
International Journal of Computer Vision (2021) 129:998–1012
https://doi.org/10.1007/s11263-020-01417-9

Rectified Binary Convolutional Networks with Generative Adversarial
Learning

Chunlei Liu1 ·Wenrui Ding1 · Yuan Hu1 · Baochang Zhang1 · Jianzhuang Liu2 · Guodong Guo3 ·
David Doermann4

Received: 19 December 2019 / Accepted: 4 December 2020 / Published online: 6 January 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Binarized convolutional neural networks (BNNs) are widely used to improve the memory and computational efficiency of
deep convolutional neural networks for to be employed on embedded devices. However, existing BNNs fail to explore their
corresponding full-precision models’ potential, resulting in a significant performance gap. This paper introduces a Rectified
Binary Convolutional Network (RBCN) by combining full precision kernels and feature maps to rectify the binarization
process in a generative adversarial network (GAN) framework. We further prune our RBCNs using the GAN framework
to increase the model efficiency and promote flexibly in practical applications. Extensive experiments validate the superior
performance of the proposed RBCN over state-of-the-art BNNs on tasks such as object classification, object tracking, face
recognition, and person re-identification.

Keywords Binary convolutional neural network (BNN) · Rectified binary convolutional network (RBCN) · Generative
adversarial network (GAN)

Communicated by Mei Chen.

Chunlei Liu and Wenrui Ding have contributed equally to this work.

B Baochang Zhang
bczhang@buaa.edu.cn

Chunlei Liu
liuchunlei@buaa.edu.cn

Wenrui Ding
ding@buaa.edu.cn

Yuan Hu
huyuan1248@gmail.com

Jianzhuang Liu
jz.liu@siat.ac.cn

Guodong Guo
guoguodong01@baidu.com

David Doermann
doermann@buffalo.edu

1 Beihang University, Beijing, China

2 Shenzhen Institutes of Advanced Technology, University of
Chinese Academy of Sciences, Shenzhen, China

3 Baidu Research and National Engineering Laboratory for
Deep Learning Technology and Application, Institute of Deep
Learning, Beijing, China

1 Introduction

Deep convolutional neural networks (CNNs) have been suc-
cessfully demonstrated on many computer vision tasks.
However, CNNs still face many challenges when applied
to practical applications. CNNs typically involve millions
of parameters and billions of FLOPs of computation. This
is critical because vision application models consume large
amounts of memory and computation, making them imprac-
tical for object recognition outside of high-performance
computing environments. Existing work focuses on network
pruning (He et al. 2017; Li et al. 2019), low-bit quantization
(Zhang et al. 2018; Zhou et al. 2016, 2017), decomposi-
tion/factorization (Jaderberg et al. 2014; Denton et al. 2014),
distillation (Xu et al. 2018; Changyong et al. 2019), or effi-
cient architecture design (Sandler et al. 2018; Zhang et al.
2018) to address the problem of inefficient models. In partic-
ular, quantization approaches represent network weights and
activations with low bit-width fixed-point integers, enabling
computation by efficient bit-wise operations. Binarization
(Rastegari et al. 2016; Zhang et al. 2019; Liu et al. 2018) is an
extreme quantization approach where both weights and acti-

4 University at Buffalo, Buffalo, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-020-01417-9&domain=pdf
http://orcid.org/0000-0002-1138-7488


International Journal of Computer Vision (2021) 129:998–1012 999

vations are +1 or −1, represented by a single bit. This paper
designs highly compact binary neural networks (BNNs) from
both quantization and network pruning perspectives.

Despite the progress made in 1-bit quantization and net-
work pruning, few works have combined the two in a unified
framework to reinforce each other. It is clearly necessary to
introduce pruning techniques into 1-bit CNNs since not all
filters and kernels are equally important or worth quantizing
in the same way. One potential solution is to prune the net-
work and then conduct 1-bit quantization over the remaining
weights to produce a more compressed network. How-
ever, this solution fails to consider the difference between
the binarized and full precision parameters during pruning.
Therefore, a promising alternative is to prune the quantized
network. However, designing a unified framework to com-
bine quantization and pruning is still an open question.

To address these issues, we introduce a rectified binary
convolutional network (RBCN) to train a BNN, in which
a novel learning architecture is presented in a generative
adversarial network (GAN) framework. Our motivation is
based on the fact that GANs have the powerful ability to
match two data distributions (the full precision and 1-bit
networks). This can also be viewed as distilling/exploiting
the full precision model for the benefit of its 1-bit counter-
part. For training RBCN, the main process for binarization
is illustrated in Fig. 1, where the full-precision model and
the 1-bit model (generator) respectively provide “real” and
“fake” featuremaps to the discriminators. The discriminators
try to distinguish the “real” from the “fake”, and the genera-
tor tries to make the discriminators unable to work well. The
result is a rectified process and a unique architecture with a
more precise estimation of the full precision model. Prun-
ing is also explored to improve the 1-bit models applicability
in practical applications in the GAN framework. The main
contributions of this paper are summarized as follows:

– We introduce a novelBNN learning architecture, theRec-
tified Binary Convolutional Network (RBCN), to rectify
the binarization process based on the full precision ker-
nels and feature maps in a unified framework.

– After binarization,weperformnetworkpruning to further
compress the deep models in a GAN framework.

– We perform a comprehensive experiment on image clas-
sification, object tracking, face recognition, and person
re-identification.Ourmodels achieve state-of-the-art per-
formance compared with other 1-bit CNNs on ImageNet,
CIFAR, and LFW datasets.

This paper is built upon our previous conference paper (Liu
et al. 2019) by significantly extending our work, includ-
ing: (1) improving our method by extending pruned 1-bit
CNNs using GANs, which remains largely unexplored in
the existing literature, (2) conducting extensive experiments

on the tasks of classification, tracking, face recognition, per-
son re-identification, and pruning. All of these contributions
strongly support the effectiveness of our models.

2 RelatedWork

In this paper, we exploit Generative Adversarial Networks
(GANs) to facilitate binarization and pruning training pro-
cess, using GANs’ ability tomatch featuremap distributions.
In the next two subsections, we briefly reviewGANs and net-
work compression methods.

2.1 Generative Adversarial Networks (GANs)

GANs (Goodfellowet al. 2014) are one of themost successful
and widely used methods for training CNNs. The main idea
of a GAN is to train two competitive networks, referred to
as the generator G(x, z) and discriminator D(x), based on
the game theory principles. The goal of GANs is to train the
generator G to match a data distribution x by transforming a
noise vector z. The discriminator D is trained to distinguish
the ‘fake’ samples (z) generated byG from the ‘real’ samples
(x). The GAN training process is formulated as follows

argmin
G

max
D

V (D,G) = E[log(D(x))]
+E[1 − log(D(G(x, z)))], (1)

where E is the expectations and V is the loss function.
Recently, GANs have been harnessed in various domains,

including image generation, compression, and domain trans-
fer. Since GANs were first introduced, researchers have
studied them vigorously. As a result, researchers propose a
lot of loss functions, regularization and normalization meth-
ods, andneural architectures choices (Goodfellowet al. 2014;
Salimans et al. 2016; Tschannen et al. 2018; Gulrajani et al.
2017; Odena et al. 2017; Mao et al. 2017; Arjovsky et al.
2017). These all show the power of GANs and their ability to
match two data distributions. This has inspired us to explore
GANs to match the feature maps distribution between full
precision and 1-bit models.

2.2 Network Compression

This section briefly reviews the primary approaches for deep
network compression, dividing them into five categories:
quantization, network pruning, decomposition/factorization,
distillation, and compact network design.

123



1000 International Journal of Computer Vision (2021) 129:998–1012

Fig. 1 This figure shows the framework integrating the rectified binary
convolutional network (RBCN) with generative adversarial network
(GAN) learning. The full-precision model provides the “real” feature
maps, while the 1-bit model (as the generator) provides the “fake” fea-
ture maps, to the discriminators that try to distinguish the “real” from
the “fake”. Meanwhile, the generator tries to make the discriminators
unable to work well. By repeating this process, both the full-precision

feature maps and kernels (across all the convolutional layers) are suffi-
ciently employed to enhance the capacity of the 1-bit model. Note that
(1) the full-precisionmodel is used only in learning but not in inference;
(2) after training, the full-precision learned filtersW are discarded, and
only the binarized filters Ŵ and the shared learnable matrices C are
kept in RBCN for the calculation of the feature maps in inference

2.2.1 Quantization

Recently, the superior memory and computational effi-
ciencyof quantization networks stimulates the corresponding
research. The quantization-basedmethods represent network
weights and/or activations with low precision, typically from
32-bit to 1, 2, or 4 bits. This reduces the model storage and
computation cost, thereby generating highly compact CNN
models. Our paper aims for extreme binary quantization.
Among the state-of-the-art binarization methods, XNOR-
Net (Rastegari et al. 2016) provides an efficient binarization
method by reconstructing the full precision filters with a
single scaling factor. Bi-Real Net (Liu et al. 2018) intro-
duces a new structure modification method to preserve the
real activations before the sign function. Besides, by exploit-
ingmultiple projections with discrete backward propagation,
projection convolutional neural networks (PCNNs) (Gu et al.
2019) learn a set of diverse quantized kernels to reconstruct
a full-precision kernel. HORQ (Li et al. 2017) proposes a
high-order binarization scheme by recursively performing
residual quantization. Recently, ReActNet (Liu et al. 2020)
proposes a baseline network by modifying and binarizing a
compact real-valued networkMobileNetwith parameter-free
shortcuts, bypassing all the intermediate convolutional layers
to largely improve the representational capability of BNNs.
Our analysis of the prior arts suggests that how full precision
information is used is the key issue for optimizing BNNs.

2.2.2 Network Pruning

Neural network pruning focuses on removing the less-
important network connections in an unstructured or struc-
tured manner. The paper in Hassibi and Stork (1993)

proposes a saliency-like measurement to remove redun-
dant weights, which is determined by the loss function’s
second-order derivativematrix.Moreover, in order to remove
less-important weights with small avsolute values, Han et al.
(2015) propose an iterative thresholding method. In addi-
tion, Guo et al. (2016) provide a connection splicing method
in order to avoid incorrect weights pruning. Besides, through
minimizing the reconstruction error, the paper in Yang et al.
(2017) introduces an energy-aware pruning method to prune
the less-important weights layer-by-layer.

By contrast, in the aspect of structured pruning, Li et al.
(2016) propose to calculate the �1-norm of filters in a layer-
wisemanner to remove filters and their corresponding feature
maps. Besides, the paper inMolchanov et al. (2016) proposes
a Taylor expansion-based criterion to iteratively prune filters.
Unlike the above multi-stage and layer-wise pruning meth-
ods, Huang and Wang (2018) propose to prune the network
in an end-to-end manner by using an uncontrolled sparse soft
mask. Furthremore, themethod inLin et al. (2019) effectively
solves the pruning optimization problem using generative
adversarial learning to learn a sparse softmask in a label-free,
end-to-end manner. Inspired by this, we perform pruning for
1-bit CNNs with a GAN framework.

2.2.3 Decomposition/Factorization

The main idea of decomposition/factorization is to construct
a low-rank basis of filters to reduce the weights effectively.
By exploiting the redundancy that exists between different
feature channels and filters, Jaderberg et al. (2014) propose
an agnostic approach for rank-1 filters in the spatial domain.
Moreover, Rigamonti et al. (2013) preserve the performance
of CNNswhile drastically reducing their cost by learning and

123



International Journal of Computer Vision (2021) 129:998–1012 1001

using separable filters that approximate the non-separable
filters. Also, Lebedev et al. (2014) propose a simple two-
step approach for speeding up convolutional layers based
on tensor decomposition and discriminative fine-tuning. In
addition, Yang et al. (2015) introduce a deep fried convnet
to re-parameterize the matrix-vector multiplication of fully
connected layers. Denton et al. (2014) present several tech-
niques designed for object recognition tasks to speed up the
evaluation of large convolutional networks.

2.2.4 Distillation

Distillation is a knowledge transfer method that provides
guidance information through large teacher models to guide
the training of small studentmodels. Belagiannis andFarshad
(2018) propose a knowledge transfer method based on adver-
sarial learning, which teaches a smaller student network with
limited capacity tomimic the larger teacher network to obtain
better performance. Furthermore, inspired by the assumption
that the small network can not perfectlymimic a large one due
to the large network scale gap, Changyong et al. (2019) con-
sider effective intermediate supervision under the adversarial
training framework to learn the student network. Xu et al.
(2018) propose to use conditional adversarial networks to
learn the loss function to transfer knowledge from the teacher
to the student. Gao et al. (2020) propose residual knowledge
distillation (RKD) to remedy the performance degradation
caused by the substantial gap between the learning capaci-
ties of the student and the teacher network. Specifically, RKD
introduces an assistant network to aid the training process by
learning the residual error between the student and teacher
models. Ahn et al. (2019) propose an information-theoretic
framework for knowledge transfer, where the student net-
work effectively learns the target task by minimizing the
cross-entropy loss while maintaining high mutual informa-
tion with the teacher network. By learning the distribution
of activation in the teacher network, the mutual information
can be maximized.

Like the methods described above, we adopt the idea of
distillation to transfer information from a teacher model to
a student model. But different with those methods, we are
the first to explore 1-bit network distillation using a GAN
framework. In our approach, a full precision network is used
as the teacher model, and the 1-bit network is the student
model. Through the information transfer, the 1-bit student
network mimics the output of the full precision teacher net-
work to obtain better performance. Another difference lies
in our method adopts multiple discriminators, which fit the
distributions between a student network and a full precision
network at different stages. This is similar to the method in
Ahn et al. (2019), but our learnable discriminators avoid the
manual tuning required by the handcrafted module in Ahn
et al. (2019).

2.2.5 Efficient Network Design

There has been a rising interest in designing efficient archi-
tectures to meet the requirement of efficiency and accuracy.
Recently, some approaches [e.g., GoogLeNet (Szegedy et al.
2015) and SqueezeNet (Iandola et al. 2016)] propose to
replace 3 × 3 convolutional kernels with 1 × 1 kernels
to reduce the computational complexity. Besides, Xception
(Chollet 2017), MobileNet (Howard et al. 2017), and Shuf-
fleNet (Zhang et al. 2018) employ depth-wise separable
convolutions to build light weight deep neural networks.
Meanwhile, Neural Architecture Search (NAS) has attracted
a lot of attention due to its considerable performance gains
while avoiding handcrafted design. Instead of adopting the
conventional proxy-based framework, ProxylessNAS (Cai
et al. 2018) introduces latency loss to search architectures
for the target task. Also, EfficientNet (Tan and Le 2019)
uniformly scales the dimensions of depth, width, and res-
olution to obtain more compact networks by employing a
simple but highly effective compound coefficient. Further-
more, Binarized Neural Architecture Search (BNAS) (Chen
et al. 2020) provides a more promising method for efficient
network architectures according to the performance feed-
back.

3 Rectified Binary Convolutional Networks
(RBCNs)

We design RBCNs with GANs to rectify BNNs in a unified
framework. In our RBCNs, multi-cue information from full
precision feature maps and kernels1 are exploited to improve
the performance of BNNs. The rectified convolutional lay-
ers are generic, flexible, and can be easily incorporated
into existing CNNs such as WideResNets and ResNets. We
furthermore prune RBCN with minimal performance degra-
dation using GANs. To begin, Table 1 summarizes some of
the notation used in this paper.

3.1 Optimized RBCN

This section describes the optimization process, including
changing the loss function and updating the learnable param-
eters.

3.1.1 Loss Function

The rectification process combines the full precision ker-
nels and feature maps to rectify the binarization process. It
includes kernel approximation and adversarial learning. This
learnable kernel approximation leads to a unique architecture

1 In this paper, the terms “filter” and “kernel” are exchangeable.

123



1002 International Journal of Computer Vision (2021) 129:998–1012

Table 1 This figure contains a brief description of the variables and operators used in the paper

L : loss function Ŵ : binarized filters T : feature maps from RBCN to D(·)
W : learned filters C : learnable matrices R : feature maps from the full precision model

D(·) : discriminators δC : gradient of C
i : filter index η : learning rate F : feature maps before/after convolution in RBCN

t : t th iteration L : number of layers Y : filters of the discriminators

l : layer index δW : gradient of W

with a precise estimation of the convolutional filters through
minimizing a kernel loss. The discriminators D(·) with fil-
ters Y are introduced to distinguish the feature maps R of
the full precision model from those T of RBCN. The RBCN
generator with filters W and learnable matrices C is trained
together with Y using the knowledge from the supervised
feature maps R. In summary, W , C and Y are learned by
solving the following optimization problem:

arg min
W ,Ŵ ,C

max
Y

L = LAdv(W , Ŵ ,C,Y ) + LS(W , Ŵ ,C)

+LKernel(W , Ŵ ,C), (2)

where LAdv(W , Ŵ ,C,Y ) is the adversarial loss as

LAdv(W , Ŵ ,C, Y ) = log(D(R; Y )) + log(1 − D(T ; Y )),

(3)

where D(·) consists of a series of basic blocks, each con-
taining a linear layer and a LeakyRelu layer. We also have
multiple discriminators to rectify the training process of bina-
rization.

In addition, LKernel(W , Ŵ ,C) denotes the kernel loss
between the learned full precision filtersW and the binarized
filters Ŵ and is defined as:

LKernel(W , Ŵ ,C) = λ1/2||W − CŴ ||2, (4)

where λ1 is a balance parameter. Finally, LS is a traditional
problem-dependent loss, such as softmax loss. The adversar-
ial loss, kernel loss, and softmax loss are considered to be
regularizations on L .

For simplicity, the update of the discriminators is omitted
in the following description until Algorithm 1. We also have
omitted log(·) and rewrite the optimization in Eq. 2 as Eq. 5
for simplicity.

min
W ,Ŵ ,C

LS(W , Ŵ ,C) + λ1/2
∑

l

∑

i

||Wl
i − Cl Ŵ l

i ||2

+
∑

l

∑

i

||1 − D(T l
i ; Y )||2. (5)

where i represents the i th channel and l represents the lth
layer. In Eq. 5, the target is to obtain W , Ŵ and C with
Y fixed, which is why the term D(R; Y ) in Eq. 2 can be
ignored. The update process for Y is found in Algorithm
1. The advantage of our formulation in Eq. 5 lies in that
the loss function is trainable, meaning that it can be easily
incorporated into existing learning frameworks.

Algorithm 1 RBCN Training
Input: The training dataset, the feature maps from the full precision

model, and the hyper-parameters including initial learning rate,
weight decay, convolution stride and padding size.

Output: A binary 1-bit model RBCN with weights Ŵ and learnable
matrices C .

1: Initialize W randomly;
2: repeat
3: Randomly sample a mini-batch of data;
4: // Forward propagation
5: for all l = 1 to L convolutional layer do
6: Fl

out = Conv(Fl
in, Ŵ

l � Cl );
7: end for
8: // Backward propagation
9: for all l = L to 1 do
10: Update the discriminators Dl(·) of GAN by ascending their

stochastic gradients:
11: ∇Dl (log(Dl(Rl ; Y )) + log(1 − Dl(T l ; Y )));
12: Calculate the gradients δWl ; // Using Eq. 7-12
13: Wl ← Wl − η1δWl ; // Update the weights
14: Calculate the gradient δCl ; // Using Eq. 13-16
15: Cl ← Cl − η2δCl ; // Update the learnable matrix
16: end for
17: Fix the parameters in the convolutional layers, and only update

the parameters of other layers;
18: until the maximum epoch
19: Ŵ = sign(W ).

3.1.2 Learning RBCNs

In RBCNs, the convolution is implemented usingWl ,Cl and
Fl
in to calculate the output feature maps Fl

out as

Fl
out = RBConv(Fl

in; Ŵ l ,Cl) = Conv(Fl
in, Ŵ

l � Cl),

(6)

123



International Journal of Computer Vision (2021) 129:998–1012 1003

where RBConv denotes the convolution operation imple-
mented as a new module, Fl

in and Fl
out are the feature maps

before and after the convolution, respectively. Wl are full
precision filters, the values of Ŵ l are 1 or −1, and � is the
element-by-element product operation.

During the backward propagation process of RBCNs,
what needs to be learned and updated are the full precision
filters W and the learnable matrices C . These two sets of
parameters are jointly learned. In each convolutional layer,
we update W first and then C .

Update W Let δWl
i
be the gradient of the full precision

filter Wl
i . During backpropagation, the gradients are passed

to Ŵ l
i first and then to Wl

i . Thus,

δWl
i

= ∂L

∂Wl
i

= ∂L

∂Ŵ l
i

∂Ŵ l
i

∂Wl
i

, (7)

where

∂Ŵ l
i

∂Wl
i

=
⎧
⎨

⎩

2 + 2Wl
i , −1 ≤ Wl

i < 0,
2 − 2Wl

i , 0 ≤ Wl
i < 1,

0, otherwise,
(8)

which is an approximation of the 2× the Dirac delta function
(Liu et al. 2018). Furthermore,

∂L

∂Ŵ l
i

= ∂LS

∂Ŵ l
i

+ ∂LKernel

∂Ŵ l
i

+ ∂LAdv

∂Ŵ l
i

, (9)

and

Wl
i ← Wl

i − η1δWl
i
, (10)

where η1 is the learning rate. Then,

∂LKernel

∂Ŵ l
i

= −λ1(W
l
i − Cl Ŵ l

i )C
l , (11)

∂LAdv

∂Ŵ l
i

= −2(1 − D(T l
i ; Y ))

∂D

∂Ŵ l
i

. (12)

Update C We further update the learnable matrix Cl with
Wl fixed. Let δCl be the gradient of Cl . Then we have

δCl = ∂LS

∂Cl
+ ∂LKernel

∂Cl
+ ∂LAdv

∂Cl
, (13)

and

Cl ← Cl − η2δCl , (14)

where η2 is another learning rate. Furthermore,

∂LKernel

∂Cl
= −λ1

∑

i

(Wl
i − Cl Ŵ l

i )Ŵ
l
i , (15)

∂LAdv

∂Cl
= −

∑

i

2(1 − D(T l
i ; Y ))

∂D

∂Cl
. (16)

These derivations show that the rectified process is train-
able in an end-to-end manner. The complete training process
is summarized inAlgorithm 1, including how to update of the
discriminators. As described in line 17 of Algorithm 1, we
independently update other parameters while fixing convolu-
tional layer’s parameters to enhance the featuremaps’ variety
in every layer. In this way, we speed up the training conver-
gence and fully explore the potential of 1-bit networks. In
our implementation, all the values ofCl are replaced by their
average during the forward process. A scalar, not a matrix, is
involved in the inference, thus speeding up the computation.

3.2 Network Pruning

We further prune the 1-bit CNNs to increase the model
efficiency and further improve the flexibility of RBCNs in
practical scenarios. This section considers the pruning pro-
cess for optimization, including changing loss function and
updating learnable parameters.

3.2.1 Loss Function

After binarizing the CNNs, we further prune the resulting
1-bit CNNs under the generative adversarial learning frame-
work using the method described in Lin et al. (2019). We use
a soft mask to remove the corresponding structures such as
filters while obtaining close to the baseline accuracy. The dis-
criminator Dp(·)withweightsYp is introduced to distinguish
baseline networks output Rp from those Tp of the pruned 1-
bit network. The pruned network with weights Wp, Ŵp, Cp

and soft mask Mp, is learned together with Yp using knowl-
edge from the supervised features of baseline. Wp, Ŵp, Cp,
Mp and Yp are therefore learned by solving the optimization
problem as follows:

arg min
Wp,Ŵp,Cp,Mp

max
Yp

Lp = LAdv_p(Wp, Ŵp,Cp, Mp, Yp)

+LKernel_p(Wp, Ŵp,Cp)

+LS_p(Wp, Ŵp,Cp)

+LData_p(Wp, Ŵp,Cp, Mp) + LReg_p(Mp,Yp), (17)

where Lp is the loss function of pruning, the form of
LAdv_p(Wp, Ŵp,Cp, Mp,Yp) andLKernel_p(Wp, Ŵp,Cp)

123



1004 International Journal of Computer Vision (2021) 129:998–1012

are

LAdv_p(Wp, Ŵp,Cp, Mp,Yp)

= log(Dp(Rp; Yp)) + log(1 − Dp(Tp; Yp)), (18)

LKernel_p(Wp, Ŵp,Cp)

= λ1/2||Wp − CpŴp||2. (19)

LS_p is a traditional problem-dependent loss such as the soft-
max loss. LData_p is the data loss between output features
from both the baseline and the pruned network and used to
align of these two networks’ outputs. The data loss can then
be expressed by MSE loss.

LData_p(Wp, Ŵp,Cp, Mp) = 1

2n

∥∥Rp − Tp
∥∥2, (20)

where n is the size of the mini-batch.
LReg_p(Mp,Yp) is a regularizer on Wp,Ŵp,Mp and Yp,

which can be split into two parts as follows:

LReg_p(Mp,Yp) = Rλ(Mp) + R(Yp), (21)

where R(Yp) = log(Dp(Tp; Yp)), Rλ(Mp) is a sparsity
regularizer formwith parameter λ andRλ(Mp) = λ||Mp||l1 .

As with the process in binarization, the update of the
discriminators is omitted in the following description until
Algorithm 2. We also have omitted log(·) for simplicity and
rewrite the optimization of Eq. 17 as

min
Wp,Ŵp,Cp,Mp

λ1/2
∑

l

∑

i

||Wl
p,i − Cl

pŴ
l
p,i ||2

+
∑

l

∑

i

||1 − D(T l
p,i ; Yp)||2

+LS_p(Wp, Ŵp,Cp) + 1

2n

∥∥Rp − Tp
∥∥2 + λ||Mp||l1 .

(22)

3.2.2 Learning Pruned RBCNs

In pruned RBCNs, the convolution is implemented as

Fl
out,p = RBConv(Fl

in,p; Ŵ l
p ◦ Ml

p,C
l
p)

= Conv(Fl
in,p, (Ŵp ◦ Ml

p) � Cl
p),

(23)

where ◦ is an operator that obtains the pruned weight with
mask Mp. The other part of the forward propagation in the
pruned RBCNs is the same with RBCNs.

In pruned RBCNs, what needs to be learned and updated
are the full precision filters Wp, learnable matrices Cp, and
soft mask Mp. In each convolutional layer, these three sets
of parameters are jointly learned.

Update Mp Mp is updated by FISTA (Lin et al. 2018) with
the initialization of α(1) = 1. Then we obtain

α(k+1) = 1

2

(
1 +

√
1 + 4α2

(k)

)
, (24)

y(k+1) = Mp,(k) + a(k) − 1

a(k+1)
(Mp,(k) − Mp,(k−1)), (25)

Mp,(k+1) = proxη(k+1)
λ||·||1

(
y(k+1) − η(k+1)

∂(LAdv_p + LData_p)

∂(y(k+1))

)
, (26)

where η(k+1) is the learning rate at the iteration k + 1 and
proxη(k+1)

λ||·||1 (zi ) = sign(zi )·(|zi |−η(k+1)λ)+, more detail
can be found in Lin et al. (2019).

Update Wp Let δWl
p,i

be the gradient of the full precision

filter Wl
p,i . During backpropagation, the gradients pass to

Ŵ l
p,i first and then to Wl

p,i . Furthermore,

δWl
p,i

= ∂Lp

∂Ŵ l
p,i

= ∂LS_p

∂Ŵ l
p,i

+ ∂LAdv_p

∂Ŵ l
p,i

+∂LKernel_p

∂Ŵ l
p,i

+ ∂LData_p

∂Ŵ l
p,i

, (27)

and

Wl
p,i ← Wl

p,i − ηp,1δWl
p,i

, (28)

where ηp,1 is the learning rate,
∂LKernel_p

∂Ŵ l
p,i

and
∂LAdv_p

∂Ŵ l
p,i

are

∂LKernel_p

∂Ŵ l
p,i

= −λ1(W
l
p,i − Cl

pŴ
l
p,i )C

l
p, (29)

∂LAdv_p

∂Ŵ l
p,i

= −2(1 − Dp(T
l
p,i ; Yp))

∂Dp

∂Ŵ l
p,i

. (30)

And

∂LData_p

∂Ŵ l
p,i

= −1

n
(Rp − Tp)

∂Tp

∂Ŵ l
p,i

, (31)

UpdateCp Wefurther update the learnablematrixCl
p with

Wl
p and Ml

p fixed. Let δCl
p
be the gradient of Cl

p. Then we
have

δCl
p

= ∂Lp

∂Ĉl
p

= ∂LS_p

∂Ĉl
p

+ ∂LAdv_p

∂Ĉl
p

+∂LKernel_p

∂Ĉl
p

+ ∂LData_p

∂Ĉl
p

, (32)

123



International Journal of Computer Vision (2021) 129:998–1012 1005

and

Cl
p ← Cl

p − ηp,2δCl
p
. (33)

and
∂LKernel_p

∂Cl
p

and
∂LAdv_p

∂Cl
p

are

∂LKernel_p

∂Cl
p

= −λ1
∑

i

(Wl
p,i − Cl

pŴ
l
p,i )Ŵ

l
p,i , (34)

∂LAdv_p

∂Cl
p

= −
∑

i

2(1 − Dp(T
l
p,i ; Yp))

∂Dp

∂Cl
p
. (35)

Further,

∂LData_p

∂Cl
p

= 1

n

∑

i

(Rp,i − Tp,i )
∂Tp,i

∂Cl
p

. (36)

The complete training process is summarized in Algorithm
2, including the update of the discriminators.

Algorithm 2 Pruned RBCN
Input: The training dataset, the pre-trained 1-bit CNNs model, the fea-

ture maps Rp from the pre-trained model, the pruning rate and the
hyper-parameters including the initial learning rate, weight decay,
convolution stride and padding size.

Output: The pruned RBCNwith updated parametersWp , Ŵp , Mp and
Cp .

1: repeat
2: Randomly sample a mini-batch;
3: // Forward propagation
4: Training a pruned architecture // Using Eq.17-22
5: for all l = 1 to L convolutional layer do
6: Fl

out,p = Conv(Fl
in,p, (Ŵ

l
p ◦ Mp) � Cl

p);
7: end for
8: // Backward propagation
9: for all l = L to 1 do
10: Update the discriminators Dl

p(·) by ascending their stochastic
gradients:

11: ∇Dl
p
(log(Dl

p(R
l
p; Yp)) + log(1 − Dl

p(T
l
p; Yp)) +

log(Dl
p(Tp; Yp)));

12: Update soft mask Mp by FISTA // Using Eq. 24-26
13: Calculate the gradients δWl

p
; // Using Eq. 27-31

14: Wl
p ← Wl

p − ηp,1δWl
p
; // Update the weights

15: Calculate the gradient δCl
p
; // Using Eq. 32-36

16: Cl
p ← Cl

p − ηp,2δCl
p
; // Update the learnable matrix

17: end for
18: until the maximum epoch
19: Ŵ = sign(W ).

4 Experiments

Our RBCNs are evaluated first on object classification using
the CIFAR10/100 (Krizhevsky 2009) and ILSVRC12 Ima-
geNet (Russakovsky et al. 2015) datasets. They are then

evaluated on various tasks such as object tracking, face
recognition (FR), and person re-identification (Re-id). For
object classification, WideResNet (WRN) (Zagoruyko and
Komodakis 2016) and ResNet (He et al. 2016) are employed
as the backbone networks.

4.1 Datasets and Implementation Details

Datasets CIFAR10 (Krizhevsky 2009) is a natural image
classification dataset containing a training set of 50,000 and
a testing set of 10,000 32 × 32 color images. The dataset
contains ten classes, including airplanes, dogs, birds, auto-
mobiles, cats, deers, frogs, ships, horses, and trucks, while
CIFAR100 has 100 classes.

The ImageNet object classification dataset (Russakovsky
et al. 2015) is more challenging due to its larger scale and
greater diversity. This dataset contains 1000 classes, 1.2 mil-
lion training images, and 50k validation images.

WRN Backbone WRN is a network structure similar to
ResNet with a depth factor of k to control the feature map
depth dimension expansion through three stages, within
which the dimensions remain unchanged. For simplicity, we
fix the depth factor to 1. Each WRN has a parameter i that
indicates the channel dimension of the first stage that we set
it to 16. η1 and η2 are both set to 0.01 with a degradation
of 10% for every 60 epochs before reaching the maximum
epoch of 200 for CIFAR10/100. WRN22 is a network with
22 convolutional layers, and WRN40 is a network with 40
convolutional layers.

ResNet18 Backbone SGD is used as the optimization algo-
rithm with a momentum of 0.9. On ImageNet, η1 and η2
are both set to 0.1 with a degradation of 10% for every
20 epochs before reaching the maximum epoch of 70. On
CIFAR10/100, η1 and η2 are both set to 0.01 with a degra-
dation of 10% for every 60 epochs before reaching the
maximum epoch of 200. For the hyper-parameters specific
for pruning, more details can be found in Lin et al. (2019).

4.2 Ablation Study

This section studies the performance contributions of the ker-
nel approximation, the GAN, and the update strategy (we fix
the parameters of convolutional layers, and update other lay-
ers). CIFAR100 and ResNet18 with different kernel stages
are used in these experiments.

(1) We replace the convolution inBi-RealNetwith our kernel
approximation (RBConv) and compare the results. As
shown in the column of “Bi” and “R” in Table 2, RBCN
achieves 1.62% accuracy improvement over Bi-Real Net
(56.54% vs. 54.92%) using the same network structure

123



1006 International Journal of Computer Vision (2021) 129:998–1012

Table 2 Performance (accuracy, %) contributions of the components
in RBCNs on CIFAR100, where Bi = Bi-Real Net, R = RBConv, G =
GAN, and B = update strategy

Kernel stage Bi R R + G R + G + B

RBCN 32-32-64-128 54.92 56.54 59.13 61.64

RBCN 32-64-128-256 63.11 63.49 64.93 65.38

RBCN 64-64-128-256 63.81 64.13 65.02 66.27

The bold numbers represent the best results

as in ResNet18. This significant improvement verifies the
effectiveness of the learnable matrices.

(2) Using GAN makes RBCN improve 2.59% (59.13% vs.
56.54%) with the kernel stage of 32-32-64-128, which
shows that the GAN can help mitigate the problem of
being trapped in poor local minima.

(3) We further improve RBCNs by updating the BN layers
withW andC fixed after each epoch (line 17 inAlgorithm
1). This further boosts our accuracy by 2.51% (61.64%
vs. 59.13%) in CIFAR100 with 32-32-64-128.

4.3 Accuracy Comparison with the State-of-the-Art

CIFAR10/100 The same parameter settings are used in
RBCNs on both CIFAR10 and CIFAR100. We first compare
our RBCNs with the original ResNet18 using different stage
kernels, followed by a comparison with the original WRNs
with the initial channel dimension 64 (Table 3). The rectified
process leads to results on both the datasets that are close to
the full precision networks ResNe18 and WRN40. We com-
pare our results with other state-of-the-art approaches such
as Bi-Real Net (Liu et al. 2018), PCNN (Gu et al. 2019), and
XNOR-Net (Rastegari et al. 2016). All of these BNNs have
both binary filters and binary activations. We observed that
there is an accuracy improvement of up to 6.72% (= 61.64–
54.92%). We also plot the training and testing loss curves
of XNOR-Net and RBCN in Fig. 2 and show that RBCN
converges faster than XNOR-Net.

ImageNet Five methods are chosen for comparison on
ImageNet: Bi-Real Net (Liu et al. 2018), BinaryNet (Cour-
bariaux et al. 2016), XNOR-Net (Rastegari et al. 2016),
PCNN (Gu et al. 2019), andABC-Net (Lin et al. 2017). These
networks binarize both network weights and activations and
achieve state-of-the-art results. All the methods in Table 4
perform the binarization of ResNet18. We quoted the results
directly from the corresponding papers, except BinaryNet
from Lin et al. (2017). The comparison clearly indicates that
the proposed RBCN outperforms the five binary networks by
a considerable margin in both the Top-1 and Top-5 accura-
cies. For Top-1 accuracy, RBCN outperforms BinaryNet and
ABC-Net by over 16%, achieves 8.3% improvement over

Table 3 Classification accuracy (%) based on ResNet18 and WRN40
on CIFAR10/100

Model Kernel stage Dataset

CIFAR CIFAR
−10 −100

ResNet18 32-32-64-128 92.67 67.07

ResNet18 32-64-128-256 93.88 72.51

ResNet18 64-64-128-256 94.57 72.89

RBCN (ResNet18) 32-32-64-128 88.68 61.64

RBCN (ResNet18) 32-64-128-256 90.67 65.38

RBCN (ResNet18) 64-64-128-256 90.40 66.27

WRN22 64-64-128-256 95.19 76.38

WRN40 64-64-128-256 94.92 74.91

RBCN (WRN22) 64-64-128-256 93.28 72.06

RBCN (WRN40) 64-64-128-256 93.69 73.08

XNOR-Net (ResNet18) 32-32-64-128 71.01 43.58

XNOR-Net (WRN22) 64-64-128-256 86.90 58.05

Bi-Real Net (ResNet18) 32-32-64-128 85.34 54.92

Bi-Real Net (WRN22) 64-64-128-256 90.65 68.51

PCNN (ResNet18) 32-32-64-128 85.50 55.66

PCNN (WRN22) 64-64-128-256 91.62 70.32

Bold values represent the best results among the binary networks

XNOR-Net, 3.1% over Bi-Real Net, and 2.2% over PCNN.
In Fig. 3, we plot the training and testing loss curves of
XNOR-Net and RBCN. It clearly shows that using our rec-
tified process, RBCN converges faster than XNOR-Net.

4.4 Experiments on Different Tasks

In this section, we explore the effect of RBCNs for differ-
ent tasks, including object tracking, person re-identification
(reID), and face recognition (FR). These tasks can help to
establish binary networks in other fields.

4.4.1 Object Tracking

The key message conveyed in the proposed method is that
although the conventional binary training method has a lim-
ited model capability, the proposed rectified process can lead
to a powerful model. We show that this framework can also
be used in object tracking. In particular, we consider the prob-
lem of tracking an arbitrary object in videos, where the object
is identified only by a rectangle in the first frame. For object
tracking, it is necessary to update the weights of the network
online, severely compromising the systems speed. To directly
apply the framework to tracking, we construct a binary con-
volution with the same structure to reduce the convolution
time. In this way, RBCN can be used to binarize the network
further and guarantee the tracking performance.

123



International Journal of Computer Vision (2021) 129:998–1012 1007

Fig. 2 Training and testing error curves of RBCN and XNOR-Net based on WRN40 for the CIFAR10/100 experiments

Table 4 Classification accuracy
(%) on ImageNet

FP XNOR-Net ABC-Net BinaryNet Bi-Real Net PCNN RBCN

ResNet18

Top-1 69.3 51.2 42.7 42.2 56.4 57.3 59.5

Top-5 89.2 73.2 67.6 67.1 79.5 79.8 81.6

The bold represents the best result among the binary networks

For these experiments, we use the SiamFCNetwork as the
backbone as a Rectified Binary Convolutional SiamFC Net-
work (RB-SF).We evaluateRB-SFon four datasets,UAV123
(Mueller et al. 2016), GOT-10K (Huang et al. 2018), OTB50
(Wu et al. 2013), and OTB100 (Wu et al. 2015). We use
accuracy occupy (AO) and success rate (SR) as metrics. In
the following, we will briefly introduce the datasets used in
our experiments.

The long-term aerial tracking dataset UAV123 consists
of 123 videos with more than 110K frames. All of the
sequences are from an aerial viewpoint. The dataset con-
tains a wide variety of scenes including buildings, urban
landscape, fields, roads, beaches and a harbor/marina, tar-

gets including cars, trucks, boats, persons, groups, and aerial
vehicles, and activities including walking, cycling, wake-
boarding, driving, swimming, and flying.

GOT-10k includes 563 object classes and 87 motion pat-
terns in the real-world. It has over 10,000 segments and 1.5
million bounding boxes. The dataset is also split into unified
training, validation, and testing subsets, which expands five
subtrees: animal, artifact, person, natural object, and part.
We use the testing subset containing 180 videos, 84 classes
of moving objects, and 32 forms of motion.

The dataset OTB100 for tracker evaluation has 100 mov-
ing objects, containing basketball, birds, biker, etc. The full
dataset consists of 100 sequenceswithmore than 59K frames.

123



1008 International Journal of Computer Vision (2021) 129:998–1012

Fig. 3 Training and testing error curves of RBCN and XNOR-Net based on the ResNet18 backbone on ImageNet

Table 5 Tracking performance
comparison between XNOR-Net
and RB-SF on different datasets

Dataset Index SiamFC XNOR-Net Bi-real Net PCNN RB-SF

GOT-10K AO 0.348 0.251 0.275 0.308 0.327

SR 0.383 0.230 0.261 0.323 0.343

OTB50 Precision 0.761 0.457 0.464 0.648 0.706

SR 0.556 0.323 0.340 0.470 0.496

OTB100 Precision 0.808 0.541 0.559 0.746 0.786

SR 0.602 0.394 0.427 0.548 0.572

UAV123 Precision 0.745 0.547 0.572 0.622 0.688

SR 0.528 0.374 0.407 0.449 0.497

OTB50 is a subset of OTB100 and consists of 51 sequences
with more than 29k frames.

The results are shown in Table 5. Intriguingly, our frame-
work achieves about 7% AO improvement over XNOR-Net,
using the same network architecture as in SiamFC Network
on GOT-10k.

4.4.2 Person Re-Identification

The task of person re-identification is to determine whether
two images belong to the same subject. Specifically, the
two images are usually captured by two disjoint cameras
in practical applications. The performance of person re-
identification is closely related to many other applications,
such as behavior analysis, object retrieval, and cross-camera
tracking. Although it has good performance on many bench-
marks, the re-identification task is still difficult to be applied
in the real-world due to the large amount of memory and
computation costs. Therefore, we use the rectified method to

compress the reIDmodels in this paper to further improve the
efficiency of CNNs. In the following, we will briefly intro-
duce the person re-identification datasets used in our paper.

Market-1501 (Zheng et al. 2015) contains of 1501 iden-
tities captured from 6 different viewpoints, including 32668
labeled bounding boxes, which is currently the largest image-
based reID benchmark dataset. Specifically, the dataset
contains 12936 images with 751 identities for training, and
19732 images with 750 identities for testing.

DukeMTMC-reID (Zheng et al. 2017) contains 8 85-min
high-resolution videos from 8 different cameras with avail-
able hand-drawn pedestrian bounding boxes.

The iLIDS dataset (Wang et al. 2014) is constructed from
video images in a airport arrival hall. It has 119 pedestrians
with 479 normalized images from non-overlapping cameras.
In particular, the subjects in the iLIDS dataset are exposed to
the chanllenge of large illumination changes and occlusions.

As shown in Table 6, our framework achieves 8.8% (=
67.4–58.6%) precision improvement over XNOR-Net, both

123



International Journal of Computer Vision (2021) 129:998–1012 1009

Table 6 Person re-identification (reID) accuracy (%) based on
ResNet50, ResNet50_MID and DesNet121 on different datasets

fp XNOR-Net PCNN RBCN

Market-1501

ResNet50 83.3 61.8 63.7 65.6

ResNet50_MID 87.9 68.3 72.6 75.1

DesNet121 87.5 58.6 65.6 67.4

DukeMTMC-reID

ResNet50 75.9 45.0 47.2 49.1

ResNet50_MID 81.6 55.7 61.7 64.2

DesNet121 79.1 44.6 50.8 52.4

iLIDS

ResNet50 56.0 41.3 44.7 47.3

ResNet50_MID 61.3 51.3 56.0 57.3

DesNet121 54.7 45.7 48.7 50.7

Bold is used to mark the best results among the binary networks

using the same network architecture as in DesNet121 Net-
work on Market-1501. Besides, RBCN also outperforms
XNOR-Net by 5.0% (= 50.7–45.7%) in DesNet121 Network
on video dataset iLIDS, which confirms that our rectified
network RBCNs can also obtain better performance on re-
identification video dataset.

4.4.3 Face Recognition

Face recognition (FR) is important in recent days because
it can be used to identity authentication. Though the face
recognition technology has already obtained very high per-
formance, it still meets the challenge of being used in
light-weight devices because of the large memory and com-
putation cost. Therefore, we employ our RBCN on the
models in face recognition to improve their efficiency. In
the following, We will briefly introduce the datasets used in
our paper.

TrainingDatasetWeuseCASIA-WebFace (Yi et al. 2014)
to train our RBCN models. Specifically, CASIA-WebFace
has 494,414 face images belonging to 10,575 different
individuals, which are horizontally flipped for data augmen-
tation.

Testing Dataset LFW dataset (Huang et al. 2007) contains
13,323 web photos of 5749 celebrities, which are divided
into 6000 face pairs in 10 splits. CFP dataset (Sengupta et al.
2016) contains 7000 images of 500 subjects, which is mainly
used for evaluating pose variation. AgeDB (Moschoglou
et al. 2017) contains 16,488 images of various 568 distinct
subjects (e.g., actors, writers, scientists).

As shown in Table 7, RBCN achieves up to an 11.51%
(= 83.63–72.12%) precision improvement over XNOR-Net
using ResNet50 on AgeDB. RBCN with only weights bina-
rized outperforms XNOR-Net with a gap over 18% (i.e.,

Table 7 Face recognition accuracy (%) based on ResNet50 on different
datasets

CASIA-Webface

fp XNOR-Net RBCN RBCN*

ResNet50

LFW 99.07 92.03 97.17 98.83

CFP 93.73 75.50 86.80 92.11

AgeDB 91.58 72.12 83.63 90.33

*Represents only weights are binarized

Table 8 Pruning results of ResNet18 on CIFAR10. RBCN (0.6) means
that we prune 40% parameters on 1-bit networks

Model Kernel stage Param (M) Accuracy

RBCN 16-16-32-64 0.19 82.16

RBCN 32-32-64-128 0.74 88.02

RBCN 32-64-128-256 2.80 89.91

RBCN (0.8) 16-16-32-64 0.15 81.04

RBCN (0.8) 32-32-64-128 0.59 87.47

RBCN (0.8) 32-64-128-256 2.24 89.77

RBCN (0.7) 16-16-32-64 0.13 80.35

RBCN (0.7) 32-32-64-128 0.52 87.31

RBCN (0.7) 32-64-128-256 1.96 89.89

RBCN (0.6) 16-16-32-64 0.11 79.29

RBCN (0.6) 32-32-64-128 0.44 85.59

RBCN (0.6) 32-64-128-256 1.68 89.80

90.33% vs. 72.12%) in ResNet50 on AgeDB. Furthermore,
our framework with only binarized weights performs almost
as well as the full precision ResNet50 Network.

4.5 Results on Network Pruning

In this section, we verify the performance of network prun-
ing. Since BNNs have much information redundancy, we
hope to use network pruning to obtain amore compact model
without sacrificing much accuracy. In this implementation,
we use ResNet18 as our backbone and change the pruning
rates to validate the effectiveness of pruning on CIFAR10
dataset. The results are shown in Table 8. For ResNet18 with
kernel stage 32-64-128-256, when we prune 20% channels
of RBCN, we only sacrifice 0.14% accuracy compared with
the baseline (i.e., 89.91–89.77%). For ResNet18 with kernel
stage 32-32-64-128, when we prune 20% of the channels of
RBCN, we obtain the result of 87.47%with significant mem-
ory saving and computational efficiency. From the results, we
see that when we prune the redundancy in RBCNs, our mod-
els tend to be more compact while maintaining performance.

123



1010 International Journal of Computer Vision (2021) 129:998–1012

Table 9 Comparison of memory usage & FLOPs calculation

RBCN XNOR-Net ResNet18

Memory usage 33.7 Mbits 33.7 Mbits 374.1 Mbits

Memory saving 11.10× 11.10× –

FLOPs 1.67 × 108 1.67 × 108 1.81 × 109

Speedup 10.86× 10.86× –

Table 10 Memoryusage, FLOPs and accuracy comparison for different
model compression methods

Params (Mbits) FLOPs Accuracy

Full precision 374.1 1.81 × 109 69.30

FPGM (He et al. 2020) 261.9 1.05 × 109 68.41

SFP (He et al. 2018) 261.9 1.05 × 109 67.10

RKD (Gao et al. 2020) 261.9 1.81 × 109 71.46

RBCN 33.7 1.67 × 108 59.50

4.6 Efficiency Analysis

The memory usage is computed as the summation of 32×
the number of real-valued parameters and 1× the number of
binary parameters in BNNs. Furthermore, followed Liu et al.
(2018), we use FLOPs to measure the speed. The FLOPs
are calculated as the number of real-valued floating-point
multiplications plus 1/64 of the number of 1-bit multiplica-
tions. From the results in Table 9, we can see that RBCN and
XNOR-Net reduce the memory usage of the full precision
ResNet18 by 11.10 times. For efficiency, both RBCN and
XNOR-Net gain 10.86× speedup over ResNet18. Note that
the computational and storage costs brought by the learnable
matrices C are negligible. Considering that we only intro-
duce a new training strategy (i.e., GAN) to better calculate
1-bit CNNs, the network architecture remains the same as
other works Liu et al. (2018), Gu et al. (2019). Therefore, we
have the same real acceleration ratio as other methods.

Furthermore, we compare the our RBCNwith othermodel
compression methods to evaluate our advantages in Table
10. For example, the distillation based method RKD (Gao
et al. 2020) obtains higher accuracywith the same parameters
and flops than the baseline. The pruning methods SFP and
FPGM can reduce the number of parameters and flops with
a little performance drop. Compared with these compression
methods, the advantage of binarization is that the parameters
and flops are extremely small, which has more potential to
be used in resource limited devices.

5 Conclusion

This paper introduces Rectified Binary Convolutional Net-
works (RBCNs), which optimize BNNs by exploiting full
precision kernels and feature maps in an end-to-end manner.
We introduce GANs to train the binarized network with the
guidance of its corresponding full precision model, signifi-
cantly improving the performance of BNNs. RBCNs can not
only be used for object classification but also other tasks as
well, including object tracking, face recognition, and person
re-identification. Experiments demonstrate the superior per-
formance of RBCNs over state-of-the-art binarized models.
We also achieve promising performance on model pruning,
which validate the generality of our method. In the future,
we will combine our method with neural architecture search
(NAS) to build data-adaptive 1-bit CNNs.

Acknowledgements This work is supported by National Natural Sci-
ence Foundation of China U20B2042, National Natural Science Foun-
dation of China 62076019, and Science and Technology Innovation
2030-Key Project of “New Generation Artificial Intelligence” under
Grant 2020AAA0108200. The work was supported in part by National
Natural Science Foundation of China under Grants 62076016 and
61672079. This work is also supported by Shenzhen Science and Tech-
nology Program KQTD2016112515134654. Chunlei Liu and Wenrui
Ding contribute equally. Baochang Zhang is the corresponding author
who is also with Shenzhen Academy of Aerospace Technology, Shen-
zhen, China.

References

Ahn, S., Hu, S. X., Damianou, A., Lawrence, N. D., & Dai, Z. (2019).
Variational information distillation for knowledge transfer. In Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition (pp. 9163–9171).

Arjovsky, M., Chintala, S., & Bottou, L. (2017, August). Wasserstein
generative adversarial networks. In Proceedings of the 34th inter-
national conference on machine learning (Vol. 70, pp. 214–223).

Belagiannis, V., Farshad, A., & Galasso, F. (2018). Adversarial net-
work compression. In Proceedings of the European conference on
computer vision (ECCV).

Cai, H., Zhu, L., & Han, S. (2018). Proxylessnas: Direct neural
architecture search on target task and hardware. arXiv preprint
arXiv:1812.00332.

Changyong, S., Peng, L., Yuan, X., Yanyun, Q., Longquan, D., &
Lizhuang, M. (2019). Knowledge squeezed adversarial network
compression. arXiv preprint arXiv:1904.0510.

Chen, H., Lian Zhuo, B. Z., Zheng, X., Liu, J., Doermann, D., & Ji, R.
(2020). Binarized neural architecture search. Identity, 2, 3.

Chollet, F. (2017). Xception: Deep learning with depthwise separable
convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 1251–1258).

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., & Bengio, Y.
(2016). Binarized neural networks: Training deep neural networks
with weights and activations constrained to +1 or −1. arXiv
preprint arXiv:1602.02830.

Denton, E., Zaremba, W., Bruna, J., Lecun, Y., & Fergus, R. (2014).
Exploiting linear structure within convolutional networks for effi-
cient evaluation. arXiv preprint arXiv:1404.0736.

123

http://arxiv.org/abs/1812.00332
http://arxiv.org/abs/1904.0510
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1404.0736


International Journal of Computer Vision (2021) 129:998–1012 1011

Gao, M., Shen, Y., Li, Q., & Loy, C. C. (2020). Residual knowledge
distillation. arXiv preprint arXiv:2002.09168.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,Warde-Farley, D.,
Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adver-
sarial nets. In Advances in neural information processing systems
(pp. 2672–2680).

Gu, J., Zhang, B., & Liu, J. (2019). Projection convolutional neural
networks. In AAAI.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., & Courville, A.
C. (2017). Improved training of Wasserstein GANs. In Advances
in neural information processing systems (pp. 5767–5777).

Guo, Y., Yao, A., & Chen, Y. (2016). Dynamic network surgery for effi-
cientDNNs. InAdvances in neural information processing systems
(pp. 1379–1387).

Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights
and connections for efficient neural network. InAdvances in neural
information processing systems (pp. 1135–1143).

Hassibi, B., & Stork, D. G. (1993). Second order derivatives for network
pruning:Optimal brain surgeon. InAdvances in neural information
processing systems (pp. 164–171).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning
for image recognition. In IEEE conference on computer vision and
pattern recognition (pp. 770–778).

He, Y., Kang, G., Dong, X., Fu, Y., & Yang, Y. (2018). Soft filter prun-
ing for accelerating deep convolutional neural networks. arXiv
preprint arXiv:1808.06866.

He, Y., Liu, P., Wang, Z., Hu, Z., & Yang, Y. (2020). Filter pruning via
geometric median for deep convolutional neural networks accel-
eration. In 2019 IEEE/CVF conference on computer vision and
pattern recognition (CVPR).

He, Y., Zhang, X., & Sun, J. (2017). Channel pruning for accelerating
very deep neural networks. In Proceedings of the IEEE interna-
tional conference on computer vision (pp. 1389–1397).

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Effi-
cient convolutional neural networks formobile vision applications.
arXiv preprint arXiv:1704.04861.

Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007).
Labeled faces in the wild: A database for studying face recognition
in unconstrained environments. Technical report 07-49. Amherst:
University of Massachusetts.

Huang, L., Zhao, X., & Huang, K. (2018). Got-10k: A large high-
diversity benchmark for generic object tracking in the wild. arXiv
preprint arXiv:1810.11981.

Huang,Z.,&Wang,N. (2018).Data-driven sparse structure selection for
deep neural networks. In Proceedings of the European conference
on computer vision (ECCV) (pp. 304–320).

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J.,
& Keutzer, K. (2016). Squeezenet: Alexnet-level accuracy with
50× fewer parameters and <0.5 mb model size. arXiv preprint
arXiv:1602.07360.

Jaderberg,M.,Vedaldi, A.,&Zisserman,A. (2014). Speeding up convo-
lutional neural networks with low rank expansions. arXiv preprint
arXiv:1405.3866.

Krizhevsky,N. (2009).Hinton: The cifar-10 dataset.Online http://www.
cs.toronto.edu/kriz/cifar.html.

Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I., & Lempitsky, V.
(2014). Speeding-up convolutional neural networks using fine-
tuned cp-decomposition. arXiv preprint arXiv:1412.6553.

Li, H., Kadav, A., Durdanovic, I., Samet, H., &Graf, H. P. (2016). Prun-
ing filters for efficient convnets. arXiv preprint arXiv:1608.08710.

Lin, S., Ji, R., Li, Y., Wu, Y., Huang, F., & Zhang, B. (2018). Acceler-
ating convolutional networks via global & dynamic filter pruning.
In IJCAI (pp. 2425–2432).

Lin, S., Ji, R., Yan, C., Zhang, B., Cao, L., Ye, Q., Huang, F., &
Doermann, D. (2019). Towards optimal structured CNN pruning

via generative adversarial learning. In Proceedings of CVPR (pp.
2790–2799).

Lin, X., Zhao, C., & Pan, W. (2017). Towards accurate binary con-
volutional neural network. In Advances in neural information
processing systems (pp. 345–353).

Liu, C., Ding, W., Xia, X., Hu, Y., Zhang, B., Liu, J., Zhuang, B., &
Guo, G. (2019). RBCN: Rectified binary convolutional networks
for enhancing the performance of 1-bit DCNNs. In International
joint conference on artificial intelligence.

Liu, Z., Shen, Z., Savvides, M., & Cheng, K. T. (2020). Reactnet:
Towards precise binary neural network with generalized activa-
tion functions. arXiv preprint arXiv:2003.03488.

Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., & Cheng, K. T. (2018). Bi-
real net: Enhancing the performance of 1-bit CNNs with improved
representational capability and advanced training algorithm. In
Proceedings of the European conference on computer vision (pp.
722–737).

Li, Y., Lin, S., Zhang, B., Liu, J., Doermann, D.,Wu, Y., Huang, F., & Ji,
R. (2019). Exploiting kernel sparsity and entropy for interpretable
CNN compression. In Proceedings of CVPR (pp. 2800–2809).

Li, Z., Ni, B., Zhang, W., Yang, X., & Gao, W. (2017). Performance
guaranteed network acceleration via high-order residual quanti-
zation. In Proceedings of the IEEE international conference on
computer vision (pp. 2584–2592).

Mao,X., Li,Q.,Xie,H., Lau,R.Y.,Wang, Z.,&Paul Smolley, S. (2017).
Least squares generative adversarial networks. In Proceedings of
the IEEE international conference on computer vision (pp. 2794–
2802).

Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. (2016). Prun-
ing convolutional neural networks for resource efficient inference.
arXiv preprint arXiv:1611.06440.

Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I.,
& Zafeiriou, S. (2017). Agedb: The first manually collected, in-
the-wild age database. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops (pp. 51–59).

Mueller, M., Smith, N., & Ghanem, B. (2016). A benchmark and simu-
lator forUAV tracking. InEuropean conference on computer vision
(pp. 445–461).

Odena, A., Olah, C., & Shlens, J. (2017). Conditional image synthesis
with auxiliary classifier GANs. InProceedings of the 34th interna-
tional conference on machine learning (Vol. 70, pp. 2642–2651).

Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). XNOR-
net: ImageNet classification using binary convolutional neural
networks. In European conference on computer vision.

Rigamonti, R., Sironi, A., Lepetit, V., & Fua, P. (2013). Learning sep-
arable filters. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 2754–2761).

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
et al. (2015). ImageNet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3), 211–252.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A.,
& Chen, X. (2016). Improved techniques for training GANs. In
Advances in neural information processing systems (pp. 2234–
2242).

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C.
(2018). Mobilenetv2: Inverted residuals and linear bottlenecks.
In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 4510–4520).

Sengupta, S., Chen, J. C., Castillo, C., Patel, V. M., Chellappa, R.,
& Jacobs, D. W. (2016). Frontal to profile face verification in the
wild. In 2016 IEEEwinter conference on applications of computer
vision (WACV) (pp. 1–9).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper
with convolutions. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition (pp. 1–9).

123

http://arxiv.org/abs/2002.09168
http://arxiv.org/abs/1808.06866
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1810.11981
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1405.3866
http://www.cs.toronto.edu/kriz/cifar.html
http://www.cs.toronto.edu/kriz/cifar.html
http://arxiv.org/abs/1412.6553
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/2003.03488
http://arxiv.org/abs/1611.06440


1012 International Journal of Computer Vision (2021) 129:998–1012

Tan, M., & Le, Q. V. (2019). Efficientnet: Rethinking model scaling for
convolutional neural networks. arXiv preprint arXiv:1905.11946.

Tschannen, M., Agustsson, E., & Lucic, M. (2018). Deep generative
models for distribution-preserving lossy compression. InAdvances
in neural information processing systems (pp. 5933–5944).

Wang, T., Gong, S., Zhu,X.,&Wang, S. (2014). Person re-identification
by video ranking. In European conference on computer vision (pp.
688–703).

Wu, Y., Lim, J., &Yang,M. H. (2013). Online object tracking: A bench-
mark. In Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 2411–2418).

Wu, Y., Lim, J., & Yang, M. H. (2015). Object tracking benchmark.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
37(9), 1834–1848.

Xu, Z., Hsu, Y. C., & Huang, J. (2018). Training student networks for
acceleration with conditional adversarial networks. In BMVC (p.
61).

Yang, T. J., Chen, Y. H., & Sze, V. (2017). Designing energy-efficient
convolutional neural networks using energy-aware pruning. In
Proceedings of CVPR (pp. 5687–5695).

Yang, Z., Moczulski, M., Denil, M., de Freitas, N., Smola, A., Song,
L., & Wang, Z. (2015). Deep fried convnets. In Proceedings of
the IEEE international conference on computer vision (pp. 1476–
1483).

Yi, D., Lei, Z., Liao, S.,& Li, S. Z. (2014). Learning face representation
from scratch. arXiv preprint arXiv:1411.7923.

Zagoruyko, S., &Komodakis, N. (2016).Wide residual networks. arXiv
preprint arXiv:1605.07146.

Zhang, D., Yang, J., Ye, D., & Hua, G. (2018). LQ-nets: Learned quan-
tization for highly accurate and compact deep neural networks.
In Proceedings of the European conference on computer vision
(ECCV) (pp. 365–382).

Zhang, J., Pan, Y., Yao, T., Zhao, H., & Mei, T. (2019). DABNN: A
super fast inference framework for binary neural networks on arm
devices. In Proceedings of the 27th ACM international conference
on multimedia (pp. 2272–2275).

Zhang,X., Zhou,X., Lin,M.,&Sun, J. (2018). Shufflenet:An extremely
efficient convolutional neural network for mobile devices. In Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition (pp. 6848–6856).

Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., & Tian, Q. (2015).
Scalable person re-identification: A benchmark. In Proceedings of
the IEEE international conference on computer vision (pp. 1116–
1124).

Zheng, Z., Zheng, L., & Yang, Y. (2017). Unlabeled samples generated
by GAN improve the person re-identification baseline in vitro.
CoRR arXiv:1701.07717.

Zhou, A., Yao, A., Guo, Y., Xu, L., & Chen, Y. (2017). Incremental
network quantization: Towards lossless CNNs with low-precision
weights. arXiv preprint arXiv:1702.03044.

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., & Zou, Y. (2016). Dorefa-
net: Training low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv preprint arXiv:1606.06160.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1411.7923
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1701.07717
http://arxiv.org/abs/1702.03044
http://arxiv.org/abs/1606.06160

	Rectified Binary Convolutional Networks with Generative Adversarial Learning
	Abstract
	1 Introduction
	2 Related Work
	2.1 Generative Adversarial Networks (GANs)
	2.2 Network Compression
	2.2.1 Quantization
	2.2.2 Network Pruning
	2.2.3 Decomposition/Factorization
	2.2.4 Distillation
	2.2.5 Efficient Network Design


	3 Rectified Binary Convolutional Networks (RBCNs)
	3.1 Optimized RBCN
	3.1.1 Loss Function
	3.1.2 Learning RBCNs

	3.2 Network Pruning
	3.2.1 Loss Function
	3.2.2 Learning Pruned RBCNs


	4 Experiments
	4.1 Datasets and Implementation Details
	4.2 Ablation Study
	4.3 Accuracy Comparison with the State-of-the-Art
	4.4 Experiments on Different Tasks
	4.4.1 Object Tracking
	4.4.2 Person Re-Identification
	4.4.3 Face Recognition

	4.5 Results on Network Pruning
	4.6 Efficiency Analysis

	5 Conclusion
	Acknowledgements
	References




