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Abstract
Multi-orientation scene text detection has recently gained significant research attention. Previous methods directly predict
words or text lines, typically by using quadrilateral shapes. However, many of these methods neglect the significance of
consistent labeling, which is important for maintaining a stable training process, especially when it comprises a large amount
of data. Here we solve this problem by proposing a new method, Orderless Box Discretization (OBD), which first discretizes
the quadrilateral box into several key edges containing all potential horizontal and vertical positions. To decode accurate
vertex positions, a simple yet effective matching procedure is proposed for reconstructing the quadrilateral bounding boxes.
Our method solves the ambiguity issue, which has a significant impact on the learning process. Extensive ablation studies are
conducted to validate the effectiveness of our proposed method quantitatively. More importantly, based on OBD, we provide a
detailed analysis of the impact of a collection of refinements, which may inspire others to build state-of-the-art text detectors.
Combining bothOBDand these useful refinements, we achieve state-of-the-art performance on various benchmarks, including
ICDAR 2015 andMLT. Our method also won the first place in the text detection task at the recent ICDAR2019 Robust Reading
Challenge for Reading Chinese Text on Signboards, further demonstrating its superior performance. The code is available at
https://git.io/TextDet.

Keywords Scene text · Text detection · Orderless box discretization

1 Introduction

Scene text detection in arbitrary orientations has garnered
significant attention in computer vision because of its numer-
ous potential applications, including augmented reality and
robot navigation. Scene text detection is also the foundation
and prerequisite for text recognition, which provides a reli-
able and straightforward approach to scene understanding.
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However, this challenge remains largely unsolved because
text instances in natural images are often ofmulti-orientation,
low-quality representations, having perspective distortions of
various sizes and scales.

In the literature, several methods (Jaderberg et al. 2016;
Neumann and Matas 2012, 2015a, ?; Tian et al. 2015, 2016)
have been developed for solving horizontal scene text detec-
tion. However, scene text in the wild is typically presented
in a multi-orientation form, attracting a few recent studies
(Zhong et al. 2016; Liu and Jin 2017; Shi et al. 2017a; Xue
et al. 2018; Xie et al. 2019a; Liu et al. 2019a; Liao et al.
2017, 2018a, b; Liu et al. 2018; He et al. 2017a, b) that
can be roughly categorized into two groups: segmentation
and regression-basedmethods. Segmentation-basedmethods
often employ networks, such as fully convolution networks
(FCNs) (Long et al. 2015) and Mask R-CNN (He et al.
2017c). Segmentation-basedmethods have become themain-
stream approach, because they are sufficiently robust inmany
complicated scenarios. One limitation is that segmented text
instances often require additional post-processing steps. For
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Fig. 1 Comparison of a previous methods and b our proposed OBD.
Previous methods directly regress the vertices, which can often be
adversely affected by inconsistent labeling of training data, resulting in
unstable training and unsatisfactory performances. Our method tackles
this problem and removes the ambiguity by discretizing a quadrilateral
bounding box that is orderless

example, the segmentation results obtained byMask R-CNN
must be fitted into rotated quadrilateral bounding boxes,
which necessitates a number of heuristic settings and geo-
metric assumptions.

On the other hand, Regression-based methods (Zhu and
Du 2018; Liu and Jin 2017; Xue et al. 2019; Liao et al.
2018b; Ma et al. 2018; Liao et al. 2018a; He et al. 2018a;
Zhou et al. 2017; He et al. 2017b) are comparatively simple.
For multi-orientation text, explicitly predicting the vertices
obtains the four boundaries of the text instances. Thus, no
additional grouping procedure is required. Although these
methods can directly predict vertex positions, the signifi-
cance of regression without facing inconsistent labeling has
rarely been discussed. Consider the efficient and accurate
scene text (EAST) detector (Zhou et al. 2017) method as
an example. In EAST, each feature within a text instance
is responsible for regressing the corresponding quadrilateral
bounding box by predicting four distances to the boundaries
and a rotation angle from the viewpoint. A pre-processing
step to assign regression targets is required. As shown in Fig.
1, the regression targets can be altered drastically, even with
a minor rotation. Such ambiguities lead to an unstable train-
ing process, which considerably degrades the performance.
Our experiments indicate that the accuracy of EAST (Zhou
et al. 2017) deteriorates sharply (by more than 10%) when
equipped with a random rotation technique for data augmen-
tation, which is supposed to boost the performance.

To address this problem, we propose a novel method,
(i.e., Orderless Box Discretization (OBD)), which consists
of two modules: Key Edges Detection and Matching-Type
Learning. The fundamental idea is to employ invariant rep-
resentations (e.g., minimum x , minimum y, maximum x ,
maximum y, mean center point, and intersecting point of
the diagonals) that are irrelevant to the label sequence to
deduce the bounding box coordinates inversely. To simplify
the parameterization, the OBD method first locates all dis-
cretized horizontal and vertical edges that contain a vertex.

Then, a sequence labeling matching type is learned to deter-
mine the best-fit quadrilateral. By avoiding the ambiguity
of the training targets, our approach successfully improves
performance when a large amount of rotated data is involved.

We complement our method with a few critical tech-
nical innovations that further enhance performance. We
conduct extensive experiments and ablation studies based
on our method to explore the influence of six relevant issues:
(namely, data arrangement, pre-processing, backbone, pro-
posal generation, prediction head, and post-processing) to
determine the significance of the various components. We
thus provide useful tips for designing state-of-the-art text
detectors. Leveraging OBD and these useful refinements,
we won first place in the task of Text Line Detection at the
ICDAR2019 Robust Reading Challenge on Reading Chinese
Text on Signboards.

Our main contributions are summarized as follows.

1. Our method addresses the inconsistent labeling issue of
regression-based methods, which is of great importance
for achieving good detection accuracy.

2. The flexibility of our proposed method allows us to make
use of several key refinements that are critical to further
boosting accuracy. Our method achieves state-of-the-art
performance on various scene text detection benchmarks,
including ICDAR2015 (Karatzas et al. 2015) and MLT
(Nayef et al. 2017).Additionally, ourmethodwon thefirst
place in the Text Detection task of the recent ICDAR2019
Robust Reading Challenge on Reading Chinese Text on
Signboard. Based on the detection results, we integrate
advanced recognition models to achieve state-of-the-art
results.

3. Our method can be generalized to ship detection in aerial
images without minimum modification. The significant
improvement in terms of the TIoU-Hmean metric further
demonstrates the robustness of our approach.

2 RelatedWork

Recently, the emergence of new datasets (Ch’ng et al.
2019; Liu et al. 2019b; Sun et al. 2019; Chng et al. 2019)
has propelled arbitrarily shaped scene text detection to main-
stream research. Multi-orientation scene text detection is
one of its most important representations, because multi-
orientation scene text comprises most of the text found in
real-world visual scenes. The computer-driven detection task
remains complex, and there is much room for improvement
with regards to decoding multi-orientation text from pic-
tures. Hence, detection benchmarks, such as theMLT (Nayef
et al. 2017, 2019) dataset, are leveraged to refine the pro-
cess. However, using quadrilateral bounding boxes can result
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Fig. 2 Previous solutions can be negatively affected by the inconsistent labeling issue

in some problems for both current segmentation and non-
segmentation-based methods.

Segmentation-based Segmentation-basedmethods (Zhang
et al. 2016; Long et al. 2015;He et al. 2017c;Deng et al. 2018;
Lyu et al. 2018a; Wu and Natarajan 2017; Wang et al. 2019a;
He et al. 2016) usually require additional steps to group pixels
into polygons.

Non-segmentation-based Non-segmentation based meth-
ods (Zhu and Du 2018; Xue et al. 2019; Liao et al. 2018b;
Ma et al. 2018; Liao et al. 2018a; He et al. 2018a; Liu and Jin
2017; Zhou et al. 2017; He et al. 2017b) can directly learn the
exact bounding box for localizing the text instances, but they
are easily affected by the label sequence. Usually, suchmeth-
ods use a typical sorting method of the coordinate sequence
to alleviate this issue. However, the solutions are not robust
because the entire sequence may change even with a small
amount of interference. To clarify this, we discuss some of
the previous solutions as follows:

– Given an annotation having coordinates of four points,
a common sorting method of the coordinate sequence
to alleviate this issue is to choose the point having the
minimum x as the first point, then deciding the rest of
the points in a clockwise manner. However, this proto-
col is not robust. Considering the horizontal rectangle as
an example, using this protocol, let us decide that the
first point is the top-left point. Thus, the fourth point is
the bottom-left point. Suppose that the bottom-left point
moves leftward one pixel (which is possible because of
the inconsistent labeling). In that case, the original fourth
point becomes the first point, and the whole sequence
changes, resulting in very unstable learning.

– As shown in Fig. 2a, DMPNet (Liu and Jin 2017) pro-
posed a protocol that uses the slope to determine the
sequence. However, if the diagonal is vertical, leftward,
or rightward, change of a pixel can result in a completely
different sequence.

– As shown in Fig. 2b, given four points, Textboxes++
(Liao et al. 2018a) uses the distances between the
annotation points and the vertices of the circumscribed

horizontal rectangle to determine the sequence.However,
if q1 and q4 have the same distance to p1, and one pixel
rotation can completely change the whole sequence.

– As shown in Fig. 2c, QRN (He et al. 2018a) first finds
the mean center point of the four given points then con-
structs a Cartesian coordinate system. Using the positive
x axis, QRN ranks the intersection angles of the four
points and chooses the point having the minimum angle
as the first. However, if the first point is in the positive x
axis, one pixel change upward or downward will result
in an entirely different sequence.

Although these methods (Liu and Jin 2017; Liao et al. 2018a;
He et al. 2018a) can alleviate confusion to some extent, the
results can be significantly undermined when using pseudo
samples having large degrees of rotation.

Unlike these methods, our method is the first to directly
produce a compact quadrilateral bounding box without com-
plex post-processing. Moreover, it can completely avoid
inconsistent labeling issues.

3 Our Method

Our proposed scene text detection system consists of three
core components: an Orderless Box Discretization (OBD)
block, amatching-type learning (MTL) block, and re-scoring
and post-processing (RPP) block. Figure 3 illustrates the
overall pipeline of the proposed framework, and more details
are presented in the following sections.

3.1 Orderless Box Discretization

The purpose of multi-orientation scene text detection is to
accurately localize the textual content by generating outputs
in the form of rectangular or quadrilateral bounding boxes.
Compared with rectangular annotations, quadrilateral labels
demonstrate an increased capability to cover effective text
regions, especially for rotated texts. However, as discussed
in Sect. 2, simply replacing rectangular bounding boxes
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Fig. 3 Overview of the proposed detection framework

with quadrilateral annotations can introduce inconsistency
because of the sensitivity of the non-segmentation-based
methods to label sequences. As shown in Fig. 1, the detec-
tion model might fail to obtain accurate features for the
corresponding points when facing small disturbances. One
possible reason behind this is that the neural-network-based
regressor for bounding box prediction is essentially a non-
linear continuous function, which means that each input is
only mapped to one output. Thus a non-function or a func-
tion with a steep gradient cannot be effectively fitted. In our
case, a small disturbance may completely change the whole
sequence of the vertex and thus a similar input may result
in completely different output as well as a steep gradient.
Therefore, instead of predicting sequence-sensitive distances
or coordinates, an OBD block is proposed to discretize the
quadrilateral box into eight Key Edges (KE) comprising
order-irrelevant points; i.e., minimum x(xmin) and y(ymin)),
the second-smallest x(x2) and y(y2), the second-largest
x(x3) and y(y3), and the maximum x(xmax ) and y(ymax )

(see Fig. 1). We use x-KEs and y-KEs in the following sec-
tions to represent [xmin , x2, x3, xmax ] and [ymin , y2, y3, ymax ],
respectively.

Specifically, the proposed approach is based on the widely
used generic object detection framework, Mask R-CNN (He
et al. 2017c). As shown in Fig. 4, the proposals processed by
RoIAlign are fed into the OBD block with the pooling size of
14× 14, where the feature maps are forwarded through four
convolutional layers with 256 output channels. The output
features are then upsampled by a 2× deconvolutional layer
and a 2× bilinear upscaling layers. Thus, the output size of
the feature maps Fout is M×M , where M is 56 in our imple-
mentation. Furthermore, two convolution kernels shaped as
1 × M and M × 1 with six channels are employed to shrink
the horizontal and vertical features for the x-KEs and y-KEs,
respectively. Finally, the OBD model is trained by minimiz-
ing the cross-entropy loss Lke over anM-way softmaxoutput,
where the corresponding positions of the ground-truth KEs
are assigned to each output channel.

In practice, OBD does not directly learn the x-KEs and
y-KEs because of the restriction of the region of interest
(RoI). Specifically, the original Mask R-CNN framework

Fig. 4 Illustration of the OBD and MTL blocks

limits the prediction inside the RoI areas. Thus, if the regres-
sion bounding box is not accurate, the missing pixels outside
of the bounding box will not to be restored. To solve this
problem, the x-KEs and y-KEs are encoded in the form of
“half lines” during training. Suppose we have x-KEs, xi ∈
[xmin, x2, x3, xmax ], and y-KEs, yi ∈ [ymin, y2, y3, ymax ].
Then, the “half lines” are defined as follows:

xihal f = xi + xmean

2
,

yihal f = yi + ymean

2
, (1)

where xmean and ymean represent the value of the mean cen-
tral point of the ground-truth bounding box for the x and
y axes, respectively. By employing such a training strategy,
the proposed OBD block can break the RoI restriction (see
Fig. 5). Thus, it is more likely to produce accurate bounding
box because xhal f and yhal f fall into the area of the RoIs in
most cases, even if the border of the text instance is located
outside the RoIs.

Similar to Mask R-CNN, the overall detector is trained in
a multi-task manner. Thus, the loss function comprises four
terms:

L = Lcls + Lbox + Lmask + Lke, (2)
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Fig. 5 The proposed framework can break the restrictions of the RoIs.
The green solid quadrilateral and red dashed rectangular boxes represent
the predictions and proposals, respectively. (Color figure online)

Table 1 Ablation studies demonstrating the effectiveness of the pro-
posed method. The γ of RPP is set to 1.4 (best practice). The results on
this table also adoptMLT training data and data augmentation strategies
to help improve the final performance

Datasets Algorithms Hmean

ICDAR2015 Mask R-CNN baseline 83.5%

Baseline + OBD 85.9% (↑ 2.4%)

Baseline + OBD + RPP 86.5% (↑ 3.0%)

The bold value indicates the improvement gained by integrating the new
components

Table 2 Ablation studies for comparing the mask branch and KE
branch. The γ of RPP is set to 0.8 (best practice). Compared to Table
1, the results here are all tested in different branches of the same model
without any data augmentation

Datasets Algorithms Hmean

ICDAR2015 Mask branch 79.4%

KE branch without RPP 80.4% (↑ 1.0%)

KE branch with RPP 81.0% (↑ 1.6%)

The bold value indicates the improvement gained by integrating the new
components

where the first three terms, Lcls , Lbox and Lmask , follow the
same settings as presented in He et al. (2017c). Lke is the
cross-entropy loss, which is used for learning the Key Edges
prediction task. The authors made an interesting observation
in which the additional keypoint branch can harm the bound-
ing box detection performance (He et al. 2017c). However,
based on our experiments (see Tables 1 and 2), the proposed
OBD block is the key component that significantly boosts the
detection accuracy. There may be two reasons for this. First,
ours is different from the keypoint detection task, which has
to learn M2 classes against each other. Thus, the numbers
of competitive pixels in the OBD block is only M . Second,
for the keypoint detection task, neither one-hot point nor a
small circled area can be used to describe the target keypoint
accurately, while theKEs produced byOBDarewell defined.
Thus, ourmethodmay providemore accurate supervision for
training the network.

Fig. 6 Illustration of different matching types

3.2 Matching-Type Learning

It is noteworthy that the OBD block only learns to predict
the numerical values of eight KEs but is unable to predict
the connection between the x-KEs and y-KEs. Therefore, we
need to design a proper matching procedure to reconstruct
the quadrilateral bounding box from the KEs. Otherwise, the
incorrectmatching typemay lead to completely unreasonable
results (see Fig. 6).

As described in Sect. 3.1, there are four x-KEs and four
y-KEs outputted by the OBD block. Each x-KE should
match one of the y-KEs to construct a corner point, such
as (xmin, ymin), (x2, ymax ), and (xmax , y2). Then, all four
constructed corner points are assembled for the final predic-
tion, giving us the quadrilateral bounding box. It is important
to note that different orders of the corners would produce
different results. Hence, the total number of matching-types
between the x-KEs and y-KEs can be simply calculated by
A4
4 = 24. For example, the predictedmatching-type inFig. 6a

is [(xmin, y2), (x2, ymax ), (x3, ymin), (xmax , y3)]. Based on
this, a simple yet effective MTL module is proposed to learn
the connections between x-KEs and y-KEs. Specifically, as
shown in Fig. 4, the feature maps that are used for pre-
dicting the x-KEs and y-KEs are used for classifying the
matching-types. Specifically, the output feature of the decon-
volution layer is connected to a convolutional layer having an
M/2 × M/2 kernel size with 24 output channels. Thus, the
matching procedure is formed as a 24-category classification
task. In our method, the MTL head is trained by minimizing
the cross-entropy loss, and the experiments demonstrate that
the convergence speed is very fast.

3.3 Re-scoring and Post-processing

The fact that the detectors can sometimes output high con-
fidence scores for false positive samples is a long-standing
issue in the detection community for both generic objects
and text. One possible reason for this may be that the scoring
head used in most of the current literature is supervised by
the softmax loss, which is designed for classification but not
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Fig. 7 Different patterns of SOBD outputted by OBD block. a Is the
normal case while b–d are abnormal cases

for explicit localization. Moreover, the classification score
only considers whether the instance is foreground or back-
ground, and it shows less sensitivity to the compactness of
the bounding box.

Therefore, a confidence RPP block, is proposed to sup-
press unreasonable false positives. Specifically, RPP adopts
a policy similar to multiple expert systems to reduce the risk
of outputting high scores for negative samples. In RPP, an
OBD score SOBD is first calculated based on eight KEs (four
x-KEs and four y-KEs):

SOBD = 1

K

K∑

k=1

max
vk

f
(
vk

)
, (3)

where K = 8 is the number of KEs, vk is the output score
vector of the kth KE shown in (4), and f (vk) is defined to sum
up the peak value, vi , and its neighbors. As shown in Fig. 7a,
the distribution of SOBD demonstrates a one-peak pattern in
most cases. Nonetheless, the peak value is still significantly
lower than 1. Hence, we sum up four adjacent scores that are
near the peak value for each KE score to avoid a confidence
score that is too low.

vk = [v1, v2, . . . , vi−2, vi−1, vi , vi+1, vi+2︸ ︷︷ ︸
f (vk )=∑P=min(n,i+2)

p=max(i−2,1)(vp)

, . . . vn]. (4)

It is important to note that the number of adjacent values will
be less than four if the peak value is located at the head or

Fig. 8 Compared with the segmentation head, the proposed KE head
predicts more compact bounding boxes and shows a higher recall rate
for instances that were missed by segmentation. Colored quadrangles
are the final detection results, whereas white transparent areas are the
mask predictions grouped by theminimum area rectangle. (Color figure
online)

tail of the vector. Thus, only the existing neighbors should
be counted. Finally, the refined confidence can be obtained
by:

score = (2 − γ )Sbox + γ SOBD

2
, (5)

where 0 ≤ γ ≤ 2 is the weighting coefficient and Sbox is the
original softmax confidence for the bounding box. Because
both Sbox and SOBD are both between [0,1], the value of
score(�) is also between [0, 1]. Counting the SOBD into
the final score enables the proposed detector to draw lessons
from multiple agents (eight KE scores) while enjoying the
benefits of a tightness-aware confidence supervised by the
KE prediction task.

3.4 Discussion

It has been proven that the detection performance can be
often boosted with the multi-task learning framework. For
example, as shown in He et al. (2017c), simultaneously train-
ing a detection head with an instance segmentation head
can significantly improve the detection accuracy. Similarly,
a segmentation head is also employed in the proposed OBD
network to predict the area inside the bounding box, which
forces the model to regularize pixel-level features to enhance
both performance and robustness. However, some issues
associated with the segmentation head are highlighted in
Fig. 8. In (a), the segmentation mask can sometimes pro-
duce false positive pixels while the OBD prediction remains
correct. In (b), the segmentation head fails to maintain some
positive samples that have been successfully detected by the
OBD block. Therefore, compared with some segmentation-
based approaches that directly reconstruct the bounding box
by exploiting the segmentation mask, the MTL block can
learn geometric constraints to avoid false positives caused
by an inaccurate segmentation output. This also reduces the
heavy reliance on the segmentation task. Specifically, as
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shown in Fig. 6b, the blue dashed line matches an invalid
shape that violates the definition of a quadrilateral, because
the sides should only have two intersections, at the head and
tail. By simply removing these abnormal results, the MTL
block can further eliminate some false positives that might
cheat the segmentation branch.

Another interesting observation is that the RPP block
exhibits a strong capability to suppress false positives, mak-
ing predictions more reliable. To provide an analysis, we
visualize the term SOBD , which is used in the RPP block (see
Equation (5)). Doing so, we find that there are two typical
patterns for theKE scores output by theOBDblock, as shown
in Fig. 7. Sub-figure (a) shows a one-peak pattern, and sub-
figure (b) shows a multi-peak pattern. In normal cases, the
KE scores show a regular pattern, in which there is only one
peak value in the output vector (see Fig. 7a). However, with
hard negative samples, two or more peak values appear (see
Fig. 7b–d). These multiple peaks share confidence, and the
total score is normalized to one. Therefore, based on Equa-
tions (3) and (5), the final score will be decreased such that
the proposed model is less likely to output high confidence
for those false-positive instances.

Based on our observation, we find that the matching-type
prediction could be wrong even if KE is accurate. An exam-
ple is shown in the bottom instance of the lower-right corner
image of Fig. 13b, where xmin is mistakenly matched to
ymin . If xmin and the second smallest x change their match-
ing y key edge, the detection result can be tighter. Although
such a case does not obviously affect both the detection and
recognition performance, it is an underlying weakness of the
MTL. It is worth mentioning that sometimes the matching
type may form an irregular bounding box, i.e., the sides have
self-intersection. We find that such cases are very rare and
mostly occur with false negatives. For such irregular results,
we simply remove them.

4 Ablation Studies

4.1 Implementation Details

Our model is implemented using PyTorch. We first evaluate
the proposed components of our methods. The initial learn-
ing rate is set to 0.01, which is decreased by 10 at 10,000
iterations and 15,000 iterations. The maximum iterations is
20,000 and the image batch size is set to 4. The shorter size
of the input image is randomly scaled from 680 to 1000 with
the interval of 40, while the maximum size is set to 1480.
The weights of KE and matching type learning are set to 0.1
and 0.01, respectively. Flip, random crop, and random rota-
tion are used to improve the generalization ability. Unless
specified otherwise, the re-scoring ratio is kept to be 1.4.

Fig. 9 Ablation study on the ICDAR 2015 benchmark. X-axis repre-
sents confidence threshold andY-axis representsHmean result. Baseline
representsMaskR-CNN.By integratingwith proposedOBD, the detec-
tion results can be substantially better than the results of the Mask
R-CNN baseline

For ablation studies of refinements, each experiment uses
a single network that is a variation of our baseline model
(first row of Table 5). Each network is trained on the official
ReCTS training set unless specified otherwise. Additionally,
because the test scale may significantly influence the final
detection result, the testing max size is fixed at 2,000 pixels,
and the scale is fixed to 1,400 pixels for strictly fair ablation
experiments. The ratio of the flip is also fixed at 0.5, which is
the flipping probability for deciding whether to horizontally
flip the images for data augmentation. Results are reported on
the validation set of ReCTS based on the widely used main
performance metric, Hmean. We also report the best confi-
dence threshold that leads to the best performance, which can
also reveal some important information.

The number of iterations for training one network is set
to 80,000 iterations, with a batch size of four images per
GPU on four 1080ti GPUs. The final cumulative model is
trained for 160 epochs on four V100 GPUs, which takes
approximately 6 days. The baseline model employs ResNet-
101-FPN as the backbone, which is initialized by a model
pretrained on the MLT (Nayef et al. 2017) data. We only use
fixed batch normalization for the stem and bottleneck, i.e.,
the batch statistics and the affine parameters are fixed. For
all prediction heads, we do not use batch normalization.

4.2 Ablation Studies of the ProposedMethod

In this section, we report ablation studies on the ICDAR2015
(Karatzas et al. 2015) dataset, to validate the effectiveness of
each component of our method. First, we evaluate the influ-
ence of the proposed modules on performance. The results
are presented in Table 1 and Fig. 9. From Table 1, we can see
thatOBDandRPP can lead to improvements of 2.4 and 0.6%,
respectively, in terms of Hmean. Additionally, Fig. 9 shows
that our method can substantially outperform the baseline
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Table 3 Comparison on ICDAR 2015 dataset showing different meth-
ods’ ability of resistant to the inconsistent labeling issue (by adding
rotated pseudo samples). TB: Textboxes++. LD: using lower rotation
degrees

TB East CTD APE Ours

Hmean (baseline) 80.1% 78.3% 74.7% 79.4 80.4%

Hmean (rotation) 70.4% 64.6% 50.1% 77.4 80.7%

Variance ↓ 9.7% ↓ 13.7% ↓ 24.6% ↓ 2.0% ↑ 0.3%

Hmean (LD) 79.5% 76.0% 68.5% 80.1% 81.5%

Variance (LD) ↓ 0.6% ↓ 2.3% ↓ 6.2% ↑ 0.7% ↑ 1.1%

Table 4 Hmean results under different rotation degrees on ICDAR2015
dataset. The rotation angle represents the value used for the data aug-
mentation during the training phase

5◦ 30◦ 60◦ 90◦

Ours ↑0.9% ↑1.1% ↑1.3% ↑0.3%

Mask R-CNN under different confidence thresholds, further
demonstrating its effectiveness.

Furthermore, we conduct experiments by comparing the
mask and KE branches (including OBD and RPP) on the
same network. Thus, we test only on one of the branches.
We simply use the provided training samples of IC15without
any data augmentation. The results are presented in Table 2,
verifying that the proposed modules can effectively improve
the scene text detection performance.

More importantly, we also conduct experiments to ver-
ify that introducing ambiguity in the training is harmful to
achieving good results. Specifically, by using the same con-
figuration, we first train Textboxes++ (Liao et al. 2018a),
EAST (Zhou et al. 2017), CTD (Liu et al. 2019b), APE (Zhu
et al. 2020) (the championmethod ofDOAI2019 competition
task1), and the proposedmethodwith the original 1,000 train-
ing images of the ICDAR 2015 dataset. Then, we randomly
rotate the training images [0◦, 15◦, 30◦, . . . , 360◦] and ran-
domly select additional 2,000 images from the rotated dataset
to fine-tune thesemodels.We also randomly select additional
2,000 images that are between [−30◦, 30◦] to evaluate the
difference under lower rotation degree. The results are pre-
sented in Table 3. Our method can effectively address the
inconsistent labeling issue without drastically degrading the
accuracy. Furthermore, as shown in Table 4, our proposed
method exhibit higher robustness under various degrees of
rotation.

Note for the resnet-50 version and the following final com-
petition version of our method, the inference time is 4.5 FPS
and 0.83 FPS, respectively. The speed is tested using a single
NVIDIA GTX 2080 Ti and the short size of the input image
is scaled to 1000.

4.3 Ablation Studies of Refinements Based on Our
Method

In this section, we provide a detailed analysis of the impact of
refinements based on the proposed methods, to evaluate the
limits of ourmethod andwhether it can bemutually promoted
by existing modules. By combining effective refinements,
our method achieves first place in the detection task of the
ICDAR2019RobustReadingChallenge onReadingChinese
Text on Signboards.

In the following sections, we present an extensive set of
experiments that rate our baseline model. Thus, we present
results of OBD having alternative architectures and different
strategies with respect to six relevant components for train-
ing, including data arrangement, pre-processing, backbone,
proposal generation, prediction head, and post-processing.

The objective is to show that the proposed model cor-
responds to a local optimum in the space of architectures
and parameters and to evaluate the sensitivity of the final
performance to each design choice. The following discus-
sions follow the structure of Table 5. Note that the significant
breadth and exhaustibility of the following experiments rep-
resent more than 3,000 GPU hours of training time.

4.3.1 Competition Dataset

The competition dataset, Reading Chinese Text on Sign-
boards (ReCTS), is a practical and challenging multi-
orientation natural scene text dataset containing 25,000
signboard images. A total of 20,000 images are used for
the training set, with a total of 166,952 text instances. The
remaining 5,000 images are used for the test set. Examples
of this dataset are shown in Fig. 10. The layout and arrange-
ment of Chinese characters in this dataset are clearly different
from those in other benchmarks. Because the function of a
signboard is to attract a customer base, it is very common to
notice their aesthetic appearance. Thus, the Chinese charac-
ters can be arranged in any kind of layout with various fonts.
Additionally, characters from one word can be in diverse
orientations, diverse fonts, or diverse shapes, which compli-
cates the challenge. This dataset provides both text lines and
character annotations to inspire new algorithms that can take
advantage of the arrangement of characters. To evaluate the
function of each component, we split the original training set
into 18,000 training images and 2,000 validation images.

4.4 Ablation Study of Data Arrangement

Considering the image diversity and the consistency and
quality of annotation, we collected a 60,000-item dataset
for pretraining, which consisted of 30,000 images from the
LSVT (Sun et al. 2019) training set, 10,000 images from
the MLT 2019 (Nayef et al. 2019) training set, and 5,603
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Table 5 Ablation studies of different refinements based on our method.
Each variation is evaluated on the ReCTS validation set. It is worth
mentioning that we regard difficult samples as true negatives in the val-
idation because they cannot be recognized and only loosely annotated
in the competition dataset. However, in the final ranking, detection box
in the difficult region are set to “do not care”, which can result in a

leap improvement. We evaluate variations of our baseline model (sec-
ond row). Every row corresponds to one variation in different part. We
train each variation with ResNet-101-FPN and fixed random seeds and
equal 80,000 iterations (unless specifying) and report Hmean in the best
confident threshold (grid search)

Methods Best threshold Recall (%) Precision (%) Hmean (%) ΔHmean

Baseline model (based on OBD (Liu et al. 2019a)) 0.91 78.1 80.1 79.1 –

with mlt pretrained model

with flip (0.5)

test scale: min size: 1400; max size: 2000.

Data arrangement

With data cleaning 0.93 77.7 80.3 79.0 ↓ 0.1

With only mlt pretrained data (100k iters) 0.97 53.4 56.1 54.7 ↓ 24.4

With only 60k pretrained data (200k iters) 0.81 50.8 61.0 55.5 ↓ 23.6

With defect data 0.91 75.8 72.5 74.1 ↓ 5.0

Without MLT data pretrain 0.85 75.5 81.9 78.6 ↓ 0.5

With 60k pretrained model 0.91 78.8 81.9 80.3 ↑ 1.2

Pre-processing

With random crop (best ratio) 0.91 78.4 83.7 81.0 ↑ 1.9

With random rotate (best ratio) 0.91 77.6 81.8 79.7 ↑ 0.6

With color jittering 0.91 76.4 82.5 79.3 ↑ 0.2

With medium random scale training 0.89 80.3 82.2 81.3 ↑ 2.2

ori: (560,600,…,920,) max: 1300

to: (680,720,…,1120,) max: 1800

With large random scale training 0.89 80.2 83.6 81.9 ↑ 2.8

ori: (560,600,…,920,) max: 1300

to: (800,840,…,1400,) max: 2560

Backbone

With ResNext-152-32x8d-FPN-IN5k 0.91 79.4 84.0 81.6 ↑ 2.5

(using detectron pretrained model) v1

With ASPP in KE head 0.91 76.1 80.1 78.0 ↓ 1.1

With ASPP in (backbone 1/16) 0.89 73.1 81.3 77.0 ↓ 2.1

With deformable convolution (C4-1) 0.87 79.5 83.9 81.7 ↑ 2.6

With deformable convolution (C4-2) 0.89 79.1 84.3 81.6 ↑ 2.5

With deformable convolution (C3-) 0.83 81.2 81.9 81.6 ↑ 2.5

With panoptic segmentation (dice loss) 0.67 77.7 80.3 79.0 ↓ 0.1

With pyramid attention network (PAN) 0.85 77.6 83.1 80.3 ↑ 1.2

With multi-scale network (MSN) 0.91 79.0 81.6 80.3 ↑ 1.2

Proposal generation

With deformable PSROI pooling 0.91 80.7 79.4 80.0 ↑ 0.9

Prediction head

With character head 0.93 77.7 82.0 79.8 ↑ 0.7

With OHEMv1 0.59 76.9 80.0 78.4 ↓ 0.7

With OHEMv2 0.65 75.8 81.1 78.3 ↓ 0.8

With OHEMv3 0.55 77.5 79.8 78.6 ↓ 0.5

With mask scoring 0.93 75.7 81.8 78.6 ↓ 0.5

With cascade r-cnn (ensemble) – 77.7 80.3 79.0 ↓ 0.1
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Table 5 continued

Methods Best threshold Recall (%) Precision (%) Hmean (%) ΔHmean

Post-processing

With polygonal non-maximum suppression 0.91 77.2 82.8 79.9 ↑ 0.8

With Key Edge RPP 0.91 78.5 79.9 79.2 ↑ 0.1

Final model

accumulating effective modules 0.91 83.2 89.5 86.2 ↑ 7.1

Fig. 10 Example images of the ReCTS. Small, stacked multi-
orientation, illumination, and annotation ambiguity are the main chal-
lenges for this dataset

images from ArT (Chng et al. 2019), which contained all
the images from SCUT-CTW1500 (Liu et al. 2019b) and
Total-text (Chng and Chan 2017; Ch’ng et al. 2019). The
remaining 14,859 images were selected fromRCTW-17 (Shi
et al. 2017b), ICDAR 2015 (Karatzas et al. 2015), ICDAR
2013 (Karatzas et al. 2013),MSRA-TD500 (Yao et al. 2012),
COCO-Text (Veit et al. 2016), and USTB-SV1K (Yin et al.
2015). Note that we transferred polygonal annotations to the
minimum area rectangle for training.

The ablation results are presented in Table 5. If we only
were to use the pretrained data without the split training
data from the ReCTS, the result in the ReCTS validation
set would be significantly worse than that of the baseline,
even if the pretrained model were trained with more itera-
tions. This is because the diversity and annotation granularity
of the selected pretrained dataset is still very different from
that of the ReCTS dataset. However, using the model trained
with pretrained data is better than using the ImageNet model.
For example, when directly using the ImageNet ResNet-101
model instead of theMLTpretrainedmodel from the baseline
method, theHmean is reduced by 0.5%.Using themodel hav-

ing 60,000 pretrained data, followed by finetuning the model
on the split ReCTS training data improved the result by 1.2%
in terms of Hmean. To evaluate the importance of the data
quality, we mimicked the manual annotation error by remov-
ing 5%of the training annotation instances anddid not correct
some samples with annotation ambiguity from the original
ReCTS training data. The results indicate that using defective
training data significantly degrades the performance.

4.5 Ablation Study of Pre-processing

Our baseline model used a pretrained model having only a
flip strategy for data augmentation.Wecompared the baseline
with various other data augmentation methods.

Cropping and rotation Without introducing extra param-
eters or training/testing times, the results presented in Table
5 verify that both rotation and data cropping augmentation
strategies improved the detection results. We further con-
ducted a sensitivity analysis of how the ratios of using these
two strategies influence the performance, as shown in Fig.
11. Some useful findings can be derived from Fig. 11a, as
summarized below.

– With appropriate ratios, three rotated degrees (30◦, 15◦,
and 5◦) outperformed the baseline method in most ratios,
with 0.5, 0.6, and 0.4%, respectively.

– Under a 0.1 rotated ratio, the performances with the three
rotated degreeswere allworse than the baseline. Thismay
be because the pseudo samples changed the distribution
of the original dataset, whereas very few pseudo samples
were insufficient to improve the generalization ability.
Conversely, the ratios to achieve the best results for vari-
ous rotated degrees always lie between 0.3 and 0.8, which
empirically suggests that using a medium ratio for the
rotated data augmentation strategy might be a suitable
choice.

– Wecan also see that the performance using a rotated angle
of 15◦ was consistently better than that with 30◦ and 5◦.

Compared with the rotated data augmentation strategy,
the random cropping strategy significantly improved detec-
tion performance. The best performance, as shown inTable 5,
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(a)

(b)

Fig. 11 Ablation studies of data augmentation strategies

achieved a 1.9% improvement in terms of Hmean, compared
with the baseline method. Sensitivity analysis, as shown in
Fig. 11b, was also conducted, revealing that, as the crop ratio
improved, the performance also tended to improve. The result
suggests that always using the crop strategy was conducive
to improving the detection results. Note that a crop ratio of
0.1 only improved the Hmean by 0.5%, whereas other ratios
improved it by more than 1%, which is similar to the phe-
nomenon when using a rotated ratio 0.1.

Color jittering We also conduct a simple ablation study
to evaluate the performance of color jittering. Based on the
same settings as of the baseline method, we empirically set
the ratios of brightness, contrast, saturation, and hue to 0.5,
0.5, 0.5, and 0.1, respectively. The ratio represents the degree
of disturbance of each specific transformation. The results in
Table 5 indicate that using color jittering data augmentation
slightly improved the result by 0.2% in terms of Hmean.

Training image scale The training image scale/size is
specifically important for a scene text detection. To evaluate
how the training scale influences the results of our method,
we used two parameters (i.e., scale andMaxSize) to control
the training scale. The first item resized the minimum side of
the image to a specific parameter.

In our implementation, there are a set of values for random
scaling. The second item restricts the maximum size of the
image sides. The value of scalemust be less than MaxSize,
and the entire scaling process strictly retains the original

Table 6 Ablation experiments for large scale training. Hmean1,
Hmean2, and Hmean3 represent default training scale, medium training
scale, and large training scale, respectively. The first row compares the
performance based on the baseline setting. The other three rows are the
best setting (using grid search to find the best scale and MaxSize) for
each training scale

(Scale, MaxSize) Hmean1 (%) Hmean2 (%) Hmean3

(1400, 2000) 79.1 81.3 81.9

(800, 1300) 81.5 – –

(1600, 1600) – 82.2 –

(1600, 1700) – – 82.5

aspect ratio. We primarily compare three different settings:
the default training scale (scale: 560 to 920 with intervals
of 40, MaxSize was 1,300); medium training scale (scale:
680 to 1,120 with intervals of 40, MaxSize was 1,800); and
large training scale (scale 800 to 1,400 with intervals of 40,
MaxSize was 2,560).

The results are presented in Table 6, which verify the fol-
lowing: 1) a larger training scale requires a larger testing
scale for the best performance. 2) As the larger training scale
increases, so does the performance. Note that, although a
larger training scale can improve performance, it is costly
and may require significantly more GPU memory.

4.6 Ablation Study of the Backbone

A well-known hypothesis is that a deeper and wider net-
work architecture delivers better performance than does a
shallower and thinner one. However, increasing the network
depth naively will significantly increase the computational
cost with only limited improvement. Therefore, we investi-
gate different types of backbone architectures. The results
are shown in Table 5 and are summarized as follows:

– By changing the backbone, ResNet-101-FPN of the
baseline model into a ResNeXt-152-32x8d-FPN-IN5k,
Hmean can be increased by 2.5%.Note that the pretrained
model ofResNeXt-152-32x8d-FPN-IN5kwas pretrained
on ImageNet using the Facebook Detectron framework.

– Atrous spatial pyramidpooling (ASPP) (Chen et al. 2017)
is effective in semantic segmentation, which is known
for its function in increasing the receptive field. How-
ever, in this scene text detection task, using ASPP in the
KE head or backbone reduced performance by 1.1 and
2.1%, respectively. One possible reason is that the change
in network architecture usually requires more iterations.
However, the best confidence thresholds for the best per-
formance using ASPP were 0.91 and 0.89, which are
similar to the best threshold of the baseline model, sug-
gesting that the network had already converged.
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– Deformable convolution (Dai et al. 2017) is an effective
module used for many tasks. It adds 2D offsets to the
regular sampling grid of the standard convolution, allow-
ing free form deformation of the convolutional operation.
This is suitable for scene text detection, owing to the
mutable characteristics of the text. We experimented
with three methods of deformable convolution by adding
deformable convolutions from the C4-1, C4-2, and C3 of
the backbone, and the results show that the performance
could be significantly improved by 2.6, 2.5, and 2.5%,
respectively, in terms of Hmean.

– Motivated by the panoptic feature pyramid networks
(Kirillov et al. 2019), we also tested whether a panop-
tic segmentation loss was useful for scene text detection.
To this end, we used a dice loss in the output of the
FPN for panoptic segmentation, which had two classes:
background and text. The result in Table 5 indicates that
Hmean was reduced by 0.1%. However, the best thresh-
old was 0.67, which indicates that the background noise
may have somehow reduced the confidence of the train-
ing procedure.

– The pyramid attention network (PAN) (Huang et al.
2019a) is a novel structure that combines an attention
mechanism and a spatial pyramid to extract precise dense
features for semantic segmentation tasks. Because it
can effectively suppress false alarms caused by text-
like backgrounds, we integrated it into the backbone and
tested its function. The results show that using PAN led
to a 1.2% improvement in terms of Hmean, but it also
increased the computational cost with an increase of 2.4
GB video memory.

– The multi-scale network (MSN) (Xue et al. 2019) is
robust for scene text detection because it employs multi-
ple network channels to extract and fuse features at dif-
ferent scales concurrently. In our experiment, integrating
MSN into the backbone also increased the performance
by 1.2% in terms of Hmean. Note that, compared with
PAN, the recall of the MSN was much better under a
higher best threshold, which suggests that different archi-
tectures may have had different functions related to the
performance of the detector.

4.7 Ablation Study on Proposal Generation

The proposed model is based on a two-stage framework, and
the region proposal network (RPN) (Ren et al. 2015) is used
as the default proposal generation mechanism.

Previous studies have modified the anchor generation
mechanism, including DMPNet (Liu and Jin 2017), DeRPN
(Xie et al. 2019b), Kmeans anchor (Redmon and Farhadi
2017), scale-adaptive anchor (Li et al. 2019a), and guided
anchor (Wang et al. 2019b), to improve the results. For

Table 7 Ablation results of using cascade r-cnn. cf: best threshold. R:
recall. P: precision. H: Hmean

Method cf R (%) P (%) H (%) ΔH

Baseline model 0.91 78.1 80.1 79.1 –

Stage 1 0.91 74.7 81.8 78.1 ↓ 1.0

Stage 2 0.87 76.3 81.1 78.6 ↓ 0.5

Stage 3 0.87 75.9 79.5 77.7 ↓ 1.4

Ensemble – 77.7 80.3 79.0 ↓ 0.1

Table 8 Ablation experiments for using character head. H: Hmean

Method H (%) ΔH
Baseline 79.1 –

Baseline + character head 79.8 ↑ 0.7

Baseline + character head +
mask character

79.8 ↑ 0.7

Baseline + character head +
instance connection

79.6 ↑ 0.5

Baseline + character head
+ instance connection - KE
head

75.2 ↓ 3.9

simplicity, we retrain the default RPN structure with the sta-
tistical setting of the anchor box based on the training set.

The other important part in this proposal generation stage
is the sampling process, (e.g., RoI pooling Ren et al. 2015,
RoI align He et al. 2017c (our default setting), and PSRoI
pooling Dai et al. 2016). We choose to evaluate Deformable
PSRoI Pooling (Dai et al. 2017) for our method, because it
has been effective for scene text detection (Yang et al. 2018),
and the flexible process may be beneficial to the proposed
OBD.The result is shown inTable 5: usingdeformablePSRoI
Pooling improved the baseline method by 0.9% in terms of
Hmean.

4.8 Ablation Study on the Prediction Head

The final part of the two-stage detection framework is the
prediction head. To clearly evaluate the effectiveness of the
components, ablation experiments are separately conducted
on different heads.

Boxhead Empirically, online hard negative examplesmin-
ing (OHEM) (Shrivastava et al. 2016) is not always effective
with respect to different benchmarks. For example, using
the same framework minus the training data can signifi-
cantly improve the results with the ICDAR 2015 benchmark
(Karatzas et al. 2015) while reducing the results on the MLT
benchmark (Nayef et al. 2017). This finding may be related
to the data distribution, which is difficult to trace.

Thus, we test three versions of theOHEM in the validation
set. The first version, OHEMv1, is the same as the origi-
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nal implementation; the second version, OHEMv2, simply
ignores the top 5 hard examples to avoid outliers. These two
versions have the same ratio, which is set to 0.25. The third
version, OHEMv3, simply uses a higher ratio (0.5) to guar-
antee more hard samples and less easy samples. The results
in Table 5 show that three versions all reduce Hmean, by 0.7,
0.8, and 0.5, respectively. Note that using OHEM will also
result in the reduction of the best confidence, which means
that the forced learning of hard examples can reduce the con-
fidence of normal examples. Conversely, we also evaluated
the performance of the cascade R-CNN, and the results are
shown in Table 7. However, the results show that using a
cascade does not result in further improvements.

Mask head To improve the mask head, we evaluate two
methods (i.e., mask scoring Huang et al. 2019a), as shown in
Table 5. The results show that modification of the mask head
does not contribute to the detection performance. However,
the mask prediction results are visually more compact and
accurate compared with the baseline.

Character head It is well known that stronger supervision
can result in better performance. Because the competition
also provides a character ground truth, we build and evaluate
the performance of an auxiliary character head. The imple-
mentation of the character head is exactly the same as that
for the box head, except for the ground truth. Unlike the box,
mask, and KE head, the proposed character head is built on
a different RPN. Thus, the character head does not share the
same proposal with the other heads. The KE head directly
produces a quadrilateral bounding box (word box) directly
used for the final detection, and we test whether the aux-
iliary head could indirectly (shared backbone) improve the
word-box detection performance.

The ablation results in Table 8 demonstrate this idea,
which shows that using a character head improved theHmean
by0.7%.Additionally, ifwe add amaskprediction head to the
character head (i.e., the mask character in Table 8), the result
would remain the same. Moreover, we employ a triplet loss

to learn the connection between the characters. The ground
truth includes whether the characters belong to the same text
instances. However, the improvement is decreased to 0.5%.
This may be because the instance connection introduced an
inconsistent labeling issue. We further test the performance
using only the character headwith an instance connection and
without the KE head. Hmean is reduced by 3.9% compared
with the baseline method, suggesting that using character as
an auxiliary head instead of the final prediction head is a good
choice.

4.9 Ablation Study of Post-processing

The last step is to apply post-processing methods for final
improvement. To this end, we compare the baseline with a
series of standard and more effective post-processing meth-
ods.

Polygonal non-maximize suppression (PNMS)Traditional
non-maximum suppression (NMS) methods between hori-
zontal rectangular bounding boxes can cause unnecessary
suppression. Thus, we conduct ablation experiments to eval-
uate the performance of the PNMS.We use grid search to find
the best threshold to find both NMS and PNMS for fair com-
bination, which is 0.3 and 0.15, respectively. The result in
Table 5 shows that using PNMS performs better than NMS
by 0.8% in terms of Hmean. Additionally, PNMS is much
more effective when using a test ensemble in practice.

Key edge RPP The proposed key edge RPP proved effec-
tive on the ICDAR 2015 benchmark. Thus, we also test
whether it applies to the competition dataset. The ablation
result in Table 5 shows that it slightly improves the Hmean
by 0.1% comparedwith the baseline. It is worth noticing that,
although the best confidence threshold is 0.91, which is the
same as that of the baseline, the recall is increased by 0.4%
while only reducing the precision by 0.2%.

Large-scale testingWealso conduct experiments to evalu-
ate how the testing scale influenced performance. The results

Fig. 12 Ablation study of the testing scale. Note that the training scale is the default setting mentioned in Sect. 4.5
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Table 10 Experimental results for the ICDAR 2015 dataset. R: recall.
P: precision

Algorithms R(%) P(%) Hmean(%)

Tian et al. (2016) 52.0 74.0 61.0

Shi et al. (2017a) 76.8 73.1 75.0

Liu and Jin (2017) 68.2 73.2 70.6

Zhou et al. (2017) 73.5 83.6 78.2

Ma et al. (2018) 73.2 82.2 77.4

Hu et al. (2017) 77.0 79.3 78.2

Liao et al. (2018b) 79.0 85.6 82.2

Deng et al. (2018) 82.0 85.5 83.7

Ma et al. (2018) 82.2 73.2 77.4

Lyu et al. (2018a) 79.7 89.5 84.3

He et al. (2017b) 80.0 82.0 81.0

Xu et al. (2019) 80.5 84.3 82.4

Tang et al. (2019) 80.3 83.7 82.0

Wang et al. (2019a) 84.5 86.9 85.7

Xie et al. (2019a) 85.8 88.7 87.2

Zhang et al. (2019) 83.5 91.3 87.2

Liu et al. (2018) 87.9 91.9 89.8

Baek et al. (2019) 84.3 89.8 86.9

Huang et al. (2019b) 81.5 90.8 85.9

Zhong et al. (2019a) 80.1 87.8 83.8

He et al. (2018b) 86.0 87.0 87.0

Liu et al. (2019c) 87.6 86.6 87.1

Liao et al. (2018a) 78.5 87.8 82.9

Long et al. (2018) 80.4 84.9 82.6

He et al. (2020) 79.7 92.0 85.4

Lyu et al. (2018b) 81.0 91.6 86.0

He et al. (2017a) 73.0 80.0 77.0

Xie et al. (2019c) 79.6 83.2 81.4

Liao et al. (2019) 87.3 86.6 87.0

Wang et al. (2019c) 81.9 84.0 82.9

Wang et al. (2019d) 86.0 89.2 87.6

Qin et al. (2019) 88.0 91.7 89.8

Wei et al. (2019) 83.8 92.5 87.9

Liu et al. (2019a) 83.8 89.4 86.5

Ours 88.2 92.1 90.1

are shown in Fig. 12,which demonstrates that a proper setting
of scale and MaxSize significantly improves the detection
performance. Additionally, the results reveal that there is a
limitation of the MaxSize. That is, if the value of MaxSize
is higher than a certain value, the performancewould be grad-
ually reduced.

Test ensemble To evaluate the performance of the test
ensemble, we conduct ablation experiments with four dif-
ferent aspects: different backbone ensemble; multiple inter-
mediate model ensemble; a multi-scale ensemble; and an
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independent model ensemble. Note that, to achieve the best
performance, implementing ensemble or multi-scale testing
requires some tricks. Otherwise, the results may be worse.
We summarize the results as follows:

– Using a high confidence threshold. One weakness of
multi-scale ensembling is that if a true-negative detection
exists in one of the testing scales, it cannot be avoided
unless we set a high confidence threshold to exclude it
during the ensemble phase. Therefore, for each scale, we
first test its best confidence threshold (cf) on the valida-
tion set. Then, we use a higher confidence for the model
ensemble.

– Variant scale of multi-scale testing. The performance of
small scale (600 (scale), 1200 (MaxSize)) is rated. For
example, in theReCTs competition, it ismuchworse than
that of large-scale (1,600, 1,600). However, small scales
are better for detecting large instances compared with
large scales, and they can always be mutually promoted
in practice.

– Using a strict PNMS threshold. A normal case for
the ensemble result is that the recall can be signifi-
cantly improved, whereas the prediction is dramatically
reduced. When observing the final integrated detection
boxes, it is easy to find that the reduction was caused
by boxes-in-boxes and many stacked redundant boxes.
Using a strict PNMS can effectively solve this issue.

Based on these principles, we conclude the results of the
four ensemble aspects as follows.

– Different backbone ensembles. We train three models
using the baseline setting with three types of deformable
convolution, starting fromC4-1, C4-2, andC3 ofResNet-
101, respectively. The ensemble results of the three
methods are shown in Table 9. From the table, we can see
that integrating the models with a series of simple back-
bone modifications improved the detection performance,
even based on a relatively high baseline. Additionally, the
results show that integrating more components resulted
in better performance.

– Multiple intermediate model ensembles.We also eval-
uate the performance of integrating intermediate models.
We use the trained model with the ResNext-152 back-
bone as a strong baseline and selected the last three
intermediate iterating models with 10,000 iterations as
intervals for the ensemble. The results shown in Table 9
also demonstrate that when using the model ensemble,
the intermediate models could be mutually promoted.

– Multi-scale ensemble. To evaluate the performance
of the multi-scale ensemble, we use grid searching to
find the best PNMS threshold for three specified set-
tings (scale, MaxSize), representing large, medium,

and small text instances, respectively. Each detection
result was then integrated with a PNMS threshold 0.02
higher than the original best threshold, which resulted
in approximate optimum integrating results with 0.6%
improvement in terms of Hmean, as shown in Table 9.

– Independent model ensembles. Finally, we test the per-
formance of integrating the two final models. The first
model contains the baseline setting plus deformable con-
volution, and the second model contains the baseline
setting with the ResNext-152 backbone. We indepen-
dently integrate each model using an intermediate model
ensemble and a multi-scale ensemble. Then, we assem-
ble the final results of the two models. As shown in Table
9, the detection result can still be improved.

5 Comparison with State-of-the-Art Methods

To further evaluate the effectiveness of the proposed method,
we carry out experiments and compare our final model with
other state-of-the-art methods on three scene text datasets:
ICDAR2015 (Karatzas et al. 2015),MLT (Nayef et al. 2017),
and ReCTS (See Sect. 4.3.1).We also conduct an experiment
on one aerial dataset, HRSC2016 (Liu et al. 2017), to further
demonstrate the generalization ability of our method.

Final model. The final model is designed by combine the
effectivemodules evaluated in Table 5. Specifically, based on
the baseline setting, we refine our model in all six aspects.
During the data arrangement stage, we use 60,000 pretrained
data items to train a pretrained model for 200,000 iterations,
and we then use the original training data of each dataset
for finetuning. In the pre-processing part, apart from the
baseline setting, we also apply color jittering, random crop-
ping, and random rotation with their best ratios as evaluated
on the validation dataset for data augmentation. Addition-
ally, the images are trained with a medium setting of the
random scale training for maximizing the utilization of the
video memory. For the backbone setting, we integrate the
ResNext-152-32x8d-FPN-IN5k model, deformable convo-
lution (C4-2), PAN, and MSN modules together to construct
a powerful feature extractor. During the proposal genera-
tion stage, we adopt deformable PSROI pooling for feature
alignment, whereas in the prediction head, we only add an
auxiliary character head for mutual promotion using only the
ReCTS dataset. Finally, in the post-processing stage, we uti-
lize all effective settings, including polygonal non-maximum
suppression, key edge RPP, intermediate model ensemble,
and multi-scale ensemble. Note that we also find the sync
BN (Zhang et al. 2018) can improve the text detection accu-
racy (by 1.1% compared to the baseline in Table 5) lately,
but it was not integrated in the final model.

The ICDAR 2015 Incidental Scene Text (Karatzas et al.
2015) is one of the most popular benchmarks for oriented
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Table 11 Experimental results
for the MLT dataset. SS
represents a single scale. R:
recall. P: precision. Note that we
only used a single scale for all
experiments

Algorithms R(%) P(%) Hmean(%)

linkage-ER-Flow Nayef et al. (2017) 25.59 44.48 32.49

TH-DL Nayef et al. (2017) 34.78 67.75 45.97

SARI FDU RRPN v2 Ma et al. (2018) 67.0 55.0 61.0

SARI FDU RRPN v1 Ma et al. (2018) 55.5 71.17 62.37

Sensetime OCR Nayef et al. (2017) 69.0 67.75 45.97

SCUT_DLVClab1 Liu and Jin (2017) 62.3 80.28 64.96

AF-RNN Zhong et al. (2019b) 66.0 75.0 70.0

Lyu et al. (2018a) 70.6 74.3 72.4

FOTS Liu et al. (2018) 62.3 81.86 70.75

CRAFT Baek et al. (2019) 68.2 80.6 73.9

Liu et al. (2019a) 70.1 83.6 76.3

Ours 76.44 82.75 79.47

Table 12 Competition results on the ReCTS dataset. The results are
from the competition website https://tinyurl.com/ReCTS2019. For the
detection task, the ranking is based onHmean. ForEnd-to-End detection

and recognition task, the ranking is based on 1-NED. NED: normalized
edit distance

Affiliation Detection Result End-to-End Result

Recall (%) Precision (%) Hmean (%) Recall (%) Precision (%) Hmean (%) 1-NED (%)

Ours 93.97 92.76 93.36 93.97 92.76 93.36 81.62

Tian et al. 93.46 92.59 93.03 92.49 93.49 92.99 81.45

Liu et al. 93.41 91.62 92.50 – – – –

Zhu et al. 93.51 89.15 91.27 92.36 91.87 92.12 79.38

Mei et al. 91.96 90.09 91.02 – – – –

Li et al. 90.03 91.65 90.83 90.80 90.26 90.53 73.43

Zheng et al. 89.84 91.41 90.62 – – – –

Zhou et al. 90.99 89.59 90.28 90.99 89.59 90.28 74.35

Zhang et al. 93.66 86.35 89.86 93.62 87.22 90.30 76.60

Zhao et al. 86.13 92.72 89.31 86.12 92.73 89.30 72.76

Xu et al. – – – 91.54 90.28 90.91 71.89

Wang et al. 88.92 88.70 88.80 88.89 88.92 88.91 71.81

Baek et al. 85.33 89.38 87.31 75.89 78.44 77.14 41.68

Wang et al. 84.67 89.53 87.03 84.64 89.56 87.03 71.10

Wang et al. – – – 69.49 89.52 78.24 50.36

Li et al. 82.27 88.49 85.27 – – – –

Xu et al. 88.52 79.32 83.66 – – – –

Lu et al. 85.18 79.66 82.33 – – – –

Ma et al. 83.16 80.77 81.94 – – – –

Tian et al. 96.17 69.20 80.48 – – – –

Feng et al. 73.05 78.35 75.61 – – – –

Luan et al. 70.35 80.19 74.95 – – – –

Yang et al. 60.66 90.87 72.76 – – – –

Liu et al. 66.83 75.87 71.07 – – – –

Zhou et al. 72.54 56.44 63.48 – – – –

Liu et al. 7.82 8.14 7.98 – – – –

The bold value indicates the best result among all methods
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Table 13 Experimental results
for HRSC_2016 dataset. cf:
confidence threshold, which is
set to 0.01 in the last line

Algorithms R (%) P (%) H (%) TIoU-H (%) mAP

Girshick (2015), Liao et al. (2018b) - - - - 55.7

Girshick (2015), Liao et al. (2018b) - - - - 69.6

Girshick (2015), Liao et al. (2018b) - - - - 75.7

Liao et al. (2018b) - - - - 84.3

Liu et al. (2019a) 94.8 46.0 61.96 51.1 93.7

Ours 94.1 83.8 88.65 73.3 89.22

Ours (low cf) 95.7 54.2 69.2 57.5 94.8

The bold value indicates the best result among all methods

scene text detection. The images are incidentally captured
mostly from streets and shoppingmalls. Thus, the challenges
of this dataset rely on oriented, small, and low-resolution text.
This dataset contains 1,000 training samples and 500 test-
ing samples with approximately 2,000 content-recognizable
quadrilateral word-level bounding boxes. The results of
ICDAR 2015 are given in Table 10. From this table, it is
clear that our method outperformed all previous methods.

The ICDAR 2017 MLT (Nayef et al. 2017) is the largest
multi-lingual (nine languages) oriented scene text dataset,
including 7,200 training samples, 1,800 validation samples,
and 9,000 testing samples. The challenges associated with
this dataset are manifold. Different languages have different
annotating styles. For example, most Chinese annotations
are long, and there is no specific word interval for sentences.
However, most English annotations are short. The annota-
tions of Bangla or Arabic may be frequently entwined with
each other, and there is more multi-orientation, perspective
distorted text on various complex backgrounds. Furthermore,
many images have more than 50 text instances. All instances
are well annotated with compact quadrangles. As shown in
Table 11, the proposed approach achieved the best perfor-
mance on the MLT dataset.

ReCTS is the recent ICDAR 2019 Robust Reading Chal-
lenge1 described in Sect. 4.3.1. Competitors were restricted
to submitting at most five results, and all results were evalu-
ated after the deadline. The competition attracted numerous
competitors from well-known universities and high-tech
companies. The results of the ReCTS are shown in Table 12.
Our method won first place in the ReCTS detection competi-
tion. To clearly evaluate the performance of the final model,
we also provide the results of our method on the ReCTS val-
idation set without using a model ensemble. As shown in
Table5, the final model significantly outperformed the base-
line by 7.1% in terms of Hmean.

ReCTS End-to-End. One of the main goals of scene text
detection is to recognize a text instance (Xie et al. 2019c) that
is highly related to the performance of the detection system.
To validate the effectiveness and robustness of our detec-

1 https://rrc.cvc.uab.es/?ch=12&com=introduction

tion method, we build a recognition system that incorporate
several state-of-the-art methods. Typically, the recognition
performance is highly relevant to the quality of the detected
boxes. To reveal the precision of our detection, we construct
an end-to-end recognition system to demonstrate how our
method benefits recognitionmodels.We first crop the images
using detected boxes and fed them into four popular recogni-
tion models, including decouple attention network (Tianwei
et al. 2020), convolutional recurrent neural network (Shi et al.
2017c), network of show, attend, read (Li et al. 2019b), and
transformer-based networks (Wang et al. 2019e). The four
models are trained on real samples and 600,000 extra syn-
thetic samples following their default settings for training.
The real samples are provided by the official training set,
whereas the synthetic samples are synthesized using a render
engine (Jaderberg et al. 2016) and the corpus of the official
training set. All images are resized to a specific required
height for each recognition model while maintaining the
aspect ratio of the original image. In a data batch, all images
are padded with white to the maximum width of the images.
During the inference stage, we choose the prediction hav-
ing the highest confidence as the final ensemble result. Both
quantitative and qualitative results are presented in Table 12
and Fig. 13b, respectively.

HRSC2016. To demonstrate the generalization ability
of our method, we further evaluate its performance on the
Level-1 task of the HRSC2016 dataset (Liu et al. 2017)
to demonstrate multi-directional object detection. The ship
instances in this dataset are presented in various orientations,
and the annotating bounding boxes are based on rotated rect-
angles. There were 436, 181, and 444 images for training,
validating, and testing, respectively. Only the training and
validation sets are used for training. The evaluation met-
ric is the same as in Liu et al. (2019a), Karatzas et al.
(2015). The result is shown in Table 13, showing a signif-
icant improvement over the TIoU-Hmean (Liu et al. 2019d).
It also demonstrates the robustness of our method. Qualita-
tive examples of the detection results are shown in Fig. 14.
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Fig. 13 Visualization of the qualitative results outputted by the proposed approach

6 Conclusion

In this paper, we have addressed multi-orientation scene text
detection using an effective OBD method. Using discretiza-
tion methodology, OBD, can solve the inconsistent labeling
issue by discretizing the point-wise prediction into order-
less key edges. To decode accurate vertex positions, we have
proposed a simple but effective MTL method to reconstruct

the quadrilateral bounding box. Benefiting from OBD, we
improve the reliability of the confidence of the bounding
box and adopted more effective post-processing methods to
improve performance.

Additionally, based on our method, we have conducted
thorough ablation studies on six training components, includ-
ing data arrangement, pre-processing, backbone, proposal
generation, prediction head, and post-processing, to explore
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Fig. 14 Qualitative detection results on the HRSC2016 dataset

the potential upper limit of our method. By combining effec-
tive modules, we have achieved state-of-the-art results on
various benchmarks and won the first place in the recent
ICDAR2019RobustReadingChallenge onReadingChinese
Text on Signboards. Moreover, using a recognition model,
we perform the best in the end-to-end detection and recogni-
tion task, verifying that our method is conducive to current
recognition methods. To test the generalization ability, we
have conducted an experiment on an oriented general object
dataset HRSC2016; the results verify that our method can
significantly outperform recent state-of-the-art methods.
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