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Abstract
Multispectral photometric stereo (MPS) aims at recovering the surface normal of a scene measured under multiple light
sources with different wavelengths. While it opens up a capability of a single-shot measurement of surface normal, the
problem has been known ill-posed. To make the problem well-posed, existing MPS methods rely on restrictive assumptions,
such as shape prior, surfaces having a monochromatic with uniform albedo. This paper alleviates these restrictive assumptions
in existing methods. We show that the problem becomes well-posed for surfaces with uniform chromaticity but spatially-
varying albedos based on our new formulation. Specifically, if at least three (or two) scene points share the same chromaticity,
the proposed method uniquely recovers their surface normals with the illumination of no less than four (or five) spectral lights
in a closed-form. In addition, we show that a more general setting of spatially-varying both chromaticities and albedos can
become well-posed if the light spectra and camera spectral sensitivity are calibrated. For this general setting, we derive a
unique and closed-form solution for MPS using the linear bases extracted from a spectral reflectance database. Experiments
on both synthetic and real captured data with spatially-varying reflectance demonstrate the effectiveness of our method and
show the potential applicability for multispectral heritage preservation.
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1 Introduction

Photometric stereo is effective for the detailed recovery
of three-dimensional (3D) surfaces. Classical photometric
stereo methods, originally proposed by Woodham (1980)
and Silver (1980), use images captured from a fixed cam-
era under varying lighting directions, which are commonly
obtained at different timestamps. Since conventional photo-
metric stereo methods stack grayscale or RGB images1 with
time-multiplexing, the target surface has to be static during
the multiple shots, and the spectral property of the material
is omitted in the estimated reflectance.

With multispectral photometric stereo (MPS) Kontsevich
et al. (1994), detailed 3D shapes and the corresponding spec-
tral reflectances can be jointly recovered from a one-shot
multispectral image via spectral-multiplexing. It is useful
not only for obtaining the object’s shape for digital her-

1 When RGB images are used in conventional (single-band) photomet-
ric stereo, they are turned into grayscale images for computing surface
normal.
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itage preservation Miyazaki et al. (2010) but also for studies
based on spectral analysis, such as artwork material iden-
tification Picollo et al. (2020) and revealing underdrawings
of oil paintings Hain et al. (2003). However, unlike conven-
tional time-multiplexing photometric stereo, MPS remains
an ill-posed problem even with a Lambertian assumption.
In this paper, we propose a method to make the problem
tractable and show that a unique solution can be obtained
even for scenes with spatially-varying reflectances. With the
proposed method, we assess its potential applicability to dig-
ital heritage preservation.

An input image for MPS encodes observations under
different lighting directions in different spectral bands, con-
veying the information about the surface normals and spectral
reflectances. Figure 1 shows our MPS setup, which contains
a camera and 12 narrow-band spectral light sources located
at different positions. From the input spectral image obser-
vations, our goal is to estimate both object shape and spectral
reflectance simultaneously. However, under the illumination
of f spectral lights, there are f + 2 unknowns ( f for the
reflectance of the spectral bands, and 2 for the surface nor-
mal). Since only f observations for each scene point are
given, MPS is inherently under-constrained.

Tomake the problem tractable, existingmethods use addi-
tional priors, e.g., initial shape Anderson et al. (2011a, b),
trained neural networks Ju et al. (2018, 2020a, b), or local
smoothness regularization Miyazaki et al. (2019). However,
these priors are rather restrictive and may not always com-
ply with the actual scene. Without these priors, existing
methods Ozawa et al. (2018); Chakrabarti and Sunkavalli
(2016); Silver (1980) provide a unique solution for MPS by
assuming the surface spectral reflectance types (SRT) to be
gray chromatic or monochromatic with uniform albedo (SRT
I and II in Fig. 2). However, these spectral reflectance
assumptions are also restrictive for real-world scenes. As
shown in Ozawa et al. (2018), Chakrabarti and Sunkavalli
(2016), incorrect surface normals are estimated at surface

regions with roughly constant chromaticity but continuously
changing albedos. Previous methods Ozawa et al. (2018);
Chakrabarti and Sunkavalli (2016) also investigatedMPS for
spatially-varying reflectance (SRT IV) with the relaxation of
piece-wise constant chromaticities and albedos.However, the
spatial clustering of the uniform spectral reflectance regions
is not only cumbersome but also fragile to the outliers, such
as shadows and specular highlights.

In this paper, we make MPS to work well under spatially-
varying spectral reflectances. Given a multispectral image
under calibrated lighting directions, we first provide a closed-
form MPS solution for surfaces with uniform chromaticity
but spatially-varying albedos (SRT III in Fig. 2),without rely-
ing on any additional priors. We further extend our method
to deal with the surface with spatially-varying chromaticities
and albedos (SRT IV in Fig. 2) by additionally calibrating
the light spectra and camera spectral sensitivity.

Specifically, for SRT III surfaces, we treat the estima-
tion of spectral reflectance and surface normal as a bilinear
optimization problem. We show that the problem can be
turned into a homogeneous system of linear equations, where
the surface normal and spectral reflectances are jointly esti-
mated. Given observations of SRT IV surfaces and calibrated
light spectra and camera spectral sensitivity, we show that
closed-form solutions for both surface normal and spec-
tral reflectance are given in a per-pixel manner. We achieve
this by expressing the spectral reflectance with linear bases,
which are extracted from a material database of bidirec-
tional reflectance distribution functions (BRDFs) Dupuy and
Jakob (2018). Unlike previous methods that are restricted
to 3 spectral channels Ozawa et al. (2018); Chakrabarti and
Sunkavalli (2016);Anderson et al. (2011a, b); Ju et al. (2018),
our method allows the use of arbitrarily many spectral chan-
nels. As a side-bonus of this input property, we can also rely
on the off-the-shelf four or more source photometric stereo
methods to deal with outliers, such as shadow and specular
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Fig. 1 Our multispectral photometric stereo setup with 12 narrow-band spectral LEDs placed at different locations. Taking the spectral image
observations as input, our method outputs a closed-form unique solution of both surface normal and spatially-varying spectral reflectance for
heritage preservation
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Fig. 2 Visualization of four spectral reflectance types (SRT) catego-
rized by the spatial distribution of the chromaticityC(λ) and the albedo
ρ. The color maps provide spatial distribution examples of chromatici-
ties and albedos for each SRT in the RGB space. Solid and hollow dots

show the spectral reflectances of two scene points at f wavelengths
r = [R(λ1), · · · , R(λ f )]. This paper presents unique and closed-form
solutions for both SRT III and IV

highlights, making ourmethods for both SRT III and IVmore
robust than existing RGB-based MPS methods.

To summarize, the primary contributions of our work are
as follows.

– We show that MPS for monochromatic surfaces with
spatially-varying albedos (SRT III) can be solved in a
closed-form without introducing any external priors, and
we derive the minimal conditions based on the number of
spectral lights and scene points for the problem to have
a unique solution.

– We introduce a basis representation for the spectral
reflectance and present a closed-form MPS solution for
surfaces with spatially-varying chromaticities and albe-
dos if the light spectra and camera spectral sensitivity are
calibrated.

– Our methods for both SRT III and SRT IV are robust
to outliers, such as shadows and specular highlights,
because of its capability of applying robust estimation
thanks to that our method can take arbitrary many spec-
tral channels as input.

The preliminary version of this work appeared in Guo et
al. (2021) (denoted as “OursIII”), which solves MPS for sur-
faces with a uniform chromaticity but spatially-varying (SV)
albedos (SRT III) without additional priors. However, this
spectral reflectance type is still limited to handle the general
spectral reflectance in the real scene. Therefore, this paper
extends Guo et al. (2021) by providing a unique and closed-
form MPS solution (denoted as “OursIV”) for surfaces with
more general SV-chromaticities and albedos (SRT IV). To
demonstrate the effectiveness of our new approach, addi-
tional experiments on both synthetic and real data are also
presented. Specifically, in Sec. 4, we present a new formula-
tion to make MPS under SRT IV well-posed and convex by
introducing a linear basis representation of the inverse spec-
tral reflectances. In Sec. 5, we update the experiments on
synthetic data rendered with realistic reflectances to demon-
strate the effectiveness of our methods on both SRT III and

SRT IV surfaces. In Sec. 6, we evaluate our methods on real
captured images of statues and reliefs. In thisway,we explore
the potential applicability of our MPS method of both SRTs
on heritage preservation.

2 RelatedWorks

As described in previous works Hernández et al. (2010);
Vogiatzis andHernández (2012), thematerial spectral reflectance
R(λ) : R+ → R+ can be decomposed into two parts:
Chromaticity C(λ) : R+ → R+ and albedo ρ ∈ R+, such
that R(λ) = C(λ)ρ, where λ represents wavelength. As
shown in Fig. 2, based on the spatial distribution of chro-
maticity and albedo for a surface, we categorize 4 different
surface spectral reflectance types (SRT) and order them in a
way from simple to complex. In this section, we introduce
existing methods based on their assumptions on SRT and list
their properties for the comparison in Table 1.

SRT I If the surface has gray chromaticity, i.e., the chro-
maticity remains constant w.r.t. varying wavelength, MPS
is identical to classical photometric stereo. Therefore, given
3 or more spectral bands, a closed-form solution for sur-
face normal can be obtained without ambiguity Silver
(1980).

SRT II For monochromatic surfaces with uniform albedo,
i.e., all the scene points share the common chromaticity
C̃(λ) and albedo ρ̃, previous methods Drew and Kontsevich
(1994); Kontsevich et al. (1994) show that the surface normal
can be estimated from a single RGB image up to a rota-
tion ambiguity. The correct rotation was approximated by
imposing an additional integrability condition. Hernández
et al. (2007) establish a one-to-one linear mapping between
pixel measurements and surface normals to reconstruct the
deformable cloth shape. This unknown linear mapping is cal-
ibrated via a planar board with a cloth sample fixed in the
center. If the crosstalk between spectral channels is negli-
gible, existing methods Chakrabarti and Sunkavalli (2016);
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Table 1 Comparison of MPS methods

SRT Method Input # Lights Additional priors

I Silver (1980) MSI1 f ≥ 3 None

II Kontsevich et al. (1994) RGB f = 3 Surface integrability

II Drew and Kontsevich (1994) RGB f = 3 Surface integrability

II Hernández et al. (2007) RGB f = 3 Irradiance-normal mappingb

II Ozawa et al. (2018), Chakrabarti and Sunkavalli (2016) RGB f = 3 None

III Vogiatzis and Hernánde (2012) RGB f = 3 Initial coarse shape

Pixels with uniform albedo

IV Ozawa et al. (2018), Chakrabarti and Sunkavalli (2016) RGB f = 3 Reflectance quantization

Piece-wise constant reflectance

IV Antensteiner et al. (2019), Ju et al. (2018, 2020a, b) RGB f = 3 Fixed lighting direction

IV Anderson et al. (2011a, b) RGBDc f = 3 Piece-wise constant chromaticity

IV Miyazaki et al. (2019) MSI f ≥ 3 Reflectance smoothness

Surface normal smoothness

IV Fyffe et al. (2011) MSI f ≥ 5 Spectral reflectance basisa

III OursIII MSI f ≥ 4 None

IV OursIV MSI f ≥ 4 Calibrated light and camera spectrum

Basis expression of the reflectance

OursIII provides a unique solution for a relatively general spectral reflectance (SRT III) without additional priors. OursIV solves MPS for general
spatially-varying spectral reflectance with less restrictive calibration
aMultispectral image
bScene-dependent calibration
cRGB + depth

Ozawa et al. (2018) provide a unique solution for surface
normals. However, their methods are restricted to RGB 3-
channel input and cannot be expanded to more channels (see
the “Appendix”).

SRT III Few methods focus on the monochromatic sur-
faces with spatially-varying albedos, which is commonly
seen in natural objects (e.g., wood and rocks) and human
skins. Vogiatzis and Hernánde (2012) assume the spectral
reflectance of the human face follows SRT III and obtain
detailed reconstructions of faces in real-time. However, their
surface normal estimation results rely on the accuracy of ini-
tial geometry and detection of equal-albedo pixels.

SRT IV If the chromaticity and albedo are both spatially-
varying, MPS from a single multispectral image is ill-
posed. Existing methods apply additional regularizations
and provide numerical solutions for MPS. Chakrabarti and
Sunkavalli (2016) andOzawa et al. (2018) relax the spatially-
varying spectral reflectance to be piece-wise constant. Since
their methods are both based on 3-channel RGB inputs, they
discretize the spectral reflectance in a 3D space to cluster
pixels with equal chromaticities and albedos so that they
can turn the problem into a set of SRT II subproblems. The
normal map is then estimated in each surface region that
is predicted as having the same spectral reflectance. The
method byAnderson et al. requires a coarse shape fromdepth

map Anderson et al. (2011a) or stereo pairs Anderson et al.
(2011b) and uses it to guide the chromaticity segmentation
and the surface normal estimation. Similar to Chakrabarti
and Sunkavalli (2016), Ozawa et al. (2018), the piece-wise
constant spectral reflectance assumption restricts the flexibil-
ity of the target surface’s reflectance. The normal estimation
accuracy is also influenced by the errors introduced by the
reflectance clustering step.

Some recent methods directly take an RGB image as input
and apply deep neural networks to predict the surface normal
Ju et al. (2018, 2020a); Antensteiner et al. (2019). How-
ever, the lighting directions are required to be consistent
between the training and test procedures. Miyazaki et al.
(2019) recover surface normals from a multispectral image
with more than three channels. However, their recovered
shape tends to be over-smoothed due to the spatial smooth-
ness assumption on both surface normal and the reflectance.
Fyffe et al. (2011) assume the spectral reflectance lies in
a low-dimensional space and represent it with a statistical
basis set. However, their spectral reflectance bases are scene-
dependent and need to be calibrated with the known surface
normal and reflectance pairs. Besides, the optimization of
this method is non-convex and requires a good initialization.

Our method Taking a multispectral image with an arbi-
trary number of channels as input, we first formulate MPS
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for monochromatic surfaces with spatially-varying albedos
(SRT III) as a well-posed problem, and estimate surface nor-
mal without introducing external priors Guo et al. (2021).
We further show that MPS under SRT IV can be made
tractable if the light spectra and camera spectral sensitiv-
ity are calibrated. Different than existing works Chakrabarti
and Sunkavalli (2016); Ozawa et al. (2018); Anderson et
al. (2011b), we avoid both the piece-wise uniform spectral
reflectance restriction and the reflectance clustering steps by
introducing a basis representation of the per-pixel spectral
reflectance. Compared with Fyffe et al. (2011), our forma-
tions for both SRT III and SRT IV are convex, and our
extracted spectral reflectance bases are shown to be scene
independent based on the real data experiments.

3 MPS for Surfaces with SRT III

Given a multispectral camera with a linear radiometric
response and f (geometrically but not spectrally) calibrated
spectral directional lights, we capture a multispectral image
of p scene points on a Lambertian surface by turning on all
the spectral lights. If the crosstalk between spectral bands is
negligible, i.e., the observation under each spectral light is
only observed in its corresponding camera channel, observa-
tions mi ∈ R

f
+ for the i-th pixel can be written as follows

mi = diag(ti ){Lni }+, (1)

where ni ∈ S2 ⊂ R
3 represents the unit surface normal vec-

tor,L ∈ R
f ×3 stacks all the light directions.Weuse diag(·) as

a diagonalization operator and {·}+ as a non-negative opera-
tor, which accounts for attached shadows. For simplicity, we
omit this operator {·}+ in the following explanation. Here,
ti ∈ R

f
+ is related to the camera spectral sensitivity, light

source spectra and the surface spectral reflectance at f spec-
tral bands. Its element follows

ti j =
∫

λ∈Ω j

E j (λ)Ri (λ)S j (λ)dλ, (2)

where Ω j is the wavelength range of the j-th spectral band,
E j (λ) : R+ → R+ denotes the spectra of the j-th light,
S j (λ) : R+ → R+ defines the camera spectral sensitivity at
j-th channel, and Ri (λ) : R+ → R+ is the material spectral
reflectance of the i-th scene point. The problem of general
MPS is to estimate f + 2 unknowns including t and surface
normal n from f -element measurement vector m, which is
unfortunately an ill-posed problem.

We turn theMPS to bewell-posed by assuming the surface
following SRT III: The material spectral response can be
decomposed into a uniform chromaticity C̃(λ) and spatially

varying albedos ρi , such that

Ri (λ) = ρi C̃(λ). (3)

Combing Eqs. (2) and (3), we rewrite the spectral image
observations for a scene point of the SRT III surface as

mi = diag(q)ρiLni , (4)

where q ∈ R
f
+ is the uniform reflectance devoid of spatially-

varying albedos, whose elements are

q j =
∫

λ∈Ω j

E j (λ)C̃(λ)S j (λ)dλ. (5)

With the uniform chromaticity C̃(λ), q remains constant
over the surface since both light spectra and camera spectral
sensitivity are independent of the scene points. With the sur-
faces of SRT III, we found the minimum conditions to yield
a unique MPS solution for surface normal are as follows.

Theorem 1 Given f spectral observations under varying
lighting directions of p scene points known to share the same
chromaticity C̃(λ), their surface normals can be uniquely
determined if either one of the minimal conditions for the
number of lightings and pixels is satisfied:

– Minimal pixel condition (MPC): p = 2, f ≥ 5,
– Minimal lighting condition (MLC): f = 4, p ≥ 3.

In other words, if two scene points share the same chromatic-
ity but varying surface normals, their surface normals can be
uniquely determined given 5 or more lighting directions. On
the other hand, if we know 3 or more scene points sharing
the same chromaticity and their surface normals are non-
coplanar, we can recover their normal directions with 4 or
more spectral light sources. In the following subsections, we
present the unique solution for SRT III and provide the proof
for minimal solvable conditions MPC and MLC.

3.1 Unique Solution for SRT III

Suppose a surface with p scene points sharing the same chro-
maticity, by representing all pixels and lighting directions in
a matrix form, we rewrite Eq. (4) as

M = QLN�P, (6)

whereQ = diag(q) is an f × f diagonal matrix,M ∈ R
f ×p
+

records the image observations of p scene points under f
lights, N ∈ R

p×3 stacks all the surface normals in a row-
wise manner, P is a p × p diagonal matrix with its diagonal
element defined by pixel-wise spatially-varying albedos.
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The above spectral image formation model has a simi-
lar structure with semi-calibrated photometric stereo (SCPS)
Cho et al. (2018). However, the task and physical image
formation model between SCPS Cho et al. (2018) and our
method for SRT III are different. SCPS Cho et al. (2018)
denotes q as light intensities and aims at solving con-
ventional photometric stereo without calibrating the light
intensity, whereas ours focuses on the use of relatively
general reflectance assumption (SRT III) and multispectral
image cues to formulate MPS as a well-posed problem with-
out additional priors. The unknown q in our method encodes
the integral of the light spectra, camera spectral sensitivity,
and the chromaticity shared by the scene points, as shown in
Eq. (5), which is different from the light intensity notation in
SCPS Cho et al. (2018).

Given image observations M and the calibrated lighting
directions L, we recover uniform reflectance devoid of albe-
dos Q, surface normal N, and albedo P by minimizing the
following energy function:

{Q∗,N∗,P∗} = argmin
Q,N,P

∥∥∥M − QLN�P
∥∥∥2
F

, (7)

where ‖ · ‖F denotes the Frobenius norm. We define B =
P�N ∈ R

p×3 as albedo-scaled surface normals. Here, Q is
invertible since its diagonal elements are non-zero. Then we
rewrite Eq. (6) as

Q−1M − LB� = 0. (8)

After vectorizing the unknown parameters Q−1 and B�, we
obtain

(Ip ⊗ L)vec(B�)

− [diag(m1) · · · diag(mp)]�Q−11 = 0,
(9)

where vec(·) and ⊗ represent vectorization and Kronecker
product operators, respectively. Ip ∈ R

p×p is an identity
matrix, 1 is a all-one f -dimensional vector, mi is the i-th
column vector of the image observations M, indicating the
measurement at the i-th pixel position.

By concatenating all unknowns of Eq. (9) into a vector,
we obtain a homogeneous system of linear equations:

[
−Ip ⊗ L|[diag(m1)| · · · |diag(mp)]�

]
︸ ︷︷ ︸

D

[
vec(B�)

Q−11

]

︸ ︷︷ ︸
x

= 0,

(10)

where D ∈ R
p f ×(3p+ f ), and the unknown vector x has the

dimension of 3p + f . If D has 1d right nullspace, the solu-
tion of x is obtained up to a scale via a factorization of D
by singular value decomposition (SVD). Based on the prior

knowledge that surface normal has a unit norm, we normal-
ize albedo-scaled surface normals B in x to finally obtain a
unique surface normal estimation.

3.2 Minimal Conditions for a Unique Solution

As discussed before, to obtain a non-trivial solution of the
homogeneous system in Eq. (10), the right nullspace of D
should be one dimension. Therefore, we have

p f ≥ 3p + f − 1. (11)

This solvable condition can be interpreted in another way.
Given p pixels observed under f spectral bands, the
total number of measurements is p f . Since we assume a
monochromatic surface with spatially-varying albedos, we
only need to know the uniform reflectance devoid of albe-
dos q for one pixel, whose number of unknowns is f . For
the remaining (p − 1) pixels, we need to know albedos
with the number of unknowns (p − 1). Besides, for each
pixel, the surface normal has 2 degrees of freedom. There
are thus 2p unknowns for surface normal. Totally, the num-
ber of unknowns is f + (p − 1) + 2p = 3p + f − 1.
Since the number of measurements needs to be no less than
the number of unknowns, we obtain the minimal solvable
condition of Eq. (11).

To further analyze theminimal requirement for the number
of lighting directions and pixels, we rewrite Eq. (11) as

( f − 3)(p − 1) ≥ 2. (12)

Therefore, the minimal requirements for the number of input
lighting directions and pixels to obtain a unique solution for
SRT III surfaces are

{
p = 2, f ≥ 5,
f = 4, p ≥ 3,

(13)

which correspond to MPC and MLC in Theorem 1.

4 MPS for Surfaces with SRT IV

As discussed in the previous sections, general MPS for
a surface with spatially-varying reflectance (both chro-
maticities and albedos) is ill-posed. In this section, we
show that the MPS under this SRT IV is tractable if the
light sources’ spectra E and camera spectral sensitivity S
are calibrated in the form of a vector of their products
e = [E1(λ1)S1(λ1), · · · , E f (λ f )S f (λ f )]� for f distinct
spectral bands. By denoting the material reflectances of cor-
responding spectral bands as r = [R(λ1), · · · , R(λ f )]�,
then the image formation model for a pixel under f lights
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can be written as

m = diag(e)diag(r)Ln. (14)

Given the calibrated e, we compute the normalized image
observations m̂ for a pixel by m̂ = m 
 e, where 
 denotes
element-wise division. ThenMPS for the SRT IV surface can
be formulated as a bilinear optimization of per-pixel surface
normal n and material spectral reflectance r:

{n∗, r∗} = argmin
n,r

∥∥m̂ − diag(r)Ln
∥∥2
2 . (15)

The problem still has f constraints with f +2 unknowns.We
now show how this can be further made tractable by intro-
ducing the basis representation of the material reflectances
in the next section.

4.1 Unique Solution for SRT IV

To reduce the number of unknowns in Eq. (15) and make the
problem well-posed, a more compact representation for the
spectral reflectance r is needed.

We assume the spectral reflectance r is non-zero anywhere
and define an inverse spectral reflectance as r̂ = 1
 r. Then
the normalized image observations for one pixel satisfy

diag(m̂)r̂ − Ln = 0. (16)

In this expression, the inverse spectral reflectance r̂ lies in
a f -dimensional space. We approximate it with k (< f )
independent linear basis to reduce the number of unknowns,
i.e.,

r̂ = Bc, (17)

where B ∈ R
f ×k is a basis matrix stacking k basis vectors,

c ∈ R
k is the unknown basis coefficients. Combing Eqs. (16)

and (17), we formulate the bilinear optimization of Eq. (15)
as a homogeneous linear system,

[−L|diag(m̂)B
]

︸ ︷︷ ︸
A

[
n
c

]

︸︷︷︸
y

= 0, (18)

whereA ∈ R
f ×(3+k), and y has the dimension of 3+k. Sim-

ilar to OursIII discussed in Sec. 3, if A has one-dimensional
right nullspace,we can obtain a unique solution y up to a scale
by SVD. The estimated y are chosen as the right-singular
vector corresponding to the smallest singular value of A. By
incorporating the unit norm constraint for the surface nor-
mal, we can finally resolve the scale ambiguity and uniquely
obtain the estimation of per-pixel surface normal and spectral
reflectance.

4.2 Spectral Reflectance Basis Extraction

Previous methods conduct linear analysis on MERL BRDF
dataset Matusik (2003) and express the reflectances by the
small number of coefficients associated with the basis vec-
tors. However, their extracted bases are not suitable for MPS
as the spectral information is omitted. In this paper, we
provide spectral reflectance bases extracted from a spectral
BRDF database.

Dupuy and Jakob (2018) provided a measured spectral
BRDF dataset for 62 materials with 195 equi-spaced spectral
bins covering the 360 ∼ 1000 [nm] range. For each material,
spectral responses for 8192 incident-outgoing direction sam-
ples are provided. Since we assume the Lambertian model,
the spectral reflectances of 8192 directional samples for one
material are treated as that of 8192 Lambertian materials
independently. By stacking the spectral response of all mate-
rials at one wavelength as a row vector, we build a spectral
material database G ∈ R

195×507904(=62×8192).
With the wavelengths of f spectral lights calibrated, we

obtain the corresponding spectral material database G̃ ∈
R

f ×507904 by sampling the rows ofG. To extract bases for the
inverse spectral reflectance r̂, we remove the materials with
near-zero spectral responses at any of the f wavelengths in
G̃ and conduct SVD on Ĝ = 1 
 G̃ as

Ĝ = U�V�, (19)

where U and V are the left and right orthogonal singular
vectors, and� is a f × f diagonal matrix containing the sin-
gular values in a descending order. The column vectors of U
provide orthogonal bases for the inverse spectral reflectance
r̂.
Determining the number of bases Following the Eckart-
Young theorem Johnson (1963), we select the first k columns
ofU as the basismatrixB ∈ R

f ×k to approximate the inverse
reflectance r̂. To obtain a non-trivial solution of Eq. (18), the
number of independent basis vectors k should be selected to
make A ∈ R

f ×(k+3) has a one-dimensional right nullspace.
Therefore, the rank of A should satisfy

rank(A) = k + 2 < f . (20)

We calculate the numerical rank ofA following the threshold
strategy suggested in William et al. (2007) and iteratively
increase the number of bases in B from 1 to f − 3 until A
satisfies the rank requirement. Since our basis extraction is
based on measured spectral BRDF dataset Dupuy and Jakob
(2018) containing various spectral reflectance candidates in
the real world, the obtained basis B is expected to fit diverse
scenes, as wewill demonstrate it in the real data experiments.
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Fig. 3 Synthetic multispectral image rendering of a Bunny surface.
The measured spectral BRDF “paper_yellow” roughly follows SRT III
since its spectral response R(λ) under varying groups of surface normal
and light directions can be represented by a common chromaticityC(λ)

with varying scales (albedos) (Color figure online)

5 Experiments on Synthetic Data

We here introduce experimental results on synthetic datasets.
We first describe the details of synthetic data creation and
the baseline settings. Then we compare OursIII and OursIV
with the existing MPS methods. Please check the electronic
version for the experimental results in color.

5.1 Experimental Settings

Synthetic dataset In our previous work Guo et al. (2021),
we have verified that OursIII can accurately recover the
surface normal on synthetic surfaces rendered with ideal
SRT III reflectances. This paper gives a more realistic syn-
thetic dataset with measured spectral reflectances. Similar to
the synthetic shape and lighting direction distribution in Guo
et al. (2021), we choose Bunny as our target shape and reg-
ularly sampled 24 synthetic light directions on a hemisphere
with the elevation angle larger than 45◦. The light spectra
of the LEDs are narrow-band with the central wavelengths
distributed evenly in the range between 400 ∼ 750 [nm].

To render the reflectance with SRT III, we choose a
measured spectral BRDF “paper_yellow” Dupuy and Jakob
(2018), whose appearance is visualized under a natural illu-
mination in Fig. 3. As shown in the middle row of the figure,

Fig. 4 Synthetic rendering for the SRT IV surface. The spectral
reflectance contains 4 materials as labeled by the material distribution
mask. The material appearances are visualized under natural illumina-
tion Dupuy and Jakob (2018)

we plot part of the spectral reflectance curves R(λ) of the
material under varying groups of surface normals and light
directions. It is clear that most reflectance curves can be
approximated by scaling the thick yellow curve labeled as
chromaticity C(λ), except for a few curves. Therefore, sur-
faces rendered with “paper_yellow” roughly have a uniform
chromaticity but spatially-varying albedos (SRT III). Fol-
lowing the above rendering setting, we generate a synthetic
multispectral image with 24 channels. The observations
under LEDs 1, 11, and 23 are visualized in the bottom row.

To render the reflectancewith SRT IV,we select 4 different
measured spectral BRDFs as shown in Fig. 4. The material
distribution labels in the left-top indicate which BRDF to be
applied to the regions on the Bunny surface. We render a
synthetic multispectral image under the 24 lights and visual-
ize it by concatenating the spectral channels illuminated by
LEDs 1, 11, and 23, as shown at the left-bottom of the figure.
Baselines As the baseline of the experiments, we selected
two state-of-the-art MPS methods: CS16 Chakrabarti and
Sunkavalli (2016) and OS18 Ozawa et al. (2018), where we
implemented OS18 Ozawa et al. (2018) and used released
code of CS16 Chakrabarti and Sunkavalli (2016) for evalua-
tion. Since both methods take a 3-channel (i.e., RGB) image
as input, we selected 3 out of 24 spectral observations to
mimic the 3-channel input image, as shown in Fig. 3. To ver-
ify the MLC, we tested our method for SRT III surfaces by
assigning the spectral channels recording the observations
under LEDs 1, 11, 21, and 23, which cover the observations
used in OS18 Ozawa et al. (2018) and CS16 Chakrabarti
and Sunkavalli (2016) for comparison. The number of piece-
wise constant chromaticities need to be set manually in CS16
Chakrabarti and Sunkavalli (2016). To make a fair com-
parison, we set the number of chromaticities to be 1 and
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Fig. 5 Surface normal estimation results for an SRT III surface shown
in Fig. 3

evaluate their method, OursIII, and the SRT II module of
OS18 Ozawa et al. (2018) in the experiments of SRT II and
III surfaces. When making comparisons on SRT IV surfaces,
we use the default number of chromaticity clusters to 100
in CS16 Chakrabarti and Sunkavalli (2016), and compare it
with OursIV and the SRT IV module of OS18 Ozawa et al.
(2018). Besides, in the synthetic experiments, we remove the
materials used in the test data from the spectral reflectance
database when extracting the bases for OursIV.

In the following,OursIII andOursIV are givenobservations
under all 24 lights by default. OursIII( f4) denotes ourmethod
for SRT III surfaces under MLC.

5.2 Surface Normal Estimation Under SRT III

Using the ground-truth surface normal, we evaluated surface
normal estimation accuracy by mean angular errors (MAE)
in degree. Figure 5 shows the results of surface normal esti-
mation for a synthetic SRT III surface. OursIII achieves the
smallest angular error compared to the other methods. The
estimation errors of OS18 Ozawa et al. (2018) and CS16
Chakrabarti and Sunkavalli (2016) are mainly caused by
their SRT II assumption and shadows. Also, the local poly-
nomial shape regularization used in CS16 Chakrabarti and
Sunkavalli (2016) additionally brings in errors in regions
with large surface normal variations. OursIII( f4) underMLC
is less accurate than OursIII due to the influence of shad-
ows. However, compared with OS18 Ozawa et al. (2018)
and CS16 Chakrabarti and Sunkavalli (2016), OursIII( f4)
achieves higher accuracy with only one additional spectral
observation appended to the input. This result demonstrates
the effectiveness of our method on SRT III surfaces. In this
setting, OursIV is less accurate compared to OursIII due to its
flexible representation power for this restricted setting.

5.3 Surface Normal Estimation Under SRT IV

Figure 6 shows the surface normal estimation results of a
surface with spatially-varying spectral reflectance (SRT IV).
OursIV can handle spatially-varying chromaticities and albe-

Fig. 6 Surface normal estimation comparison on the SRT IV surface
shown in Fig. 4

dos, therefore producing more accurate surface normal
recovery compared to OursIII that assumes the uniform chro-
maticity. Compared to OS18 Ozawa et al. (2018) and CS16
Chakrabarti and Sunkavalli (2016), OursIV obtains the small-
est angular error since we do not assume piece-wise constant
spectral reflectances and require no reflectance clustering.
From the error map shown in Fig. 6, the error distribution
of OursIV is more uniform and has less correlation to the
material distribution compared to the other methods. This
result shows the strength ofOursIV on surfaceswith spatially-
varying reflectances.

6 Real-World Experiment

To assess the effectiveness of the proposed methods, we built
a multispectral photometric stereo setup to conduct experi-
ments on real data. To verify the applicability of our methods
on e-Heritage, we choose reliefs and statues shown in Figs. 8
and 9 with diverse spectral reflectances.

6.1 Hardware Setup

Figure 1 (left) shows our multispectral photometric stereo
setup, lighting direction and light spectra distributions. Our
setup consists of 12 narrow-band spectral light sources
and a monochromatic camera (FLIR Blackfly S). The light
sources are fixed on a metal frame rig and distributed uni-
formly around the camera’s optical axis to avoid biased
light distributions. We calibrated the light directions with a
monochromaticmirror ball following themethod by Shi et al.
(2019). The central wavelength of our spectral light sources
uniformly spans in the range of 400 ∼ 750 [nm], and they
aremeasured by a spectrometer Sekonic C-800. To verify our
method without the influence of crosstalk across wavelength
channels, we captured multiple images with a monochro-
matic camera by turning on each spectral light source one
after another. Spectral observations under LEDs 2, 4, and 10
with the central wavelength 450nm, 550nm, and 650nm are
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Fig. 7 Ground-truth surface normal, chromaticity, and albedo of three
real objects:Head- relief, Love- relief andBuddha- relief, where
the chromaticity is visualized by mapping 450 nm, 550 nm and 650 nm
responses toBGRcolor channels, respectively. The spectral reflectances

for the three reliefs can be categorized as SRT II to IV from top to bot-
tom, as seen by their centralized albedo histograms and the distributions
of the chromaticities projected to the 2D space via MDS Cox and Cox
(2008) (Color figure online)

selected to mimic the RGB input for existing 3-channel MPS
methods. We used 4 spectral observations under the illumi-
nation of LEDs 2, 4, 9, and 11 to verify the MLC of our
method for SRT III surfaces (OursIII).

To obtain the baseline surface normal (we call it the
ground-truth (GT) surface normal hereafter), we addition-
ally put an LED board that contains 256 white light sources
sharing the same spectrum, in a similar manner to CS16
Chakrabarti and Sunkavalli (2016). The GT surface normal
is estimated using a conventional Lambertian least-squares
photometric stereoWoodham (1980), and we use it for quan-
titatively assessing the MPS results.
Spectral calibration For our method for SRT IV surfaces
(OursIV), light sources’ spectra E1, . . . , E f and camera
spectral sensitivity S1, . . . , S f need to be calibrated in the
form of a vector of their products e = [E1(λ1)S1(λ1), · · · ,

E f (λ f )S f (λ f )]�. For the calibration, we use a MacBeth
ColorChecker board McCamy et al. (1976) consisting of 24
patches of uniform spectral reflectances R1, . . . , R24. Based
on the image formation model of Eq. (14), the ratio of the
vector e’s elements at neighboring spectral channels follows

e j+1

e j
= m j+1

m j

R(λ j )

R(λ j+1)

l�j n
l�j+1n

. (21)

For a scene point on the ColorChecker board, the spec-

tral reflectance ratio
R(λ j )

R(λ j+1)
under different wavelengths is

known from measured spectral reflectance curves Moham-

madi et al. (2005). The surface normal n of the ColorChecker
board can be estimated by the detected image corners
and camera intrinsics Zhang (2000). With calibrated light-
ing directions L and the multispectral observations m, we
estimate the elements of e up to scale by solving the homoge-
neous system of equations derived fromEq. (21) using all the
24monochromatic patches of the ColorChecker board. Since
we can only recover e up to scale, the spectral reflectance
estimation by OursIV naturally has a scale ambiguity, but
that does not influence the recovery of surface normals.

6.2 Real Data Setup

Based on our hardware setup, we capture a variety of objects
for real data experiments. Prior to the experiment, we exam-
ine the SRTs of the scenes by analyzing their spectral
reflectance distributions, as shown in Fig. 7. With calibrated
e, known light directions L and the ground-truth surface nor-
mal n, we compute the spectral reflectance r based on the
spectral image formation model shown in Eq. (14). The esti-
mated reflectance r is further decomposed into the albedo
and chromaticity by taking its norm as albedo and its direc-
tion as chromaticity as depicted in Fig. 7 as GT albedo and
GT chromaticity, respectively. The chromaticity is visualized
by mapping the responses at 450 nm, 550 nm, and 650 nm
to BGR color channels, respectively.

The last two columns of Fig. 7 show the histogram
of centralized albedo by subtracting the mean value, and
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Fig. 8 Surface normal estimation results for real-world objects with SRT II (Head- relief) and SRT III (Love- relief and Moai statue)

low-dimensional visualization of chromaticity distributions
via multidimensional scaling (MDS) Cox and Cox (2008),
respectively. The Head- relief has a relatively uniform
albedo compared to the Love- relief and Buddha- relief
since its standard derivation σ of albedos is smaller than the
other two. This is also consistent with the image observations
shown in the first column. On the other hand, the chro-
maticity distribution ofBuddha- relief ismore diverse than
those of Head- relief and Love- relief, which indicates
the spatially-varying chromaticity distribution in Buddha-
relief. As such, the spectral reflectances of the three real
reliefs roughly follow SRT II, III, and IV.

We also observed that piece-wise constant spectral
reflectance assumption used in Ozawa et al. (2018),
Chakrabarti andSunkavalli (2016),Anderson et al. (2011b) is
relatively unpractical to approximate the general SRT IV sur-
faces.AlthoughBuddha- relief seems to contain only three
piece-wise constant chromaticity regions from the image
observation under natural illumination, it actually has diverse
chromaticities, making the monochromatic region cluster-
ing Ozawa et al. (2018); Chakrabarti and Sunkavalli (2016);
Anderson et al. (2011b) unstable.
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Fig. 9 Surface normal estimation results for surfaces with spatially-varying chromaticities and albedos (SRT IV): Buddha- relief, Lion, and
Puppy
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Fig. 10 Robustness against specular highlights. Top two rows show
7 sampled spectral images and their shadings of a cow surface Shi et
al. (2019) covered by material “cc_green_malachite” Dupuy and Jakob
(2018), where yellow and green boxes indicates regions with specular

highlights and shadows. Surface normal estimates from existing meth-
ods and ours, the corresponding angular error distributions, and the
mean angular error values are shown in the bottom two rows

6.3 Surface Normal Estimation Results on Real Data

Surface normal estimation under SRT III As shown in
Fig. 8, we compare our methods with baselines on three
objects: Head- relief, Love- relief, and Moai statue.
The Head- relief scene follows SRT II, and Love- relief
andMoai statue follow SRT III. Since both existing meth-
ods Ozawa et al. (2018); Chakrabarti and Sunkavalli (2016)
and our methods (OursIII, OursIV) can handle SRT II, the
accuracy of recovered surface normals are comparable.

We observed large normal estimation errors by CS16
Chakrabarti and Sunkavalli (2016) and OS18 Ozawa et al.
(2018) on the Love- relief and the Moai statue, since
the spatially-varying albedos violate the assumptions made
in their methods. The error maps of CS16 Chakrabarti and
Sunkavalli (2016) and OS18 Ozawa et al. (2018) on the
Love- relief highlight the error regions due to the non-
uniform albedo distribution. On the other hand, OursIII yields
more accurate surface normal estimation results, which ver-
ifies our method’s strength on SRT III surfaces. Under
minimal solvable lighting conditions (MLC), the estimation
errors of OursIII( f4) increase compared to using all the 12
lights (OursIII( f12), which is mainly caused by the shadows
at the concave regions.

OursIV provides comparable results with OursIII on both
SRT II and III. However, OursIV requires the spectral cal-
ibration of both lights and camera as well as the spectral
reflectance bases. Therefore, it is preferred to apply OursIII
for monochromatic surfaces.
Surface normal estimation under SRT IV Figure 9 shows
surface normal estimation results of three SRT IV surfaces:
Buddha- relief, Lion, and Puppy. CS16 Chakrabarti and
Sunkavalli (2016) and OS18 Ozawa et al. (2018) assume the
surface contains a limited number of regions with uniform
spectral reflectances. However, based on the distribution of
albedos and chromaticities shown in Fig. 7, such assump-
tion is invalid in the Buddha- relief. Also, it is difficult
to infer the number of distinct albedos and chromaticities in
the Lion and Puppy from the image observation. Therefore,
both methods results in inaccurate surface normal estimates
for these scenes.

OursIII cannot handle spatially-varying chromaticities and
outputs large errors on both scenes as well. On the other
hand, the proposed method OursIV achieves accurate results
because it explicitly accounts for the SRT IV surfaces. From
the error map, it is seen that inaccurate surface normal esti-
mates are mainly located at the regions where shadows are
observed, and the surface normal estimation accuracy is not
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Fig. 11 Shape estimation results of two shiny objects, where Dog is
monochromatic and Shell has spatially-varying chromaticities. Even
rows show estimated surface normals. Odd rows provide reconstructed

surfaces integrated from the surface normal maps. Closed-up views
show the artifacts caused by the specular highlights

influenced by the spatially-varying reflectances in the results
of OursIV.

7 Discussion

In this section, we discuss our method’s robustness against
outliers and applicability to dynamic scene reconstruction.

7.1 Robustness Against Outliers

Although previous methods Chakrabarti and Sunkavalli
(2016); Ozawa et al. (2018) provide a unique solution for
SRT II without external priors, their input is restricted to
3-channel RGB image and cannot take more bands (see
“Appendix”). On the other hand, our methods for both
SRT III and SRT IV surfaces can handlemultispectral images
with 4 or more spectral channels. This capability of taking
many spectral channels allows us to use a robust estimation
approach in MPS, in a similar spirit to four or more source

photometric stereo methods Barsky and Petrou (2003); Wu
et al. (2010); Shi et al. (2014), to make our method robust
against shadows and specular highlights. Intuitively, having
more spectral channels allows us to discard some of them
that are corrupted by outliers.

To demonstrate this capability, we use a per-pixel thresh-
olding strategy used in Shi et al. (2019), Shi et al. (2014)
to discard outliers from the input observations. Specifically,
for each pixel, we sort the observations under varying lights
based on the brightness, and discard shadows and specu-
lar highlights as outliers that correspond to dark and bright
observations (top and bottom 25%). The surface normal and
the spectral reflectance can then be estimated using the inlier
image observations. In the following, we denote the robust
versions of our SRT III method as “OursIII(r),” and our
SRT IV method as “OursIV(r).”

In Fig. 10, we test the robust estimation methods in com-
parison to our non-robust versions and previous methods on
a cow scene Shi et al. (2019) with its reflectance assigned
by a measured spectral BRDF “cc_green_malachite” Dupuy
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Fig. 12 Dynamic shape recovery of a deforming surface with SRT IV.
The first row shows the image observations of a multispectral video
frame at varying bands. The last three rowsprovide the estimated surface

normals and integrated surface visualizations at varying viewpoints.
Close-up views highlight surface shape details

and Jakob (2018). With a few spectral channels (3 spectral
bands for CS16Chakrabarti and Sunkavalli (2016) andOS18
Ozawa et al. (2018), 4 spectral bands for OursIII( f4) and
OursIV( f4)) in the multispectral image input, recovered sur-
face normals are less accurate based on the mean angular
error values. From the error distributions, inaccurate surface
normal estimates are closely related to the distributions of
specular highlights and shadows, as indicated by the yel-
low and green boxes. By adding more spectral bands, the
recovered surface normals from our methods (OursIII( f24),
OursIV( f24)) are improved. The accuracy of our method
for SRT IV is relatively better near the shadow areas even
without the robust strategy, since attached shadows are inher-
ently embedded in the spectral BRDF database Dupuy and
Jakob (2018), from which we extract the BRDF bases. How-
ever, both OursIII( f24) and OursIV( f24) still suffer from the
influence of specular highlights. By further removing spec-
ularities and shadows as outliers using the robust estimation
strategy, more accurate surface normals are estimated by
OursIII(r) and OursIV(r), illustrating the benefit brought by
our method’s capability of taking arbitrarily many channels
as input.

We further evaluate our robust estimation method on real
objectswith shiny surfaces:Dog andShell shown inFig. 11.
Since the reflectances of the two objects significantly deviate
from the Lambertian reflectance, we cannot trust the surface

normal estimated from conventional least-squares photomet-
ric stereo Woodham (1980) as the ground truth. Therefore,
instead of comparing the surface normal maps, we applied
a surface normal integration method Xie et al. (2014) to
reconstruct 3D shapes from estimated surface normals for
a qualitative comparison.

As shown in Fig. 11, the recovered surface shape from
few spectral image observations is heavily influenced by
specular highlights. We also observe shape distortions at the
middle region of Shell in the result of OS18 Ozawa et al.
(2018) and CS16 Chakrabarti and Sunkavalli (2016). These
are caused by the inaccurate chromaticity clustering for
the spatially-varying reflectances. By adding more spectral
bands under varying lighting directions as input (OursIII( f12)
and OursIV( f12)), shape recovery becomes more plausible.
However, artifacts caused by specularities still remain. By
further discarding outlier of specular highlights, more con-
vincing shape reconstruction results are obtained from the
robust version of our method (OursIII(r) and OursIV(r)).

7.2 Dynamic Shape Recovery

We further test the applicability of our method to dynamic
scenes using an industrial multispectral camera IMEC-SM-
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VIS2, with which image observations at different spectral
bands are obtained at once in one shot. As shown in Fig. 12,
we estimate the dynamic shape of a deformable SRT IV sur-
face in motion3 and compare the result with OS18 Ozawa
et al. (2018) and CS16 Chakrabarti and Sunkavalli (2016).
We choose four pairs of spectral lights and camera channels
having the strongest response at 480nm, 520nm, 590nm, and
635nm to obtain the multispectral input. Three out of the
four channels at 480nm, 520nm, and 635nm are used as the
input for OS18 Ozawa et al. (2018) and CS16 Chakrabarti
and Sunkavalli (2016). The recovered shapes (cushion) of
OS18 Ozawa et al. (2018), CS16 Chakrabarti and Sunkavalli
(2016) and OursIII are relatively flat due to the influence of
spatially-varying reflectances, as shown in the side view of
integrated surfaces. Also, the shape details are lost in CS16
Chakrabarti and Sunkavalli (2016) due to the polynomial
local shape constraint, as highlighted in the close-up views.
On the other hand, the surface normal estimates of OursIV
are unaffected by the spatially-varying spectral reflectance.
As a result, OursIV achieves more reasonable dynamic shape
recovery results on the deformable SRT IV surface.

The dynamic shape recovery fromourmethod has a poten-
tial to capture 3D movement and gesture of the human body,
whichmay benefit the preservation of intangible cultural her-
itages such as traditional dances.

8 Conclusion

In this paper, we show that MPS can be turned into a
well-posed problem and provide unique solutions for sur-
face normals under two general spectral reflectance types.
Specifically, if the surface has uniform chromaticity but
spatially-varying albedos (SRT III), we show that sur-
face normal can be uniquely determined from 4+ spectral
observations without introducing external priors. By further
calibrating the light spectra and the camera spectral sensi-
tivity, we present a closed-form solution of surface normal
and spectral reflectance for surfaces with spatially-varying
chromaticities and albedos (SRT IV), using a low-rank basis
representation of the spectral reflectance. Since our methods
can take more than 4 spectral channels, our method can rely
on outlier rejection strategies in the MPS setting to effec-
tively remove shadows and specular highlights. From the
experiments on real objects containing statues and reliefs,
we demonstrate the potential applicability of our method to
e-Heritage.

2 https://www.imec-int.com/en. Retrieved Mar. 11, 2021.
3 Please refer to the supplementary video.

8.1 FutureWork

To obtain a surface shape from a single-shot image, we
encode image observations under different illuminations at
different spectral bands. Compared to the setting in CPS,
this setting requires a negligible crosstalk effect Chakrabarti
and Sunkavalli (2016); Ozawa et al. (2018), i.e., each spec-
tral channel only records the image measurement under the
corresponding spectral light. From a practical viewpoint, it is
wanted to dealwith the non-negligible crosstalk effect, which
alleviates the requirement of the hardware setting in MPS.
OurMPSmethod is basedonLambertian reflectance assump-
tion and treats specular highlights as outliers. It is interesting
to explore the MPS solution method under general non-
Lambertian spectral reflectances. Due to the inaccessibility
to actual heritage objects, we instead verified our method’s
applicability to e-Heritage by real-world objects (Buddha
relief, lion and Moai statues) that have similar appearances
to the heritage objects. We are interested in applying our
method to real heritages as soon as we have a chance in the
future.
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Appendix: Limitation of 3-BandMultispectral
Photometric StereoMethods

As described in Sec. 2, existing methods Ozawa et al.
(2018); Chakrabarti and Sunkavalli (2016) provide a unique
solution for the monochromatic surface with a uniform
albedo (SRT II) using 3-channel RGB images. These meth-
ods are limited to 3 channels, and it is not straightforward
to extend them to take more channels as input. However,
the capability of taking more channels is favorable because
it allows us to use robust estimation techniques, effectively
neglecting outliers such as shadows and specular reflections.
Here we show the reason why the existing methods are lim-
ited to 3-channel input.

Without loss of generality, we fix the common albedo ρ̃

for all the scene points on SRT II surface to be 1 and define
a diagonal matrix Q as Q = diag(q). Following Eq. (4), the
image observation for a pixel can be represented as

m = QLn. (22)

Defining Moore-Penrose inverse matrix K ∈ R
3× f as K =

(QL)†, the surface normal is then calculated by

n = Km. (23)
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The existing methods Ozawa et al. (2018); Chakrabarti and
Sunkavalli (2016) use a unit norm constraint about a surface
normal as

n�n = m�K�Km = 1. (24)

As shown in Eq. (25), by defining E = K�K ∈ R
f× f , each

one of the p scene points provides an equation about E as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m�
0 Em0 = 1,

m�
1 Em1 = 1,

...

m�
pEmp = 1.

(25)

Defining m ⊗ m = vec(mm�), we rewrite Eq. (25) in a
matrix form,

⎡
⎢⎢⎢⎣

m0 ⊗ m0

m1 ⊗ m1
...

mp ⊗ mp

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
G

[
vec(E)

]
︸ ︷︷ ︸

y

= 1, (26)

where ⊗ represents the Kronecker product, and H forms a
p × f 2 matrix. Since E ∈ R

f× f is symmetric, y only has
at most f ( f +1)

2 distinct elements. We extract the elements
of y that correspond to the upper triangle elements from E

as z ∈ R
f ( f +1)

2 and the corresponding columns from H as

Ĥ ∈ R
p× f ( f +1)

2 . Then we rewrite Eq. (26) as

Ĥz = 1. (27)

The necessary condition to obtain a unique approximate solu-
tion for z is Ĥ to have full-rank, i.e., assuming p ≥ f ( f +1),

rank(Ĥ) = f ( f + 1)

2
. (28)

On the other hand, since the image observations for all the
scene points under Lambertian reflectance has the rank of 3,
we can represent any irradiance measurements with three
independent basis {e1, e2, e3 ∈ R

f }, i.e.,

m = c1e1 + c2e2 + c3e3. (29)

With this expression, we can represent m ⊗ m as

m ⊗ m = (c1e1 + c2e2 + c3e3) ⊗ (c1e1 + c2e2 + c3e3)

= c21(e1 ⊗ e1) + 2c1c2(e1 ⊗ e2) + c22(e2 ⊗ e2)

+ 2c1c3(e1 ⊗ e3) + 2c2c3(e2 ⊗ e3) + c23(e3 ⊗ e3).

(30)

It indicates that m ⊗ m can be represented by at most 6
independent f -dimensional basis vectors ei ⊗e j . SinceH in
Eq. (26) is a stack of m ⊗ m, the rank of H should satisfy

rank(H) ≤ 6. (31)

Together with the necessary condition in Eq. (28) for solving
Eq. (27), it leads to the following inequality,

f ( f + 1)

2
= rank(Ĥ) ≤ rank(H) ≤ 6, (32)

which indicates that the number of spectral channels f of the
input multispectral image should be no more than 3. There-
fore, these existing method Ozawa et al. (2018); Chakrabarti
and Sunkavalli (2016) cannot be adapted to multispectral
images with more than three bands. On the other hand, our
method is free from this restriction.
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