16.246 23.257 25.064

Laptop 7.453 7.141 18.875 2.970 3.790 4.262

Motorbike 13.980 11.502 25.686 6.931 10.843 10.359

Mug 14.539 14.312 47.342 6.395 7.430 10.518

Pistol 11.441 12.557 21.013 5.514 8.676 9.350

Skateboard 7.207 8.350 17.976 5.104 4.545 4.687

Table 14.099 15.420 36.053 5.533 8.333 9.459

Average 14.099 15.420 36.053 6.288 9.174 10.910

Results are scaled by 10,000

the other methods, wemerged the input and the predicted
point clouds and sampled 2048 points using farthest point
sampling. The multi-stage completion loss is equal to the
CD of the point clouds for each stage.

– Variational Relational Point Cloud Network (VRCNet)
(Pan et al., 2021): VRCNet uses a two-stage process
to predict the completion of a partial input. First, the
method uses probabilistic modeling to predict a coarse
point cloud. Subsequently, a self-attention method com-
putes relational structures in the shape to reproduce small
details and generate the fine point cloud.

To compare our proposal with other state-of-the-art meth-
ods, we use the Chamfer distance between the ground truth
and the predicted point cloud. The results are presented in
Table 1. MBD outperforms all the methods in the compar-
ison except from VRCNet. MBD computes a point cloud
similar to the ground truth, in terms of the average distances
of points in the predicted shape. Also, MLPD also outper-
forms previous methods, but it is slightly worse than MBD.
The election of the morphing-based decoder helps to keep
the details of the original shape better than a MLP decoder.
Our method performs well even for the harder classes in
the dataset, namely Bag, Cap, and Lamp. The problem with
classes Bag and Cap is the unbalanced number of shapes in
the dataset (Bag contains 54 training shapes and Cap con-
tains 39 training shapes), and the problem with Lamp is
the high intra-class variability. We believe that these factors
prevent automatic shape completion algorithms from gener-
alizing and performing well. Nevertheless, our method gets a
notorious improvement concerning other techniques in such
classes. Our method’s advantage is the combination of miss-
ing part prediction with the refinement: in hard examples,

the missing part prediction computes a coarse output, subse-
quently corrected by the refinement. In Sect. 6.2, we present
an ablation study with quantitative results about the impor-
tance of the sampling and the refinement.

Figure 4 shows qualitative results. Our methods (MBD
andMLPD) compute better completions for the shown exam-
ples. By definition, our methods preserve the original input
geometry while focusing on the missing part’s computation
and refinement. FCAE produces a fair coarse completion, but
many of the details of the shape are lost. Similarly,MSN (Liu
et al., 2020) focuses on predicting the entire shape, but it still
struggles to reproduce the geometric details of the shape. In
contrast, PF-Net (Huang et al., 2020) directly computes the
missing part; however, there is no good integration between
the partial input and the predictedmissing part. Ourmethod’s
main result is producing good missing parts that are effec-
tively integrated through refinement.

4.3 Robustness Test

In this experiment, we aim at evaluating the ability to perform
the completionwith a varying size of removed geometry. The
models used in this experiment are the same trained models
from the comparison in Sect. 4.2. Recall that each input shape
undergoes a splitting operation where a partial shape and a
missing part are computed during training. Themissing part’s
location is random, and the size depends on a given radius
around the selected point. In the previous comparison, we
used a radius of 0.35. We now measure the robustness of
the trained models to perform the completion when the test
shape has a missing part with different sizes. We vary the
radius from 0.25 to 0.55 and compute the average Chamfer
distance for every algorithm. Figure 5 shows the results.
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Fig. 4 Comparisonof completion results betweenourmethod and state-
of-the-art methods. FCAE predicts reasonable coarse shapes but fails
to complete details. MSN (Liu et al., 2020) produces the entire shape
but struggles to find some details. PF-Net (Huang et al., 2020) predicts
the coarse missing part, but it cannot incorporate the prediction with the

input. Our methods (MBD andMLPD) successfully predict the missing
part and integrate it to produce a good result. In these examples, our
method and VRCNet (Pan et al., 2021) are the methods that produces
the best visual results

Our methods (MBD and MLPD) consistently outperform
the other methods when the missing part’s size varies from
0.25 to 0.45. Nevertheless, the performance of our meth-
ods degrades when the radius is above 0.5. In our opinion,
the reason for this behavior is the extent of the missing part
that is not well covered by our fixed number of points to
represent the missing part. In this case, methods that pre-
dict the complete point cloud show better robustness. One
of our methods’ main limitations is the lack of adaptative-
ness to represent the missing part according to its extent. The

computation of adaptive varying-size point clouds via neural
networks is a promising idea to incorporate in our approach
in future researches to increase robustness.

5 Experiments on Completion3D

Completion3D (Tchapmi et al., 2019) is an online bench-
mark to evaluate the performance of point cloud completion
algorithms. Participants must train their models on the train-
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Fig. 5 Robustness against variable size of missing parts. Our methods
are robust when the size of missing part is similar to the size of the
trained missing part

ing set and upload the inferred completion on the test set.
The platform automatically evaluates the results and delivers
the performance using the Chamfer Distance. The Com-
pletion3D dataset is built on partial views of objects from
ShapeNet dataset.

The training set contains the set of partial views and target
complete point clouds.However, ourmethodalso requires the
missing part since the firstmodule in our architecture predicts
themissing part and compares the result with the realmissing
part. Therefore, we have to preprocess the Completion3D
training data to obtain the missing part for each partial view.
Let P be the partial point cloud and T be the corresponding
complete point cloud, we compute the missing part H as
follows:

H =
{

p ∈ T such that min
q∈P

‖p − q‖ > 10−4
}

(3)

In other words, the missing part H contains the target
points that do not overlap with the partial point cloud. The

threshold (10−4) was found empirically. Even with the small
threshold, we note that this procedure creates a discontinuity
between the partial view and the missing part; nevertheless,
this problem is fixed in our model with the refinement step
which tends to close the gap between the partial point cloud
and the predicted missing part.

Table 2 shows the results on this benchmark. We compare
ourmethodwith previousmethods such as FoldingNet (Yang
et al., 2018), AtlasNet (Groueix et al., 2018), PCN (Yuan et
al., 2018), TopNet (Tchapmi et al., 2019) andVRCNet (Pan et
al., 2021). Our method obtains competitive results, outper-
forming methods such as FoldingNet, AtlasNet, and PCN.
Tecniques such as TopNet and VRCNet use hierarchical
approaches to learn intrincate details in shapes, and we
believe this is one of the reason of their superior performance.
Evenwhenourmethod is simple in nature, the averageCham-
fer distance is close to the result from TopNet.

6 Ablation Study

In this section, we evaluate the impact of two important com-
ponents in our proposal: the marging and sampling module
(block B in our architecture in Fig. 1) and the refinement
module (block C in our architecture in Fig. 1).

6.1 TheMerging and SamplingModule

The part predictionmodule (blockA in our architecture) gen-
erates the missing point cloud and concatenate it with the
partial input. As a result, the point cloud in this stage has
1.5× N points, where N is the size of the input point cloud.
Since our method uses the EMD loss function, we apply a
sampling strategy to select only N points which are fed to
the refinement step. In this experiment, we evaluate the per-
formance of our proposal if we remove the sampling and
feed the refinement step directly with the concatenated point
cloud of size 1.5× N . It means the predicted point cloud has

Table 2 Quantitative
comparison on Completion3D
dataset using average Chamfer
distance

Categories FoldingNet AtlasNet PCN TopNet VRCNet MBD

Airplane 12.83 10.36 9.79 7.32 3.94 7.42

Cabinet 23.01 23.40 22.70 18.77 10.93 25.89

Car 14.88 13.40 12.43 12.88 6.44 11.35

Chair 25.69 24.16 25.14 19.82 9.32 22.91

Lamp 21.79 20.24 22.72 14.60 8.32 24.16

Sofa 21.31 20.82 20.26 16.29 11.35 20.52

Table 20.71 17.52 20.27 14.89 8.60 16.10

Watercraft 11.51 11.62 11.73 8.82 5.78 7.95

Average 19.07 17.77 18.22 14.25 8.12 17.16

Results are scaled by 10,000

123



International Journal of Computer Vision (2022) 130:2149–2165 2159

Table 3 Merging and sampling is important to improve the quality of
the completion

Categories MBD MBDw/o Sampling

Airplane 4.675 29.038

Bag 16.706 34.488

Cap 11.096 115.648

Car 9.466 28.954

Chair 6.629 24.784

Guitar 3.813 47.081

Lamp 23.257 66.946

Laptop 3.790 45.070

Motorbike 10.843 21.181

Mug 7.430 167.613

Pistol 8.676 34.128

Skateboard 4.545 30.072

Table 8.333 32.572

Average 9.174 52.121

Ourmethods consistently outperform the results against not usingmerg-
ing and sampling. Results are scaled by 10,000
Best values in bold

1.5 × N points while the ground truth has N points. There-
fore,we use theChamfer distance for this specific experiment
to cope with the different point cloud sizes in the final loss.

For the evaluation, note that the Chamfer distance is
proportional to the number of points in the comparison.
Therefore, tomake a fair comparison, we sample 2048 points
using farthest point sampling to compute the metrics during
test. Table 3 presents the results of this experiment.

6.2 The Refinement Module

An essential contribution of our methods is the combina-
tion of missing part prediction plus the final refinement. In
this experiment, we show how important refinement is in the
completion result. We take the networks trained in the exper-
iment of Sect. 4.2 and evaluate the completion performance
with and without the refinement module. Table 4 shows the
effect of using the Point Refiner Network in our models.

The results show the importance of refinement in the final
output. The improvement using the refinement is consistent
in our two MBD and MLPD. Note that the more significant
gain is in the challenging classes: Bag, Cap, and Lamp. In
effect, these results demonstrate that the refinement can be a
useful complement to themissing part prediction, to the point
that it can help deal with unbalanced data and high intra-class
variability. Figure 6 shows two examples of the effect of the
refinement in our proposal.

7 Completion of Archeological Pottery

7.1 Data Generation and Training

Any data-driven approach for shape completion requires
a considerable amount of data to learn the geometry’s
characteristics and the mapping between partial input and
completed outputs. Unfortunately, in our application, there
is no large existing dataset of cultural heritage objects to
learn the specific characteristics of this kind of object. Nev-
ertheless, we address this challenging issue by making a key

Table 4 Refinement is
important to improve the quality
of the completion

Categories MBD MBDw/o Ref MLPD MLPDw/o Ref

Airplane 4.675 5.638 5.105 6.225

Bag 16.706 20.325 19.980 25.433

Cap 11.096 18.701 19.543 31.026

Car 9.466 10.263 11.199 12.571

Chair 6.629 7.967 8.100 9.680

Guitar 3.813 4.194 4.203 4.721

Lamp 23.257 28.289 25.064 38.002

Laptop 3.790 5.145 4.262 5.972

Motorbike 10.843 11.734 10.359 13.120

Mug 7.430 9.624 10.518 13.897

Pistol 8.676 10.330 9.350 12.122

Skateboard 4.545 5.377 4.687 6.516

Table 8.333 10.706 9.459 12.272

Average 9.174 11.415 10.910 14.735

Our methods consistently outperform the results against not using refinement. The improvement is even more
evident in challenging classes such as Cap and Lamp. Results are scaled by 10,000
Best values in bold
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Fig. 6 The refinement is a key ingredient in our proposal. The predicted
missing part is often a coarse representation which is considerably
enhanced by the point refiner network. From left to right: input,
input+predicted missing part, input+refined missing part, ground-truth

observation about the typical structure of cultural heritage
objects (and human-made objects, in general).

We collected a dataset of objects with a structure simi-
lar to those commonly found in archaeological objects. We
used the 3D Pottery Benchmark (Koutsoudis et al., 2010),
which contains 1012 pottery models, as a starting point. To
increase the number of models for training, we added two
categories from the Shapenet dataset (Chang et al., 2015),
namely: Bowl (containing 186 models) and Jar (containing
596 models). Also, we added 84 models from the Bowl cate-
gory from the ModelNet40 dataset (Zhirong et al., 2015). In
total, we collected 1890 objects. Subsequently, we manually
removed objects with a dissimilar structure to the scanned set
of archaeological objects. We ended up with a total of 1458
objects for this experiment. Figure 7 shows some examples
from our training set for our application in restoration of
pottery objects.

We apply a pre-processing stage in the collected objects:
We manually corrected the objects’ orientation so that the
orientation up is in the positive Z-axis. This step guaran-
tees that the training objects have the same orientation as the
scanned objects. For every model in the dataset, we sample

8192 points from the surface. The point cloud is normalized
in scale to fit a sphere of radius one. We also translate the
point cloud so the center of the objects’ mass coincides with
the origin in 3D space.

During training, for each epoch we generate 50 partial
point clouds with their corresponding missing point clouds
for each training object.However, the protocol to generate the
partial point clouds has a crucial differencewith respect to the
procedure applied in ShapeNet experiments. In Sect. 4, the
normalization of position and scale assumes that we already
know the complete object (ground truth). However, in ourCH
application, the input is an incomplete object and therefore,
there is no way to know the real center of mass or scale of
the object we want to predict. To deal with this problem,
we look for introducing the invariance to transformations
during training. Since we want to add invariance to affine
transformations (translation, scaling and rotation), we design
a procedure to perform the splitting as follows:

– Scaling by a random factor in the range [0.5, 1.5]. This
operation introduces invariance to the object size, which
is important since we do not know the scanned object’s
scale in advance.

– Rotation around Z-axis with a random angle in the range
[0, 2π ]. We assume that input objects are approximately
well oriented concerning the Z-axis. However, the object
could be oriented at any angle around the Z-axis. This
operation introduces invariance to the orientation in the
XY plane.

– Rotation around the X-axis with a random angle in the
range [0, π/12]. Our assumption of orientation regarding
the Z-axis only is approximated. Hence, this operation
introduces invariance to a certain degree of misalignment
of the object.

– Translation in the Z direction by a random amount in the
range [−0.3, 0.3]. This operation introduces invariance
to the original location of the object. In particular, the
position normalization of the ground truth is based on the
center of the mass. However, it is impossible to know the
center ofmass of a damagedobject because of themissing

Fig. 7 Example shapes in our training set for restoration of pottery objects
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Fig. 8 Reconstruction of cultural heritage objects. From left to right:
The input object lacks the base (top and bottom views). The input object
is sampled many times. For each sampling, the neural network predicts
the missing point cloud. The resulting reconstruction is the concatena-

tion of the input point cloud with the predicted missing point cloud.
Poisson reconstruction method creates a triangular mesh that approxi-
mates the point cloud. A post-processing step removes the unnecessary
geometry and keeps the reconstruction of the input object

information. This operation introduces invariance to the
location of the object.

– Translation in X and Y directions by a random amount in
the range [−0.03, 0.03]. This operation introduces invari-
ance to small shifts in the location of the object with
respect to axes X and Y.

– Object splitting into partial and missing point cloud. Let
zmin and zmax be the minimum and maximum Z coordi-
nate of the object, respectively. Let hz be the height of the
object, where hz = zmax−zmin.We select a random num-
ber r in the range [0.05, 0.175] and compute the partial
and missing point cloud as follows:

partial(P) = {p ∈ P‖ pz ≥ zmin + r × hz} (4)

missing(P) = {p ∈ P‖ pz < zmin + r × hz} (5)

The value zmin + r × hz denotes the Z coordinate of a
plane that is parallel to the XY plane. Points above this
plane (in the Z+ direction) go in the partial shape and
points below this plane (in the Z− direction) go in the
missing part.

7.2 Reconstruction Procedure

We use the model trained in the previous section to recon-
struct a collection of damaged objects scanned from the
Josefina Ramos de Cox museum in Lima, Peru. Algorithm 1
details the procedure to reconstruct an input object. Figure 8
also shows an overview of the procedure.

The input to the algorithm is the scanned triangular mesh
and the trained neural network. The first stage (line 1) is to
normalize the scale of the input object. This step is necessary
since we perform the training with normalized data. The sec-
ond stage (lines 2–6) predicts themissing part of the damaged
object. Recall that our neural network receives 2048 points

and produces a missing part of 1024 points. Our strategy to
obtain a reconstruction with more points is to apply the neu-
ral network many times with several point samplings. In this
application, we apply the neural network eight times (lines
2–6) and accumulate the input point clouds and missing part
predictions in sets P and H, respectively. In this second stage,
the output point cloud is the union of sets P and H (line 7).
The third stage (lines 8–10) reconstructs the final point cloud
into a triangular mesh that completes the original triangular
mesh. We show that a Poisson reconstruction is suitable to
get a triangular mesh from the point cloud. However, the
Poisson reconstruction has problems dealing with the open
structure of the top of the objects. Subsequently, we sim-
ply remove the reconstructed geometry above a certain level
in the Z-axis. The user could prefer to remove or keep more
geometry depending on their needs and the final visual result.

Algorithm 1: Shape reconstruction algorithm
Input: Triangular mesh S (the input object), neural network for

completion NN
Output: Triangular mesh S′ (the missing surface)

1 Scale S to fit into a unit cube
2 for i = 1 to 8 do
3 pcd = sample_points(S, 2048)
4 missing = NN .predict(pcd)
5 P = P ∪ pcd
6 H = H ∪ missing

7 M = P ∪ H // The final point cloud is the
union of partial and missing parts.

8 Scale M to the original size of S
9 Apply Poisson reconstruction to M to obtain a triangular surface
representation of the point cloud

10 Post-process the surface to preserve only valid geometry.
11 Return the final surface S′
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Fig. 9 Results of our method to
repair the surface of CH objects
in the Josefina Ramos de Cox
museum, Lima, Peru. The first
four columns depict the input
point cloud and the predicted
point cloud in several views
(perspective, lateral, bottom,
top, respectively). The fifth
column shows the reconstructed
surface for the final repair

Figure 9 shows the results of applying our model to repair
objects. Our method recovers the geometry of the object’s
base despite the high variability of input shapes. This is a
result of building our training dataset by collecting objects
with different shapes but still similar to objects that onewould
find in a CH application. Our method is able to learn to syn-
thesize the missing geometry and make smooth transitions
between the original scanned surface and the prediction.

We also train theMSN (Liu et al., 2020) andVRCNet (Pan
et al., 2021) methods with the pottery dataset to make a qual-

itative comparison with our method. Figure 10 shows the
results of the compared method with two point clouds from
real pottery objects. The advantage of our method is that
the partial input (which is reliable geometry because it was
scanned from a real object) remains unchanged in the final
result, since ourmethod focus on generating themissing part.
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Fig. 10 Results on point clouds from real pottery objects. From left
to right: the first column shows the partial input, the second column
shows the results of MSN (Liu et al., 2020), the third column shows the
results from VRCNet (Pan et al., 2021), and the fourth column shows
the results from our method

8 Conclusion

We describe a data-driven method to repair large imperfec-
tions during scanning in the Josefina Ramos de Cox museum
in Lima, Peru. To address this problem, we presented a novel
architecture for point cloud completion that emphasizes the
combination of missing part prediction and point cloud
refinement to improve the completion. Unlike other archi-
tectures that predict the overall shape, our method retains the
existing geometry and refined details while focusing on pre-
dicting and integrating the missing part. Our experiments in
the ShapeNet dataset, under a standard protocol to evaluate
completion algorithms, show that our method is robust and
effective. Moreover, the refinement of the merge between the
incomplete input and the predicted missing part is crucial to
reduce the reconstruction error in challenging cases.

When trained in amore specific scenario for a cultural her-
itage domain, our proposal has several advantages. First, our
method preserves the original geometry, and it only predicts
themissing surface. This property is essential in archaeologi-
cal researchwhere the original object’s characteristics should
not be changed at all. Second, our method and the repair
application are parameter-free. Once the neural network has
been trained with a specific protocol for the problem to solve,
the inference does not require user intervention or final users’
modeling capabilities. Third, even when the representation
is a point cloud, the quality of the prediction enables the use
of well-established methods for surface reconstruction. The
result is a surface with smooth transitions between the input
and the prediction. Therefore, all these advantages make our
proposal suitable to use in the cultural heritage domain.

The main limitation of our method is the dependency on
the problem to solve. In this paper, we focused on repair a
specific imperfection that occurred during scanning. Never-
theless, if one wants to apply a similar methodology to a
more general problem, such as repair or reconstruction of
damaged CH objects, one would require a different training
protocol. In this regard, we envision two potential develop-

ments that could lead to a significant impact in applying
computer vision to cultural heritage. First, we need large
datasets of CH objects to build more specific deep learning
models. Although we have shown that a deep learning model
can somehow transfer knowledge from a general-purpose
dataset to CH objects, more specific datasets could bene-
fit the learning process, thereby also adopting these models
in more complex problems in cultural heritage. Second, we
believe that the introduction of geometric reasoning (such
as structure knowledge, invariances, and so on) in the learn-
ing process could help to improve the explainability of the
trained model. In the eyes of expert archaeologists and cura-
tors, an automatic repair tool that explains the result would
help to facilitate the incorporation of cutting-edge technol-
ogy in their work.
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