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Abstract
Video quality assessment (VQA) is an important problem in computer vision. The videos in computer vision applications are
usually captured in the wild. We focus on automatically assessing the quality of in-the-wild videos, which is a challenging
problem due to the absence of reference videos, the complexity of distortions, and the diversity of video contents. Moreover,
the video contents and distortions among existing datasets are quite different, which leads to poor performance of data-
driven methods in the cross-dataset evaluation setting. To improve the performance of quality assessment models, we borrow
intuitions from human perception, specifically, content dependency and temporal-memory effects of human visual system.
To face the cross-dataset evaluation challenge, we explore a mixed datasets training strategy for training a single VQA model
with multiple datasets. The proposed unified framework explicitly includes three stages: relative quality assessor, nonlinear
mapping, and dataset-specific perceptual scale alignment, to jointly predict relative quality, perceptual quality, and subjective
quality. Experiments are conducted on four publicly available datasets forVQA in thewild, i.e., LIVE-VQC,LIVE-Qualcomm,
KoNViD-1k, and CVD2014. The experimental results verify the effectiveness of themixed datasets training strategy and prove
the superior performance of the unified model in comparison with the state-of-the-art models. For reproducible research, we
make the PyTorch implementation of our method available at https://github.com/lidq92/MDTVSFA.
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1 Introduction

Image/Video quality assessment (I/VQA) is a fundamental
and longstanding problem in the image processing and com-
puter vision community. It is involved in benchmarking and
optimizing many vision applications, such as image clas-
sification (Dodge and Karam 2016), object tracking (Nieto
et al. 2019), video compression (Rippel et al. 2019), image
inpainting (Isogawa et al. 2019), and super resolution (Zhang
et al. 2019a). Because of its importance, I/VQA has attracted
significant attention in the past two decades (Wang et al.
2004a; Mittal et al. 2012; Zhang et al. 2014; Kang et al.
2014; Ma et al. 2016; Liu et al. 2017; Kim et al. 2018; Lin
and Wang 2018). Videos obtained in the wild are often in
low-quality because of many factors, such as out of focus,
object motion, camera shakiness, under-/over- exposure, and
adverse weather, etc. With the guidance of VQA in the wild,
one can automatically identify, cull, repair or enhance low-
quality videos before sending them to the subsequent vision
applications, so that the applications can work in the real
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scenario. Thus, VQA in the wild is necessary for computer
vision in the wild, but few attention is paid to this task.

VQA in the wild is a challenging task for the reason
that the pristine videos are not available, the distortions
are complex, and the contents are diverse. Compared to
synthetically-distorted videos, in-the-wild videos contain
huge amount of contents and may be infected with mixed
real-world distortions, especially some of which are tem-
porally heterogeneous (e.g., temporary auto-focus blurs
and exposure adjustments). Consequently, modern advanced
I/VQA methods, e.g., BRISQUE (Mittal et al. 2012) and
VBLIINDS (Saad et al. 2014), validated on synthetically-
distorted video datasets (Seshadrinathan et al. 2010;Moorthy
et al. 2012), do a poor job in predicting the quality of in-
the-wild videos (Men et al. 2017; Ghadiyaram et al. 2018;
Nuutinen et al. 2016; Sinno and Bovik 2019a) (see Tables 5
and 6).

Some efforts have been made to generate a better feature
for VQA in the wild (You and Korhonen 2019; Korhonen
2019;Li et al. 2019a).Korhonen (2019) obtainswell-behaved
low-complexity features for all frames and high-complexity
features for representative frames, so that good quality pre-
dictions can be achieved by the support vector regression or
the random forest regression. You andKorhonen (2019) learn
effective spatio-temporal features with 3D convolutional
neural network (3D-CNN) and predict the video quality
by a long-short term memory (LSTM) network. Our previ-
ous work (Li et al. 2019a) borrows intuitions from human
visual system (HVS), which extracts content-aware and
distortion-sensitive features. Although the above mentioned
methods achieve superior performances on the benchmark
VQA datasets individually, their performances are poor in
cross-dataset evaluation setting (See Table 7). For exam-
ple, when the model is trained on KoNViD-1k (Hosu et al.
2017), the test performance on LIVE-Qualcomm (Ghadi-
yaram et al. 2018) or CVD2014 (Nuutinen et al. 2016) drops
sharply (Korhonen 2019). This may be caused by the over-

fitting problem in the training process and the discrepancy of
data distribution among the datasets.

To face this cross-dataset evaluation challenge, one pos-
sible solution is to mix multiple datasets during the training
phase, so that the data-drivenmodel can learn the characteris-
tics of video contents and distortions from all these datasets.
Mixed datasets training provides two advantages. First, it
provides a single unified model for all datasets/applications
instead of multiple models for different datasets. Second, it
makes the utmost of existing relevant data for VQA model
training, since the largest size of current in-the-wild VQA
datasets is only 1200 and acquiring new annotations is time-
consuming. However, mixed datasets training is not trivial,
since the ranges of subjective quality scores among differ-
ent datasets are inconsistent. A naïve strategy is the “linear
re-scaling”, which maps all subjective score ranges of dif-
ferent datasets to the same range. Nevertheless, the ranges
of the inherent video quality among these datasets are not
equal in most circumstances. For instance, in Fig. 1, both
the two videos are the worst in their corresponding datasets.
The video in Fig. 1a has better quality in comparison with
the video in Fig. 1b, since the latter one contains more
complicated distortions, including motion blur, under-/over-
exposure, and grainy noise. However, linear re-scaling leads
to the same quality labels for them. Such “inconformity” will
disturb the training process, thus a good performance is hard
to achieve (see Fig. 6 and Table 5).

To tackle the above inconformity problem,we should align
subjective quality scores for different datasets. One way is
conducting an additional subjective study to re-align the sub-
jective quality scores. The other way is to learn the alignment
of subjective quality scores for these datasets. As the firstway
is time-consuming and impracticable when more and more
datasets are considered, we choose the second one. Before
introducing our method, we first introduce three important
quality concepts: perceptual quality, subjective quality, and
relative quality.

Fig. 1 An illustration of the
videos with the worst quality on
CVD2014 and LIVE-VQC,
respectively (Full videos are
provided in https://bit.ly/
3csmHYk). The upper video has
a better quality in comparison
with the lower video. However,
linear re-scaling leads to the
same quality labels for them.
Such “inconformity” will
disturb the training process, and
lead to a poor performance

Three representative frames of the video on CVD2014 (Nuutinen et al., 2016) with the worst quality

Three representative frames of the video on LIVE-VQC (Sinno and Bovik, 2019a) with the worst quality

(a)

(b)
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Fig. 2 An overview of the proposed unified framework. It consists of
three stages: relative quality assessor, nonlinear mapping, and dataset-
specific perceptual scale alignment for predicting relative quality,
perceptual quality, and subjective quality, respectively. The supervisions

for mixed datasets training at the three stages are monotonicity-induced
loss, linearity-induced loss, and error-induced loss, respectively. D is
the number of datasets

Perceptual Quality Perceptual quality is an ideal con-
cept that is related to human perception of video quality,
and only if we gather all the videos in the wild and con-
duct the largest scale subjective study can we get the
ground-truth of perceptual quality. Perceptual quality can
be used for benchmarking and optimizing video process-
ing systems/algorithms, but its ground-truth is impossible
to obtain since we cannot conduct such a large-scale sub-
jective study on all videos in the wild.

SubjectiveQualityAs an “approximation” of perceptual
quality, subjective quality is considered, whose ground-
truth can be accessed by conducting a subjective study on
a video dataset of limited size. Although subjective qual-
ity is designed to reflect perceptual quality, it may have
different ranges for different datasets. In terms of this
fact, we can assume the subjective quality to be linearly
correlated with the perceptual quality for a single dataset,
but the linear transformations between subjective qual-
ity and perceptual quality are not necessarily the same
for different datasets. Subjective quality can be used as a
supervised signal for the prediction of perceptual quality.

Relative Quality Compared to directly rating the quality
of a video in the subjective study, it is easier for humans
to choose a video with better quality from two videos.
In terms of this fact, we define the concept of relative
quality, which can be accessed by ranking the quality of
videos. Relative quality can be used for benchmarking
video processing algorithms. However, due to its nonlin-
earity to perceptual quality, it might not be directly used
for optimization. For example, the optimization might be

early stopped when the relative quality is approaching
the perfect value while the perceptual quality is far from
the perfect one.

With the above three concepts, we show our solution. We
decompose the VQA problem into three sub-problems, i.e.,
predicting relative quality, perceptual quality, and subjective
quality in turn (see Fig. 2). For details, our proposed model
contains three stages to solve these three sub-problems. First,
to predict the relative quality, we use our previous HVS-
inspired VQA model (Li et al. 2019a) as the backbone.
The relative quality assessor takes the video as input and
outputs a relative quality score. This stage focuses on pre-
diction monotonicity, which describes the ability to provide
the quality ranking for any list of videos that is consis-
tent with subjective quality. Correspondingly, we propose a
monotonicity-induced loss for this stage. Second, to predict
the perceptual quality, we adopt the well-known 4-parameter
logistic function for characterizing the nonlinearity of human
perception on video quality (VQEG 2000). We reformulate
this function and design it as a network module. The non-
linear mapping module maps the relative quality of a video
to the perceptual quality of a video. The predicted percep-
tual quality is expected to be linearly correlated with the
subjective quality, and we propose a linearity-induced loss
as the supervision for this stage. Third, we learn a dataset-
specific perceptual scale alignment for each dataset, which
tries to map the perceptual quality of a video to the subjec-
tive quality of the video on its belonging dataset. With this
dataset-specific alignment, an error-induced loss can be used
as the supervision without disturbing the training. Under this
model, we can use the above three losses for mixed datasets
training to solve the “inconformity” problem.
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To verify the effectiveness of the proposed unified model
with the mixed datasets training strategy, we conduct com-
parative experiments on four publicly available datasets for
VQA in the wild, i.e., KoNViD-1k (Hosu et al. 2017),
CVD2014 (Nuutinen et al. 2016), LIVE-Qualcomm (Ghadi-
yaramet al. 2018), andLIVE-VQC (Sinno andBovik 2019a).
Our method is compared with several modern advanced
methods. In terms of prediction monotonicity and prediction
accuracy, the superior performances of our method across
datasets are verified by the experimental results.

Lastly,wehighlight the relationship anddifferencebetween
our previous work (Li et al. 2019a) and this work. The model
design in this work is build upon the model in our previ-
ous work. However, there are two major differences between
our previous work and this work. First, this work focuses on
model optimization with mixed datasets training while our
previousworkdoes not considermixeddatasets training. Sec-
ond, in this work, it is the first time to decompose the VQA
problem into three sub-problems: predicting relative quality,
perceptual quality, and subjective quality, and we propose a
unified VQA framework that explicitly designs three stages
to tackle these three sub-problems.

2 RelatedWork

This section reviews some relatedwork. Section2.1overviews
several representative VQA methods, especially the VQA
methods for in-the-wild videos. Section 2.2 introducesmixed
datasets training in computer vision, especially in the tasks
of quality assessment.

2.1 Video Quality Assessment

Classical VQAmethods are grounded on different cues, such
as structures (Wang et al. 2004b, 2012), motion (Seshadri-
nathan and Bovik 2010; Manasa and Channappayya 2016),
energy (Li et al. 2016a), saliency (Zhang and Liu 2017; You
et al. 2014), gradients (Lu et al. 2019), or natural video statis-
tics (NVS) (Mittal et al. 2016; Saad et al. 2014; Sinno and
Bovik 2019b). Besides, some VQA methods focus on the
fusionof primary features (Freitas et al. 2018;Li et al. 2016b).
Recently, severalVQAmethods exploit the use of deep learn-
ing in this task (Zhang et al. 2019c; Liu et al. 2018; Kim
et al. 2018; Zhang et al. 2020). Kim et al. (2018) obtain the
spatio-temporal sensitivity maps by a CNN model. Liu et al.
(2018) exploit the 3D-CNN model for multi-task learning of
codec classification and quality assessment for compressed
videos. Zhang et al. (2019c) and Zhang et al. (2020)make use
of both video and image data with transfer learning. How-
ever, all these methods are proposed for quality assessment
of synthetically-distorted videos, and they are not applicable
to in-the-wild videos or their performances are poor on in-

the-wild datasets. Note that the relevant concept “streaming
video quality-of-experience (QoE)” is beyond the scope of
this work, and the interested reader can refer to these two
good surveys (Seufert et al. 2014; Juluri et al. 2015).

Quality assessment of in-the-wild videos has been attract-
ing significant attention in recent years. Four relevant datasets
have been constructedwith corresponding subjective studies,
i.e., CVD2014 (Nuutinen et al. 2016), KoNViD-1k (Hosu
et al. 2017), LIVE-Qualcomm (Ghadiyaram et al. 2018),
and LIVE-VQC (Sinno and Bovik 2019a). Since we can-
not access the pristine reference videos in this situation, only
no-reference VQA (NR-VQA) methods are applicable. The
deep learning-based VQA models described in the last para-
graph are unfeasible in this problem since they either need the
reference information (Zhang et al. 2019c; Kim et al. 2018;
Zhang et al. 2020) or only suit for compression artifacts (Liu
et al. 2018). Thus, in our previous work (Li et al. 2019a), we
propose a deep learning-based model for predicting the qual-
ity of in-the-wild videos. The model extracts content-aware
distortion-sensitive features from CNN models trained for
image classification tasks, and uses a gated recurrent unit
(GRU) followed by a subjectively-inspired temporal pooling
layer for modeling the temporal-memory effect. Concurrent
works to our previous work are You and Korhonen (2019),
Varga (2019) and Varga and Szirányi (2019). Although all
of these methods achieve a good performance, they do not
enable mixing multiple datasets during the training phase.
As a result, their performances are poor in the cross-dataset
evaluation setting. The main purpose of this paper is to pro-
pose an elegant mixed datasets training strategy. With this
strategy, we can train a unified model that learns the charac-
teristics of videos from all datasets and thus further improve
the overall performance over the datasets.

2.2 Mixed Datasets Training

Mixed datasets training has two advantages. One is to pro-
vide a unified model for all datasets. The other is to take
full advantage of existing relevant datasets for improv-
ing the model learning. Therefore, many computer vision
tasks consider mixed datasets training, such as person re-
identification (Lv et al. 2018; Li et al. 2019c), monocular
depth estimation (Lasinger et al. 2019), and human pars-
ing (He et al. 2019).

There are some relevant works in quality assessment tasks
that consider mixed datasets training. The challenge is that
ranges of subjective quality scores are inconsistent across
datasets. Korhonen (2019) uses a naïve method to handle
this challenge, i.e., linearly re-scaling the subjective quality
scores of different datasets to the same range. Pair-wise learn-
ing considers only the relative quality score instead of the
absolute subjective quality scores, and thus can bypass the
“inconformity” problem. Therefore, several I/VQA works
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Fig. 3 Relative Quality Assessor. It mainly consists of two modules.
Module I includes a pre-trained CNN with effective global pooling
(GP) serving as a content-aware feature extractor. Module II mod-
els temporal-memory effect and it includes two sub-modules: a GRU

network and a subjectively-inspired temporal pooling layer. Note that
the GRU network is the unrolled version of one GRU and the parallel
CNNs/FCs share weights

consider pair-wise learning formixed datasets training, while
they use different loss functions for training (Yang et al. 2019;
Zhang et al. 2019b; Krasula et al. 2020). Yang et al. (2019)
use the margin ranking loss and the Euclidean loss. Zhang
et al. (2019b) consider the cross entropy loss and the fidelity
loss. Krasula et al. (2020) determine different and similar
pairs based on statistical analysis on the mean and standard
deviation of subjective ratings, and then define the training
objective as the correct classification rate of these pairs.How-
ever, pair-wise learning will increase the training time. In
the next section, we show that our proposed monotonicity-
induced loss can be regarded as an extension of the losses
in Yang et al. (2019) and Zhang et al. (2019b) with a more
efficient implementation. Besides the monotonicity-induced
loss, we also propose a linearity-induced loss and assign a
dataset-specific perceptual scale alignment to enable mixing
multiple datasets during the training phase.

3 ProposedMethod

3.1 Overview

Figure 2 shows the overview of the proposed unified VQA
framework for quality assessment of in-the-wild videos. Our
VQA model consists of three stages: relative quality asses-
sor, nonlinear mapping, and dataset-specific perceptual scale
alignment for predicting relative quality, perceptual quality,
and subjective quality, respectively.

The flow of our proposed unified framework is as fol-
lows. At the first stage, to predict the relative quality, we
learn a relative quality assessor with the supervision of a

monotonicity-inspired loss, where themonotonicity-induced
loss is derived from the monotonicity condition and it is the
sum of all pair-wise losses. To account for the content depen-
dency and temporal-memory effects of humanperception,we
design our relative quality assessor as a deep neural network
that includes two keymodules: content-aware feature extrac-
tion and modeling of temporal-memory effect. At the second
stage, to predict the perceptual quality, a nonlinear mapping
module is added after the relative quality assessor, to explic-
itly account for the nonlinearity of human perception. The
parameters in this module are learned with the supervision
of a linearity-induced loss based on Pearson’s linear corre-
lation. At the third stage, to predict the subjective quality, a
dataset-specific perceptual scale alignment layer is added to
map the predicted perceptual quality to the subjective quality
of a video on each dataset. After the alignment, the widely-
used error-induced loss is used as the supervision.

Thus, in our mixed datasets training strategy, three kinds
of losses are involved. For each dataset, the overall loss is the
sum of these three kinds of losses on the dataset. To empha-
size the datasets with larger loss values, our final training
loss is a softmax-weighted loss over all training datasets.
With this strategy, we can learn a single unified VQA model
for multiple datasets by mixing them all during the training
phase.

3.2 Relative Quality Assessor

This subsection describes the design of the relative quality
assessor. The framework of our relative quality assessor is
shown in Fig. 3.We adopt themodel in our previous work (Li
et al. 2019a) as the backbone of the relative quality assessor. It
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integrates the two eminent effects of human perception into
the assessor. One is the content dependency effect, which
guides us introducing the content-aware feature extraction
module. The other is the temporal-memory effect, which is
modeled in the feature level and the quality score level.

3.2.1 Content-Aware Feature Extraction

In the visual quality assessment task, human perception is
content dependent (Siahaan et al. 2018; Triantaphillidou et al.
2007;Wang et al. 2017;Bampis et al. 2017; Zhang et al. 2018;
Li et al. 2019a, b). This can be attributed to the fact that, the
complexity of distortions, the human tolerance thresholds for
distortions, and the human preferences could vary a lot in dif-
ferent contents/scenes. Since there are diverse contents in the
in-the-wild scenario, a relative quality assessor which mim-
ics human perception, should take this effect into accounts.
So we need to extract features that are not only distortion-
sensitive but also content-aware. The image classification
models pre-trained on ImageNet (Deng et al. 2009) using
CNN possess the discriminatory power of different content
information. Thus, the deep features extracted from these
models, e.g., ResNet (He et al. 2016), are expected to be
content-aware. Meanwhile, Dodge and Karam (2016) point
out that the deep features are distortion-sensitive. So it is
reasonable to extract content-aware and distortion-sensitive
features from pre-trained image classification models.

Assuming the video is a stack of T frames It (t =
1, 2, . . . , T ), we feed each video frame into a pre-trained
CNN model and get the corresponding deep feature maps
Mt from its top convolutional layer:

Mt = CNN(It ). (1)

Mt contains a total ofC featuremaps. Then, we apply spa-
tial global pooling (GP) for each featuremapofMt . Applying
only the spatial global average pooling operation (GPmean) to
Mt discardsmuch information ofMt .We further consider the
spatial global standard deviation pooling operation (GPstd) to
preserve the variation information inMt . The output feature
vectors of GPmean,GPstd are fmean

t , fstdt respectively.

fmean
t = GPmean(Mt ), fstdt = GPstd(Mt ). (2)

After that, fmean
t and fstdt are concatenated to serve as

content-aware and distortion-sensitive features ft :

ft = fmean
t ⊕ fstdt , (3)

where ⊕ is the concatenation operator and the length of ft is
2C .

3.2.2 Modeling of Temporal-Memory Effect

Temporal-memory effect is another important clue for
designing objective VQAmodels (Park et al. 2013; Seshadri-
nathan andBovik 2011;Xu et al. 2014; Choi andBovik 2018;
Kim et al. 2018). It induces that video quality rating is influ-
enced by historic memory. We model the temporal-memory
effect in two aspects. In the feature integration aspect, we
adopt a GRU network for modeling the long-term dependen-
cies in our method. In the quality pooling aspect, we propose
a subjectively-inspired temporal pooling model and embed
it into the network.

Long-TermDependenciesModeling Existing NR-VQA
methods cannot well model the long-term dependencies in
the VQA task. To handle this issue, we resort to GRU (Cho
et al. 2014), a recurrent neural network model with gates
control.

The dimension of the extracted content-aware features is
very high, which is not suitable for GRU training. There-
fore, we perform dimension reduction using a single fully-
connected (FC) layer before feeding them into GRU, that
is:

xt = W f x ft + b f x , (4)

whereW f x andb f x are the parameters in the single FC layer.
Without the bias term, it acts as a linear dimension reduction
model.

After dimension reduction, the reduced features xt (t =
1, 2, . . . , T ) are sent to GRU. We consider the hidden states
of GRU as the integrated features ht , whose initial values are
h0. ht is calculated as follow.

ht = GRU(xt ,ht−1). (5)

With the integrated features ht , we predict the frame qual-
ity score qt by adding a single FC layer:

qt = Whqht + bhq , (6)

where Whq and bhq are the weight and bias parameters.
Subjectively-Inspired Temporal Pooling In subjective

experiments, subjects are intolerant of poor quality video
events (Park et al. 2013).More specifically, temporal hystere-
sis effect is found in the subjective experiments (Seshadri-
nathan and Bovik 2011). That is, subjects react sharply to
drops in video quality and provide poor quality for such time
interval, but react dully to improvements in video quality
thereon. Inspired by these observations, to connect the pre-
dicted frame-level quality to the video-level quality, we put
forward a newdifferentiable temporal poolingmodel. Details
are as follows.
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To mimic the human’s intolerance to poor quality events,
we define a memory quality element lt at the t th frame as the
minimum of quality scores over the previous several frames:

lt =
{
qt for t = 1,
mink∈Vprev qk for t > 1,

(7)

where Vprev = {max (1, t − τ), . . . , t −2, t −1} is the index
set of the considered frames, and τ is a hyper-parameter relat-
ing to the temporal duration.

Accounting for the fact that subjects react sharply to the
drops in quality but react dully to the improvements in qual-
ity, we construct a current quality element mt at the t th
frame, using theweighted quality scores over the next several
frames, where larger weights are assigned for worse quality
frames. Specifically, we define the weights wk

t by a differ-
entiable softmin function, i.e., a composition of the negative
linear function and the softmax function.

mt =
∑

k∈Vnext
qkw

k
t , wk

t = e−qk∑
j∈Vnext e

−q j
, k ∈ Vnext, (8)

where Vnext = {t, t + 1, . . . ,min (t + τ, T )} is the index set
of the related frames.

In the end, we approximate the subjective frame quality
scores by linearly combining the memory quality and cur-
rent quality elements. The relative quality score Qr is then
calculated by temporal global average pooling (GAP) of the
approximate scores and bounded by a sigmoid function:

q ′
t = γ lt + (1 − γ )mt , (9)

Qr = σ

(
1

T

T∑
t=1

q ′
t

)
, (10)

where γ is a hyper-parameter to balance the contributions of
memory and current elements to the approximate score, and
σ(·) is the sigmoid function.

3.3 Nonlinear Mapping

For predicting the perceptual quality, we add a nonlinear
mapping module after the relative quality assessor to explic-
itly account for the nonlinearity of human perception on
video quality (VQEG 2000). The nonlinear mapping module
can be a complex neural network with many parameters, or
just a simple nonlinear function with few parameters.

Following the suggestion by Video Quality Experts
Group (VQEG2000), we can use a 4-parameter logistic func-
tion for nonlinear mapping.

Qp = f (Qr ) = β1 − β2

1 + e
− Qr−β3|β4|

+ β2, (11)

Fig. 4 Illustration of the nonlinear mapping module

whereβ1 toβ4 arefittingparameters,Qr is the relative quality
score, and Qp is the perceptual quality score.

We can reformulate Eq. (11) as the following.

Qp = β ′
1σ(β ′

4Qr + β ′
3) + β ′

2, (12)

whereβ ′
1 ← β1−β2, β

′
2 ← β2, β

′
3 ← − β3

|β4| , andβ ′
4 ← 1

|β4| .
And β ′

1, β
′
2 are parameters to control the range of Qp. β ′

3, β
′
4

are parameters to control the normalization of Qr . Therefore,
it is equivalent to “Linear (i.e., Multiply Weights and Add
Bias)+Sigmoid+Linear”, as shown in Fig. 4.

With the reformulation, we can design the 4-parameter
nonlinear mapping as a network module. Since we will han-
dle the scale problem in the next stage, the nonlinearmapping
just handles the nonlinearity and does not change the scale,
i.e., the ranges of Qr and Qp are both [0, 1]. We need to
initialize the 4 parameters in this module at the start of the
training. Random initialization is not a good choice since we
have priors of Qr and Qp. Therefore, we can have a better
initialization as follows.

β ′
1 ← sup (Qp) − inf (Qp) = 1,

β ′
2 ← inf (Qp) = 0,

β ′
3 ← −c ∗ mean(Qr )/std(Qr ), c = 1,

β ′
4 ← c/std(Qr ),

(13)

wheremean(·), std(·), inf (·), sup (·) indicate themean, stan-
dard deviation, infimum, and supremum functions, respec-
tively.

3.4 Dataset-Specific Perceptual Scale Alignment

Since the subjective study is designed to reflect human per-
ception on video quality, based on the concepts of subjective
quality and perceptual quality, we can assume that the subjec-
tive quality is linearly correlated with the perceptual quality.
Thus, the perceptual scale alignment can be simply set as a
specific FC layer.

Qs = ξ1Qp + ξ2, (14)

where Qs is the predicted subjective quality score, and ξ1, ξ2
are the scale and shift parameters.
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Since different datasets have different ranges of subjective
quality scores, we need a dataset-specific alignment of per-
ceptual scale on each dataset. Equation (14) is then modified
as follows.

Q(d)
s = ξ

(d)
1 Qp + ξ

(d)
2 (d = 1, . . . , D), (15)

where Q(d)
s is the predicted subjective quality score on the

dth dataset, ξ
(d)
1 , ξ

(d)
2 are the scale and shift parameters for

the dth dataset, and D is the number of considered datasets.
These parameters can be determined by least square regres-
sion (LSR) or just jointly learned with other parameters by
iterative stochastic gradient decent (SGD) algorithm. The
latter way can provide supervision for end-to-end network
training and it is adopted in our mixed datasets training strat-
egy.

3.5 Mixed Datasets Training Strategy

We have introduced the unified VQA model in the above. In
this subsection, we show how we can enable mixed datasets
training when the ranges of subjective quality scores are
not consistent among the VQA datasets. For the first and
second stages, the relative quality and perceptual quality
are not involved with the ranges of subjective quality. We
bypass the inconformity problem by designing two losses
to supervise the training process of predicting relative qual-
ity and perceptual quality. For the third stage, to predict
subjective quality of videos on each dataset, we learn a
dataset-specific perceptual scale alignment for eachdataset to
avoid the inconformity caused by the naïve linear re-scaling.
Such dataset-specific alignment enables mixing multiple
datasets during the training without disturbing the process.
Specifically,monotonicity-induced loss is proposed for Stage
1 “relative quality assessor”, and linearity-induced loss is
adopted for Stage 2 “nonlinear mapping”. As for Stage 3
“dataset-specific perceptual scale alignment”, we can just
use the widely-used error-induced (i.e., normalized L1) loss
as the supervision.

Assume we have D datasets of VQA, and the dth dataset
contains Nd videos (d = 1, . . . , D). For the i th video of
the dth dataset, we denote its predicted relative quality score
as Qd,i

r , the predicted perceptual quality score as Qd,i
p , the

predicted subjective quality score as Qd,i
s , and ground-truth

subjective quality score as Qd,i .

3.5.1 Monotonicity-Induced Loss

The goal of relative quality assessor is to achieve the best
prediction monotonicity. That is, it aims to give a quality
ranking for any list/pair of videos from the same dataset,
that is consistent with subjective quality. A natural objec-

tive is to maximize the Spearman’s rank-order correlation
coefficient (SROCC) or Kendall’s rank-order correlation
coefficient (KROCC). However, they are not applicable to
back-propagation based neural network optimization due to
their non-differentiable property.

Let us take a close look at the monotonicity condition. For
all i, j = 1, . . . , Nd , d = 1, . . . , D,

(Qd,i
r − Qd, j

r )(Qd,i − Qd, j ) ≥ 0. (16)

So we can consider the sum of the pair-wise losses as a
surrogate. We call this monotonicity-induced loss, which is
defined as follows.

L(d)
rel = 2

Nd(Nd − 1)

∑
i< j

Ed,(i, j)
r ,

Ed,(i, j)
r = max{(Qd,i

r − Qd, j
r ) ∗ sign(Qd, j − Qd,i ), 0},

(17)

where Ed,(i, j)
r is the error term induced by the monotonicity

condition, i.e., Eq. (16). Here, we choose the error term as
the margin ranking loss used in Yang et al. (2019). It can also
be in the form of the fidelity loss or the cross entropy loss as
described in Zhang et al. (2019b). Note that compared to pair-
wise learning, the number of forward operations is reduced
from C2

Nd
to Nd in our list-wise learning setting. Together

with the vectorization form,weprovide amuchmore efficient
implementation and save more training time than the pair-
wise learning used in image quality assessment (Yang et al.
2019; Zhang et al. 2019b).

3.5.2 Linearity-Induced Loss

The goal of the nonlinear mapping module is to achieve the
best prediction linearity between the predicted perceptual
quality scores and the subjective quality scores. Pearson’s
linear correlation coefficient (PLCC) is a good objective for
characterizing linearity. And it is differentiable, so we can
define our linearity-induced loss for nonlinearmappingmod-
ule as follow.

L(d)
lin = (1 − PLCCd)/2,

PLCCd =
∑

i (Q
d,i
p −Q̄(d)

p )(Qd,i−Q̄(d))√∑
i (Qd,i

p −Q̄(d)
p )

2 ∑
i (Qd,i−Q̄(d))

2
,

(18)

where Q̄(d)
p = 1

Nd

∑
i Q

d,i
p and Q̄(d) = 1

Nd

∑
i Q

d,i . Note
that PLCC-induced loss is also considered inMa et al. (2018),
Liu et al. (2018) and Li et al. (2020).
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3.5.3 Error-Induced Loss

After dataset-specific perceptual scale alignment, our goal is
to minimize the absolute prediction error. In this stage, any
regression error can be used as the loss function. We simply
choose the widely-used error-induced (i.e., normalized L1)
loss in this work. More general and robust regression losses
may be explored to further improve the optimization perfor-
mance (Barron 2019). To balance the losses among different
datasets, we consider the inverse scale on each dataset as a
normalization factor.

L(d)
err =

∑
i

1

Nd

∣∣∣Qd,i
s − Qd,i

∣∣∣
Sd

, (19)

where Sd = max (Qd,i ) − min (Qd,i ) is the range of the
subjective quality scores on the dth dataset.

3.5.4 Final Loss for TheWhole Model

We obtain the loss for the dth dataset (d = 1, . . . , D) from
the above three losses L(d)

rel , L
(d)
lin , L(d)

err .

L(d) = L(d)
rel + L(d)

lin + L(d)
err , (20)

and the overall final loss for training a single unified model
frommultiple datasets is defined as a softmax-weighted aver-
age of the losses over all datasets.

L = ∑
d w(d)L(d),

w(d) = eL
(d)

/
∑

d e
L(d)

,
(21)

where w(d) is the weight of L(d) (d = 1, . . . , D).

3.6 Implementation Details

We choose ResNet-50 (He et al. 2016) pre-trained on Ima-
geNet (Deng et al. 2009) for the content-aware feature
extraction, and the feature maps are extracted from its top
convolutional layer “res5c”. In this instance, the dimension
of ft is 2C = 4096. The feature dimension is then reduced
from 4096 to 128, followed by a single-layer GRU network
with hidden size 32. τ and γ in the temporal pooling layer are
set as 12 and 0.5, respectively. We choose the 4-parameter
nonlinear mapping, and the parameters in the module are ini-
tialized based on Eq. (13). We freeze the parameters in the
pre-trained ResNet-50 to ensure that the content-aware prop-
erty is not altered, andwe train the other part of the network in
an end-to-end manner. We train our model using Adam opti-
mizer (Kingma and Ba 2014) for 40 epochs with an initial
learning rate 1e-4, a training batch size 32 for each dataset.
The proposed model is implemented with PyTorch (Paszke

et al. 2019). To support reproducible scientific research, we
release the code at https://github.com/lidq92/MDTVSFA.

4 Experiments

This section reports and analyzes the experimental results.
Wefirst describe the experimental setup, including the bench-
mark datasets, compared methods and basic evaluation cri-
teria. Next, we study the effectiveness of our mixed datasets
training strategy. After that, the performance comparison is
carried out between ourmethod and the state-of-the-artmeth-
ods. Finally, the computational efficiency is brieflydiscussed.

4.1 Experimental Setup

Benchmark Datasets Currently, there are four datasets
for quality assessment of in-the-wild videos, including
CVD2014 (Nuutinen et al. 2016), KoNViD-1k (Hosu et al.
2017), LIVE-Qualcomm (Ghadiyaram et al. 2018), and
LIVE-VQC (Sinno and Bovik 2019a). We summarize their
brief information in Table 1.We can see that the four datasets
have different characteristics and the ranges of mean opin-
ion score (MOS) are different among these datasets. In the
default setting, each dataset is split into 80%, and 20% for
training and testing, respectively. No overlap is among train-
ing and testing data. And 25% of the training data are used
for validation. We repeat this procedure 10 times to avoid
performance bias.

ComparedMethodsOnlyNRmethods are applicable for
quality assessment of in-the-wild videos.We select five state-
of-the-art NRmethods for comparison, whose original codes
are released by the authors, includingVBLIINDS (Saad et al.
2014), VIIDEO (Mittal et al. 2016), BRISQUE (Mittal et al.
2012),1 NIQE (Mittal et al. 2013), and CORNIA (Ye et al.
2012). Besides, we also show some relevant results reported
from previous arts, e.g., TLVQM (Korhonen 2019). Note
that the method in Zhang et al. (2019c) needs scores of full-
reference methods, methods in Kim et al. (2018) and Zhang
et al. (2020) are full-reference methods, and thus they are
unfeasible for this problem.

BasicEvaluationCriteriaWefollow the suggestion from
Video Quality Experts Group (VQEG 2000), and report
SROCC and PLCC as the criteria of prediction monotonicity
and prediction accuracy, respectively. Better VQA methods
should have larger values of SROCC and PLCC. When the
predicted quality scores are not the same scale as the subjec-
tive scores, PLCC is calculated after nonlinear mapping with
a 4-parameter logistic function as suggested by VQEG.

1 Video-level features of BRISQUE are the average pooling of its
frame-level features.
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Table 1 Brief information of the four benchmark datasets, including the information of the videos and the information of the corresponding
subjective study

Dataset CVD2014 KoNViD-1k LIVE-Qualcomm LIVE-VQC
(Nuutinen et al. 2016) (Hosu et al. 2017) (Ghadiyaram et al. 2018) (Sinno and Bovik 2019a)

Number of videos 234 1200 208 585

Number of scenes 5 ≈1200 54 ≈585

Number of devices 78 – 8 101

Number of users – 480 – 80

Video orientations Landscape Landscape Landscape Portrait, landscape

Video resolutions 1280 × 720 or 640 × 480 960 × 540 1920 × 1080 1920 × 1080 to 320 × 240

Number of resolutions 2 1 1 18

Frames per second 11 to 31 24, 25 or 30 30 19–30 (one 120)

Time span 10–25 s 8 s 15 s 10 s

Max video length 830 frames 240 frames 526 frames 1202 frames

Test methodology Single stimulus Single stimulus Single stimulus Single stimulus

Lab or crowdsourcing Lab Crowdsourcing Lab Crowdsourcing

Number of participants 210 642 39 4776

Number of ratings 28–33 >50, average 114 18 >200, average 240

Raw ratings provided Yes Yes No No

Mean opinion score [−6.50, 93.38] [1.22, 4.64] [16.5621, 73.6428] [6.2237, 94.2865]

Fig. 5 Median SROCC results for different losses used in our mixed
datasets training strategy

4.2 Effectiveness of Mixed Datasets Training
Strategy

In this subsection, we conduct experiments to verify the
effectiveness of our mixed datasets training strategy in the
following four aspects. We first consider different loss com-
binations in our strategy. Then, we compare our strategy
with the naïve linear re-scaling strategy. In the third and
fourth aspects, we exploit whether our strategy helps further
improving the performancewithmore training data available.

Different Loss Combinations To verify the effectiveness
of the proposed losses, we compare different combinations of

monotonicity-induced loss L rel, linearity-induced loss L lin,
and error-induced loss Lerr. We consider mixing all the
four datasets (CVD2014, KoNViD-1k, LIVE-Qualcomm,
and LIVE-VQC) in this experiment. Figure 5 shows the
dataset-sizeweighted average ofmedian SROCC results over
the four datasets. It can be seen that the combination of three
losses is better than that of two losses, and the combination
of two losses is better than one of the two losses only. The
three losses all contribute to the performance gain, but the
contribution of linearity-induced loss is the largest.

Comparison with Linear Re-scaling To verify the effec-
tiveness of our dataset-specific perceptual scale alignment,
we compare it with the naïve linear re-scaling. Similar to the
last experiment, all the four datasets (CVD2014, KoNViD-
1k, LIVE-Qualcomm, and LIVE-VQC) are considered. And
both our strategy and the linear re-scaling strategy use all
three losses. They are compared with the models trained on
oneof the datasets, i.e., “Trainedonly onCVD2014/KonViD-
1k/LIVE-Qualcomm/LIVE-VQC”. Figure 6 shows the
dataset-sizeweighted average ofmedian SROCC results over
the four datasets. Models trained on the two larger datasets
(KoNViD-1k and LIVE-VQC) achieve better performance
than models trained on the two smaller datasets (CVD2014
and LIVE-Qualcomm). Linear rescaling strategy improves
the performance to 0.7576, and our mixed datasets training
strategy further improves the performance to 0.7753. The fur-
ther performance gain is contributed by the dataset-specific
perceptual scale alignment for avoiding the inconformity due
to linear re-scaling.
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Fig. 6 Median SROCC results for models trained with our strategy and
the linear re-scaling strategy in comparisonwith themodels trained only
on one of the datasets

MixingMoreDatasets In this experiment, we explore the
effect of mixing more datasets into the training data. Table 2
shows the median SROCC results in 10 runs for mixing dif-
ferent datasets. Each cell shows the base performance of the
model trained on the train sets of DB and tested on a test
set of DT , and the value in the brackets indicates the perfor-
mance gainwhen the train set of D+ is added into the training
data. The “Overall Performance” is the dataset-size weighted

average of median SROCC over these datasets. In general,
the overall performance over the four datasets is improved in
most cases. As for the performance on a single test set, there
are mainly three scenarios.

– DT = D+: The performance values in this scenario,
shown in the diagonal blocks of Table 2, all increase a
lot. For example, when the train set of CVD2014 (D+) is
added into any train sets of DB , the performance on the
test set of CVD2014 (DT ) is improved (0.1479+ gain).

– DT ⊆ DB : The performance values in this scenario,
marked in a light gray background, mostly decrease a
little. For example, when the train set of CVD2014 (D+)
is added into the train set ofKoNViD-1k (DB ), the perfor-
mance on the test set of KoNViD-1k (DT ) drops 0.0067.

– DT∩(DB∪D+) = ∅: The performance values in this sce-
nario, marked in a dark gray background, may increase
or decrease. For example, when the train set of LIVE-
Qualcomm (D+) is added into the train set of LIVE-VQC
(DB), the performance on the test set of CVD2014 (DT )
is improvedwhile that on the test set of KoNViD-1k (DT )
drops.

This phenomenon is the consequence of the following two
factors: (1) over-fitting problem during the training, (2) the
discrepancy of data distribution between the train set and the

Table 2 Performance gain in terms of median SROCC when one more dataset is added into the training data

D+ is the added dataset for training, DB indicates the base datasets for training before adding D+, and DT indicates the dataset for testing. “Overall
Performance” is indicated by the dataset-size weighted average of median SROCC. Positive gain is shown in blue, while negative gain is shown
in red. The performance values in the scenario DT ⊆ DB are marked in a light gray background, and the performance values in the scenario
DT ∩ (DB ∪ D+) = ∅ are marked in a dark gray background
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Table 3 The test performance of a model trained only on a single train set

SROCC Test

Train CVD2014 KoNViD-1k LIVE-Qualcomm LIVE-VQC

CVD2014 0.8747 0.6051 0.3919 0.4950

KoNViD-1k 0.6474 0.7809 0.6732 0.7160

LIVE-Qualcomm 0.5879 0.6128 0.7538 0.6214

LIVE-VQC 0.4819 0.7059 0.6550 0.7470

Bold value indicates in each column shows the best SROCC values

Table 4 Cross dataset performance gain in terms of median SROCC when KoNViD-1k is added into the training data

Train data Test dataset

CVD2014 (full) LIVE-Qualcomm (full) LIVE-VQC (full)

CVD2014 (+KoNViD-1k) – 0.3390(+0.2579) 0.4751(+0.2128)

LIVE-Qualcomm (+KoNViD-1k) 0.4938(+0.1488) – 0.5988(+0.0983)

LIVE-VQC (+KoNViD-1k) 0.4662(+0.1584) 0.5888(+0.0521) –

CVD2014+LIVE-Qualcomm (+KoNViD-1k) – – 0.5984(+0.0821)

CVD2014+LIVE-VQC (+KoNViD-1k) – 0.6459(+0.0087) –

LIVE-Qualcomm+LIVE-VQC (+KoNViD-1k) 0.5069(+0.1178) – –

Note that the testing is conducted on the full dataset, including its train and test sets

Fig. 7 Mean SROCC results under different training proportions when
the model is trained by mixing all datasets

test set. Table 3 shows the performance of the model trained
on a single train set and tested on a single test set, which can
somehow reflects how well the trained dataset can represent
the test set. In Table 3, the diagonal values are always the
largest one in its column, i.e., themost similar data set to a test
set is its corresponding train set. Thus, adding the train set of
D+ to the train sets of DB leads to a significant performance
improvement on the test set of D+, but a minor performance
drop on the test sets of DB . However, we can notice that
adding one more train set to the LIVE-Qualcomm train set
provides a performance gain on theLIVE-Qualcomm test set.
This might be attributed to the fact that LIVE-Qualcomm is

the smallest dataset among these four datasets and overfitting
is most likely to happen during model training on LIVE-
Qualcomm. Besides, the performance on the test set of an
unseen dataset DT depends on whether the train set of D+
or DB is more similar to the test set of DT . In this regard,
to improve the model performance on unseen datasets, it is
critical to collect similar data for training.When datasetswith
similar data distribution to the test set are added into training
data, it is more likely to learn the characteristics that are
needed for assessing the quality of the test video in the wild.
For example, in Table 4, when KoNViD-1k is added into the
training data, the cross-dataset evaluation performance on the
unseen dataset is improved.

Different Training Proportions In this experiment, we
utilize different proportions of training data from the four
datasets (LIVE-VQC, LIVE-Qualcomm, KoNViD-1k, and
CVD2014) to train our VQA model with the proposed strat-
egy. Figure 7 shows the test performance on the four datasets
under different training proportions of the training data.
The performance on each dataset increases as the training
proportion increases. Our method can still achieve a good
performance even when the training proportion is 1/2, which
means only half of the training data are used for training.
And the increasing trend indicates that the performance can
still be improved when more training data are available.

Based on the above study, we have learned that our mixed
datasets training strategy is effective. To sum up, it is helpful
for learning characteristics from all datasets and thus improv-
ing the overall performance. It also has the potential benefits
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Table 5 Overall performance comparison on CVD2014, KoNViD-1k, and LIVE-Qualcomm

Method SROCC↑ p-value PLCC↑ p-value
mean (± std) based on SROCC mean (± std) based on PLCC

BRISQUE (Mittal et al. 2012) 0.6610 (± 0.0218) 9.6754E−09 0.6032 (± 0.0144) 4.7276E−10

NIQE (Mittal et al. 2013) 0.5255 (± 0.0479) 2.3066E−09 0.5396 (± 0.0430) 6.4720E−10

CORNIA (Ye et al. 2012) 0.5913 (± 0.0253) 5.4983E−10 0.5954 (± 0.0240) 5.0748E−10

VIIDEO (Mittal et al. 2016) 0.2368 (± 0.0595) 7.4623E−11 0.2351 (± 0.0574) 4.4222E−11

VBLIINDS (Saad et al. 2014) 0.6628 (± 0.0321) 7.7577E−08 0.6127 (± 0.0833) 5.1515E−05

TLVQM (Korhonen 2019) 0.77 (± 0.02)* * 0.77 (± 0.02)* *

LS-VSFA 0.7603 (± 0.0219) 4.0044E−07 0.7662 (± 0.0238) 1.9500E−06

MDTVSFA 0.7860 (± 0.0202) – 0.7923 (± 0.0207) –

Mean and standard deviation (std) of the dataset-size weighted performance values in 10 runs are reported, i.e., mean (± std). The p-value is also
reported, where p < 0.001 indicates our method MDTVSFA is significantly better than the method in that row
*The results are cited from Table VIII of the original paper (Korhonen 2019)
We can not calculate the p-value due to the lack of raw SROCC/PLCC values of TLVQM

for cross-dataset evaluation since the characteristics of the
test videos are more likely to be learned, if more datasets
with similar data distribution to the testing set are added into
the training data. Besides, the performance can be further
improved with more training data available.

4.3 Performance Comparison

In this section, we compare our method with the state-of-the-
artNRmethods. ForVBLIINDS,BRISQUEand ourmethod,
we choose the models with the highest SROCC values on the
validation set during the training phase. NIQE, CORNIA,
and VIIDEO are tested on the same 20% testing data after
fitting the four-parameter logistic function with the training
data.

Overall Performance In this part, all the methods are
trained using mixed datasets. Similar to Korhonen (2019),
the other compared methods use the naïve linear re-scaling
strategy. Our model trained with the naïve linear re-scaling
strategy, denoted as LS-VSFA, does not learn the dataset-
specific perceptual scale alignment and uses all three losses
after linear re-scaling the subjective quality scores to the
same range. We denote our VQAmodel trained with the pro-
posedmixeddatasets training strategy asMDTVSFA.Table 5
reports the overall performance over CVD2014, KoNViD-
1k, and LIVE-Qualcomm, where the overall performance is
measured by the dataset-size weighted performance values
over the three datasets. We can see that our VQA model
achieves the best performance in terms of prediction mono-
tonicity (SROCC) and prediction accuracy (PLCC). The last
two rows show that our proposed mixed datasets training
strategy can achieve better performance than the naïve lin-
ear re-scaling strategy. We further carry out the statistical
significance test to see whether these comparison results are
statistical significant or not. On each dataset, the paired t-test

is conducted at 1‰ significance level using the performance
values (in 10 runs) of our method MDTVSFA and that of
the compared one. The p-values are shown in Table 5. All
p-values are far smaller than 0.001 and it proves that our
method is significantly better than all the other methods.

Scatter Plot and Qualitative Examples To have an
intuitive feeling, in Fig. 8, we visualize the scatter plots
between the subjective scores and predicted scores for the
five best-performed methods (excluding TLVQM, since we
do not have its raw predictions) in the 10th run. Each
row shows the scatter plots for a method. From top to
down, the methods are BRISQUE, CORNIA, VBLIINDS,
LS-VSFA, and MDTVSFA. The first, second, and third col-
umn show the scatter plots on CVD2014, KoNViD-1k, and
LIVE-Qualcomm, respectively. In each sub-figure, the x-axis
indicates the predicted score by themethodwhile y-axis indi-
cates the MOS. The scatter points are expected to be located
at the diagonal line. We can see that the scatter plots for
BRISQUE and CORNIA are more dispersive than the ones
for VBLIINDS and our method. The scatter points for our
method are more densely clustered around and centered at
the diagonal line than the others.

In Figs. 9, 10 and 11 , we show several success and failure
cases of our method. Figures 9 and 10 show the success cases
of MDTVSFA, which means the predictions of MDTVSFA
model is consistent with MOS. LS-VSFA has more failure
cases thanMDTVSFAsince the linear re-scaling strategy dis-
turbs the training process. We also show two failure cases of
LS-VSFA in Figs. 9 and 10. Besides, there is still a large room
for improving the performance of MDTVSFA, and we show
a failure case of both MDTVSFA and LS-VSFA in Fig. 11.
Such failure may be due to the fact that our models extract
frame-level features and do not fully exploit the motion and
spatial-temporal information. For example, our methods do
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Fig. 8 Scatter plots for BRISQUE, CORNIA, VBLIINDS, LS-VSFA, and MDTVSFA on CVD2014, KoNViD-1k, and LIVE-Qualcomm datasets.
The predictions of MDTVSFA shows the best correlation with the mean opinion scores (MOSs) across the datasets
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Fig. 9 Qualitative example on KoNViD-1k test set. The quality rank-
ings provided by MOS and MDTVSFA are both A<B<C<D, but
LS-VSFA gives a quality ranking of A<C<B<D. Full-resolution
videos are provided in https://bit.ly/3csmHYk

Fig. 10 Qualitative example on LIVE-VQC. The quality rankings pro-
vided by MOS and MDTVSFA are both E>F, but LS-VSFA gives a
quality ranking of E<F. Full-resolution videos are provided in https://
bit.ly/3csmHYk

not account for the discomfort caused by suddenly and fast
scene change.

Performance on Individual Datasets Besides the over-
all performance reported in last part, we report performance
on individual datasets in this part. Our method is trained by
mixing the four datasets while other methods are trained on
individual datasets. Table 6 summarizes the performance val-
ues on the four datasets individually. The results provided by
our method are based only on a single unified model while
the results provided by other methods are based on differ-
ent models trained for different datasets. The natural scene
statistics (NSS)-basedNR-IQAmethods (such asBRISQUE)

Fig. 11 Another qualitative example on LIVE-VQC. The quality rank-
ings provided by LS-VSFA and MDTVSFA are both G<H, but MOS
gives a quality ranking ofG>H.Note that the scenes change fast in video
H, where full-resolution videos are provided in https://bit.ly/3csmHYk

outperform VIIDEO. This may be owing to the fact that
VIIDEO is based only on temporal scene statistics and can-
not model the complex distortions. VBLIINDS and TLVQM
rely on a lot of carefully-designed handcrafted features that
capture the spatial and temporal distortions, and thus they
achieve a better performance than the NR-IQA methods
and VIIDEO. Our method achieves the best performance in
terms of prediction monotonicity (SROCC) and prediction
accuracy (PLCC) on the three datasets (LIVE-VQC, LIVE-
Qualcomm, and KoNViD-1k). On CVD2014, MDTVSFA
slightly outperforms TLVQM in terms of SROCC, while it
slightly underperforms TLVQM in terms of PLCC. How-
ever, we should note that the results of our method is based
only on one single model, which indicates our unified model
performs well across datasets.

We further prove the above statement by conducting
experiments to compare the models trained by mixing
CVD2014, KoNViD-1k, and LIVE-Qualcomm datasets with
the models trained on one of the datasets. Table 7 shows the
median SROCC of different models on the three datasets.
We can see that, no matter which model it is, the unified
model trained by mixing all datasets achieves better overall
performance than the model trained on one of the datasets.
And our model trained with our proposed strategy achieves
better overall performance across the datasets than the other
models (VBLIINDS, BRISQUE, and TLVQM) trained with
the linear re-scaling strategy. Among these datasets, the size
of LIVE-Qualcomm dataset is the smallest one. And our
model trained only on LIVE-Qualcomm dataset suffered
from over-fitting problem. In such situation, mixed datasets
training helps alleviating the problem to some extent. So a
performance improvement of the proposedmodelwithmixed
dataset training is found on LIVE-Qualcomm dataset. This
verifies the necessity ofmixed datasets training and the effec-
tiveness of our mixed datasets training strategy.
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Table 6 Performance comparison on the four VQA datasets individually

Method LIVE-VQC (Sinno and Bovik 2019a) LIVE-Qualcomm (Ghadiyaram et al. 2018)

SROCC↑ PLCC↑ SROCC↑ PLCC↑
BRISQUE (Mittal et al. 2012) 0.5687 (± 0.0729) 0.5868 (± 0.0642) 0.5036 (± 0.1470) 0.5158 (± 0.1274)

NIQE (Mittal et al. 2013) 0.5892 (± 0.0538) 0.6112 (± 0.0554) 0.4628 (± 0.1052) 0.4638 (± 0.1362)

CORNIA (Ye et al. 2012) 0.5953 (± 0.0170) 0.5926 (± 0.0230) 0.4598 (± 0.1299) 0.4941 (± 0.1327)

VIIDEO (Mittal et al. 2016) 0.1498 (± 0.0995) 0.2454 (± 0.0740) 0.1267 (± 0.1368) − 0.0012 (± 0.1062)

VBLIINDS (Saad et al. 2014) 0.7015 (± 0.0483) 0.7120 (± 0.0501) 0.5659 (± 0.0780) 0.5676 (± 0.0885)

ST-Naturalness (Sinno and Bovik 2019b) 0.5994* 0.6069* – –

3D-CNN+LSTM (You and Korhonen 2019) – – 0.687* 0.792*

FRIQUEE (Ghadiyaram and Bovik 2017) – – 0.6795* 0.7349*

TLVQM (Korhonen 2019) – – 0.78 (± 0.07)* 0.81 (± 0.06)*

MDTVSFA 0.7382 (± 0.0357) 0.7728 (± 0.0351) 0.8019 (± 0.0295) 0.8218 (± 0.0374)

Method KoNViD-1k (Hosu et al. 2017) CVD2014 (Nuutinen et al. 2016)

SROCC↑ PLCC↑ SROCC↑ PLCC↑
BRISQUE (Mittal et al. 2012) 0.6540 (± 0.0418) 0.6256 (± 0.0407) 0.7086 (± 0.0666) 0.7154 (± 0.0476)

NIQE (Mittal et al. 2013) 0.5435 (± 0.0396) 0.5456 (± 0.0376) 0.4890 (± 0.0908) 0.5931 (± 0.0650)

CORNIA (Ye et al. 2012) 0.6096 (± 0.0343) 0.6075 (± 0.0318) 0.6140 (± 0.0754) 0.6178 (± 0.0792)

VIIDEO (Mittal et al. 2016) 0.2976 (± 0.0522) 0.3026 (± 0.0486) 0.0228 (± 0.1216) −0.0249 (± 0.1439)

VBLIINDS (Saad et al. 2014) 0.6947 (± 0.0239) 0.6576 (± 0.0254) 0.7458 (± 0.0564) 0.7525 (± 0.0528)

FC Model (Men et al. 2017) 0.572* 0.565* – –

STFC Model (Men et al. 2018) 0.606* 0.639* – –

STS-CNN200 (Yan and Mou 2019) 0.735* – – –

TLVQM (Korhonen 2019) 0.78 (± 0.02)* 0.77 (± 0.02)* 0.83 (± 0.04)* 0.85 (± 0.04)*

MDTVSFA 0.7812 (± 0.0278) 0.7856 (± 0.0240) 0.8314 (± 0.0416) 0.8407 (± 0.0296)

Mean and standard deviation (std) of the performance values in 10 runs are reported, i.e., mean (± std). In each column, the best mean SROCC and
PLCC values are marked in boldface, and the second-best performance values are underlined
*The reported results in their original papers are shown here for reference

4.4 Computational Efficiency

Besides the performance, computational efficiency is also
crucial for NR-VQA methods. To provide a fair compari-
son for the computational efficiency of different methods,
all tests are carried out on the same desktop computer with
Intel Core i7-6700K CPU@4.00 GHz, 12GNVIDIA TITAN
Xp GPU, and 64 GB RAM. The operating system is Ubuntu
14.04. The compared methods are implemented with MAT-
LAB R2016b while our method is implemented with Python
3.6. We use the default settings of the original codes without
anymodification.We select two videos with different lengths
and different resolutions for testing. The tests are run in a
separate environment and repeated ten times. The logarithm
(with base 10) of the average computation time (seconds) for
each method is shown in Fig. 12. The point near the left is
the fast one, and the point near the top is the good-performed
one. Our method (CPU version) is faster than VBLIINDS—
the method with the third-best performance. TLVQM, the

second-best performedmethod, considers two-level features,
i.e., low-complexity features for all frames and high-level
features for only selected representative frames. It achieves a
good trade-off between the performance and computational
efficiency. It is worth mentioning that our method can be
accelerated to 30x faster or more (The larger resolution and
length the video has, the faster acceleration is) by simply
switching the CPU mode to the GPU mode. With the GPU
available, our method (GPU version) is at the upper-left, and
thus it is the fastest one as well as the best-performed one. To
further improve the computational efficiency, we may resort
to the light-weight networks.

5 Conclusion and FutureWork

In thiswork,wepropose a novel unifiedNR-VQAframework
with amixed datasets training strategy for in-the-wild videos.
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Table 7 Performance comparison in terms of median SROCC between the single models trained by mixing all three datasets (CVD2014, KoNViD-
1k, and LIVE-Qualcomm) and the models trained on one of the datasets

Model Train data Mixed datasets training Test dataset Overall

CVD2014 KoNViD-1k LIVE-Qualcomm Performance

BRISQUE CVD2014 No 0.7582 0.5574 0.4632 0.5794

KoNViD-1k No 0.5388 0.6191 0.3019 0.5621

LIVE-Qualcomm No 0.3930 0.2341 0.5023 0.2973

All three datasets Linear re-scaling 0.7356 0.6300 0.3809 0.6107

VBLIINDS CVD2014 No 0.7892 0.5787 0.4170 0.5864

KoNViD-1k No 0.5681 0.7078 0.4583 0.6544

LIVE-Qualcomm No 0.5027 0.5432 0.6018 0.5544

All three datasets Linear re-scaling 0.6749 0.6890 0.4684 0.6640

TLVQM CVD2014 No 0.83* 0.54* 0.38* –

KoNViD-1k No <0.62* 0.78* <0.49* –

LIVE-Qualcomm No <0.36* <0.38* 0.788* –

All three datasets Linear re-scaling – – – 0.77*

Our model CVD2014 No 0.8747 0.6051 0.3919 0.6165

KoNViD-1k No 0.6474 0.7809 0.6732 0.7483

LIVE-Qualcomm No 0.5879 0.6128 0.7538 0.6271

All three datasets Our strategy 0.8412 0.7659 0.8157 0.7829

Overall performance indicates the dataset-size weighted median SROCC values in 10 runs. For each column, the largest value is marked in boldface
*The reported SROCC results in the original paper (Korhonen 2019) are shown here for reference
The “<” relation is inferred from the Table VII of Korhonen (2019). “–” indicates that the results are not reported

(a)

(b)

Fig. 12 Bubble charts with the overall performance (mean SROCC
values in Table 5) and the logarithm of average computation time (s) on
videos with different resolutions and different lengths

The backbone model is a deep neural network designed for
characterizing the two eminent effects of HVS, i.e., content-
dependency and temporal-memory effects. We enable mixed
datasets training by designing two losses (monotonicity-
induced loss, linearity-induced loss) for predicting relative
quality and perceptual quality, and assigning dataset-specific
perceptual scale alignment layers for predicting subjective
quality. Our proposed method is compared with the state-
of-the-art methods on four publicly available in-the-wild
VQA datasets (CVD2014, KoNViD-1k, LIVE-Qualcomm,
and LIVE-VQC). Experiments show the superior perfor-
mance of our method and also verify the effectiveness of our
unifiedVQAmodel with themixed datasets training strategy.

However, our mixed datasets training strategy needs to re-
train the unified VQA model every time when a new dataset
is added to the training data. This will increase the burden of
training. In the further study,wewill explore lifelong learning
for this task.Also, besides video capture,we intend to provide
a unified and efficient VQA framework that can handle the
whole chain-flow of video production. Moreover, some meta
information that is crucial for the video quality, like video
resolution, can be used as extra features for improving the
model performance. Finally, we intend to apply our unified
VQA model for practical computer vision applications such
as video enhancement.
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