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Abstract
The attention mechanism provides a sequential prediction framework for learning spatial models with enhanced implicit
temporal consistency. In this work, we show a systematic design (from 2D to 3D) for how conventional networks and other
forms of constraints can be incorporated into the attention framework for learning long-range dependencies for the task of pose
estimation. The contribution of this paper is to provide a systematic approach for designing and training of attention-based
models for the end-to-end pose estimation, with the flexibility and scalability of arbitrary video sequences as input.We achieve
this by adapting temporal receptive field via a multi-scale structure of dilated convolutions. Besides, the proposed architecture
can be easily adapted to a causalmodel enabling real-time performance.Any off-the-shelf 2Dpose estimation systems, e.g.Our
method achieves the state-of-the-art performance and outperforms existing methods by reducing the mean per joint position
error to 33.4mm on Human 3.6M dataset. Our code is available at https://github.com/lrxjason/Attention3DHumanPose

Keywords 3D human pose · Motion reconstruction · Monocular capture · Performance-driven retargeting · Attention ·
Multi-scale dilation

1 Introduction

We introduced attentionmechanism for the task of articulated
3D pose reconstruction from videos in the recent work (Liu
et al. 2020b), which exploits the temporal contexts of long-
range dependencies across frames. The ability to adaptively
identify important frames or tensors output from each deep
net layer and combine them with the advantages afforded
by convolutional architectures allows for globally optimal
inference through simultaneous processing . The concept of
“attention” is to learn optimized global alignment between
pairwise data and has gained recent success in the integration
with deep networks for processing mono/multi-modal data,
such as text-to-speech matching (Chorowski et al. 2015),
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neural machine translation (Bahdanau et al. 2016) and 2D
human pose estimation (Chu et al. 2017). In this paper, we
extend our original attention model further by integrating
it with deep networks in both 2D and 3D domain, leading
to improved estimation while preserving natural temporal
coherence in videos.

Articulated 3D human pose estimation from uncon-
strained single images or videos is considered as an ill-posed
problem due to the nonlinearity of human dynamics, occlu-
sions, and the high-dimensional variability introduced in
the wild. Traditional approaches such as multi-view capture
(Amin et al. 2013), marker based systems (Mandery et al.
2015) and multi-modal sensing (Palmero et al. 2016) require
a laborious setup process and are not practical for appli-
cations in the less controlled environment. Recent efforts
of using deep architectures have significantly advanced the
state-of-the-art in 3D pose reasoning (Toshev and Szegedy
2014; Neverova et al. 2014). The end-to-end learning process
alleviates the need of using tailor-made features or spatial
constraints, therebyminimizing the characteristic errors such
as double-counting image evidence (Ferrari et al. 2009).
While vast and powerful deep models on 3D pose predic-
tion are emerging [from convolutional neural network (CNN)
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(Pavlakos et al. 2017; Tekin et al. 2016; Li et al. 2015) to gen-
erative adversarial networks (GAN) (Yang et al. 2018; Chen
et al. 2019)], many of these approaches focus on a single
image inference, which is inclined to jittery motion or inex-
act body configuration. To resolve this, temporal information
is taken into account for better motion consistency. Existing
works can be generally classified into two categories: direct
3D estimation and 2D-to-3D estimation (Zhou et al. 2016b;
Chen et al. 2016). The former explores the possibility of
jointly extracting both 2D and 3D poses in a holistic man-
ner (Pavlakos et al. 2017; Varol et al. 2017); while the latter
decouples the estimation into two steps: 2D body part detec-
tion and 3D correspondence inference (Chen and Ramanan
2017; Bogo et al. 2016; Zhou et al. 2016b). We refer read-
ers to the recent survey for more details of their respective
advantages (Martinez et al. 2017).

Our approach falls under the category of 2D-to-3D esti-
mation with three key contributions:

1. Development of a systematic approach for designing and
training of attention-based models for pose estimation
in three levels: 2D joints attention, 3D-to-2D projection
attention, and 3D pose attention.

2. Learning of implicit dependencies in large temporal
receptive fields via a multi-scale structure of dilated con-
volutions.

3. Design of a systematic architecture for the integration
of the attention-based model and dilation convolutional
structure to enhance 3D pose inference to facilitate per-
formance driven animation applications.

Experimental evaluations show that the resulting system
can reach almost the same level of estimation accuracy under
both causal or non-causal conditions, making it very attrac-
tive for real-time or consumer-level applications. To date,
state-of-the-art results on video-based 2D-to-3D estimation
can be achieved by a semi-supervised approach (Pavllo et al.
2019) or a layer normalized LSTM approach (Hossain et al.
2018). Our model can further improve the performance in
both quantitative accuracy and qualitative evaluation. The
simple requirement of our framework makes it well suited
for interactive applications like computer games, virtual com-
munication, and avatar animation re-targeting from videos.
Given a video with continuous body movements and 3D
avatars as input, we transfer the captured pose and motion
from the subject video to a target character. In Fig. 1, we
show an example of how the solution can be employed in
performance-based animations from videos. In this example,
we create six 3D avatars with different shapes and appear-
ances and take six different videos as input. There are not
any constraints (e.g., camera intrinsic and extrinsic parame-
ters, pose complexities, or background environment settings)
about these input videos, which can be downloaded from

Fig. 1 An application that shows 3D avatars re-targeting from 2D video
streams

any online sources, such as YouTube. By using the proposed
technique, it enables automated body pose extraction from
the video streams and applies motion re-targeting to the cor-
responding characters in the scene. The green arrows at the
top of Fig. 1 indicates associated video for each character.
The subsequent frames demonstrate the result of automatic
motion transferring from the video to the 3D characters.

2 RelatedWorks

Articulated pose estimation from an unconstrained video
has been studied for decades. Early work relies on graph-
ical or restrictive models to account for the high degree of
freedom and dependencies among body parts, such as tree
structures (Andriluka et al. 2009; Yang and Ramanan 2011;
Amin et al. 2013), and pictorial structures (Andriluka et al.
2009). These methods often introduce a large number of
parameters that require careful andmanual tuning using tech-
niques such as piecewise approximation. The performance
of graphical model based approaches have been surpassed
by convolutional neural networks (CNNs) (Sarafianos et al.
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2016; Pavlakos et al. 2017), which can learn an automated
representation that disentangles the dependencies amongout-
put variables without a tailor-made solver.

For the last few years, various CNN based architectures
have been proposed. For example, Tekin et al. (2016) trains
an auto-encoder to project human joint positions to a high
dimensional space to enforce structural constraints. Park et al.
(2016) estimates the 3D pose by propagating the 2D clas-
sification results to the 3D pose regressors inside a neural
network (Park et al. 2016). A kinematic object model com-
posing of bones and joints is introduced in Zhou et al. (2016a)
to guarantee the geometric validity of the estimated human
body. A comprehensive list of convolutional systems can be
found in the survey presented in Sarafianos et al. (2016).

Our contribution to this rich body ofworks lies in the intro-
duction of an attention based mechanism to the body pose
estimation problem. The traditional concept of “attention” is
to provide an optimal matching strategy that globally aligns
pairwise data from the same domain, e.g., word-to-word or
phrase-to-phrase alignment in sentences (Yao et al. 2013), or
across different modalities, e.g., text-to-speech (Chorowski
et al. 2015) and text-to-image (Xu et al. 2015) in domain
transformation. Prior work on attention in deep learning
(DL) mostly addresses long short-term memory networks
(LSTMs) (Hochreiter and Schmidhuber 1997) and recently it
has gained popularity in training neural networks (Yin et al.
2016). Recent research indicates that certain convolutional
architectures can reach state-of-the-art accuracy in audio
synthesis, word-level languagemodeling, andmachine trans-
lation (Oord et al. 2016; Kalchbrenner et al. 2016; Dauphin
et al. 2017). Compared to the languagemodeling architecture
of Dauphin et al. (2017), temporal convolutional networks
(TCNs) (Bai et al. 2018) do not use gating mechanisms and
have much longer memory. Our 3D human pose estimation
and reconstruction network integrates the attention units and
multi-scale dilation units to the TCN architecture.

Asmentioned earlier, there are recent works that takemul-
tiple frames with 2D detection as the input for 3D prediction
such as the LSTM-based method (Hossain et al. 2018) and a
TCN based approach with semi-supervised training (Pavllo
et al. 2019). For the LSTM-based system, the frames have
to be processed sequentially based on time steps, while we
propose to process all of the frames in parallel for 3D pose
estimation. Another objective should be that any estimation
failure of one frame would not affect the other frames. In
our proposed work, we also employ some similarity to the
TCN-based approach as in Pavllo et al. (2019), Chen et al.
(2020) and Liu et al. (2020a) along with the usage of a vot-
ing mechanism to select important frames for prediction. In
addition, we incorporate the following three distinct features
in our proposed method:

(i) Instead of making a “hard” decision on a subset of
frames, we use a “soft” decision by considering all the
frames.

(ii) Along with the “soft” decisions to the input frames,
we apply all the immediate outputs from every layer
through the network, thereby expanding the scope of
selection to cover both raw frames and generated fea-
tures.

(iii) We use a multi-scale dilated convolution that enables
us to have a broad range of frame selection without
increasing the number of neural net layers.

3 The Attention-Based Approach

In this section, we present an overview of the proposed sys-
tem for 3D pose estimation from a 2D video stream and show
how our attention model guides the network to adaptively
identify significant portion of each deep neural net layer’s
output resulting in an enhanced estimation.

3.1 Network Design

Figure 2 (right) depicts the overall architecture of our
attention-based neural network. It takes a sequence of n
frames with 2D joint positions as the input and outputs the
estimated 3D pose for the target frame as labeled. The frame-
work involves two types of processingmodules: theTemporal
Attention module (indicated by the long green bars) and the
Kernel Attentionmodule (indicated by the gray squares). The
kernel attention module can be further categorized as TCN
Units (in dark grey color) and Feature Aggregation (in light
grey color) (He et al. 2016). By viewing the graphical model
vertically from the top, one can notice the two attention mod-
ules distribute in an interlacing pattern that a row of kernel
attention modules situate right below a temporal attention
module. We regard these two adjacent modules as one layer,
which has the same notion as a neural net layer. According
to the functionalities, the layers can be grouped as top layer,
middle layers, and bottom layer. Note that the top layer only
has TCN units for the kernel module, while the bottom layer
only has a feature aggregation to deliver the result. It is also
worth mentioning that the number of middle layers can be
varied depending on the receptive field setting, which will be
discussed in Sect. 5.3.

3.2 Temporal Attention

The goal of the temporal attentionmodule is to provide a con-
tributionmetric for the output tensors. Each attentionmodule
produces a set of scalars, {ω(l)

0 , ω
(l)
1 , . . . }, weighing the sig-
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Fig. 2 An example of a 4-layer architecture for attention-based temporal convolutional neural network (ATCN). In this architecture, all the kernel
sizes are 3. In practice, different layers can have different kernel sizes

nificance of different tensors within a layer:

W(l) ⊗ T(l) Δ=
{
ω

(l)
0 ⊗ T (l)

0 , . . . , ω
(l)
λl−1 ⊗ T (l)

λl−1

}
(1)

where l and λl indicate the layer index and the number of
tensors output from the l(th) layer. We use T (l)

u to denote
the uth tensor output from the lth layer. The bold format of
W⊗T is a compacted vector. Note for the top layer, the input
to the TCN units is just the 2D joints. The choice for comput-
ing their attention scores can be flexible. A commonly used
scheme is the multilayer perceptron strategy for optimal fea-
ture set selection (Ruck et al. 1990). Empirically, we achieve
desirable result by simply computing the normalized cross-
correlation (ncc) that measures the positive cosine similarity
between Pi and Pt on their 2D joint positions (Yoo and Han
2009):

W(0) = [
ncc(P0, Pt ), . . . , ncc(Pn−1, Pt )

]T (2)

whereP0, . . . , Pn−1 are the 2D joint positions. t indicates the
target frame index. The outputW(0) is forwarded to the atten-
tion matrix θt

(l) to produce tensor weights for the subsequent
layers.

W(l) = sig
(
θt

(l)T W(l−1)
)
, for l ∈ [1, L − 2] (3)

where sig(·) is the sigmoid activation function. We require
the dimension of θt

(l) ∈ RF ′×F matching the number of
output tensors between layers l − 1 and l, s.t. F ′ = λl−1 and
F = λl .

3.3 Kernel Attention

Similar to the temporal attention that determines a tensor
weight distribution W(l) within layer l, the kernel attention
module assigns a channel weight distribution within a tensor,

denoted as W̃
(l)
. Figure 2 (right) depicts the steps on how an

updated tensorT(l)
f inal is generated through theweight adjust-

ment. Given an input tensor T(l) ∈ RC×F , we generate M
new tensors T̃ (l)

m using M TCN units with different dilation
rates.

These M tensors are fused together through element-
wise summation: T̃(l) = ∑M

m=1 T̃ (l)
m , which is fed into a

global average pooling (GAP) layer to generate channel-
wise statistics T̃ (l)

c ∈ RC×1. The channel number C is
acquired through a TCN unit as discussed in the ablation
study. The output T̃ (l)

c is forwarded to a fully-connected
layer to learn the relationship among features of differ-
ent kernel sizes: T̃ (l)

r = θr
(l)T̃ (l)

c . The role of matrix
θr

(l) ∈ Rr×C is to reduce the channel dimension to r .
Guided by the compacted feature descriptor T̃ (l)

r , M vec-
tors are generated (indicated by the yellow cuboids) through
a second fully-connected layer across channels. Their ker-
nel attention weights are computed by a softmax function:

W̃
(l) Δ=

{
W̃ (l)

1 , ..., W̃ (l)
M

∣∣∣∣∣W̃
(l)
m = eθm

(l)T̃ (l)
r

∑M
m=1 eθm

(l)T̃ (l)
r

}
(4)

where θm
(l) ∈ RC×r are the kernel attention parameters and∑M

m=1 W (l)
m = 1. Based on theweight distribution, we finally
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Fig. 3 The model of temporal dilated convolution network. As the
level index increases, the receptive field over frames (layer index = 0)
or tensors (layer index ≥ 0) increases

obtain the output tensor:

T(l)
f inal

Δ=
M∑

m=1

W̃ (l)
m ⊗ T̃ (l)

m (5)

The channel update procedure can be further decomposed as:

W̃ (l)
m ⊗ T̃ (l)

m =
{
ω̃

(l)
1 ⊗ T̃ (l)

1 , . . . , ω̃
(l)
C ⊗ T̃ (l)

C

}
(6)

This shares the same format as the tensor distribution process
(Eq. 1) in the temporal attention module but focuses on the
channel distribution. The temporal attention parameters θt

(l)

and kernel attention parameters θr
(l), θm(l) for l ∈ [1, L −2]

are learned through mini-batch stochastic gradient descent
(SGD) in the same manner as the TCN unit training (Bottou
2010).

4 Integration with Dilated Convolutions

For the proposed attention model, a large receptive field
is crucial to learn long range temporal relationships across
frames, thereby enhancing the estimation consistency. How-
ever, with more frames feeding into the network, the number
of neural layers increases together with more training param-
eters. To avoid vanishinggradients or other superfluous layers
problems (Martinez et al. 2017), we devise a multi-scale
dilation (MDC) strategy by integrating dilated convolu-
tions.

Figure 3 shows our dilated network architecture. For visu-
alization purpose, we project the network into an xyz space.
The xy plane has the same configuration as the network in
Fig. 2, with the combination of temporal and kernel attention

modules along the x direction, and layers layout along the y
direction. As an extension, we place the dilated convolution
units (DCUs) along the z direction. This z-axis is labeled
as levels to differ from the layer concept along the y direc-
tion. As the level index increases, the receptive field grows
with increasing dilation size while reducing the number of
DCUs.

5 Experimental Evaluation

This section discusses our system implementation as well as
the evaluation results compared to the state-of-the-art tech-
niques by using the standard pose estimation protocols on
public datasets. We first describe the configuration and tim-
ings for each functional module, as well as the timings for
the run-time algorithm. Ablation studies of the system are
conducted by analyzing each component and discuss their
performance and limitations. Then we evaluate the estima-
tion accuracy compared to other approaches as well as the
ground truth. Finally we demonstrate the robustness and flex-
ibility of the proposed approach on videos in the wild with
various environment complexities and unknown camera set-
tings. Our model is generic and runs on novel users without
requiring any offline training or manual preprocessing steps.
More extensive evaluation can be found at our lab website.1

5.1 Configuration and Computational Complexity

To investigate the practical feasibility of the proposed
approach, we implemented three prototypes with different
layer L and dilation level V combinations: L4× V 2× N27,
L5× V 3× N81, and L6× V 4× N243, where the last term
N indicates the corresponding input frame number. Figure 4
provides a deeper insight on unit configuration of the proto-
types: L4 × V 2 × N27 and L5 × V 3 × N81. By dropping
the x-axis from Fig. 3, it only displays the level and layer
distribute in a 2D view. For simplicity, we use a black/gray
rectangle shape to denote the group of TCN units within a
layer. At level 0 , the TCN units are placed by layers along
the y-axis corresponding to the ones depicted in Fig. 3. From
level 1, along the positive z-axis, different scaled dilated
convolution units are placed. As the level index grows, the
number of dilated units decreases due to the increasing recep-
tive fields.

All the prototypes are implemented in native Python
(Pytorch 1.0) and tested on a NVIDIA TITAN RTX GPU
without parallel optimization. Despite the difference in lay-
ers and levels, all the prototypes present similar convergence
rate in training and testing, as shown in Fig. 5.With data aug-
mentation, the L6× V 4 setting demonstrates the best Mean

1 Demo: https://sites.google.com/a/udayton.edu/jshen1/pose3d.
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(a) Prototype 1: Layer 4 × Level 2 (L4×V2)

(b) Proto type 2: Layer 5  × Level 3 (L5×V3)

Fig. 4 Architectures of input/output data flows across different dilated
convolution units. Inside each unit, the numbers represent the unit con-
figuration, e.g. K3D9, 1024means kernel size is 3, dilation rate is 9, and
tensor depth or number of channels is 1024. M3D3, 1024 means TCN
units are 3, dilation rate is 9, and tensor depth or number of channels is
1024

Per Joint Position Error (MPJPE) performance with approx-
imately 16 hrs training on 1.6M frames. The optimizer is
Ranger (Zhang et al. 2019; Liu et al. 2019), and the learning
rate is 0.001 with decay= 0.05 for 80 epoch, the batch size is
1024 and dropout is 0.2. For real-time inference, it can reach
3000 FPS.

Table 1 compares our model with TCN based semi super-
vised approach (Pavllo et al. 2019), and the layer normalized
LSTM approach (Hossain et al. 2018) in terms of the compu-
tational complexity. Ourmodel requires fewer parameters for
learning the model while achieving better accuracy. In par-
ticular, the input numbers of frames for our three prototypes
exactly match the corresponding ones in Pavllo et al. (2019)
(i.e., #243, #81, and #27), while ours saves 2M parameters
on average.

Table 1 Computational complexity performance in terms of the num-
ber of involved learning parameters

Method Parameters MPJPE

ECCV (Hossain et al. 2018) 16.96M 41.6

CVPR (Pavllo et al. 2019) (27f) 8.56M 40.6

Ours (L4 × V2) 5.69M 39.1

CVPR (Pavllo et al. 2019) (81f) 12.75M 38.7

Ours (L5 × V3) 8.46M 37.0

CVPR (Pavllo et al. 2019) (243f) 16.95M 37.8

Ours (L6 × V4) 11.22M 33.4

Fig. 5 Convergence characteristics for training and testing on three
prototypes

5.2 Datasets and Evaluation Protocols

Our quantitative evaluation is conducted on two most com-
monly used datasets: Human3.6M (Ionescu et al. 2013) and
HumanEva (Sigal et al. 2010). We also applied our approach
to some challenging YouTube videos, which include fast
motion activities and low-resolution frames. It would be
extremely difficult to obtain meaningful 2D detection for
those challenging videos collected in the wild. For the
Human3.6M, we follow the same training and validation
schemes as in the previous works (Martinez et al. 2017; Yang
et al. 2018; Hossain et al. 2018; Pavllo et al. 2019). Specif-
ically, subjects S1, S5, S6, S7, and S8 are used for training,
and subjects S9 and S11 are used for testing. In the same
manner, we conducted training/testing on the HumanEva (a
comparatively smaller dataset) with the “Walk” and “Jog”
actions performed by subjects S1, S2, and S3.

For both datasets, we use the standard evaluation met-
rics MPJPE and P-MPJPE to measure the offset between the
estimation result and ground-truth (GT) relative to the root
node in millimeters (Ionescu et al. 2013). Two protocols are
involved in the experiment: Protocol 1 computes the mean
Euclidean distance across all the joints after aligning the root
joints (i.e., pelvis) between the predicted and ground-truth
poses, referred as MPJPE (Fang et al. 2018; Lee et al. 2018;
Pavlakos et al. 2017), (?). Protocol 2 applies additional simi-
larity transformation Procrustes analysis (Lepetit et al. 2005)
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Fig. 6 The impact of channel number onMPJPE. CPN: cascaded pyra-
mid network and GT: ground-truth

to the predicted pose as an enhancement and it is called P-
MPJPE (Martinez et al. 2017; Hossain et al. 2018; Yang et al.
2018; Pavllo et al. 2019). In contrast to protocol 1, this evalu-
ation can be more robust to individual joint prediction failure
due to the rigid alignment. It is worth mentioning that some
researchers also use another protocol by performing a scale
alignment on the predicted pose and it is named as N-MPJPE
(Rhodin et al. 2018). Since it has a similar goal as protocol
2 with relatively less transformation, the error usually drops
between the outputs produced by protocols 1 and 2. As such,
the accuracy performance should be sufficiently evaluated by
using these two protocols.

5.3 Ablation Studies

To verify the impact and performance of each component
in the network, we conducted ablation experiments on the
Human3.6M dataset under Protocol#1.

TCN Unit Channels we first investigated how the channel
number C affects the performance between TCN units and
temporal attention models. In our test, we used both the CPN
and GT as the 2D input. Starting with a receptive field of
n = 3× 3× 3 = 27, as we increase the channels (C ≤ 512),
the MPJPE drops down significantly. However, the MPJPE
changes slowly when C grows between 512 and 1024, and
remains almost stable afterwards.As shown inFig. 6,with the
CPN input, a marginal improvement is yielded from MPJPE
49.9 mm at C = 1024 to 49.6 mm at C = 2048. A similar
curve shape can be observed for the GT input. Considering
the computation load with more parameters introduced, we
chose C = 1024 in our experiments.

Kernel Attention Table 2 shows how the setting of differ-
ent parameters inside the Kernel Attention module impacts
the performance under Protocol#1. The left three columns
list the main variables. For validation purposes, we divide
the configuration into three groups in row-wise. Within each
group, we assign different values in one variable while keep-
ing the other two fixed. The items in bold represent the best
individual setting for each group. Empirically, we chose the
combination of M = 3, G = 8, and r = 128 as the optimal
setting (labeled in box). Note, we select G = 8 instead of the

Table 2 Ablation study on different parameters in our kernel attention
model

Kernels Groups Channels Parameters P1

M = 1 G = 1 – 16.95M 37.8

M = 2 G = 8 r = 128 9.14M 37.1

M = 3 G = 8 r = 128 11.22M 35.5

M = 4 G = 8 r = 128 13.36M 38.0

M = 3 G = 1 r = 128 44.25M 37.4

M = 3 G = 2 r = 128 25.41M 35.3

M = 3 G = 4 r = 128 15.97M 35.6

M = 3 G = 8 r = 128 11.25M 35.5

M = 3 G = 16 r = 128 8.89M 37.3

M = 3 G = 8 r = 64 10.20M 35.9

M = 3 G = 8 r = 128 11.25M 35.5

M = 3 G = 8 r = 256 13.35M 36.2

Here, we use receptive field n = 3×3×3×3×3 = 243. The evaluation
is performed on Human3.6M under Protocol#1 with MPJPE (mm)

individual best assignment G = 2, which introduces a larger
number of parameters with negligible MPJPE improvement.

In Table 3, we discuss the choice of different types of
receptive fields and how it affects the network performance.
The first column shows various layer configurations, which
generate different receptive fields, ranging from n = 27 to
n = 1029. To validate the impact of n, we fix the other
parameters, i.e. M = 3, G = 8, r = 128. Note that for a
network with smaller number of layers (e.g. L = 3), a larger
receptive field may reduce the error more effectively. For
example, increasing the receptive field from n = 3×3×3 =
27 to n = 3 × 3 × 7 = 147, the MPJPE drops from 40.6 to
36.8 . However, for a deeper network, a larger receptive field
may not be always optimal, e.g. when n = 1029, MPJPE
= 37.0. Empirically, we obtained the best performance with
the setting of n = 243 and L = 5, as indicated in the last
row.

Multi-Scale Dilation To evaluate the impact of the dila-
tion component on the network, we tested the system with
and without dilation and compared their individual out-
comes. In the same way, the GT and CPN 2D detectors are
used as input and being tested on the Human3.6M dataset
under Protocol#1. Table 4 demonstrates the integration of
attention, and multi-scale dilation components surpass their
individual performance with the minimumMPJPE for all the
three prototypes. We also found the attention model makes
an increasingly significant contribution as the layer number
grows. This is because more layers lead to a larger receptive
field, allowing the multi-scale dilation to capture long-term
dependency across frames. The effect is more noticeable
when fast motion or self-occlusion present in videos.
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Table 3 Ablation study on
different receptive fields in our
kernel attention model

Receptive fields Kernels Groups Channels Parameters P1

3 × 3 × 3 = 27 M = 1 G = 1 – 8.56M 40.6

3 × 3 × 3 = 27 M = 2 G = 4 r = 128 6.21M 40.0

3 × 5 × 3 = 45 M = 2 G = 4 r = 128 6.21M 39.9

3 × 5 × 5 = 75 M = 2 G = 4 r = 128 6.21M 38.5

3 × 3 × 3 = 27 M = 3 G = 8 r = 128 5.69M 39.5

3 × 5 × 3 = 45 M = 3 G = 8 r = 128 5.69M 39.2

3 × 5 × 5 = 75 M = 3 G = 8 r = 128 5.69M 38.2

3 × 7 × 7 = 147 M = 3 G = 8 r = 128 5.69M 36.8

3 × 3 × 3 × 3 = 81 M = 3 G = 8 r = 128 8.46M 37.8

3 × 5 × 5 × 5 = 375 M = 3 G = 8 r = 128 8.46M 36.6

3 × 7 × 7 × 7 = 1029 M = 3 G = 8 r = 128 8.46M 37.0

3 × 3 × 3 × 3 × 3 = 243 M = 3 G = 8 r = 128 11.25M 35.5

The evaluation is performed on Human3.6M under Protocol#1 with MPJPE (mm)

Table 4 Ablation study on different components in our method

Method Model
n = 27 n = 81 n = 243

Attention model (CPN) 49.1 47.2 45.7

Multi-scale dilation model (CPN) 50.3 49.8 49.1

Attention and dilation (CPN) 49.0 46.5 45.1

Attention model (GT) 39.5 37.8 35.5

Multi-scale dilation model (GT) 39.2 37.2 35.3

Attention and dilation (GT) 38.9 36.2 33.4

The evaluation is performed on Human3.6M under Protocol#1 with
MPJPE (mm)

Table 5 Ablation study on different components in our method

Model Method
CPN GT

Baseline 27 frames 51.2 40.6

+ Receptive field (243 frames) 49.2 37.8

+ Attention 47.9 35.5

+ Dilation 47.2 34.7

+ Project on 2D 47.0 34.5

+ 2D pose enhance 46.5 –

+ Data augment 44.8 33.4

The evaluation is performed on Human3.6M under Protocol#1 with
MPJPE (mm)

Step by step performance enhancement Here we list all
the steps and additional modules used to obtain the perfor-
mance. The step-by-step gains brought by each component
are illustrated in Table 5.

5.4 Comparison with State-of-the-Art

In this subsection, we systematically analyze the per-
formance of our proposed method by comparing it with
state-of-the-art. To fairly evaluate the accuracy, we use the
same training and testing datasets as others. Tables 6, 7
and 8 demonstrate the comparison by following Protocol 1
and 2. Tables 6 and 7 illustrate the Human3.6M results and
Table 8 illustrates the results of HumanEva. The results of
each method are displayed in row-wise. Each column indi-
cates a different pose scene, e.g., walking, eating, etc. We
highlight the best and second best results in each column
in bold and underline formats respectively. The last column
of each table shows the average results across all the dif-
ferent pose scenes. Note that our model outperforms all the
existing approaches by reaching a minimum average error of
48.6 mm in MPJPE and 37.7 mm in P-MPJPE. Admittedly,
for some pose scenes, e.g., Phone, Eat, our method does not
achieve the best performance. This could be due to the nature
of the particular activities, for example, if the less noticeable
motion or only upper-body movement are involved, limited
information is fed into the attention layers to learn tensor
distributions. However, if one considers all the scenarios,
our overall performance demonstrates higher accuracy than
other methods by a fair margin. In particular, under protocol
1, our model reduces the best-reported error rate of MPJPE
(Pavllo et al. 2019) by approximate 3% using ground truth
2D pose as the input.

To further demonstrate the efficacy, we evaluated the per-
formance and advantage of our approach in three aspects:

1. Joint-wise Analyzing the accuracy of individual joint
measurement with MPJPE comparison

2. Frame-wiseTracking the averageMPJPEof all the joints
across frames
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Table 7 Protocol 2: Reconstruction Error on Human3.6M with similarity transformation

Method Dir. Disc. Eat Greet Phone Photo Pose Pur. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

Martinez et al. (2017) 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7

Fang et al. (2018) 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7

Hossain et al. (2018) 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1

Pavlakos et al. (2017) 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8

Yang et al. (2018) 26.9 30.9 36.3 39.9 43.9 47.4 28.8 29.4 36.9 58.4 41.5 30.5 29.5 42.5 32.2 37.7

Dabral et al. (2018) 28.0 30.7 39.1 34.4 37.1 28.9 31.2 39.3 60.6 39.3 44.8 31.1 25.3 37.8 28.4 36.3

Pavllo et al. (2019) 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5

Ours (n = 243 CPN) 32.3 35.2 33.3 35.8 35.9 41.5 33.2 32.7 44.6 50.9 37.0 32.4 37.0 25.2 27.2 35.6

Table 8 Protocol 2:
Reconstruction Error on
HumanEva

Walk Jog
S1 S2 S3 S1 S2 S3 Avg

(Pavlakos et al. 2017) (MA) 22.3 19.5 29.7 28.9 21.9 23.8 24.35

(Martinez et al. 2017) (SA) 19.7 17.4 46.8 26.9 18.2 18.6 24.6

(Lee et al. 2018) (MA) 18.6 19.9 30.5 25.7 16.8 17.7 21.5

(Pavllo et al. 2019)(MA) 13.4 10.2 27.2 17.1 13.1 13.8 15.8

Ours (n=27 MA) 13.1 9.8 26.8 16.9 12.8 13.3 15.4

MA multi-action model, SA single action model

3. Re-targeting-wiseApplyingmotion-retargetingby trans-
ferring the estimated pose to a 3D avatar

We compare our approach with three state-of-the-art tech-
niques, which represent the best reported results on monoc-
ular video-based 2D-to-3D estimation to date: the deep
feedforward 2D-to-3D network (Martinez et al. 2017), the
layer-normalized LSTM based algorithm (Hossain et al.
2018), and the dilated temporal convolution with semi-
supervised training (Pavllo et al. 2019). Figure 8 demon-
strates the joint-wise MPJPE for a selected frame from the
WalkDog S11 data. The top row shows the input 2D color
image and its corresponding estimated 3D poses by other
methods. The histograms in the second row show the quan-
tified measurement on each joint, e.g., R-Knee, Nose, Neck.
Note that our approach, indicated by the green bar, achieves
minimumMPJPE among all the other methods in most of the
joints. To further validate the accuracy,we trace these individ-
ual joints across frames in the corresponding video sequence
and measure their MPJPE in the temporal space. Fig. 7 plots
the MPJPE curves over time (around 1400 frames) on two
selected joints: the left ankle from Walking S9 and the left
elbow from Smoking S9. Compared to the recent works (Mar-
tinez et al. 2017; Hossain et al. 2018; Pavllo et al. 2019),
our results yield low errors consistently through learning the
long-range dependencies using the multi-scale dilation con-
volution (Figs. 8, 9).

In light of possible biases and uncertainties that individ-
ual joint may introduce, we perform frame-wise analysis by

(a) Protocol 1: joint error analysis across frames in Human3.6M

(b) Protocol 1: joint error analysis across frames in Human3.6M
Smoking S9  left elbow.

Walking S9left ankle.

Fig. 7 Joint-wise analysis across frames

taking the average MPJPE of all the joint estimation in each
frame andmeasure how it changes through a video sequence.
Figure 10 shows the testing results on two scenes of the
Human3D dataset: smoking S9 and photo S9. For each scene,
the top row presents the estimated 3D pose results from the
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Fig. 8 Individual joint MPJPE comparison with state-of-the-art

(a) Pavllo et al., 2019 (b) Ground truth (c) Ours

Fig. 9 Comparison results: (top): side-by-side views of motion retar-
geting results on a 3D avatar; the source is from frame 857 of walking
S9 and frame 475 posing S9 in Human3.6M. (bottom): the average joint
error comparison across all the frames of the video walking S9 (Pavllo
et al. 2019)

same frame produced by different methods. Though it is hard
to see the difference from the single frame, from the MPJPE
(the green number on the top-left corner of each pose result),
our attention-based model delivers the best result. In the sec-
ond row of each scene, We trace these average joint errors
across all of the frames in the corresponding video sequence.
Our resultsmaintain lowMPJPE compared to the othermeth-
ods.

To visually demonstrate the significance of the estimation
improvement, we apply animation retargeting to a 3D avatar

by synthesizing the captured motion from the same frame of
the Walking S9 and Posing S9 sequences as shown in Fig.
9. With the support of additional mesh surface driven by the
pose, it helps magnify the degree of body part arrangement
that enhance the contrast of estimation. From the side-by-side
comparisons, one can easily see the difference between the
rendered results against the ground truth. Specifically, the
shadows of the legs and the right hand are differently ren-
dered due to the erroneous pose estimated using the method
in Pavllo et al. (2019) while ours stay more aligned to the
ground truth. The quantified MPJPE for each joint estima-
tion is shown in the correponding histograms right below it.
Figure 11 shows more retargeting results on the same dataset
for different frames. The zoom-in views illustrate the details
of the animated characters of different pose configurations.
For the Posing S9 in the first row, our results bear the clos-
est similarity as the ground truth with the right arm of the
character naturally hanging down the side of the body, while
others present more distinct arm gesture. The second row of
Fig. 11 demonstrates the improvement of our approach on
leg movement prediction with optimistic estimate on the two
legs relative positions.Note that this is just one selected frame
from the walking sequence, which is a common body activ-
ity involving the alternate of left and right legs in a repetitive
manner. Accurate and consistent part detection is crucial to
deliver smooth motion sequences without any jittering effect
in 3D pose reconstruction.

2D Detection

We investigated the impact of 2D pose detection on our 3D
pose estimation performance by exploring several widely
adopted 2D detectors. Firstly, we utilized the pre-trained
Stacked Hourglass network (SH) (Newell et al. 2016) on

123



International Journal of Computer Vision (2021) 129:1596–1615 1607

Fig. 10 Frame-wise comparasion with state-of-the-art results

the MPII dataset to extract 2D keypoint locations within the
ground-truth bounding boxes. We also applied the results
of fine-tuned SH model on the Human3.6M dataset devel-
oped byMartinez et al. (2017). Researchers also investigated
automated methods with detected bounding boxes for 2D
human pose detection, such as Simple baselines for human
pose estimation (Xiao et al. 2018),Deep high-resolution rep-
resentation for human pose estimation (HRnet) (Sun et al.
2019) or Cascaded Pyramid Network (CPN) (Chen and
Ramanan 2017) together with Mask R-CNN (He et al. 2017)
and ResNet-101-FPN (Lin et al. 2017) as the backbone. We
applied the pre-trained SH, fine-tuned SH, and fine-tuned
CPN models (Pavllo et al. 2019) as the 2D detectors for per-
forming a fair comparison, as shown in Table 9.

The big difference between the pre-trained and fine-tuned
models are the 2D human joints estimation accuracy and
number of joints. Based on the results of our experiment, our
network can learn different joint label information. MPII has

16 jointswhichmissed the neck/nose joint in theHuman3.6M
dataset. Although COCO dataset has the same joint number,
the order of the labels of joints is different fromHuman3.6M.
To get a more accurate 3D joints position result, we utilize
a fine-tuned model to get the corresponding 2D joints on
Human3.6M. Furthermore, in the second part of Table 6, we
show the results with ground-truth (GT) 2D input. For both
cases, our attention model demonstrates a clear advantage by
utilizing the temporal information.

Causal Attention Results

To facilitate real-time performance for potential interactive
applications, we also investigate a causal attention based net-
work that estimates the target pose by only processing the
current frame and its previous frames. The architecture of
the causal attention model is shown in Fig. 12. The archi-
tecture is similar to the one described in Fig. 2, but here we
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Fig. 11 Comparison with state-of-the-art results on motion re-targeting model

Table 9 Performance impacted by 2D detectors under Protocol 1 and
Protocol 2

Method P1 P2

ICCV (Martinez et al. 2017) (SH PT) 67.5 52.5

ours (L6 x V4 SH PT) 57.3 45.5

ICCV (Martinez et al. 2017) (SH FT) 62.9 47.7

ECCV (Hossain et al. 2018) (SH FT) 58.3 44.2

CVPR (Zhao et al. 2019b) (SH FT) 61.2 47.7

ours (L6 x V4 SH FT) 52.0 40.7

CVPR (Pavllo et al. 2019) (CPN FT) 46.8 36.5

ours (L6 x V4 CPN FT) 44.8 35.6

ICCV (Martinez et al. 2017) (GT) 45.5 37.1

ECCV (Hossain et al. 2018) (GT) 41.6 31.7

ECCV (Lee et al. 2018) (GT) 38.4 –

CVPR (Zhao et al. 2019b) (GT) 40.8 31.45

CVPR (Pavllo et al. 2019) (GT) 37.8 28.2

ours (L6 x V4 GT) 33.4 26.1

PT pre-trained, FT fine-tuned, SH stacked hourglass

only consider the left half of the input video sequence. The
number of input frames can also be determined by the num-
ber of layers of the model, but it shifts to the N−1

2 previous
frames, where N is the corresponding number of frames in
the full-model illustrated in Fig. 2 . For example, for the con-
figuration of L4×V 2×N27, 27 causal frames are fed into the
network (included the target frame); while L5 × V 3 × N81
requires 81 causal frames as the input. Similarly, to verify
the performance, we implemented three different prototypes
according to the number of layers and levels, as shown in
Table 10. Horizontally, each row indicates a different proto-

Fig. 12 An example of a 4-layer architecture for causal attention-based
temporal convolutional neural network

type of the causal model. Vertically, each column indicates
a different 2D detector. We provide a side-by-side compar-
ison with the results in the recent CVPR paper on the same
problem with various 2D detectors (Pavllo et al. 2019). Even
our causal model only considers casual input frames com-
pared to the TCN based semi-supervised approach in Pavllo
et al. (2019), the results of our method (ATCN + MDC)
demonstrate higher accuracy consistently. In particular, more
noticeable improvements are achieved as the number of input
frames increases. The result of real-time processing using
causal model is shown in Fig. 13.
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Table 10 Bottom-table: Causal sequence processing performance in
terms of the different 2D detectors under Protocol#1

Method SH PT SH FT CPN FT GT

Pavllo et al. (2019) – – 49.0 –

Ours (n = 27) – 56.8 49.4 39.7

Ours (n = 81) – 55.7 47.5 37.1

Ours (n = 243) 59.2 54.9 46.6 35.5

PT pre-trained, FT fine-tuned, GT ground-truth, SH stacked hourglass,
CPN cascaded pyramid network

Fig. 13 3D reconstruction results from different angles

5.5 Performance onVideos in-the-Wild

To evaluate the performance on videos in-the-wild, we val-
idated our approach on both public datasets and online
videos with the former emphasizing quantitative validation
while the later demonstrating qualitative performance.While
there exists limited datasets with accurate 3D pose in the
wild, we adopt some of the standard activities with outdoor
scene simulation to quantitatively evaluate the performance
and compare with other approaches. In contrast to static
background and cameras capture setting, outdoor has more
dynamic and unrestricted environment with frequent occlu-
sion and high variation in background/foreground objects
appearance. Figure 14 shows several outdoor simulations on
the standard activities with snow, fog, and occlusion effects
(each column). The corresponding pose estimation results by
different approaches are shown in each of the following rows.
Table 11 provides the quantitative measurement on their out-
put. In a similar manner, joint-wise analysis is conducted on
a selected joint from the Human3.6M scene with the gen-
erated noises. One can see our approach consistently yields
less MPJPE over the frames. To quantitatively demonstrate

Fig. 14 Samples of synthesized outdoor environment on the
Human3.6M dataset and their 3D pose estimation

the robustness and efficacy, various videos in the wild are
collected online and added with extra noises, e.g. snow or
fog effect. Figure 17 shows satisfactory results are achieved,
given the additional noises. For example, in the foggy scene
(row 5 and 6), the target person is almost occluded by the
thick fog. Thanks to the attention model that successfully
extracts temporal information from neighbor frames, the full
3D pose is correctly recovered (Figs. 15, 16).

123



1610 International Journal of Computer Vision (2021) 129:1596–1615

Table 11 Protocol#2 measurement on the estimation results from the
simulated scenes

Noise ICCV
(Mar-
tinez
et al.
2017)

ECCV
(Hos-
sain
et al.
2018)

CVPR
(Pavllo
et al.
2019)

Ours

GT/GT 37.1 31.7 28.1 26.1

GT/GT
+
N (0, 5)

46.7 37.5 30.9 28.3

GT/GT
+
N (0, 10)

52.8 49.4 39.3 36.7

GT/GT
+
N (0, 15)

60.0 61.8 50.3 42.5

GT/GT
+
N (0, 20)

70.2 73.7 62.2 56.2

Training and testing on ground truth 2d joint locations plus different
levels of additive gaussian noise

(a) Protocol 1: joint error analysis after adding noise across frames in
Human3.6M Walking S9 left ankle.

(b) Protocol 1: joint error analysis after adding noise across frames in
Human3.6M Smoking S9 left elbow.

Fig. 15 Joint-wise analysis and comparison on the outdoor simulated
scenes

(a) Heavy occlusion.

(b) Instantaneous movement.

Fig. 16 Unresolved cases: there were a few failed frames from the
tested wild videos, where severe occlusion and fast motion presented

To further demonstrate the temporal consistency, we
gather online video sequences from YouTube and predict the
3D poses directly from these videos in the wild. Figure 18
demonstrates the results of this experiment on various activi-
ties. Even though the input videos are either of low resolution
or with fast motions, our approach is still able to estimate
the 3D pose with satisfactory output. For example, for the
dancing scenes (rows 1–2 and rows 9–10) and the skating
scene (rows 5–6), given the presence of fast body move-
ment and self-occlusion, the estimations are accurate enough
to provide the corresponding 3D positions for each frame.
To further verify the robustness, different sports activities
with novel body poses (rows 3–4, rows 7–8, and rows 11–
12) are processed. Our algorithm can faithfully capture and
reproduce these pose details without requiring any additional
offline training or manual preprocessing steps. In particular,
for the challenging scene in rows 3–4, the target person has
relatively casual dress with partial leg occlusion by the top
costume The generated 3D pose from our attention model
are visually plausible and resemble the user’s body motion
very well.

6 Conclusion and Discussion

In this paper, we present a novel and practical approach
for 3D human pose estimation and reconstruction in uncon-
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Fig. 17 Qualitative results on gathered in the wild videos: original frame sequence with added noises and the recovered 3D poses

strained videos. In order to enhance temporal coherency, we
integrate an attentional mechanism to the temporal convolu-
tional neural network to guide the network towards learning
informative representation.Moreover,we introduced amulti-
scale dilation convolution, which is capable of capturing
several levels of temporal receptive fields, achieving long-
range dependencies among frames. Extensive experiments
onbenchmarkdemonstrates that our approach improves upon

the state-of-the-art and offers an effective, alternative frame-
work to address the 3D human pose estimation problem.
The implementation is straightforward and can adaptive cor-
porate with standard convolution neural networks. For the
input data, any off-the-shelf 2D pose estimation systems,e.g.
Mocap libraries, can be easily integrated in an ad-hoc fash-
ion.

123



1612 International Journal of Computer Vision (2021) 129:1596–1615

Fig. 18 Qualitative results on gathered Youtube videos: original frame sequence and the recovered 3D poses
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Fig. 18 continued
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Though our results outperform the state-of-the-art on pub-
lic datasets, there are still some specific limitation remaining
unresolved. Two examples are shown in Fig. 16. For exam-
ple, when the performer’s arms are crossing under the fans, it
causes heavy occlusionwithmissing joints detection, thereby
resulting in poor pose estimation, indicated in Fig. 16a. In
Fig. 16b, when the leg has a very fast movement, our tem-
poral system categorizes it as an outlier position rather than
using them to contribute the pose inference. Another lim-
itation is on the inference accuracy for some multi-person
human scenarios due to the limited training data on labeled
multi-person 3D pose video datasets. However, if using the
top-down 2D pose detecting algorithm with pose tracking,
it would be possible to reconstruct multi-person 3D pose
from a video. The tracking error may affect the temporal
attention performance. Our future direction will explore a
more generic framework that integrates the proposed atten-
tion model and person re-identification solution to handle
instantaneous body part movements and heavy occlusions
caused by multiple people.
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