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Abstract
Feature pyramids have delivered significant improvement in object detection. However, building effective feature pyramids
heavily relies on expert knowledge, and also requires strenuous efforts to balance effectiveness and efficiency.Automatic search
methods, such asNAS-FPN, automates the design of feature pyramids, but the low search efficiencymakes it difficult to apply in
a large search space. In this paper, we propose a novel search framework for a feature pyramid network, called AutoDet, which
enables to automatic discovery of informative connections between multi-scale features and configure detection architectures
with both high efficiency and state-of-the-art performance. In AutoDet, a new search space is specifically designed for feature
pyramids in object detectors, which ismore general thanNAS-FPN. Furthermore, the architecture search process is formulated
as a combinatorial optimization problem and solved by a Simulated Annealing-based Network Architecture Search method
(SA-NAS). Compared with existing NAS methods, AutoDet ensures a dramatic reduction in search times. For example, our
SA-NAS can be up to 30x faster than reinforcement learning-based approaches. Furthermore, AutoDet is compatible with both
one-stage and two-stage structures with all kinds of backbone networks. We demonstrate the effectiveness of AutoDet with
outperforming single-model results on the COCO dataset. Without pre-training on OpenImages, AutoDet with the ResNet-
101 backbone achieves an AP of 39.7 and 47.3 for one-stage and two-stage architectures, respectively, which surpass current
state-of-the-art methods.
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1 Introduction

Object detection, aiming at localizing any instances of
objects from given categories in an image, is a fundamen-
tal and challenging problem in computer vision (Liu et al.
2019b). In recent years, deep convolutional neural network
(CNN) (Krizhevsky et al. 2012; Simonyan and Zisserman
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2014; He et al. 2016) has been demonstrated as powerful
methods for learning representations automatically. Partic-
ularly, object detectors based on CNN have made great
progress and achieved state-of-the-art performance on var-
ious benchmarks (Everingham et al. 2015; Lin et al. 2014;
Deng et al. 2009).

As has been revealed in Liu et al. (2019b), the per-
formance of object detection methods is still challenged
by imaging condition variations. In unconstrained environ-
ments, the appearance, shape and scale of objects vary largely
due to illumination, cameras, occlusion, viewing distances
and backgrounds. All of these factors cause vast intra-class
variations. Although recent object detection methods have
relied on invariant CNN representation to improve robust-
ness, object detection in the wild remains challenging. In
this study, we focus on studying the effect of scale variance.

To remedy theproblemof large-scale variation, a commonly-
used method depends on multi-scale image pyramids (Adel-
son et al. 1984; Dalal and Triggs 2005a; Lowe 2004). The
input image is resized intomultiple scales and then repeatedly
fed to detectors repeatedly. Therefore, objects with different
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sizes can be detected under a proper resolution. The final
result is generated by merging outputs of multiple forwards.
Thus, the object detector concentrates on detecting objects
under a specific scale instead of full ranges. Recent works
(Singh and Davis 2018; Singh et al. 2018) based on image
pyramids have verified the effectiveness of multi-scale test-
ing. Nevertheless, the time-consuming inference of image
pyramids hinders practical applications.

Another way to solve the problem is to leverage an inher-
ent feature hierarchy, which already exists in CNN and has
various spatial resolutions. The idea is inspired by divide
and conquer, where objects are grouped according to scales
and each feature layer is utilized to detect objects with spe-
cific scales. Actually, feature pyramids are originally used
in traditional shallow learning methods (Dalal and Triggs
2005b), but they generate feature maps of different scales by
image pyramids. Thus, both memory and inference time are
significantly increased. In the following work (Dollár et al.
2014) feature pyramid generation was sped up via extrapo-
lation from nearby scales. As the pioneering work based on
CNN, SSD (Liu et al. 2016) and MS-CNN (Cai et al. 2016)
make full use of inherently multi-scale features in CNN and
detect objectswith various scales on distinct layers. Recently,
observing the lack of semantic information in low-level fea-
turemaps, Feature PyramidNetwork (FPN) (Lin et al. 2017a)
proposed a novel and efficient way for combining high-level
and low-level features by a top-down pathway with lateral
connections. Experiments demonstrate that feature fusing in
FPN extensively boosts the performance of object detection.

FPN essentially enriches semantic information for all fea-
tures. Hence, the connections and operations among these
feature maps become crucial to the performance of detectors.
Although FPN has been validated as simple and effective,
many studies (Fu et al. 2017; Li and Zhou 2017; Kong et al.
2016; Bell et al. 2016) have conducted on seeking the better
cross-layer connections and fusing operations to build fea-
ture pyramids. A variety of feature pyramid networks have
are designed for various tasks. However, there have been no
design principles for feature pyramids until now. As stated in
Ghiasi et al. (2019), the design space grows at an exponen-
tial rate with an increasing the number of layers. Therefore,
it is impossible to find the best feature pyramid network by
enumerating all structures in such an enormous space.

Recently, the neural architecture search (NAS), which
automatically derives the optimal neural network architecture
from a search space, has emerged and led to state-of-the-art
accuracy on classification (Xie and Yuille 2017; Zoph and
Le 2016; Zoph et al. 2018; Liu et al. 2018a, 2017; Jenat-
ton et al. 2017; Li et al. 2020; Hu et al. 2020), segmentation
(Liu et al. 2019a) and image restoration (Suganuma et al.
2018). Due to the vast search space and expensive training
cost, a series of works (Liu et al. 2018b; Zhang et al. 2019)
has addressed NAS search architectures on proxy tasks. As

shown in Table 1, NASNet (Zoph et al. 2018) and Amoe-
baNet (Real et al. 2018) require 2, 000 GPU days to search
the classification network on the small-scaleCifar-10 dataset.
DARTS (Liu et al. 2018b) only searches a block and then
stacks them to build a network. The image size is set to
312×312 on searching for DPC (Chen et al. 2018) andAuto-
DeepLab (Liu et al. 2019a). Accordingly, directly searching
on a large dataset such as ImageNet or COCO is still chal-
lenging due to the high computational cost. Themost relevant
work here is NAS-FPN (Ghiasi et al. 2019), which searches
cross-scale connections to generate multiscale feature rep-
resentations. The merging cell in its search space takes two
input layers and outputs a feature layer, where fusing oper-
ations only contain two methods (sum and global pooling).
During the architecture search, NAS-FPN requires 333 TPU
days to sample 12, 000 child networks.

As mentioned above, feature pyramids are an effective
method for addressing the scale variance in object detection.
The design space of the feature pyramid network is so large
that the optimal structure for varied tasks is hard to find by
hand.NAS is a data-drivenmethod that automatically enables
an optimal architecture search. However, its high computa-
tion costs pose a challenge for practical application.

To address this problem, we design an efficient feature
pyramid architecture search framework. As illustrated in
Fig. 1, we first build a comprehensive search space that con-
tains abundant typologies and varied fusing cells. Then, we
design an efficient search algorithm to discover a better fea-
ture pyramids network. The performance of child network
on the validation set is used as reward.

As a matter of fact, it is non-trivial to directly apply the
NAS of classification to object detection. First, the search
space should be task-specialized. As stated in Liu et al.
(2019a), the architecture of CNN involves a two-level hierar-
chy where the outer topology controls the spatial resolution
changes and the inner cell steers layer-wise computation. A
plethora of current works (Liu et al. 2018b, 2017, 2018a;
Real et al. 2018; Pham et al. 2018) on NAS only search the
inner cellwhile pre-defining the outer network topology. This
limited search space is unsatisfactory for object detection.
In contrast, the inputs of feature pyramids are multi-scale
features with different resolutions. And the topological con-
nection of layers and the feature fusing strategies appearmore
significant for feature pyramids.

In addition, object detection inherently hasmore computa-
tional complexity than classification. To speed up, someNAS
works (Liu et al. 2018b, 2017) search onCIFAR-10with low-
resolution inputs (32 × 32) and then transfer the discovered
architectures to a high-resolution dataset directly. This strat-
egy is not suitable for object detection, which is sensitive to
the input resolution. Therefore, searching architectures effi-
ciently on high-resolution inputs remains challenging.
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Table 1 The search time for
different architecture search
approaches with different image
sizes

Models Datasets Image size Days Task

NASNet (Zoph et al. 2018) CIFAR-10 32 × 32 2000 Cls

AmoebaNet (Real et al. 2018) CIFAR-10 32 × 32 2000 Cls

PNASNet (Liu et al. 2018a) CIFAR-10 32 × 32 150 Cls

DARTS (Liu et al. 2018b) CIFAR-10 32 × 32 4 Cls

DPC (Chen et al. 2018) Cityscapes 312 × 312 2600 Seg

Auto-DeepLab (Liu et al. 2019a) Cityscapes 312 × 312 3 Seg

AutoDet COCO 512 × 512 2.2 Det

Bold values indicate the larger image size and the least gpu-days
The main differences from others include: (1) we search the network architecture for the object detection task,
(2) we search directly on the challenging COCO dataset, and (3) our method is quite efficient and requires
only 2.2 P40 GPU days

Fig. 1 Illustration of feature pyramid network search for object detec-
tion. The search spaces contain different connection typologies and
feature fusing operations. The search algorithm first samples a can-
didate network from the search space. The network is trained on the

training set, and then the performance on the validation set is returned
to the search algorithm. Eventually, the search algorithm can discover
the optimal architecture

The search strategies play an important role in an effi-
cient architecture search. The popular methods, including
reinforcement learning and evolutionary algorithms, are lim-
ited by intensive computations even on the small-scale
CIFAR-10 database. Recently, differentiable architecture
search eliminates the meta-controller and trains an over-
parameterized supernet containing all candidate paths, which
largely improve the search efficiency. Nevertheless, its over-
parameterized supernet not only consumes a large amount of
memory, but also limits the flexibility for searching typolo-
gies.

In this paper, we propose a novel framework, AutoDet, to
automatically search the feature pyramid structure for object
detection. In AutoDet, in order to search in-cell structure and
outer topology at the same time, we design a new combina-
torial search space for the feature pyramid network. Instead
of only binary fusing operations (sum and global pooling)
in NAS-FPN (Ghiasi et al. 2019), we design a flexible fus-
ing strategy where the number of channels on each layer is
searchable in our search space. Thus, our AutoDet is more
general and includes NAS-FPN (Ghiasi et al. 2019) as a
special case. Moreover, aiming at searching architectures
directly on the COCO dataset at affordable cost, we intro-
duce a fast Simulated Annealing (SA) algorithm, instead of
reinforcement learning (RL) or evolutionary algorithm (EA),
to search the state-of-the-art architectures in the search space.

To verify the effectiveness and flexibility of our AutoDet,
we search feature pyramids directly on the COCO dataset
for one-stage and two-stage detectors. With the ResNet-50
backbone model in one-stage SSD, AutoDet achieves AP
32.3 and 36.2with the input sizes of 320×320 and 512×512,
which outperform the vanilla FPN by 1.9 and 2.6 AP. When
the backbone is replacedwithResNet-101, the improvements
are also significant. For two-stageFasterR-CNN,we evaluate
AutoDet with various backbone models, including ResNet-
50 andResNet-101. For example,AutoDet based theResNet-
50 as backbone achieves 40.2 AP, which is superior to FPN
by 5.9AP. Finally, the searched network can achieve AP 39.7
and 47.3 for one-stage and two-stage detectors, both ofwhich
outperform the results of state-of-the-art methods.
The contributions of this paper are four-fold:

– We propose a novel pyramid network architecture search
method that can be applied to both one-stage and two-
stage object detection, which is one of the pioneers for
automatically searching the network architecture for the
detection task.

– A novel pyramid network search space, including in-cell
block architecture as well as outer topology, is designed
for object detection.

– A novel heuristic Simulated Annealing-based Network
Architecture Search (SA-NAS) is introduced to acceler-
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ate the search process. Our method can be 30 times faster
than RL-based approaches.

– The performance of the proposed solution is evaluated
thoroughly via experiments on the COCO dataset. The
results of one-stage and two-stage structures surpass
state-of-the-art methods, which is a strong verification
of the superiority of our automatic solution.

2 RelatedWork

2.1 Object Detection

Benefiting from the development of CNN (Krizhevsky et al.
2012; Simonyan and Zisserman 2014; He et al. 2016) in
recent years, object detection based on CNN has achieved
dramatic improvement in performance. Current object detec-
tion algorithms can be roughly divided into one-stage and
two-stage detectors.

Two-stagemethods, such asR-CNN(Girshick et al. 2014),
fast R-CNN (Girshick 2015) and faster R-CNN (Ren et al.
2015), first generate the region proposals by selective search
or a region proposal network (RPN). CNN features on these
regions are extracted and classifiers are used to determine
the label of proposals. Dai et al. (2016) proposed RFCN to
further improve the detection speed by sharing the region-
wise sub-network. Mask RCNN (He et al. 2017) extends
Faster RCNN to tackle instance segmentation where a paral-
lel branch in the second stage predicts a binary mask for each
RoI.Merely usingdeep featureswith high-level semantic fea-
tures but low-resolution makes it difficult for these methods
to detect small objects.

The seminal works of one-stage detectors are SSD (Liu
et al. 2016) and YOLO (Redmon and Farhadi 2018), which
explore an end-to-end solution without proposals. YOLO
(Redmon and Farhadi 2018) casts object detection as a
bounding box regression problem from the input image.
YOLOv2 (Redmon and Farhadi 2017) adopts DarkNet19 as
the backbone and generates good anchor boxes by k-means.
YOLO9000 can detect over 9000 object catergories in real
time. SSD (Liu et al. 2016) makes full use of inherently
multi-scale features inCNNanddetects objectswith different
scales on different levels of layers, where shallow layers with
high-resolution are used to detect small objects and deep lay-
ers with large reception fields are used to detect large objects.
However, object detection requires not only locating objects
but also classifying them, which means that both high-level
semantics and low-level spatial details are significant. Thus,
leveraging high-level or low-level features individually for
detection is sub-optimal. Recently, inspired by pose estima-
tion, Law and Deng (2019) formulated object detection to
the keypoint regression problem and proposed CornerNet to

detect paired top-left and bottom-right keypoints. The back-
bone is Hourglass network and corner pooling is used to
localize corners. CornerNet outperforms all one-stage detec-
tors, but the inference time is significantly slower than SSD
and YOLO.

2.2 Feature Fusion

Feature fusionhas beendemonstrated to significantly improve
the performance of object detection. To utilize the informa-
tion propagation between different levels of feature maps,
FCN (Long et al. 2015) and U-Net (Ronneberger et al.
2015) fuse the lower level feature map information via skip
connections. In addition, DSSD (Fu et al. 2017) uses the
deconvolution as an up-samplingmethod, and then combines
the information of different levels. Similarly, top-downmod-
ulation (Shrivastava et al. 2016), RetinaNet (Lin et al. 2018)
and FPN (Lin et al. 2017a) use a top-down pathway and lat-
eral connections to enrich information from different layers.
In FSSD (Li and Zhou 2017), features from different layers
with different scales are concatenated together, followed by
some down-sampling blocks to generate a new feature pyra-
mid. The stacked hourglass network (Newell et al. 2016)
uses skip connections between low-level and high-level fea-
ture maps to make full use of the information extracted from
these feature maps. Inside-Outside Net (ION) (Bell et al.
2016) extracts fixed-size feature maps from several layers
usingRoI Pooling for object detection.HyperNet (Kong et al.
2016) combines feature maps by leveraging local response
normalization and concatenation to generate the hyper fea-
ture map used for object detection. PANet (Liu et al. 2018d)
fuses the FPN’s output again from bottom to up, which short-
ens the information path between lower layers to higher
features. Different from previous works simply summing
them up without distinction, EfficientDet (Tan et al. 2020)
proposes a weighted bi-directional feature pyramid network
to learn the importance of different input features. Feature-
based attention (Chen et al. 2016; Wang et al. 2017) (also
known as channel-wise attention) is another form of fea-
ture fusion mechanism and involves learning a task-oriented
modulation.M2Det (Zhao et al. 2019) aggregates multi-level
multi-scale features with the same scale to construct a feature
pyramid by a scale-wise feature aggregation module. All of
the above discoveries on network architectures for feature
fusion require substantial effort from human experts, while
our work implements an automatic solution that can outper-
form the manual solutions.

2.3 Neural Architecture Search

Recently, NAS has achieved highly competitive performance
in image classification. It can be roughly divided into three
categories:RL-based approaches (Baker et al. 2017; Tan et al.
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Fig. 2 The illustration of the AutoDet search space. The black dashed box is the feature generation cell. We take the P3 generation process as an
example. The gray dashed lines present all possible links in the AutoDet search space

2018; Zoph and Le 2016; Zoph et al. 2018; Liu et al. 2018a;
Tan and Le 2019; Zhong et al. 2018; Cai et al. 2018), EA-
based approaches (Liu et al. 2017; Xie and Yuille 2017; Real
et al. 2018; Elsken et al. 2018), and differentiable approaches
(Liu et al. 2018b; Xie et al. 2018; Luo et al. 2018; Brock et al.
2018; Bender et al. 2018; Wu et al. 2019; Dong and Yang
2019).

Since RL is a fundamentally more difficult problem than
optimization (Jiang et al. 2017), RL-based approaches tend
to explore and exploit a very large number of architectures to
find the nearly optimal solution. EA-based approaches (Real
et al. 2018) improve evolutionary algorithms to optimize net-
work structures, which suffer from enormous computational
costs for the whole evolution. Due to the expensive search
time shown in Table 1, most of RL and EA-based NASmeth-
ods first search on small proxy datasets, such as CIFAR-10
with an input size of 32 × 32. Then, they train the searched
network on target datasets. Differentiable approaches such
as DARTS (Liu et al. 2018b) reduce computational costs by
applying a continuous relaxation of architecture represen-
tation to make gradient descent possible for optimization.
However, a heavy super-net contains all sub-nets in the search
space consume considerable GPUmemory. FBNet (Wu et al.
2019) and GDAS (Dong and Yang 2019) simply sample and
train a sub-net during the search stage. It not only reduces
the memory but also decouples different operations within
a layer. SNAS (Xie et al. 2018) tackles the problem by
parameter optimization on a joint distribution of architec-
ture space and improves the search efficiency via a generic
differentiable loss. Due to the assumption of a fixed num-
ber of filters, these methods are weakened by limited search
spaces. In addition, most of the rapid methods only use the
same searched structure in all cells and neglect the topology
between them, which is important in pyramid feature fusion.
Recently, NAS-FPN (Ghiasi et al. 2019) searches the topol-
ogy and binary fusing operations of feature pyramids with
RL. Our AutoDet is the pioneer to apply the efficient NAS
method to object detection tasks and simultaneously searches
cell-level networks and pyramid-level structures.

3 Method

The current object detection framework based on CNN gen-
erally contains two main components: a backbone network
and a feature pyramid network. Specifically, the backbone
network is a pre-trained classification model, that is used
to extract multi-scale features from an input image. Due to
the multiple levels of processing by CNN (Lin et al. 2017a),
feature maps of shallow layers contain more low-level infor-
mation than semantics while feature maps of deeper layers
are enriched with semantic information. To jointly utilize
semantic features as well as local details, a feature pyramid
network (Lin et al. 2017a) is proposed to fuse different levels
of layers.

Since designing a feature pyramid network requires expert
knowledge and its variants are too large to enumerate,
AutoDet provides a Neural Architecture Search (NAS) solu-
tion, which automatically discovers the optimal structure of
feature pyramids from a tailor-made search space. As shown
in Fig. 1, NAS (Elsken et al. 2019) is known to consist of
three components: search space, search strategy, and perfor-
mance estimation strategy. The search space defines which
architectures can be represented. The search strategy details
how to explore the search space. And the performance esti-
mation strategy is used to measure the performance of child
networks. In general, a larger search space may contain more
child networks and the better network architectures, but bring
challenges for efficient search. Hence, the search space plays
an important role in NAS. Moreover, some studies (Liu et al.
2017; Real et al. 2018; Liu et al. 2018b; Zheng et al. 2019)
show that the search strategy is one of the important factors
for accelerating search and discovering the optimal solution.

In this section, we begin by introducing a search space for
the feature pyramid network. Then, we demonstrate how to
prune the search space for amore efficient search. Finally, we
devise a novel Simulated Annealing-based Network Archi-
tecture Search to obtain the pyramid network architecture.
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3.1 Search Space Design

In this section, we present the search space for feature pyra-
mid network. The generation of feature pyramid can be
divided into two steps: for each output layer, we first deter-
mine a number of input layers, and then select the best fusing
operations for them. Therefore, we design a two-level search
space. For the outer network level, we search the connection
topology. For the inner feature fusing cell level, we search
the operation parameters.

The input of a feature pyramid network consists of a set
of feature maps from the backbone with different scales C
� {c|Ck1 ,Ck2 , . . . ,Ckn }. In Fig. 2, C = {C2,C3,C4,C5}
represents the outputs of conv2, conv3, conv4, and conv5
with the corresponding strides of {4, 8, 16, 32} pixels. Owing
to the large memory consumption, we do not integrate the
conv1 into the pyramid. Note that the space is compati-
ble with C in a wide range of backbones. The output of
a feature pyramid network has the identical scales as the
input after feature fusion. Figure 2 shows the output fea-
tures P = {P2, P3, P4, P5}. Let I denote the set of indexes
in C and O denote the set of indexes in P . For Fig. 2,
I = O = {2, 3, 4, 5}.

AutoDet generates the target features {P2, P3, P4, P5}
sequentially. When generating each target feature, a feature
generation cell takes all possible previous nodes C as input
and outputs a feature map inP . Since the input features have
different resolutions, they are first aligned to the same reso-
lution by up-sampling, or down-sampling. Then, we append
the auto transformation function A j (.) to reduce the alias-
ing effect of sampling and preserve the discriminability of
aligned feature, which is a fixed CNN function with ReLU
activation and Batch Normalization (BN). Next, we utilize
layer-specific operation function f j

i (.) to process each layer
for feature fusing, which is subject to operation type and
filter number, where i refers to the index of connected pre-
vious nodes and j refers to the index of output Pj , ∀i ∈ I,
∀ j ∈ O. Finally, an fusion function F j (.) is used to merge
these features and generate target feature. Note that pre-
viously generated features are immediately added into the
candidate set. In other words, when generating Pj , the can-
didate set not only contains the output features of backbone
{C2,C3,C4,C5}, but also has previously generated pyramids
{P5, P4, . . . , Pj−1}.

For the outer connection topology, all gray dashed lines in
Fig. 2 show possible connections. Each connection has two
discrete states {0, 1}, which denote whether to connect the
preceding node. For the inner feature fusing cell, the com-
putation CNN operations include operation type and filter
number. Here, we add “no connection” as an operation into
the cell. In this way, the outer topology and inner cell oper-
ation can be unified into a search framework. Therefore, we
formulate the pyramid network architecture search as a com-

binatorial optimization problem. All types of operations are
defined as follows:

– 1 × 1 conv
– 5 × 5 conv
– 3 × 3 conv
– no connection

The set of filter numbers is discretized as {128, 256, 384,
512}. AutoDet can also generalize to other discrete spaces.
Here, the purpose of the “no connection” operator is to deter-
minewhether the previous feature is chosen for output feature
generation, which is also used DARTS (Liu et al. 2018b) for
network topology search.

To generate the j-th output of feature pyramids Pj , k pre-
ceding nodes {c1, c2, . . . , ck} are first aligned to the same
resolution by down- and up-sampling operations. Then, auto
transformation functionA j (.) is applied to preserve discrim-
ination. To search the operation types and filter numbers, we
utilize layer-specific operation function f j

i (.). Finally, a sim-
ple element-wise summation is used to fuse these features.
Overall, the j-th output of feature representation Pj is for-
mulated as follows:

Pj = F( f j
1 (A j (c1)), f j

2 (A j (c2)), . . . , f j
k (A j (ck))),

ci ∈ N j ,∀ j ∈ O,∀i ∈ {1, 2, . . . , k}, k = |N j |. (1)

In equation (1), N j is the set of previous nodes of Pj ,
where,

Pi ∈ N j ,∀i > j . (2)

For Fig. 2, we have:

N5 = {C2,C3,C4,C5},
N4 = {C2,C3,C4,C5, P5},
N3 = {C2,C3,C4,C5, P5, P4},
N2 = {C2,C3,C4,C5, P5, P4, P3} (3)

3.2 Simulated Annealing-Based Network
Architecture Search

Wepropose aSimulatedAnnealing-basedNetworkArchitec-
ture Search (SA-NAS) to obtain the pyramid network archi-
tecture. Simulated Annealing (SA) (Chopard and Tomassini
2018) is a probabilistic algorithm that makes a good approx-
imation to the global optimal solution of the optimization
problem in a large search space. The simulated annealing
(SA) is a stochastic optimization approach that simulates the
physical annealing process. SA initially sets the temperature
high and then allows it to slowly ’cool’ as the algorithm runs.
While this temperature is high the algorithm will be allowed,
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Algorithm 1: SA-NAS
Input:
C, O;
Output:
P;

1 Initialize T ◦, ξ , and I teration_num;
2 Initialize the vector of decision variable var ;
3 Initialize the initial reward r ;
4 while I teration_num > 0 do
5 Generate a neighbor vector of var , var_n;
6 Generate N j according to equation (3);

7 Get f j
i (.) according to var_n, subject to the pruned search

space.
8 Get P j according to equation (1);
9 Train the model with AutoDet for a small number of epochs

and get sub reward rn , where C is frozen;
10 Δr = rn - r ;
11 if Δr > 0 then
12 r = rn ;
13 var = var_n;
14 else
15 if rand(0, 1) < exp(−Δr/T ◦)) then
16 r = rn ;
17 var = var_n;
18 T ◦ = T ◦ ∗ ξ ;
19 end
20 end
21 I teration_num − −;
22 end
23 return(var , r );

with more frequency, to accept solutions that are worse than
our current solution. As the temperature is reduced, SA grad-
ually focuses on an area of the search space and converge
to an optimum solution. SA can efficiently obtain a near-
optimal solution of a wide range of NP-hard problems, such
as the traveling salesman problem (TSP), set cover problem
(SCP), andmax coverage problem (MCP). Since the pyramid
network architecture search is similar to TSP and SCP, we
can tackle it by SA to obtain the near-optimal solution more
efficiently.

It should be mentioned that, the traditional SA can-
not directly deal with the pruned search space. SA-NAS
improves SA on the neighbor generation phase. Specifically,
it divides the neighbor generation into three subphases. First,
it chooses the target P j by equal probability, ∀ j ∈ O. Then,
based on the probability of combinatorial optimization, it
decides the number of previous nodes that link toP j . Finally,
it selects operations for each input layer.

Algorithm 1 shows the pseudocode of the SA-NAS algo-
rithm, in which the goal is to find the best vector of decision
variables, denoted as var . With the best var , the reward of
AutoDet, r , is maximized. For the object detection task, the
reward is the bounding box average precision. The SA-NAS
complies with the following steps.

Step 1: Generate Initial State

Initially, the SA-NAS generates a feasible var and r as a
startingpoint. For example, theSA-NAScan take thenetwork
architecture of the FPN as the initial state. To simplify the
expression, we use the current state to denote the decision
variable of the current iteration.

Step 2: Generate the Neighbor State of Current State.
In each iteration, a list of neighbor vectors (denoted as

var_n) of var is generated. As mentioned above, the neigh-
bor state has to be compatible with the pruned search space.

Step 3: Decode Neighbor State and get reward.
The previous nodes are first mapped by the auto trans-

formation function A j (.). SA-NAS then obtains the CNN

operation function f j
i (.) and transforms the features accord-

ing to f j
i (.). P j is next calculated by fusing f j

i (A j (c)), i ∈
{1, 2, 3, 4}. The whole process is formulated as equation (1).

Based on the decoded pyramid network architecture, SA-
NAS trains for a small number of epochs and gets the reward
rn , where the backbone C is frozen.

Step 4: Update Current State.
If the new reward rn is higher than current reward r ,

then we accept var_n as a feasible solution. Otherwise,
we accept var_n based on a probability of acceptance to
avoid falling into a local minimum. The annealing tem-
perature T ◦ is updated by a factor of ξ . The probability
of acceptance is an exponentially decreasing function with
parameter exp(−Δr/T ◦)). After each iteration, the proba-
bility of acceptance decreases.

Step 5: Back to Step 2.
The while loop continues until reaching the iteration

threshold.After thewhile loop,we can obtain an approximate
optimal vector of decision variable var and its corresponding
reward r .

4 Experiments

In this section, we first present the implementation details of
the architecture search as well as the experimental setup.
Then, we conduct an ablation study of our approach on
the COCO dataset (Lin et al. 2014). We next compare our
SA-NAS with other automatic search methods in terms of
performance and search efficiency. To validate the effective-
ness of the searched feature pyramid architecture through
SA-NAS, we compare the results with state-of-the-art meth-
ods on the challenging COCOdataset (Lin et al. 2014). Then,
we visualize the discovered feature pyramid architecture and
summarize inspiring findings for architecture designs. To this
end, we apply SA-NAS to search the backbone for on-device
real-time image detection and classification.
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4.1 Datasets andMetrics

The Microsoft COCO (Lin et al. 2014) dataset is one of the
most challengingdatasets for object detection in thewild.The
COCOdataset has 80 classeswith bounding box annotations.
It consists of 80k images for training and 40k images for
validation. Following (Bell et al. 2016; Lin et al. 2017a),
we train models on the union of the training set and 35k
subset of the validation set (trainval35k). The remaining 5k
images are used for the validation set (minival). We evaluate
our method on the test-dev set for fair comparisons, which
contains 20k images. Since ground-truth labels of test-dev are
not publicly available, we submit all results to the test-dev
evaluation server. We follow the standard evaluation metrics,
including average precision (AP) at different IoUs, AP@0.5,
AP@0.75 and APs for different object sizes APS , APM and
APL .

4.2 Implementation Details

We first search the best feature pyramid architecture directly
on COCO through SA-NAS. Then we train the whole object
detection to obtain the final model. Here, we describe our
experimental setup of searching and training final object
detection, respectively.

4.2.1 Experimental Setup of Searching

We follow the same training protocol in Liu et al. (2016) for
the one-stage architecture and that in He et al. (2017) for the
two-stage architecture. The proposals are generated from an
independently trained RPN (He et al. 2017; Ren et al. 2015)
to allow convenient ablation and fair comparison. We search
architecture on the 512×512 image resized from the COCO
dataset. To speed up the training of SA-NAS, we adopt a
short training time as inGhiasi et al. (2019), Zoph et al. (2018)
that also correlates with the performance of the detector after
converging. Specifically, we use AP on the validation set at
6, 400 iterations as the reward in SA-NAS. The set of indexes
I andO are set as {2, 3, 4, 5}. The control number |N j | of the
AutoDet search space is set to 4. The initial temperature in
the SA-NAS is set to 210 and the annealing rate is set to 0.85.
The iteration times of the SA-NAS are set to 200. During the
searching phase, we use a ResNet-50 backbone pre-trained
on ImageNet with all parameters frozen.

4.2.2 Experimental Setup of Object Detection

We retrain the final object detector after discovering the best
feature pyramid network. The hyperparameters in the final
training are slightly different from those in the architecture
search stage. For two-stage and one-stage objectors,we adopt
the same end-to-end training process as in Faster R-CNN

(Ren et al. 2015) and SSD (Liu et al. 2016). We still use the
pre-trained model from ImageNet, but the parameters are not
frozen as in the search stage. To further validate the general-
ization of the searched feature pyramid network, we evaluate
on different backbones, such as ResNet-50 and ResNet-101.

For Faster R-CNN, we take 8 images in a batch for train-
ing and use 8 NVIDIA P40 GPUs (one image per GPU).
For a fair comparison, we do not use pre-training data from
OpenImages,1 nor do we use Sync-BN (Peng et al. 2018) and
deformable convolutions (Dai et al. 2017). The resolution of
the input training images is 800 × 1, 333, if not specifically
noted. We train our model with a learning rate starting from
0.01, and it is decreased by a factor of 0.1 after 960k and
1, 280k iterations and finally terminates at 1, 440k iterations.
This training schedule results in 12.17 epochs. The rest of the
hyperparameters remain the same as the Faster R-CNN.

For SSD, the batch size is set to 64 with the input size
320 × 320, and the batch size is set to 32 with the input size
512 × 512 due to the GPU memory constraint. For gradient
descent, we use the SGD optimizer with momentum 0.9 and
weight decay 0.0001. The cosine learning rate is adopted,
and the initial learning rate 0.04 is applied for first 50k itera-
tions . The warm up learning rate is 0.013333 for the first 2k
iterations. The batch normalization layers are applied after
all convolution layers. The weight decay is 0.0001 and the
momentum is 0.9.

4.3 Ablation Study

In this subsection, we comprehensively evaluate our method
on the COCO dataset (Lin et al. 2014).

4.3.1 One-Stage Versus Two-Stage

AutoDet is a flexible and generalized architecture search
framework, that is easy to be embeded into one-stage and
two-stage detectors. The typical one-stage and two-stage
detectors are SSD (Liu et al. 2016) and Faster RCNN (Ren
et al. 2015). Therefore, we directly search feature pyramid
networks with SSD (Liu et al. 2016) and Faster RCNN (Ren
et al. 2015) respectively on the COCO dataset. The searched
feature pyramid networks are compared with the human-
invented FPN (Lin et al. 2017a). For a fair comparison, we
report the performance of a single model at the single scale.

Tables 2 and 3 show the results of one-stage and two-stage
detectors, respectively. Two-stage detectors always outper-
form one-stage detectors regardless of the backbone is used,
because the two-stage scheme in the Faster RCNN enables a
more accurate position regression and classification. For the
one-stage detector in Table 3, AutoDet is consistently supe-

1 Dataset available from https://storage.googleapis.com/openimages/
web/index.html.
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Table 2 Comparisons of ablation results on the COCO object detection
test-dev benchmark on single model

Method Backbone AP FPS

FPN(Lin et al. 2017a) ResNet-50 34.3 26.3

FPN∗ ResNet-50 37.5 26.3

AutoDet ResNet-50 40.2 25.4

FPN(Lin et al. 2017a) ResNet-101 36.2 19.6

FPN∗ ResNet-101 40.1 19.6

AutoDet ResNet-101 43.3 18.8

Bold values indicate the best performance which model achieves
We make ablation comparison on two-stage architecture Faster R-CNN
based with both ResNet-50 and ResNet-101 backbones. ∗ indicates we
re-implement it with the same training settings

Table 3 Comparisons of ablation results on the COCO object detection
benchmark on single model

Method Backbone Input size AP FLOPs Params

FPN ResNet-50 320 × 320 30.4 48.58G 35.59M

AutoDet ResNet-50 320 × 320 32.3 48.75G 36.38M

FPN ResNet-50 512 × 512 33.6 124.36G 35.59M

AutoDet ResNet-50 512 × 512 36.2 124.79G 36.38M

FPN ResNet-101 320 × 320 31.2 56.18G 54.58M

AutoDet ResNet-101 320 × 320 34.5 56.34G 55.37M

FPN ResNet-101 512 × 512 34.4 143.81G 54.58M

AutoDet ResNet-101 512 × 512 37.7 144.24G 55.37M

Bold values indicate the best performance which model achieves
We make ablation comparison on one-stage architecture SSD based
with ResNet-50 and ResNet-101 backbones

rior to FPN under various experimental setups. For example,
with input size 320 × 320 and ResNet-101 backbone, fea-
ture pyramids searched by AutoDet achieve 34.5% AP. The
improvement is impressive (i.e., 3.3%) compared with the
FPN, which shows the superiority of AutoDet. Furthermore,
more remarkable promotion is achieved on the two-stage
detector. Although Faster RCNN with a FPN is a stronger
baseline, AutoDet greatly improves the AP from 36.2% to
43.3% (approximately 6.1%AP improvement) with ResNet-
101 in Table 2. Moreover, we also adopts the same training
settings to re-train the baseline method (Lin et al. 2017a)
(FPN∗). Although the FPN∗ indeed improves the AP value,
it is still much inferior to our method. Overall, consistent
experimental results on both one-stage and two-stage detec-
tors verify the generalization of AutoDet.

4.3.2 Search on Different Backbone Architectures

Weevaluate theAutoDet on different backbone architectures,
including ResNet-50 and ResNet-101, to demonstrate the
effectiveness of the discovered feature pyramids. As shown
in Tables 2 and 3, we find that the weaker backbone ResNet-

50 is usually inferior to the stronger backbone ResNet-101,
since ResNet-101 provides more powerful representations as
input to the feature pyramid network. Moreover, regardless
of what backbone is utilized, AutoDet always produces com-
petitive AP scores and is better than its counterpart FPN. For
example, in the two-stage strategy, AutoDet with ResNet-50
improves the AP scores from 34.3% to 40.2%, and AutoDet
with ResNet-101 improves the AP scores from 36.2% to
43.3%. These improvements can be mainly attributed to two
aspects: First, manually designed FPN is not the optimal fea-
ture pyramid for object detection. Second, since different
backbone architectures provide the input features with dif-
ferent receptive fields and semantic levels, a unified feature
pyramid structure (like FPN) cannot be adapted to various
backbones. Therefore, we prefer the customized and specif-
ically designed feature pyramids for individual backbone
architectures. Experiments show that AutoDet is an alter-
native method for dynamically searching feature pyramid
network for different backbones. Some qualitative results
comparison between FPN andAutoDet on the COCOdataset
are presented in Fig. 3.

4.3.3 Search on Different Input Sizes

Except for the backbone, the input size of the image has
been demonstrated to be an important factor in performance
(Liu et al. 2016; Ren et al. 2015; He et al. 2017; Lin et al.
2017a). Intuitively, the input imagewith high-resolution con-
veys a more detailed appearance of the object, which is very
beneficial to small object detection. Thus, relatively large
objects in high-resolution images are usually detected on
deep but large receptive field layers (such as P4 and P5).
Conversely, because low-resolution input image have fewer
cues for objects, shallowbut high-resolution features (such as
P2 and P3) in the backbone are more crucial. To analyze the
above problems, experiments on the image sizes of 320×320
and 512 × 512 are conducted in a one-stage detector. Com-
paring the detection results between AutoDet and FPN in
Table 3, we notice that due to a large number of small objects
in COCO (Singh and Davis 2018), models with large input
size are more advantageous than models with small input
sizes. Although FPN obtains an AP gain of approximately
3.2% with ResNet-50 as the backbone, AutoDet presents
impressive results, i.e., AP from32.3% to 36.2%. In addition,
AutoDet constantly performs better than FPN under different
input sizes. Since hierarchical features in the backbone play
different roles on different input sizes, an individualized fea-
ture fusing strategy in feature pyramid network is required.
AutoDet drives a flexible and adaptive feature pyramids on
different image sizes for better performance.

Inference speed. We evaluate the inference speed, num-
ber of parameters and FLOPs of AutoDet and the baseline
approach in Tables 2 and 3. The speed is tested with batch
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Fig. 3 Selected examples of comparison results between AutoDet(left) and FPN(right)

Fig. 4 The illustration of the reward increasing alongside iterations of SA-NAS(left) and RL(right).We can find a quite fast convergence of SA-NAS

size 1 on NVIDIA Titan V100, CUDA 10.0 and cuDNN v7.
Compared with the FPN, our AutoDet achieves a compara-
ble inference speed (25.4 FPS and 18.8 FPS with ResNet-50
and ResNet-101 backbones) in the two-stage architecture
Faster RCNN. For the one-stage architecture SSD, we eval-
uate the FLOPs and parameters of different methods in
Table 3. We find that AutoDet only increases slight FLOPs
and parameters but achieves significant improvements under
all experimental settings. Overall, AutoDet offers the bet-
ter tradeoff of speed and accuracy, which demonstrates the
effectiveness of the discovered feature pyramid.

4.3.4 Search Efficiency Analysis

To analyze the search efficiency of NAS, we compare our
SA-NASwith RL-based NAS (Liu et al. 2018a) as a standard
reference. For a fair comparison, we keep the same experi-
mental setup (including search space, and training a child
network, etc.) except for the search algorithm. As shown in
Fig. 4, the x axis denotes the iteration number, and the y axis
denotes the reward normalized by the same factor. The left

and right images correspond to the reward increasing along-
side iterations of SA-NAS and RL-based NAS, respectively.
Note thatwe set different scopes of the x axis for a better view.
To evaluate the stability of SA-NAS, we conduct multiple
independent search processes that are visualized with differ-
ent colors in Fig. 4. Obviously, SA-NAS tends to oscillate
in the first 100 iterations, but it has a rapid and stable con-
vergence within only 200 iterations. However, the RL-based
NAS still has huge fluctuations even in 6, 000 iterations. The
underlying reason may be low data efficiency in RL. For
the one-stage architecture, the SA-NAS requires 16 minutes
to get the reward for a child ResNet-50 network on a sin-
gle NVIDIA P40 GPU. Thus, the SA-NAS only requires 2.2
GPU days to converge, which is at least 30× faster than RL-
basedmethods. The time consumption will vary according to
the complexity of the whole networks. Such an observation
is in accordance with findings in other NAS works (Liu et al.
2018b; Zhang et al. 2019).
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Table 6 Comparison with other
NAS methods for object
detection on the COCO test-dev
benchmark

Method Backbone Search cost (GPU-day) AP

DetNAS-FPN-Faster – 44 40.2

DetNAS-RetinaNet – 44 33.3

NAS-FPN @256 ResNet-50 333×#TPUs < 38.0

NAS-FPN 7@256 ResNet-50 333×#TPUs 44.8

AutoDet-SSD ResNet-50 2.2 36.2

AutoDet-Faster ResNet-50 2.2 40.2

Note that the AP of NAS-FPN@256 here are from Figure 11 in NAS-FPN (Ghiasi et al. 2019), and NAS-FPN
7@256 stacks the searched FPN structure 7 times

4.4 Comparisons with Other NASMethods

AutoDet automates the design of the feature pyramid net-
work, which involves not only the performance of the
searched model but also its search efficiency. In order to
evaluate these two sides, we compare AutoDet with other
methods using automatic search on both search cost and
AP. The compared methods include NAS-FPN (Ghiasi et al.
2019) and DetNAS (Chen et al. 2019). The NAS-FPN is the
first to report the success of applying Neural Architecture
Search for pyramidal architecture in object detection. Our
AutoDet and NAS-FPN propose different ideas to achieve
an identical target. The pioneering task of DetNAS aims at
searching for backbones in object detectors. Table 6 shows
the results of different NAS methods on the COCO dataset.
DetNAS spends 44 GPU-days searching for a backbone and
achieves 33.3 and 40.2APon one-stage and two-stage frame-
works. Taking the ResNet-50 as the backbone, yet NAS-FPN
requires 333×#TPUs. The heavy NAS-FPN 7@256 gains a
high AP 44.8 because of stacking the searched FPN struc-
ture 7 times. It is obvious that our AutoDet achieves the best
tradeoff between search cost and performance. For SSD and
Faster RCNN, we only require 2.2 GPU-days to search the
better FPN and perform a competitive AP.

4.5 Comparisons with State-of-the-Art Detectors

We further compare the results of AutoDet with other
state-of-the-art models of both one-stage and two-stage
approaches with different feature fusion methods on COCO
test-dev. For the one-stage approach, ourmodel is trained and
tested on single-scale images. For the two-stage approach,we
add an extra experiment on multi-scale training and testing
for abundant comparisons.

One-stage detectors are usually evaluated under differ-
ent input sizes, i.e., 320 × 320 and 512 × 512. AutoDet
searches feature pyramids based on ResNet-101 for each
input size. Table 4 shows the comparison of different meth-
ods with the input size of 320× 320. Due to the independent
feature representation as detection layers, the vanilla SSD
only achieves the AP score of 25.1%, which is significantly

worse than other detectors with the feature fusing strategy.
RON384++ (Kong et al. 2017), DSSD321 (Fu et al. 2017)
and RetinaNet400 (Lin et al. 2017b) discover that shallow
layers lack high-level semantic information in SSD. Thus,
they have designed several strategies of feature fusing and
yielded great AP improvement at different object scales. Par-
ticularly, the AP of RetinaNet400 (Lin et al. 2017b) with
FPN has surpassed 30%. Hence it is necessary to design a
suitable feature pyramid network for object detection. Exper-
imental results clearly show that our AutoDet yields superior
overall performance compared with other object detectors.
It is worth pointing out that AutoDet remarkably outper-
forms state-of-the-art methods under almost all setups, such
as various scales and IoU thresholds. This is becauseAutoDet
automatically searches for the most suitable feature pyramid
network. Table 5 shows the performances of different object
detectors with an input size of 512 × 512. We observe that
all methods perform better than thosewith the low-resolution
input. However, the performances of all methods are linear to
performances with the input size of 320× 320. As expected,
AutoDet achieves the highest performance in terms of AP,
AP@0.5 andAP@0.75.Note that the advantage ofAutoDet is
particularly apparent in detecting small objects. All of these
results suggest that the searched feature pyramids byAutoDet
are effective for object detection (Table 6).

We evaluate the proposed methods on two-stage detectors
based on ResNet-101. To verify the performance of AutoDet,
we compare ourmethodwith state-of-the-art object detection
methods, including CoupleNet (Zhu et al. 2017), Faster R-
CNN (Ren et al. 2015) with FPN, Cascade R-CNN (Cai and
Vasconcelos 2018), Mask R-CNN (He et al. 2017), D-RFCN
(Dai et al. 2017), SNIP (Singh and Davis 2018) and SNIPER
(Singh et al. 2018). Some methods adopt extra tricks to fur-
ther boost the performance, like soft-nms (Bodla et al. 2017),
deformable convolution (Dai et al. 2017), multi-scale train-
ing and testing, etc. Hence, based on Cascade R-CNN (Cai
and Vasconcelos 2018), we report two versions of AutoDet
with different setups. The results for two-stage detectors
on COCO are presented in Table 7. The performances of
all methods increase dramatically compared with one-stage
detectors. CoupleNet (Zhu et al. 2017) obtains the lowest
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Fig. 5 Qualitative examples on MS COCO
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Fig. 6 The topology of FPN, searched pyramid network architecture
with Faster RCNN and SSD in the AutoDet search space. The solid and
dash lines denote the connection and non-connection respectively

AP. Faster R-CNN (Ren et al. 2015) with FPN can be fur-
ther improved by the cascademechanism in Cascade R-CNN
(Cai and Vasconcelos 2018) and multi-task learning in Mask
R-CNN (He et al. 2017). It is interesting to observe that
deformable convolution (Dai et al. 2017) as well as multi-
scale training and testing (Singh and Davis 2018; Singh et al.
2018) promote large improvement. For example, SNIPER
(Singh et al. 2018) with deformable convolution improves
the AP scores from 36.2% to 46.1%. It’s noteworthy that our
naive AutoDet without multi-scale strategies and deformable
convolution already outperforms all of other state-of-the-art
methods. When conducting multi-scale training and testing,
our AutoDet is further enhanced and achieves AP scores of
47.3%, which is the highest performance. Figure 5 shows
qualitative examples of MS COCO. These results further
validate the effectiveness of searched feature pyramids by
AutoDet.

4.6 Visualization and Analysis of the Discovered
Feature Pyramids

In this section, we analyze the discovered feature pyramid
and summarize some inspiring findings, which may be help-
ful for architecture design. Figure 6 illustrates the topology of
FPN and the searched feature pyramids architecture on both

one-stage and two-stage detectors. We make the following
inspiring findings:

– All feature maps have previous nodes up-sampled by the
factors of 2 and 4, but none have previous nodes with
8 up-sampled operations. It means that the up-sampling
factor of 8 will lose too much information or introduce
some noise.

– For the two-stage architecture,C2 is the previous node of
all other scales {P3, P4, P5} except for its own scale P2.
This highlights the importance of the high-resolution P2.

– We can gain benefit from a previous node down-sampled
by a factor of 8. Thus, down-sample operation may pre-
serve some original information.

– If the previous node has the same resolution, more chan-
nels of operations can bring a better reward.

– If the previous node is down-sampled, the reward first
increases then decreases with increasing the number of
filters.

– If the previous node is up-sampled, the reward constantly
decreases with increasing the number of filters.

The first three findings are about topology and the last three
findings are about the channel number of the CNN operation.
The increasing or decreasing channel number is relative to
256, which is used in the FPN (Lin et al. 2017a).

4.7 Searching for On-Device Real-Time Image
RecognitionModels

The previous sections have illustrated that our SA-NAS can
search a good feature pyramid for object detection based on
heavy backbones, like ResNet-50 and ResNet-101, which
pays more attention to the high performance rather than
lightweight models. Recently, many embedded and mobile
devices become widely available, such as smartphones, and
wearable devices, etc. It is desirable to recognize objects of
images using battery-powered systems where energy is lim-
ited and real-time inference is so important. It is urgent to
search for an on-device real-time image recognition model.
Fortunately, our SA-NAS is a general neural architecture
search framework and decoupled with tasks.

In this subsection, we evaluate the performance of SA-
NAS on real-time image detection and classification scenar-
ios. 2

For the real-timeobject detection,we followMobileNetV3
(Howard et al. 2019) and search for the high-efficiency back-
bone of ssdlite, because most of the computations are spent
on the backbone and the neck part (i.e., FPN) is usually
removed for fast inference. Our search space is based on
MobileNetV3-large, and search the kernel size k ∈ {3, 5, 7},
2 https://lpcv.ai/2020CVPR/ovic-track.
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Table 8 Comparison on the
real-time image classification
and detection

Method Task Latency (ms) Performance Metric

MobileNetV3 Classification 12.0 75.2 − 0.26902

SA-NAS-A Classification 11.5 75.8 − 0.24181

SA-NAS-B Classification 9.5 74.3 − 0.16158

MobileNetV3+ssdlite Detection 31.0 22.0 − 0.01594

SA-NAS-A+ssdlite Detection 30.0 22.2 − 0.00840

SA-NAS-B+ssdlite Detection 25.8 21.7 0.01208

Bold values indicate the best performance which model achieves

expansion rate n ∈ {3, 6} of each inverted bottleneck block
and whether the squeezing and excitation mechanism is
enabled or not. In the search stage, backbone in the search
space is encoded into a vector var , and then we use SA-NAS
to iteratively optimize the better architecture. Following the
Low-Power Image Recognition Challenge (LPIRC), 3 we
evaluate the real-time object detector on COCO and operate
image on a Pixel 4 smartphone (CPU). The performance is
evaluated by AP. For the real-time image classification, we
focus on ImageNet classification models and use the top-1
accuracy for evaluation. The latency is usually adopted to
evaluate the inference speed. There does not exist a common
metric for comparing different methods in terms of energy
efficiency and accuracy in recognition. To test the overall
performance in terms of accuracy and latency, we intro-
duce the metric from LPIRC. The real-time scenarios utilize
Metric = A−k log(latency)+a0 to punish theperformance
A where the parameters are k = 49.84607103726407 and
a0 = −34.42191514521174. k = 16.894553358968146
and a0 = −21.759878323711725 for object detection.
To verify the performance of SA-NAS, we compare our
method with the state-of-the-art image recognition method
MobileNetV3.

The first panel of Table 8 shows the latency, top-1 accuracy
and metric of different image classification methods. Com-
pared with MobileNetV3, the searched SA-NAS-A achieves
the higher accuracy and lower latency,whichnot only reduces
latency from 12 ms to 11.5 ms, but also improves the top-
1 accuracy from 75.2% to 75.8%. Therefore, SA-NAS-A is
also superior to MobileNetV3 from the overall metric. We
also search for a more efficient model, SA-NAS-B. Though
its performance is slightly inferior to MobileNetV3, the
latency is only 9.5 ms and much lower than its competitor.
Experimental results in termsof object detection clearly show
that our SA-NAS-A+ssdlite yields superior performance in
both latency (30 ms) and average precision (22.2%). More-
over, our searched SA-NAS-B+ssdlite achieves the highest
overall metric of 20.48 whose latency is only 25.8 ms. These
results validate the effectiveness of SA-NAS in searching on-
device real-time image detection and classification models.

3 https://rebootingcomputing.ieee.org/lpirc.

5 Conclusions

In this paper, wemove a step forward to automatically search
a feature pyramid network for object detection directly on the
challenging dataset COCO. To obtain a network with high
performance at a low cost, we design a specific combinatorial
search space and employ a Simulated Annealing-based Net-
work Architecture Search (SA-NAS) to significantly reduce
the convergence time. Experiments on COCO demonstrate
that our AutoDet can outperform other state-of-the-art one-
stage and two-stage approaches with the same settings and
criteria. The efficiency of SA-NAS is more than 30x higher
than that of RL NAS and consumes fewer GPU days than
other methods on different tasks.
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