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Abstract
Computer vision systems in real-world applications need to be robust to partial occlusion while also being explainable. In this
work, we show that black-box deep convolutional neural networks (DCNNs) have only limited robustness to partial occlu-
sion. We overcome these limitations by unifying DCNNs with part-based models into Compositional Convolutional Neural
Networks (CompositionalNets)—an interpretable deep architecture with innate robustness to partial occlusion. Specifically,
we propose to replace the fully connected classification head of DCNNs with a differentiable compositional model that
can be trained end-to-end. The structure of the compositional model enables CompositionalNets to decompose images into
objects and context, as well as to further decompose object representations in terms of individual parts and the objects’ pose.
The generative nature of our compositional model enables it to localize occluders and to recognize objects based on their
non-occluded parts. We conduct extensive experiments in terms of image classification and object detection on images of arti-
ficially occluded objects from the PASCAL3D+ and ImageNet dataset, and real images of partially occluded vehicles from the
MS-COCO dataset. Our experiments show that CompositionalNets made from several popular DCNN backbones (VGG-16,
ResNet50, ResNext) improve by a largemargin over their non-compositional counterparts at classifying and detecting partially
occluded objects. Furthermore, they can localize occluders accurately despite being trained with class-level supervision only.
Finally, we demonstrate that CompositionalNets provide human interpretable predictions as their individual components can
be understood as detecting parts and estimating an objects’ viewpoint.

Keywords Compositional models · Robustness to partial occlusion · Image classification · Object detection · Out-of-
distribution generalization

1 Introduction

Advances in the architecture design of deep convolu-
tional neural networks (DCNNs) (Krizhevsky et al. 2012;
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Simonyan and Zisserman 2014; He et al. 2016) increased
the performance of computer vision systems at object recog-
nition enormously. This led to the deployment of computer
vision models in safety-critical real-world applications, such
as self-driving cars and security systems. In these application
areas, we expect models to reliably generalize to previously
unseen visual stimuli. However, in practice we observe that
deepmodels do not generalize as well as humans in scenarios
that are different from what has been observed during train-
ing, e.g., unseen partial occlusion, rare object pose, changes
in the environment, etc.. This lack of generalization may
lead to fatal consequences in real-world applications, e.g.
when driver-assistant systems fail to detect partially occluded
pedestrians (Economist 2017).

In particular, a key problem for computer vision systems is
how to deal with partial occlusion. In natural environments,
objects are often surrounded and partially occluded by each
other. The large variability of occluders in terms of their
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shape, appearance and position introduces an exponential
complexity in the data distribution (Yuille and Liu 2018) that
is unfeasible to be exhaustively represented in finite train-
ing data. Recent works (Zhu et al. 2019; Kortylewski et al.
2020b) have shown that deep vision systems are not as robust
as humans at recognizing partially occluded objects. More-
over, our experiments show that this limitation persists even
when deep networks have been exposed to large amounts of
partial occlusion during training. Hence, this reveals a funda-
mental limitation of current approaches to computer vision
that needs to be addressed.

While robustness to partial occlusion is crucial, safety-
critical applications also require AI systems to provide
human interpretable explanations of their prediction. Such
explanations can help to understand failures and enable the
further advancement of the performance of themodels, while
potentially also supporting the scientific understanding of the
vision process. This insight motivated recent work to focus
on developing interpretable vision models (Ross et al. 2017;
Hu et al. 2016; Stone et al. 2017; Zhang et al. 2018a; Zhang
and Zhu 2018). However, most often interpretable models do
not perform as well as black-box DCNNs and can only be
applied in a very specific domain.

In this work, we propose a general deep architecture that
recognizes partially occluded objects robustly even when it
has not been exposed to partial occlusion during training,
while also being able to provide human interpretable expla-
nations of its prediction. Here, we refer to interpretability in
terms of the definition provided byMontavon et al. (2018) as
the mapping of an abstract concept (e.g. a predicted class)
into a domain that the human can make sense of (e.g. in
the image space instead of an abstract neural feature space)
and an explanation as a collection of features from the inter-
pretable domain that have contributed to the decision (e.g.
object part detections and occluder locations in the image
space).

Our key contribution is that we unify compositional
models and DCNNs into an architecture that we term Com-
positional Convolutional Neural Network. Our model is
inspired by a number of works that demonstrated how the
modularity of compositional representations enables effi-
cient learning (Jin andGeman2006), interpretability (George
et al. 2017) and strong generalization at classifying par-
tially occluded 2D patterns (George et al. 2017; Kortylewski
2017; Wang et al. 2017; Zhang et al. 2018c) and 3D objects
(Kortylewski et al. 2020b). In particular, we propose to
replace the fully-connected classification head of a DCNN
with a differentiable compositional model that can be trained
end-to-end. The compositional model represents objects as
a set of parts that are composed spatially. This enables a
robust classification based on the spatial configuration of a
few visible parts. The compositional model is regularized to
be fully generative in terms of the neural feature activations

of the last convolutional layer. The generative nature of the
model enables the network to localize occluders in an image
and subsequently focus on the non-occluded parts of the
object for recognition. In addition, the structure of our com-
positional model enforces the decomposition of the image
representation as a mixture of the context and object repre-
sentation. This context-aware image representation enables
us to control the influence of the context on the models’ pre-
diction, which turns out to be important for the detection of
partially occluded objects. Figure 1 illustrates the robustness
of CompositionalNets at classifying and detecting partially
occluded objects, while also being able to localize occlud-
ers in an image. In particular, it shows several images of
partially occluded objects from the MS-COCO dataset (Lin
et al. 2014). Next to these images, we show occlusion scores
that illustrate the position of occluders as estimated by the
CompositionalNets. Note how the occluders are accurately
localized and provide a human interpretable explanation of
the models’ perception of the image.

Our work on CompositionalNets includes several impor-
tant contributions:

1. We propose a differentiable compositional model that
can be trained end-to-end and that is regularized to be
generative in terms of the feature activations of a DCNN.
This enables us to integrate compositional models with
popular deep network architectures into compositional
convolutional neural networks, a unified deep model
with innate robustness to partial occlusion.

2. We evaluate the robustness to partial occlusion on images
of artificially occluded objects from the PASCAL3D+
and ImageNet datasets, as well as real images of par-
tially occluded vehicles from theMS-COCOdataset. Our
extensive experiments with popular DCNN backbones
(VGG-16 (Simonyan and Zisserman 2014), ResNet50
(He et al. 2016), ResNext (Xie et al. 2017)) demonstrate
that CompositionalNets consistently outperform their
non-com- positional counterparts by a large margin
at the classification and detection of partially occluded
objects.

3. We propose to decompose the image representation
in CompositionalNets as a mixture model of con-
text and object representations. We demonstrate that
such context-aware CompositionalNets allow for fine-
grained control of the influence of the object context
on the model prediction, which increases the robustness
when detecting strongly occluded objects.

4. We show that CompositionalNets are human inter-
pretable, because their predictions can be understood
in terms of object part detection, occluder localization
and object viewpoint estimation. We perform qualitative
and quantitative experiments that demonstrate the ability
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Fig. 1 Example of images for the classification (a) and detection (b) of
partially occluded objects from theMS-COCO dataset (Lin et al. 2014).
A standard DCNN misclassifies the images in (a) and does not detect
the motorbike in (b), while also having a false-positive detection of a

bus in the background. In contrast, CompositionalNets provide correct
predictions in all cases. Intuitively, a CompositionalNet can localize the
occluders (see visualization of occlusion scores) and subsequently focus
on the non-occluded parts of the object to make a robust prediction

of CompositionalNets to localize occluders accurately,
despite being trained with class labels only.

Finally, we note that this article extends the conference
papers (Kortylewski et al. 2020a; Wang et al. 2020) in multi-
pleways: (1)Wepresent themodels of both papers coherently
in a common theoretical framework and perform a number
additional experiments, including ablation studies. (2) We
show that a bad generalization to out-of-distribution exam-
ples in terms of partial occlusion is not just a limitation of
the VGG-16 network. Instead, our experiments show that
it is a general challenge for a variety of advanced deep
architectures. (3) We find that CompositionalNets learned
from residual backbones can use two fundamentally differ-
ent approaches to achieve robustness to partial occlusion:
Invariance to occlusion and localization of occluders. We
observe that the combination of both approaches enables
these models to achieve the highest robustness. (4) We study
the interpretability of CompositionalNets quantitatively and
show that the predictions of CompositionalNets are highly
interpretable in terms of part detection, occluder localization
and pose estimation. (5) We study large-scale classification
of non-vehicle objects with CompositionalNets and achieve
very promising results.

In summary, this article shows that the recognition of
partially occluded objects poses a general and fundamen-
tal challenge to deep models. We give important insights into
how this limitation can be overcome by unifying deepmodels
with compositional models, and we show that the resulting
CompositionalNets are not just more robust but also much
more interpretable compared to their non-compositional
counterparts.

2 RelatedWork

2.1 Object Recognition Under Occlusion

Many recent studies (Zhu et al. 2019; Kortylewski et al.
2020b) have shown that, current deep neural networks are
much less robust to partial occlusion compared with humans
at object classification. Fawzi and Frossard (2016) show that
DCNNs are vulnerable to partial occlusions simulated by
masking small patches of the input image. Several following
works (DeVries and Taylor 2017; Yun et al. 2019) propose
to augment the training data by masking out patches from
the image. Our experimental results in Sect. 6.2 show that
such data augmentation approaches only have limited ben-
eficial effects. Moreover, data augmentation increases the
amount of training data and thus the training time and cost.
Therefore, it is desirable to develop novel neural network
architectures that are inherently robust to partial occlusion.
Xiao et al. (2019) propose TDAPNet, a deep network with
an attention mechanism that masks out occluded features in
lower layers to increase the robustness of the model against
occlusion. Though it can work reliably on artificial occlu-
sion, our results show that this model does not perform well
on images with real occlusion.

Compared to image classification, object detection addi-
tionally involves the estimation of the object location and
bounding box. While a search over the image can be imple-
mented efficiently, e.g. using a scanning window (Lampert
et al. 2008), the number of potential bounding boxes is com-
binatorial in the number of pixels. Currently, the most widely
used approach for solving this problem is to use region pro-
posal networks (RPNs) (Girshick et al. 2014) which enable
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the training of fast approaches for object detection (Girshick
2015; Ren et al. 2015; Cai and Vasconcelos 2018). However,
our experiments in Sect. 6.3 demonstrate that RPNs do not
estimate the location and bounding box of an object correctly
under occlusion, which consequentially deteriorates the per-
formance of these approaches.

To resolve this problem, a boosted cascade-based method
for detecting partially visible objects has been proposed by
Yan andLiu (2015).However, this approach is basedonhand-
crafted features and can only be applied to images which are
artificially occluded by cutting out patches. A number of
deep learning based approaches have also been proposed for
detecting occluded objects (Zhang et al. 2018b; Narasimhan
2019), but they require detailed part level annotation to recon-
struct the occluded objects. The work of Xiang and Savarese
(2013) proposes to use 3D models and treat occlusion as a
multi-label classification problem. However, in real-world
scenarios, the classes of the occluders can be difficult to
model and are often not known a-priori. Other approaches
focus on videos or stereo images (Li and Yuan 2018; Jian
Sun and Kang 2018). In this work, we consider the problem
of partial occlusion in still images.

In contrast to deep learning approaches, generative com-
positional models (Jin and Geman 2006; Zhu et al. 2008b;
Fidler et al. 2014; Dai et al. 2014; Kortylewski et al. 2019)
have been shown to be inherently robust to partial occlusion.
Such models have been successfully applied for detecting
object parts (Wang et al. 2017; Zhang et al. 2018c) and rec-
ognizing 2D patterns (George et al. 2017; Kortylewski and
Vetter 2016) under partial occlusion. Such part-based voting
approaches (Wang et al. 2017; Zhang et al. 2018c) perform
reliably for semantic part detection under occlusion, but they
assume a fixed size bounding box and are viewpoint spe-
cific, which limits their applicability in the context of object
detection.

2.2 Relation of CompositionalNets to And-Or Graphs

And-Or graphs (AOG) (Nilsson et al. 1980; Jin and Geman
2006; Dechter and Mateescu 2007) have been investigated
e.g. to build hierarchical part-based models for human pars-
ing and for object detection. Intuitively, the or-nodes allow
the model to learn different object/part configurations, while
the and-node decomposes them into smaller components.
Early works in this direction (Chen et al. 2008; Zhu et al.
2008a; Li et al. 2013) relied on pre-defined parts and pre-
defined graph structures. To learn the AOG model with less
supervision, Zhu et al. (2008b) use recursive compositional
clustering. However, this method may lead to unexplainable
parts and structures. Song et al. (2013) used an over-complete
set of shape primitives to quantize the image lattices and then
organized them into an AOG by exploiting their composi-
tional relations through iterative cutting. Xia et al. (2016)

explicitly defined parts and part compositions, which cor-
respond to the leaf node and non-leaf node in the AOG
respectively. Then they used a score function with pre-
defined adjacent part pairs to learn the structure of the AOG,
which still required considerable amount of human input.Wu
et al. (2015) made use of a large number of synthetic images
generated by CAD simulations, on which 17 semantic parts
were manually labeled. They enumerated all configurations
observed from the synthetic data and then used a graph com-
pression algorithm to get the refinedAOG structure. All these
models learned the AOG in two steps: after the graph struc-
ture was decided, variants of latent structural SVMwas used
to learn model parameters. In a different approach, Lin et al.
(2014) learned AOG by joint optimization of both model
structures and parameters. The resulting model worked on
object shape detection with moderate performance and may
not be easily applied to general object detection.

Most of the works on AOGs used low-level features (e.g.,
HOG features) tomodel the part appearance,whichmay limit
their capacity and discriminative power. Furthermore, none
of these works modeled occluders explicitly or tested their
method on images with different level of occlusions, there-
fore it is unclear how those models can be made robust to
occlusion. CompositionalNets can be considered to be com-
plementary to and-or-graphs. In fact, our mixture model can
be interpreted as simple two-layered and-or-graph, where
each mixture components combines parts (vMF kernels)
for a certain object pose, and the final class score is an
“or”-combination over the different object poses (mixture
components). While our model could be generalized to have
multiple layers with and-or-nodes to introduce more flexibil-
ity in the representation, the focus of thiswork is robustness to
partial occlusion. Furthermore, our experiments show that a
two-layered and-or graph seems to be good enough to achieve
high performance at image classification and detection on
popular datasets such as PASCAL3D+,MS-COCO and Ima-
geNet. Moreover, and-or-graphs often require considerable
amounts of supervision for the graph structure (Chen et al.
2008; Zhu et al. 2008a; Li et al. 2013) or are not well inter-
pretable (Zhu et al. 2008b; Song et al. 2013), whereas our
graph is learned from class supervision only and still learns
a meaningful human-interpretable representation.

2.3 Deep Compositional Models in Computer Vision

An early work from Liao et al. (2016) proposes to inte-
grate compositionality into DCNNs by regularizing the
feature representations of DCNNs to cluster during learn-
ing. Their qualitative results show that the resulting feature
clusters resemble part-like detectors. Zhang et al. (2018a)
also demonstrate that part detectors emerge in DCNNs by
restricting the activations in feature maps to have a local-
ized distribution. However, these approaches have not been
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shown to enhance the robustness of deep models to par-
tial occlusion. Other related works propose to regularize the
convolution kernels to be sparse (Tabernik et al. 2016), or
to force feature activations to be disentangled for different
objects (Stone et al. 2017). As the compositional model is not
explicitly incorporated but rather implicitly encoded within
the parameters of the DCNNs, the resulting models remain
black-box and not expedcted to be robust to partial occlu-
sion. A number of works (Li et al. 2019; Tang et al. 2018,
2017) use differentiable graphical models to integrate part-
whole compositions intoDCNNs.However, thesemodels are
purely discriminative and thus are also deep networks with
no internal mechanism to account for partial occlusion. Gir-
shick et al. (2015) discussed that compositional deformable
part models can be formulated as neural networks. However,
they do not evaluate their models’ robustness to partial occlu-
sion nor its explainability. Kortylewski et al. (2020b) propose
to learn a generative dictionary-based compositional model
using the features of a DCNN. Instead of merging the com-
positional model into the DCNN, they use it as a “backup”
for an independently trained DCNN. Only when the DCNN
classification score falls below a certain threshold, the pre-
diction will be substituted by the output of the compositional
model.

2.4 Explainable Computer Vision Models

Many post-hoc methods have been proposed to explain what
has been encoded in the intermediate layers of DCNNs. Sev-
eral works (Le 2013; Zhou et al. 2015) visualize a real or
generated input that activates a filter most to study the roles
of individual units inside neural networks. Similarly, Nguyen
et al. (2016) synthesize prototypical images for individual
units by learning a feature inversion mapping, while Bau
et al. (2017) visualize segmentation masks extracted from
filter activations and assign concept labels automatically. On
the other hand, the works of (Mahendran and Vedaldi 2015;
Simonyan et al. 2013; Zeiler and Fergus 2014) use variants
of back-propagation to identify or generate salient image
features. Moving beyond studying individual hidden units,
Wang et al. (2015) use clusters of activations from all units
in a layer and shows that the cluster centers yield better part
detectors. Alain and Bengio (2016) probe mid-layer filters
by training linear classifiers on the intermediate activations.
They also analyze the information dynamics among layers
and its effect on the final prediction. The work of Fong and
Vedaldi (2018) shows that filter embeddings better charac-
terize the meaning of a representation and its relationship
to other concepts. Most of these works evaluate their results
using human judgments.

Unlike the post-hoc methods that focus on visualiz-
ing/analyzing pre-trained DCNNs, other approaches aim to
learn more meaningful representations during the network

training stage. The work of Ross et al. (2017) explains and
regularizes differentiable models by examining and selec-
tively penalizing their input gradients, but this me- thod
requires extra annotation from human experts. Hu et al.
(2016) regularize the learning process by introducing an
iterative distillation method that transfers the structured
informationof logic rules into theweights of neural networks.
Stone et al. (2017) encourage networks to form representa-
tions that disentangle objects from their surroundings and
from each other, but they do not obtain part-level seman-
tics explicitly. Sabour et al. (2017) propose a capsule model,
which used a dynamic routing mechanism to parse the entire
object into a parsing tree of capsules, and each capsule may
encode a specific meaning. The work of Zhang et al. (2018a)
invents a generic loss to regularize the representation of a
filter to improve its interpretability.
In this work, we unify generative compositional models and
deep convolutional neural networks into a joint architecture
with innate robustness to partial occlusion. The generative
nature of the model enables it to localize occluders and to
recognize objects based on the spatial configuration of visible
object parts. CompositionalNets are naturally interpretable as
their predictions can be understood in terms of part detection,
occluder localization and viewpoint estimation.

3 CompositionalNets for Image Classification

In this section, we introduce CompositionalNets, a neural
architecture design that replaces the fully-connected classi-
fication head of deep networks with a differentiable genera-
tive compositional model. We extend CompositionalNets to
object detection in Sect. 4 and discuss how Compositional-
Nets can be trained in an end-to-end manner in Sect. 5.

3.1 A Generative Compositional Model of Neural
Feature Activations

We denote a feature map Fl ∈ R
H×W×D as the output of a

layer l in a DCNN, with D being the number of channels.
f li ∈ R

D is a feature vector in Fl at position i on the 2D
lattice P of the feature map. In the remainder of this section
we omit the superscript l for notational simplicity because
this is fixed a-priori in our experiments.

Our goal is to learn a generative model p(F |y) of the
real-valued feature activations F for an object class y. In
the following, we assume the viewpoint of the object to
be known. Later, we generalize the model to 3D objects
with varying viewpoints. We define the probabilistic model
p(F |y) to be a mixture of von-Mises-Fisher (vMF) distribu-
tions:
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p(F |θy) =
∏

i

p( fi |Ai,y,Λ) (1)

p( fi |Ai,y,Λ) =
∑

k

αi,k,y p( fi |λk), (2)

where θy = {Ay,Λ} are the model parameters and Ay =
{Ai,y} are the parameters of the mixture models at every
position i ∈ P on the 2D lattice of the feature map F . Note
that the probabilistic model defined in Eq. 1 has a tree-like
independence structure and therefore enables efficient infer-
ence (Kortylewski et al. 2019). Moreover,

Ai,y =
{

αi,0,y, . . . , αi,K ,y |
K∑

k=0

αi,k,y = 1

}
(3)

are themixture coefficients, K is the number ofmixture com-
ponents and Λ = {λk = {σk, μk}|k = 1, . . . , K } are the
variance and mean of the vMF distribution:

p( fi |λk) = eσkμ
T
k fi

Z(σk)
, ‖ fi‖ = 1, ‖μk‖ = 1, (4)

where Z(σk) is the normalization constant. As Z(σk) is dif-
ficult to compute for high-dimensional data (Banerjee et al.
2005), we assume σk to be fixed a-priori. Hence, the normal-
ization constant is the same for each mixture component and
does not need to be computed explicitly when optimizing
the parameters. After learning the vMF cluster centers {μk}
with maximum likelihood optimization, they resemble fea-
ture activation patterns that frequently occur in the training
data. Interestingly, feature vectors that are similar to one of
the vMF cluster centers, are often induced by image patches
that are similar in appearance and often even share semantic
meanings (see Fig. 2). This property was also observed in
a number of related works that used clustering in the neu-
ral feature space (Wang et al. 2015; Liao et al. 2016; Wang
et al. 2017). Subsequently, we learn the mixture coefficients
αi,k,y with maximum likelihood estimation from the training
images. Intuitively, αi,k,y describes the expected activation
of a cluster center μk at a position i in a feature map F for a
class y.

3.2 Viewpoint Modeling

An important property of convolutional networks is that the
spatial information from the image is preserved in the feature
maps. Hence, the set of mixture coefficients Ay intuitively
can be thought of as being a 2D template that describes the
expected spatial activation pattern of parts in an image for a
given class y - e.g. where the tires of a car are expected to
be located in an image. Therefore, our proposed vMF model
intuitively accumulates the part detections spatially into a

Fig. 2 Illustration of vMF kernels μk learned from: a VGG-16, b
ResNet50 and c ResNext. We visualize image patterns from the train-
ing data that activate a vMF kernel the most. Note that feature vectors
that are similar to one of the vMF kernels, are often induced by image
patches that have similar geometry and appearance. Furthermore, we
were able to find vMF kernels of each backbone that represent similar
visual concepts (vertical stabilizer, school bus side, number sticker on
car, top of bicycle wheel)

hypothesis about the objects’ presence. Note that this imple-
ments a part-based voting mechanism.

As the spatial pattern of parts varies significantly with the
3D pose of the object, we represent 3D objects as a mixture
of compositional models:

p(F |Θy) =
∑

m

νm p(F |θmy ), (5)

with V = {νm ∈ {0, 1},∑m νm = 1} and Θy = {θmy ,m =
1, . . . , M}. Here M is the number of compositional models
in the mixture distribution and νm is a binary assignment
variable that indicates which mixture component is active.
Intuitively, each mixture component m will represent a dif-
ferent viewpoint of an object (seeExperiments in Sect. 6.4.3).

The parameters of the mixture components {Am
y } need to

be learned in an EM-type manner by iterating between esti-
mating the assignment variables V and maximum likelihood
estimation of {Am

y }. We discuss how this process can be per-
formed in a neural network in Sect. 5.2.

3.3 OcclusionModeling

Following the approach presented in Kortylewski (2017),
compositional models can be augmented with an occlusion
model. The intuition behind an occlusionmodel is that at each
position i in the image either the object model p( fi |Am

i,y,Λ)
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or an occluder model p( fi |β,Λ) is active (note that this is
closely related to robust statistics (Huber 2011)):

p(F |θmy , β) =
∏

i

p( fi , z
m
i = 0)1−zmi p( fi , z

m
i = 1)z

m
i , (6)

p( fi , z
m
i = 1) = p( fi |β,Λ) p(zmi = 1), (7)

p( fi , z
m
i = 0) = p( fi |Am

i,y,Λ) (1 − p(zmi = 1)). (8)

The binary variables Zm = {zmi ∈ {0, 1}|i ∈ P} indicate if
the object is occluded at position i for mixture component
m. The occlusion prior p(zmi = 1) is fixed a-priori. We use
a mixture of several occluder models that are learned in an
unsupervised manner:

p( fi |β,Λ) =
∏

n

p( fi |βn,Λ)τn (9)

=
∏

n

(∑

k

βn,k p( fi |σk, μk)
)τn

, (10)

where {τn ∈ {0, 1},∑n τn = 1} indicates which occluder
model explains the data best. Note that the model parameters
β are independent of the position i in the feature map and
thus the model has no spatial structure.

Theparameters of the occludermodelsβn are learned from
clustered features of random natural images that do not con-
tain any object of interest (see Fig. 3a). Hence, the mixture
coefficients βn,k intuitively describe the expected activation
of μk in regions of natural images. While it is possible to
use just a single occluder model (Kortylewski et al. 2020b),
we found that having a mixture model slightly increases
the classification performance and the occluder localization
performance. The reason is that different occluder models
can focus at explaining part distributions for different typi-
cal regions in images e.g. uniform colored image patches or
textured regions. We illustrate this in Fig. 3b by visualizing
patches from the training data in Fig. 3a that have the highest
likelihood for five different occluder models. Note that the
purpose of the occluder models is not to be purely specific
to one particular texture type, they also need to be general
enough to explain a variety of local image patterns which the
object model (Eq. 1) is not able to explain well. Therefore,
there is a trade-off between specificity and generality of the
occluder models. We found that using five models balances
this trade-off well.

4 Object Detection with CompositionalNets

Object detection involves the estimation of the object class,
the object center, and the object scale (a bounding box around
the object). We find that partial occlusion can have signif-
icant negative effects on all three tasks. In the following

Fig. 3 The occluder models are learned from natural images (a). Note
that no target object is present in any of these images. b Illustrates
patches from the training data in (a) that have the highest likelihood for
each of five occluder models. Note how some models focus more on
uniform colored patches while others focus more on textured patches

section, we generalize CompositionalNets to enable robust
object detection under partial occlusion.We first discuss how
CompositionalNets can be generalized to locate objects in
images by introducing a detection layer (Sect. 4.1). Subse-
quently, we show how robust bounding box estimates can be
obtained with an advanced compositional voting mechanism
in Sect. 4.2. Finally, we discuss the importance of separat-
ing the representations of objects and their context in object
detection, and show how this can be achieved with Compo-
sitionalNets in Sect. 4.3.

4.1 CompositionalNets for Object Localization

A natural way of generalizing CompositionalNets to object
detection is to combine them with region proposal networks
(RPNs). However, RPNs are typically trained end-to-end
and therefore cannot predict the bounding box of strongly
occluded objects reliably (see our experiments in Sect. 6.3).
Figure 4 illustrates this limitation by depicting the detec-
tion results of Faster R-CNN trained with CutOut (DeVries
and Taylor 2017) (red box) and a combination of RPN and
CompositionalNet (yellow box). We address this limitation
by generalizing CompositionalNets to object localization. In
particular, we introduce a detection layer that accumulates
votes for the object center for all mixtures m over the posi-
tions i in the feature map F . In order to achieve this, we
compute the object likelihood in a scanning window man-
ner. Thus, we shift the feature map, w.r.t. the object model
along all points i from the 2D lattice of the feature map. This
process will generate a spatial likelihood map:

R = {p(Fi |Θy)|∀i ∈ P}, (11)
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Fig. 4 Example of robust bounding box voting results. Blue box:
Ground truth. Red box: Bounding box by Faster R-CNN. Yellow box:
RPN+CompNet. Green box: CompNet + part-based bounding box vot-
ing. Our proposed part-based voting mechanism generates probability
maps (right) for the object center (cyan point), the top left corner (purple
point) and the bottom right corner (yellow point) of the bounding box.
The final bounding box estimate is generated by combining the voting
results

where Fi denotes the feature map centered at the position
i . Using this simple generalization we can perform object
localization by selecting all maxima in R above a threshold
t after non-maximum suppression. Our proposed detection
layer can be implemented efficiently on modern hardware
using convolution-like operations (see Sect. 6.3 for more
details).

4.2 Robust Compositional Bounding-BoxVoting

While CompositionalNets can be generalized to localize par-
tially occluded objects using our proposed detection layer,
estimating the bounding box of an object under occlusion
is more difficult because a significant amount of the object
might not be visible (Fig. 4). We solve this problem by
generalizing the part-based voting mechanism in Compo-
sitionalNets to vote for the bounding box corners in addition
to voting for the object center. In this way, we can leverage
the viewpoint-specific spatial distribution of part activa-
tions for bounding-box estimation. This makes the process
highly robust to missing parts. In particular, we learn addi-
tional mixture components that model the expected feature
activations around bounding box corners p(Fi |Θc

y), where
c = {ct, br , tl} are the object center ct and two opposite
bounding box corners {br , tl}. Figure 4 illustrates the spatial
likelihoodmaps Rc of all threemodels.We generate a bound-
ing box using the two points that have maximal likelihood.
Note how in Fig. 4 the bounding box can be localized accu-
rately, despite the partial occlusion of the object. We discuss
how the model can be learned in an end-to-end manner in
Sect. 5.3.

=0.5
=0.2

Fig. 5 Influence of context in airplane detection under occlusion. Blue
box: Ground truth. Orange box: Bounding box of CompositionalNets
(ω = 0.5). Green box: Bounding box of Context-aware Composition-
alNets (ω = 0.2). Probability maps of the object center are on the right.
Note how reducing the influence of the context improves the localization
response

4.3 Context-Aware CompositionalNets

While in image classification, the object of interest often
dominates a large part of the image, in object detection the
object is embedded in a larger context that is often biased in
the training data (e.g. airplanes often have blue background).
This gives rise to a critical problem when aiming to detect
partially occluded objects. Intuitively, the objects’ context
can be useful for recognizing objects due to biases in the
data. However, relying too strongly on context can be mis-
leading, because if objects are strongly occluded (Fig. 5) the
detection thresholds must be lowered. This, in turn, increases
the influence of the objects context and leads to false-positive
detections in regions with no object. Hence, it is important
to have control over the influence of contextual cues on the
detection result.

We overcome this issue by explicitly separating the rep-
resentation of the context from that of the object, to control
the influence of the contextual information on the detection
result. In particular, we represent the feature map F as a
mixture of two models:

p( fi |Am
i,y, χ

m
i,y,Λ) = ω p( fi |χm

i,y,Λ)

+ (1 − ω)p( fi |Am
i,y,Λ). (12)

Here {Am
i,y, χ

m
i,y} are the parameters of the context-aware

model that is defined to be a mixture of vMF likelihoods
(Eq. 2). The parameter ω controls the trade-off between con-
text and object, and is fixed a-priori at test time. Note that
setting ω = 0.5 retains the CompositionalNet as proposed in
Sect. 3 as the context and object would be weighted equally.
Figure 5 illustrates the benefits of reducing the influence
of the context on the detection result under partial occlu-
sion. The context parameters χm

i,y and object parametersAm
i,y

can be learned from the training data using maximum like-
lihood estimation, assuming a binary assignment πi of the
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Fig. 6 Context segmentation results. A standard CompositionalNet
learns a joint representation of the image including the context. Our
context-aware CompositionalNet will separate the representation of the
context from that of the object based on the illustrated segmentation
masks

feature vectors fi in the training data to either the con-
text or the object. To obtain this binary assignment, we
need to segment the training images into context and object
based on the available bounding box annotation. We do so,
by assuming that any feature vector with a receptive field
outside of the scope of the bounding boxes can be consid-
ered to be context. Based on this assumption, we cluster
the context features using K-means++ (Arthur and Vassilvit-
skii 2007) to generate a dictionary of context feature centers
C = {Cq ∈ R

D|q = 1, . . . , Q}. We apply a threshold on
the cosine similarity s(C, fi ) = maxq [(CT

q fi )/(
∥∥Cq

∥∥ ‖ fi‖)]
to segment the context and the object in any given training
image (Fig. 6).

5 End-to-End Training of CompositionalNets

In the following, we show how inference in Composition-
alNets can be formulated as feed-forward neural network
(Sect. 5.1) anddiscuss howCompositionalNets canbe trained
end-to-end for image classification (Sect. 5.2) and object
detection (Sect. 5.3).

5.1 Inference as Feed-Forward Neural Network

The computational graph of our proposed fully generative
compositionalmodel is acyclic.Hence,we can perform infer-
ence in a single forward pass as illustrated in Fig. 7. We use
a standard DCNN backbone to extract a feature representa-
tion F = ψ(I ,Ω) ∈ R

H×W×D from the input image I ,
where Ω are the parameters of the feature extractor (pur-
ple tensor in Fig. 7). The pipeline after the feature extractor
illustrates the computation of the model likelihood p(Fi |Θ)

when the model is centered at position i in the feature map
(illustrated by the dotted black square on the feature tensor
F). For image classification, the model will always be posi-
tioned at the image center, whereas for object detection, the
model will be evaluated at every position in F (as defined

in Eq. 11). We omit the subscript in Fi in the following for
notational clarity.

After feature extraction themodel computes the vMF like-
lihood function p( fi |λk) (Eq. 4). The function is composed
of two operations: An inner product bi,k = μT

k fi and a non-
linear transformation N = exp(σkbi,k)/Z(σk). Since μk is
independent of the position i , computing bi,k is equivalent to
a 1×1 convolution of F withμk . Hence, the vMF likelihood
(Fig. 7 yellow tensor) can be computed by :

L = {N (F ∗ μk)|k = 1, . . . , K } ∈ R
H×W×K . (13)

The mixture likelihoods p( fi |Am
i,y, χ

m
i,y,Λ) (Eq. 12) are

computed for every position i as a dot-product between the
mixture coefficients {Am

i,y, χ
m
i,y} and the corresponding vec-

tor li ∈ R
K from the vMF likelihood tensor L:

Em
y = {(1 − ω)lTi Am

i,y + ωlTi χm
i,y |∀i ∈ P} ∈ R

H×W , (14)

(Fig. 7 blue planes). Similarly, the occlusion likelihood canbe
computed as O = {maxn lTi βn|∀i ∈ P} ∈ R

H×W (Fig. 7 red
plane). Together, the occlusion likelihood O and the mixture
likelihoods {Em

y } are used to estimate the overall likeli-
hood of the individual mixtures as smy = log p(F |θmy , β) =∑

i max(Em
i,y, Oi ). The final model likelihood is computed

as sy = log p(F |Θy) = maxm smy and the final occlusion
map is selected accordingly as Zy = Zm̄

y ∈ R
H×W where

m̄ = argmaxms
m
y .

5.2 End-to-end Training for Image Classification

Our model is fully differentiable and can be trained end-
to-end using backpropagation. In our image classification
experiments, context-awareness does not have a significant
influence as the background is largely cropped out. There-
fore, we use CompositionalNets as defined in Sect. 3 for
image classification. Hence, the trainable parameters of a
CompositionalNet are T = {Λ,Ay}. We optimize those
parameters jointly using stochastic gradient descent. The loss
function is composed of three terms:

L(y, y′, F, T ) = Lclass(y, y
′) + γ1Lvm f (F,Λ) (15)

+ γ2Lmix (F,Ay). (16)

Lclass(y, y′) is the cross-entropy loss between the network
output y′ and the true class label y. We use a temperature

T in the softmax classifier: f (y)i = eyi ·T
Σi eyi ·T

, with T = 2.

Lvm f and Lmix regularize the parameters of the composi-
tional model to have maximal likelihood for the features in
F . The parameters {γ1, γ2} control the trade-off between the
loss terms.
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Fig. 7 Feed-forward inference with a context-aware Compositional-
Net. A DCNN backbone is used to extract the feature map F , followed
by a convolution with the vMF kernels {μk} and a non-linear vMF
activation function N (·). The resulting vMF likelihood L is used to
compute the occlusion likelihood O using the occluder kernels {βn}.
Furthermore, L is used to compute the context-aware mixture likeli-

hoods {Em
y } using themixturemodels of the object {Am

y } and the context
{χm

y }. O and {Em
y } compete in explaining L (red box) and are combined

to compute an occlusion robust score {smy }. The binary occlusion maps
{Zm

y } indicate which positions in L are occluded. The final class score
sy is computed as sy = maxm smy and the occlusion map Zy is selected
accordingly

The vMF cluster centersμk are learned bymaximizing the
vMF-likelihoods (Eq. 4) for the feature vectors fi in the train-
ing images. We keep the vMF variance σk constant, which
also reduces the normalization term Z(σk) to a constant. We
assume a hard assignment of the feature vectors fi to the
vMF clusters during training. Hence, the free energy to be
minimized for maximizing the vMF likelihood (Wang et al.
2017) is:

Lvm f (F,Λ) = −
∑

i

max
k

log p( fi |μk) (17)

= C
∑

i

max
k

μT
k fi , (18)

where C is a constant. Intuitively, this loss encourages the
cluster centers μk to be similar to the feature vectors fi .

In order to learn the mixture coefficients Am
y we need to

maximize the model likelihood (Eq. 5). We can avoid an
iterative EM-type learning procedure by making use of the
fact that the the mixture assignment νm and the occlusion
variables zi have been inferred in the forward inference pro-
cess. Furthermore, the parameters of the occluder model are
learned a-priori and then fixed. Hence the energy to be min-
imized for learning the mixture coefficients is:

Lmix (F,Ay) = −
∑

i

(1 − z↑i ) log
[∑

k

αm↑
i,k,y p( fi |λk)

]

(19)

Here, z↑i and m↑ denote the variables that were inferred in
the forward process (Fig. 7).

5.3 Training CompositionalNets for Object Detection

For object detection, we train context-aware Compositional-
Nets as proposed in Sect. 4. The trainable parameters of the
model are T c = {Λ, {Ac

y}, {χc
y }} where c ∈ {ct, br , tl}. The

loss function has three main objectives. The model should
explain data with maximal likelihood (Lg), while also local-
izing (Ldetect ) and classifying (Lclass) the object accurately
in the training images.:

L = Lclass(y, y
′) + ε1

∑

c

(
Lg(F

c, T c) (20)

+ ε2Ldetect (Ŝ
c, S̄c, F, T c)

)
, (21)

where ε1, ε2 control the trade-off between the loss terms.
While Lg is learned from images Î c with feature maps Fc

that are centered at c ∈ {c, bl, tr}, the other losses are learned
from unaligned training images I with feature maps F .

Generative Regularization The model is regularized to
be generative in terms of the neural feature activations by
optimizing:

Lg(F
c, T ) =Lvm f (F

c,Λ) (22)

+
∑

i

Lcon( f
c
i ,Ac

i,y, χ
c
i,y), (23)

where Lvm f (Fc,Λ) is defined in Eq. 17 and the parame-
ters of the context-aware model Ac

y and χc
y are learned by

optimizing the context loss:

Lcon( f
c
i ,Ac

i,y, χ
c
i,y) = πiLmix ( f

c
i ,Ac

i,y) (24)

+ (1 − πi )Lmix ( f
c
i , χc

i,y). (25)
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Here, πi ∈ {0, 1} is a context assignment variable that indi-
cates if a feature vector fi belongs to the context or to the
object model and Lmix is defined in Eq. 19. We estimate the
context assignments a-priori using a simple binary segmen-
tation as described in Sect. 4.3.

Localization and Bounding Box EstimationWe denote
the normalized response map of the ground truth class as
Ŝc ∈ R

H×W and the ground truth annotation as S̄c ∈ R
H×W .

The elements of the response map are computed as:

ŝci = si,m̂∑
i si,m̂

, m̂ = argmax
m

max
i

p( fi |Am
i,y, χ

m
i,y,Λ). (26)

The ground truth map S̄c is a binary map where the ground
truth position ī is set to S̄c(ī) = 1 and all other entries are
set to zero. The detection loss is then defined as:

Ldetect (Ŝ
c, S̄c, F, T c) = 1 − 2 · Σi (ŝci · s̄ci )∑

i ŝ
c
i + ∑

i s̄
c
i
. (27)

6 Experiments

We give an overview of the datasets used for evaluation and
the training setup in Sect. 6.1. Subsequently, we extensively
evaluate our model at image classification and object detec-
tion of partially occluded objects in Sects. 6.2 & 6.3. Finally,
we show that CompositionalNets are human interpretable,
as their predictions can be understood in terms of occluder
localization (Sect. 6.4.1), object part detection (Sect. 6.4.2)
and object pose estimation (Sect. 6.4.3). The code for basic
CompositionalNets as originally introduced in Kortylewski
et al. (2020a) is publicly available 1.

6.1 Datasets and Training Setup

Datasets for Image ClassificationWe evaluate our model on
the Occluded-P3D+-Vehicles dataset as proposed in Wang
et al. (2017) and extended in Kortylewski et al. (2020b). The
dataset is based on images of vehicles from the PASCAL3D+
dataset (Xiang et al. 2014) that were synthetically occluded
with four different types of occluders: segmented objects as
well as patches with constant white color, random noise and
textures (see Fig. 8a for examples). The amount of partial
occlusion of the object varies in four different levels: 0%
(L0), 20-40% (L1), 40-60% (L2), 60-80% (L3).

Furthermore, we introduce a dataset with images of
real occlusions which we term Occluded-COCO-Vehicles.
It contains the same classes as the Occluded-P3D+-Vehicles
dataset. The dataset was generated by categorizing objects
from the MS-COCO (Lin et al. 2014) into the four occlusion

1 https://github.com/AdamKortylewski/CompositionalNets

levels as defined in the Occluded-P3D+-Vehicles dataset. To
achieve this, we relate the amount of object that is visible in
the MS-COCO images to the one from the Occluded-P3D+-
Vehicles based on the segmentation masks that are available
in both datasets. The numbers of test images for each occlu-
sion level are: 2036 (L0), 768 (L1), 306 (L2), 73 (L3). For
training purpose,wedefine a separate training dataset of 2036
images from level L0. Figure 8b illustrates some example
images from this dataset.

While the current generation of CompositionalNets has
been primarily developed for recognizing a smaller number
of vehicle-typeobjects,we alsowant to study ifComposition-
alNets retain their robustness to partial occlusion even when
tested at a larger scale with non-vehicle type objects. For this,
we introduce the Occluded-ImageNet dataset. In particular,
we select different numbers of classes {25, 50, 100} from the
ImageNet dataset (Deng et al. 2009) to study the influence
of the dataset scale on the performance. We crop the objects
from the training images with available annotation to make
our results comparable to the Occluded-P3D+-Vehicles and
Occluded-COCO-Vehicles data. We randomly split the data
into 50 test images per class and assign the remaining images
to the training data. This results in {12241, 25120, 49263}
training and {1250, 2500, 5000} test images for the different
sized subsets.We artificially occlude the test images by using
segmented objects from the MS-COCO dataset. Note that to
simulate occlusion, we only use those object classes from
MS-COCO that do not overlap with the ImageNet classes.
The amount of partial occlusion of the object varies in four
different levels (L0, L1, L2, L3) as in the Occluded-P3D+-
Vehicles dataset.

Datasets forObjectDetectionTheobject detectiondatasets
are defined in a similar way as the classification data. We
synthesize an Occluded-P3D+-Vehicles-Detection dataset,
which contains vehicles at a certain scale and various levels
of occlusion. The occluders, which include humans, animals
andplants, are cropped from theMS-COCOdataset (Lin et al.
2014). In an effort to accurately depict real-world occlusions,
we superimpose the occluders onto the object, such that the
occluders are placed not only inside the bounding box of the
objects but also on the background.Wegenerate the dataset in
a total of 9 occlusion levels along two occlusion dimensions:
We define three levels of occlusion of the object (FG-L1: 20–
40%, FG-L2:40–60% and FG-L3:60–80% of the object area
is occluded). Furthermore,we define three levels of occlusion
of the context around the object (BG-L1: 0–20%,BG-L2:20–
40% and BG-L3:40–60% of the context area is occluded).
Example images are shown in Fig. 8c. In order to evaluate
the tested models on real-world occlusions, we test them on
the subset of the MS-COCO dataset as defined for classifi-
cation (Fig. 8d).

Model Initialization We initialize the vMF kernels {μk}
and the mixture components {Ay, χy} by maximum like-
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Fig. 8 Example images of partially occluded objects for image classification (a, b) and object detection (c, d), with artificial occlusion (a, c) and
real occlusion (b, d)

lihood estimation after clustering the training data. We
compute the mixture assignments using spectral clustering
with the hamming distance between vMF kernel activations
in the pool4 layer in VGG-16 of all training images. The intu-
ition is that objects with a similar viewpoint and 3D structure
will have similar vMF activation patterns, and thus should be
assigned to the same mixture component.

Training Setup for Classification We train Composition-
alNets from the feature activations of the layer before the
classifier for several popular DCNNs: VGG-16 (Simonyan
andZisserman 2014), ResNet50 (He et al. 2016) andResNext
(Xie et al. 2017). All models were pretrained on Ima-
geNet(Deng et al. 2009). We set the vMF variance to σk =
30,∀k ∈ {1, . . . , K }. We train the parameters of the gen-
erative model {{μk}, {Ay, χy}} using backpropagation and
keep the parameters of the backbone Ω fixed (training Ω

did not have significant effects on the results). We learn the
parameters of n = 5 occluder models {β1, . . . , βn} in an
unsupervisedmanner as described in Sect. 3.1 and keep them
fixed throughout the experiments. We set the number of mix-
ture components to M = 4. The mixing weights of the loss
are set to: γ1 = 3.0, γ2 = 3.0. We train for 50 epochs using
stochastic gradient descent with momentum r = 0.9 and a
learning rate of lr = 0.01. Our reported parameter settings
are very general as they are fixed in all our experiments even
for different datasets.

Training Setup for Object DetectionWe optimize the loss
described in Eq. 20, with ε1 = 0.2 and ε2 = 0.4. We apply
the Adam Optimizer (Kingma and Ba 2014) with different
learning rates on different parts of the network: lrvMF =
2 · 10−5, lrmix model = lrcorner model = 5 · 10−5. The model
is trained for a total of 2 epochs with 10,600 iteration per
epoch. The training takes three hours in total on a machine
with 4 Nvidia TITAN Xp GPUs.

Runtime Empirically, we find that for classification the
training and inference time increase by a factor of 2–3
depending on the backbone when compared to a standard
network with fully-connected classification head. However,
note that we have not invested into optimizing the training or

inference time of our model, whereas the runtime of standard
models has been extensively optimized by hardware compa-
nies and the vision community.

6.2 Image Classification Under Occlusion

Occluded-P3D+ Table 1 reports the results of VGG-16,
ResNet50 and ResNext that were fine-tuned with the respec-
tive training data. Furthermore, we show the results of
dictionary-based compositional models (CoD) (Kortylewski
et al. 2020b) and TDAPNet (Xiao et al. 2019).We also report
CompositionalNets learned from the pool4 and pool5 layer
of the VGG-16 network respectively (CompNet-VGG-[p4 &
p5]) and CompositionalNets learned from features of the last
residual block (RB4) of ResNet50 (CompNet-Res50) and
both the last (RB4) and second last (RB3) residual block
of ResNext (CompNet-RXT). In this setup, all models are
trained with non-occluded images (L0), while at test time
the models are exposed to images with different amount of
partial occlusion (L0-L3).

Overall, we observe that DCNNs do not generalize well
to out-of-distribution examples in terms of partial occlu-
sion. They perform well on the type of data that they were
exposed to during training (L0) and generalize to a limited
extent away from it (L1). However, their performance col-
lapses when objects are strongly occluded (L3).

In contrast, we observe that CompositionalNets general-
ize very well even under strong occlusion. Moreover, using
the higher layers of more powerful residual backbones also
significantly increases the performance of Compositional-
Nets. We also observe that CompNets learned from the RB3
layer of ResNext perform significantly worse, compared to
those learned from RB4 (−5.3% on average). In contrast,
CompNets learned from pool4 of VGG still give comparable
results pool5. We conjecture from this observation that the
additional convolutional and residual layers in RB4 are of
critical importance for the ResNext backbone.

Occluded MS-COCO Table 2 shows classification results
under a realistic occlusion scenario by testing on the
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Table 1 Classification results for vehicles of PASCAL3D+with different levels of artificial occlusion (0%, 20–40%, 40–60%, 60–80% of the object
are occluded) and different types of occlusion (w=white boxes, n=noise boxes, t=textured boxes, o=natural objects)

PASCAL3D+ Vehicles Classification under Occlusion

Occ. Area L0: 0% L1: 20–40% L2: 40–60% L3: 60–80% Mean

Occ. Type – w n t o w n t o w n t o

VGG 99.2 96.9 97.0 96.5 93.8 92.0 90.3 89.9 79.6 67.9 62.1 59.5 62.2 83.6

Resnet50 99.1 96.8 96.8 96.8 91.0 91.6 91.5 91.8 73.4 66.1 69.2 71.4 58.3 84.1

ResNext 99.7 98.7 98.5 98.4 94.5 94.5 93.4 92.3 76.7 68.0 62.8 51.2 55.9 83.4

CoD(Kortylewski et al. 2020b) 92.1 92.7 92.3 91.7 92.3 87.4 89.5 88.7 90.6 70.2 80.3 76.9 87.1 87.1

TDAPNet (Xiao et al. 2019) 99.3 98.4 98.9 98.5 97.4 96.1 97.5 96.6 91.6 82.1 88.1 82.7 79.8 92.8

CompNet-VGG-p4 97.4 96.7 96.0 95.9 95.5 95.8 94.3 93.8 92.5 86.3 84.4 82.1 88.1 92.2

CompNet-VGG-p5 99.3 98.4 98.6 98.4 96.9 98.2 98.3 97.3 88.1 90.1 89.1 83.0 72.8 93.0

CompNet-Res50-RB4 99.3 98.7 98.7 98.5 96.9 96.9 97.2 96.9 88.7 86.1 83.6 79.4 72.9 91.8

CompNet-RXT-RB3 98.1 95.9 96.3 96.3 94.6 92.1 93.5 92.7 87.4 76.1 80.1 75.2 76.4 88.8

CompNet-RXT-RB4 99.7 99.3 99.0 99.2 98.0 98.2 97.0 97.5 93.0 90.3 83.8 84.7 83.3 94.1

The best performing method for each experiment is highlighted in bold
CompositionalNets learned from several DCNN backbones (VGG-16, ResNet50,ResNext) outperform related approaches and their non-
compositional versions significantly

Table 2 Classification results for vehicles of MS-COCO with different levels of real occlusion (L0: 0%,L1: 20–40%,L2 40–60%, L3:60–80% of
the object are occluded)

MS-COCO Vehicles Classification under Occlusion

Train Data PASCAL3D+ MS-COCO MS-COCO + CutPaste

Occ. Area L0 L1 L2 L3 Avg L0 L1 L2 L3 Avg L0 L1 L2 L3 Avg

VGG 97.8 86.8 79.1 60.3 81.0 99.1 88.7 78.8 63.0 82.4 99.3 92.3 89.9 80.8 90.6

ResNet50 98.5 89.6 84.9 71.2 86.1 99.6 92.7 86.9 67.1 86.6 99.6 94.1 92.5 84.9 92.8

ResNext 98.7 90.7 85.9 75.3 87.7 99.5 92.9 87.6 73.9 88.5 99.6 94.5 93.1 89.0 94.1

CoD 91.8 82.7 83.3 76.7 83.6 – – – – – – – – – –

TDAPNet 98.0 88.5 85.0 74.0 86.4 99.4 88.8 87.9 69.9 86.5 98.1 89.2 90.5 79.5 89.3

CompNet-VGG-p4 96.6 91.8 85.6 76.7 87.7 97.7 92.2 86.6 82.2 89.7 98.3 93.8 88.6 84.9 91.4

CompNet-VGG-p5 98.2 89.1 84.3 78.1 87.5 99.1 92.5 87.3 82.2 90.3 99.4 93.9 90.6 90.4 93.5

CompNet-Res50-RB4 98.5 92.6 88.9 83.6 90.9 99.2 95.2 91.8 89.0 93.8 99.0 95.2 93.4 89.0 94.2

CompNet-RXT-RB3 97.5 91.7 82.3 73.2 86.2 98.2 93.1 84.1 83.6 89.8 98.7 93.8 87.3 84.9 91.2

CompNet-RXT-RB4 98.8 94.0 93.5 87.7 93.5 99.0 94.8 93.5 91.8 94.8 99.0 95.0 94.1 91.8 95.0

The best performing method for each experiment is highlighted in bold
The training data consists of images from: PASCAL3D+, MS-COCO as well as data from MS-COCO that was augmented with data augmentation
in terms of partial occlusion. On average, CompositionalNets outperform their non-compositional versions and related work in all test cases

Occluded-COCO-Vehicles dataset. The models in the first
part of the Table (PASCAL3D+) are trained solely on non-
occluded images of the PASCAL3D+ data. We can observe
that from all standard DCNNs VGG-16 transfers the worst to
the MS-COCO data, while ResNet50 and ResNext general-
ize better, in particular to strongly occluded objects. ResNext
even outperforms the recently proposed TDAPNet that was
specifically designed for image classification under occlu-
sion. CompositionalNets consistently outperform non-
compositional DCNNs by a large margin, highlighting
the generality of our approach. In particular, CompNet-

ResNext-RB4 can generalize very strongly from training
on non-occluded PASCAL3D+ data to strongly occluded
objects from MS-COCO.

The second part of the table (MS-COCO) shows the clas-
sification performance after fine-tuning on the non-occluded
training set of the Occluded-COCO-Vehicles dataset. A
common pattern of all three standard DCNNs is that their
performance increases for low occlusion (L0 − 2) while it
decreases for stronger occlusion (L3). In contrast, the per-
formance of the CompositionalNets increases substantially
after fine-tuning for all occlusion levels.
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Table 3 Classification results for different number of classes from ImageNet and different levels of artificial occlusion (L0: 0%,L1: 20–40%,L2
40–60%, L3:60–80% of the object are occluded)

ImageNet Classification under Occlusion

Number of classes 25 50 100

Occ. Area L0 L1 L2 L3 Avg L0 L1 L2 L3 Avg L0 L1 L2 L3 Avg

ResNext + CutOut 98.6 69.2 40.8 20.7 57.3 97.7 58.6 28.4 13.5 49.6 97.1 53.0 25.5 10.5 46.5

CompNet-ResNext-RB4-512 98.1 70.6 46.9 31.3 61.7 95.1 60.7 36.5 19.8 53.0 92.9 53.7 30.1 14.7 47.9

CompNet-ResNext-RB4-1024 97.2 69.8 45.9 29.1 60.5 95.4 61.3 37.0 21.2 53.7 94.2 56.1 32.6 16.0 49.7

The best performing method for each experiment is highlighted in bold
We compare a standard ResNext model trained with strong data augmentation in terms of CutOut with CompositionalNets that are learned from
a ResNext backbone with 512 and 1024 vMF kernels. CompositionalNets are more robust under strong occlusion in all experiments and stay
competitive in low occlusion scenarios

The third part of Table 2 (MS-COCO-CutPaste) shows
classification results after training with strong data augmen-
tation in terms of partial occlusion. In particular, we artifi-
cially occlude the non-occluded training images used in the
previous experiment with all four types of artificial occlud-
ers used in the Occluded-P3D+-Vehicles dataset. This data
augmentation increases the dataset by a factor of 5. From the
classification results, we can observe that data augmentation
increases the performance of theDCNNs significantly.VGG-
16 still suffers from strong occlusions. However, ResNet50
and particularly ResNext become significantly more robust
to occlusion. The performance of the CompositionalNets
learned from VGG-16 increases further when trained with
augmented data, whereas the ones learned from ResNet50
and ResNext only benefit slightly, while still outperforming
their non-compositional counterparts. Similar to the results
in Table 1, CompNet-ResNext-RB3 performs significantly
worse compared to CompNet-ResNext-RB4, highlighting
the importance of the last layers in the backbone of ResNext.
Interestingly, CompNet-ResNext-RB3 performs on par to
CompNet-ResNext-p4 under real occlusion,whereas it is less
robust to the artificial occluders (Table 1). This suggests that
the ResNext features have developed an invariance to par-
tial occlusion from the ImageNet pre-training that does not
transfer aswell to artificial occlusion.We discuss this inmore
detail in Sect. 6.4.1.

Occluded ImageNet Table 3 shows classification results
for larger scale experiments with non-vehicle objects on
the Occluded-ImageNet dataset. We compare a standard
ResNext model trained with strong data augmentation using
CutOut (DeVries and Taylor 2017) with CompositionalNets
learned from a ResNext backbone that were trained with
non-augmented images only. We also test Compositional-
Nets with 512 and 1024 vMF kernels. We observe that
CompositionalNets are more robust under strong occlusion
in all experiments and stay competitive in low occlusion
scenarios. The CompositionalNet performance decreases
slightly on non-occluded images in the 100 class exper-

iment (ResNext+CutOut: 97.1; CompNet-ResNext-1024:
94.2). However, CompositionalNets perform better under
any amount of partial occlusion even for this large set of
non-vehicle objects.

Furthermore, we observe that the number of vMF ker-
nels does not have a critical influence on the performance.
This highlights the advantage of the compositional represen-
tation which enables an efficient sharing of the vMF kernels
among the different classes. Nevertheless, we can observe
that increasing the number of vMF kernels has a positive
effect on the performance for higher number classes, because
the model can represent the objects more accurately when
more parts are available.

Overall, we can observe that CompositionalNets are
already capable to generalize to large amounts of non-vehicle
classes, while retaining their robustness to partial occlusion.
This is a very promising result considering that the design of
our probabilistic compositional model is particularly suited
for the robust analysis of rigid objects such as vehicles. We
expect improvements by investigating how Compositional-
Nets could better model articulated objects such as animals.

Summary of Classification Experiments All classification
experiments clearly highlight the robustness ofComposition-
alNets at classifying partially occluded objects, while also
being highly discriminative when objects are not occluded.
Overall, CompositionalNets learned from several popular
DCNNs show a significantly improved generalization perfor-
mance compared to non-compositional DCNNs under artifi-
cial as well as real occlusion. Notably, CompNet-ResNext
trained from non-occluded PASCAL3D+ data performs
essentially on par with the best DCNN (ResNext) trained
from strongly augmented MS-COCO images. This high-
lights the data efficiency and strong generalization ability of
CompositionalNets. Furthermore, we observe that Composi-
tionalNets have a lot of potential for large-scale classification
tasks with non-vehicle type objects.
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Table 4 Ablation study for the generative regularization of a CompositionalNet learned from the features of the last residual block (RB4) of
ResNext

Ablation Study on PASCAL3D+ Vehicles Classification under Occlusion

Occ. Area L0: 0% L1: 20–40% L2: 40–60% L3: 60–80% Mean

Occ. Type – w n t o w n t o w n t o

CompNet-ResNext initialization 98.1 95.8 96.0 95.6 91.3 91.7 91.8 91.7 80.8 75.7 77.2 77.1 67.9 87.0

CompNet-ResNext γ1 = 0, γ2 = 0 99.5 98.3 97.8 98.0 95.0 94.5 92.9 92.6 81.7 71.0 59.0 59.0 58.3 84.4

CompNet-ResNext γ1 = 0, γ2 = 3 99.6 97.7 96.5 97.4 93.6 95.0 91.4 93.8 86.8 87.0 75.3 80.0 77.6 90.1

CompNet-ResNext γ1 = 3, γ2 = 0 99.9 99.2 98.8 98.9 97.5 97.5 95.6 96.5 92.8 87.8 78.4 81.9 83.9 93.0

CompNet-ResNext γ1 = 3, γ2 = 3 99.7 99.3 99.0 99.2 98.0 98.2 97.0 97.5 93.0 90.3 83.8 84.7 83.3 94.1

The best performing method for each experiment is highlighted in bold
The results highlight the importance of maximum likelihood regularization of both the vMF kernels and the mixture models

6.2.1 Ablation Study

In Table 4 we show the results of an ablation study using a
CompositionalNet learned from a ResNext backbone. After
initialization, the CompositionalNet achieves an average per-
formance of 87% and hence already outperforms a standard
ResNext architecture by 3.6%on average.Note that theCom-
positionalNet at this point is not as discriminative at L0 and
performs on par at L1, while significantly outperforming
ResNext at L2 and L3.

When theparameters of the vMFkernels andmixture com-
ponents are not regularized during training (γ1 = 0, γ2 = 0)
the overall performance decreases. In particular, the Compo-
sitionalNet becomes more discriminative for the type of data
it has observed at training time (L0) and cannot generalize
well to stronger occlusion. Hence, it behaves as one would
expect from a standard DCNN.

Regularizing only the mixture components to maximize
the likelihood of the vMFkernel activations (γ1 = 0, γ2 = 3)
increases the performance in all experiments. In particu-
lar, the end-to-end training makes CompositionalNets highly
discriminative for the within-distribution-data (L0) while
preserving strong generalization performance for out-of-
distribution data (L1− L3). Similarly, regularizing only the
vMF kernels to maximize the likelihood of the ResNext
features (γ1 = 3, γ2 = 0) also increases performance for
all experiments significantly for non-occluded as well as
strongly occluded data. The best performance is achieved
with a joint regularization of the vMF kernels and mixture
components (γ1 = 3, γ2 = 3).

6.2.2 Robustness throughMassive Data Augmentation

In Table 5 we evaluate the effect of data augmentation on the
robustness of standard neural networks to partial occlusion.
In particular, we train a ResNext model and evaluate it under
real occlusion on the occluded MS-COCO dataset. We use

Table 5 Effect of data augmentation on the classification performance
of a ResNext model for vehicles of MS-COCO with different levels
of real occlusion (L0: 0%,L1: 20–40%,L2 40–60%, L3:60–80% of the
object are occluded)

Data Augmentation for MS-COCO Occluded Vehicles

Occ. Area L0 L1 L2 L3 Avg

No Augmentation 99.5 92.9 87.6 73.9 88.5

CutMix 99.2 93.2 86.3 75.3 88.5

CutOut 99.3 94.6 89.9 79.5 90.8

CutPaste 99.6 94.5 93.1 89.0 94.1

AutoAugment+CutMix 99.2 93.8 87.3 78.8 89.8

AutoAugment+CutOut 99.3 95.2 91.5 83.6 92.4

AutoAugment+CutPaste 99.3 95.3 93.2 90.4 94.6

CompNet No Augmentation 99.0 94.8 93.5 91.8 94.8

The best performing method for each experiment is highlighted in bold
Data augmentation with partial occlusion is done with CutOut (DeVries
and Taylor 2017), CutMix (Yun et al. 2019), and our proposed Cut-
Paste. We further evaluate the effect of Auto-Augmentation (Cubuk
et al. 2018). Note that data augmentation can enhance the robustness to
partial occlusion significantly. However, a plain CompositionalNet with
ResNext backbone and no data augmentation still slightly outperforms
models trained with massive data augmentation

Auto-Augmentation (Cubuk et al. 2018) with the ImageNet
policy that was found in the original paper. Furthermore,
we test data augmentation in terms of partial occlusion using
CutOut (DeVries andTaylor 2017),CutMix (Yun et al. 2019),
and our proposed CutPaste augmentation. Note that CutOut
and CutPaste actively remove parts of the image and replace
it with irrelevant information (black patches in CutOut, and
segmented objects in CutPaste). Importantly, the labelling of
the image remains the same. In contrast, CutMix generates
images of hybrid objects by composing patches of images of
two different classes. The labelling of the resulting image in
the cross-entropy loss is changed accordingly to be a mixture
of the two classes. Note that CutOut and CutPaste simulate
partial occlusions more realistically because they add irrele-
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Table 6 Detection results on the Occluded-P3D+-Vehicles-Detection
dataset under different levels of occlusions. All models were trained on
non-occluded images of the PASCAL3D+ dataset except Faster R-CNN
with reg., which was trained with CutOut. The results are measured by

correct AP(%) @IoU0.5, which means only correct classified images
with I oU > 0.5 of the predicted bounding box are treated as true-
positive. Notice with ω = 0.5 the context-aware model reduces to a
CompositionalNet as proposed in Sect. 3

PASCAL3D+ Vehicles Detection under Occlusion

Occ. Area Foreground FG L0 FG L1 FG L2 FG L3 Mean

Occ. Area Background BG L0 BG L1 BG L2 BG L3 BG L1 BG L2 BG L3 BG L1 BG L2 BG L3 –

Faster R-CNN 98.0 88.8 85.8 83.6 72.9 66.0 60.7 46.3 36.1 27.0 66.5

Faster R-CNN with reg. 97.4 89.5 86.3 89.2 76.7 70.6 67.8 54.2 45.0 37.5 71.1

CompNet-VGG-p4-RPN ω = 0.5 74.2 68.2 67.6 67.2 61.4 60.3 59.6 46.2 48.0 46.9 60.0

CompNet-VGG-p4-RPN ω = 0 73.1 67.0 66.3 66.1 59.4 60.6 58.6 47.9 49.9 46.5 59.6

CompNet-VGG-p4 ω = 0.5 91.7 85.8 86.5 86.5 78 77.2 77.9 61.8 61.2 59.8 76.6

CompNet-VGG-p4 ω = 0.2 92.6 87.9 88.5 88.6 82.2 82.2 81.1 71.5 69.9 68.2 81.3

CompNet-VGG-p4 ω = 0 94.0 89.2 89.0 88.4 82.5 81.6 80.7 72.0 69.8 66.8 81.4

CompNet-ResNext-RB3 ω = 0.2 94.6 85.5 85.3 85.4 76.4 74.7 74.7 62.4 60.7 58.0 75.8

The best performing method for each experiment is highlighted in bold

vant clutter to an image that has no influence on the overall
image labeling. In contrast, CutMixgenerates unrealistic arti-
ficial images of hybrid objects and labels.

From the results in Table 5 we observe that CutPaste,
CutOut and CutMix all enhance the robustness to partial
occlusion. However, the methods have large differences in
terms of effectiveness. In the strongest level of occlusion
(L3), CutMix only gives small improvements of 1.4% over a
plainResNextmodel,whereasCutOut ismuchmore effective
with a 5.4% improvement. Our proposed CutPaste augmen-
tation is by far the most effective with 16.1% improvement in
absolute performance in the strongest occlusion level. Hence
we observe that CutOut and CutPaste are more effective in
enhancing occlusion robustness because they simulate partial
occlusion more realistically compared to CutMix. We also
observe that the performance of all models improves with
additional Auto-Augmentation. However, even with these
massive data augmentation techniques all models are still
slightly outperformed by a plain CompositionalNet that was
trained from non-occluded objects without any augmenta-
tion. Note that in addition to the strong robustness to partial
occlusion, CompositionalNets can localize occluders accu-
rately and are muchmore interpretable compared to standard
deep networks (Sect. 6.4).

6.3 Object Detection Under Occlusion

In this Section, we evaluate CompositionalNets at the task
of object detection. In the experiments, we use a context-
aware CompNet-VGG16-pool4 and a CompNet-ResNext-
RB3 because of their higher resolution compared to the other
types of backbones tested in image classification.

Occluded-P3D+ In Table 6, we report the results of
Faster-RCNN and CompositionalNets on the Occluded-
P3D+-Vehicles-Detection dataset. The models are trained on
the images from the original PASCAL3D+ dataset with non-
occluded objects. Qualitative detection results are illustrated
in Fig. 9.

We observe that Faster R-CNN fails to detect strongly
occluded objects reliably, while it performs well under low
levels of occlusion. When trained with strong data augmen-
tation in terms of partial occlusion using CutOut (DeVries
and Taylor 2017), the detection performance increases under
strong occlusion. However, the model still suffers from a
59.9% drop in performance on strong occlusion, compared
to the non-occlusion setup. We suspect that the inaccurate
prediction is because of two major factors. (1) The Region
Proposal Network (RPN) in the Faster R-CNN is not able
to predict accurate proposals of objects that are heavily
occluded. (2) The VGG-16 classifier cannot successfully
classify valid object regions under heavy occlusion.

We proceed to investigate the performance of the region
proposals on occluded images. We conduct this experiment
by replacing the VGG-16 classifier in the Faster R-CNN
with a CompositionalNet classifier that is learned from the
pool4 layer of VGG, which is expected to be more robust to
occlusion. Based on the results in Table 6 (CompNet-VGG-
p4-RPN), we observe two phenomena. (1) In high levels
of occlusion, the performance is better than Faster R-CNN.
Thus, the CompositionalNet generalizes to heavy occlusions
better than the VGG-16 classifier. (2) In low levels of occlu-
sion, the performance is worse than Faster R-CNN.

The Importance of Spatial Alignment in composition-
alNets Recall that in the classification experiments, we
observed that CompositionalNets are robust to occlusion
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Fig. 9 Qualitative detection results on images with synthetic and real occlusion. Blue box: Ground truth. Red box: Bounding box by Faster R-CNN.
Yellow Box: RPN+CompositionalNet. Green box: CompositionalNet + robust bounding-box voting

Table 7 Detection results on the Occluded-COCO-Vehicles-Detection
dataset, measured by AP(%) @IoU0.5

MS-COCO Vehicles Detection under Occlusion

Occ. Area L0 L1 L2 L3 Avg

Faster R-CNN 77.2 59.0 40.8 24.6 50.4

Faster R-CNN with reg. 80.7 63.3 45.0 33.3 55.6

Faster R-CNN with occ. 82.5 66.0 50.7 45.6 61.2

CompNet-VGG-p4-RPN 60.0 49.7 45.4 38.6 48.4

CompNet-VGG-p4 ω = 0.5 81.6 70.8 51.7 40.4 61.1

CompNet-VGG-p4 ω = 0.2 86.8 77.8 65.4 59.6 72.4

CompNet-VGG-p4 ω = 0 89.4 76.2 61.1 54.4 70.3

CompNet-RXT-RB3 ω = 0.2 85.7 72.5 65.9 59.6 70.9

The best performing method for each experiment is highlighted in bold
All models are trained on non-occluded images of the PASCAL3D+
dataset, except Faster R-CNNwith reg. is trained with cutout and Faster
R-CNN with occ. is trained with images that were artificially occluded
using segmented objects. CompNet-VGG-p4-RPN has been evaluated
with ω = 0. Note how the CompositionalNets are significantly more
robust to partial occlusion compared to Faster R-CNN

because they can roughly localize occluders and subse-
quently focus on the non-occluded object parts for classi-
fication. They can localize occluders because the different
components in the mixture models explicitly represent the
spatial distribution of features of an object in a certain pose.
To be successful, the localization process requires the fea-
tures of the object in the image to be roughly aligned with
the mixture models. Therefore, CompositionalNets require
bounding box proposals in which the center of the object is
roughly aligned to the center of the bounding box, indepen-
dent of whether the object is occluded or not. In this sense,
CompositionalNets are rather high precision models which
require spatial alignment between image and model. This is
in contrast to standard deep networks, which are observed to
not use spatial information extensively and behave more like
bag-of-words type models (Brendel and Bethge 2019). The
results in Sects. 6.2 and 6.4.1 show that the spatial distribu-
tion of object parts in an image is very important for computer

vision models, because it enables the rough localization of
occluders and thus a robust classification and detection under
occlusion. One problem with the RPN proposals is that they
mostly cover the visible part of the object only and often do
not align the object center to the center of the bounding box.

Effect of Robust Bounding Box Voting Our approach
of accurately estimating the corners of the bounding box
substantially improves the performance of the Composition-
alNet, in comparison with the RPN. This further validates
our conclusion that the CompositionalNet classifier requires
precise proposals to classify objects correctly with partial
occlusions.

Effect of Context-Aware Representation We observe that
models with a reduced influence of the context (ω =
0.2, ω = 0.0) outperform models with equal weight on
context and object representation (ω = 0.5). Hence, context-
aware CompositionalNets are more robust to partial
occlusion than unaware models. Furthermore, the perfor-
mance of all models follows a similar trend over all three
levels of foreground occlusions: the performance decreases
as the level of background occlusion increases from BG-L1
to BG-L3. This further confirms our understanding of the
effects of the context as a valuable source of information in
object detection.

Occluded-MS-COCO As show in Table 7 and Fig. 9, the
context-aware CompositionalNet with robust bounding box
voting outperforms Faster R-CNN and CompNet+RPN sig-
nificantly. Furthermore, the quantitative results clearly show
the benefit of the context-awareness (ω = 0.2) over unaware
CompositionalNets (ω = 0.5). While fully deactivating the
context (ω = 0) slightly decreases the performance, con-
trolling the prior of the context model to ω = 0.2 reaches a
sweet spot where the context is helpful but does not have an
overwhelming influence as the in the original Composition-
alNet. Similar as observed in the classification experiments,
CompNet-RXT-RB3 performs significantly worse compared
to its pool4 variant for artificial occluders (Table 6), whereas
it performs similarly under real occlusion (Table 7). We will
discuss this phenomenon in more detail in Sect. 6.4.1.
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(a) (b) (c)

Fig. 10 ROC curves measuring occlusion localization scores in image
classification with CompositionalNets learned from different DCNN
backbones: a pool4 and pool5 layer of VGG16, and features after the
residual block 3 (RB3) and residual block 4 (RB4) of b ResNet50 and

c ResNext. The objects in the test data are on average 50% occluded.
Note howallmodels can localize occluderswell. TheCompNets learned
fromVGG16 significantly outperform the backbones with residual con-
nections

6.4 Model Interpretability

While it is important that computer vision systems can
robustly generalize to out-of-distribution examples in terms
of partial occlusion, in real-world applications it is equally
important that their prediction result is human interpretable.
In this section, we show that CompositionalNets are highly
interpretable models. We demonstrate that they can local-
ize occluders accurately in image classification and object
detection (Sect. 6.4.1), while being trained with class-level
supervision only. Furthermore, we show that the predictions
of CompositionalNets can be understood in terms of detect-
ing object parts (Sect. 6.4.2) and estimating the objects’
viewpoint (Sect. 6.4.3).

6.4.1 Occluder Localization

A successful localization of occluders increases the robust-
ness of a model to partial occlusion and also enables a human
observer to better understand amodels’ underlying reasoning
process. In the following, we test the ability of Composition-
alNets at occluder localization. We compute the occlusion
score as the log-likelihood ratio between the occluder model
and the object model: log p( f p|zmp = 1)/p( f p|zmp = 0),
wherem = argmaxm p(F |θmy ) is the mixture component that
explains the feature activations of the DCNN backbone the
best.

Occluder Localization in Image Classification We study
occluder localization quantitatively (Fig. 10) for correctly
classified images from the Occluded-P3D+-Vehicles dataset
using the ground truth segmentation masks of the occluders
and the objects. We show qualitative results in Fig. 12b. The
evaluation is done on the occlusion level L2 , hence a pixel
on the object will be occluded with 50% chance.We evaluate
CompositionalNets learned fromdifferent DCNNbackbones

(VGG-16, ResNet50, ResNext) from the last and second-last
layer before the classifier. All models were trained for clas-
sifying non-occluded vehicles of the PASCAL3D+ dataset
(classification performance can be seen in Table 1).

In general, we can observe from the ROC curves in Fig. 10
thatCompositionalNets can localize occluders accurately,
although there are differences in terms of their performance.
Furthermore, we observe that it is more difficult for the
models to localize natural object occluders compared to
box-shaped occluders, probably because of the fine-grained
irregular shape of objects.

Insights into Robustness to Partial Occlusion in Neural
NetworksWhen comparing our experimental results at image
classification and occluder localization in more detail, we
make four interesting observations:

1. CompositionalNets learned from the lower layers of a
backbone (pool4 and RB3) can consistently localize
occluders more accurately when compared to models
learned from higher layers of the same backbone.

2. The CompositionalNets learned from theVGGbackbone
(Fig. 10a) are more successful at localizing occluders,
compared to models learned from layers with a similar
resolution of ResNet50 and ResNext (Fig. 10b, c).

3. The performance of CompositionalNets with residual
backbones is higher on images with real occlusion, com-
pared to those with artificial object occluders. In contrast,
we observe the opposite for CompositionalNets learned
from the VGG backbone.

4. The ability to localize occluders more accurately does
not directly translate into a superior performance at
classifying partially occluded objects (Table 1). For
example all three high-level models perform similarly
at localizing “object“ occluders, nevertheless CompNet-
ResNext-RB4 performs more than 10% better at clas-
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Fig. 11 ROC curves measuring occlusion localization scores in object
detection with context-aware CompositionalNets learned from pool4 of
VGG (solid lines) and RB3 of ResNext using ω = 0.2. We the object
is on average 50% occluded at each level of background occlusion
(colored lines). Note that context-aware CompositionalNets can predict
the occluded regions of the objects accurately at object detection

sifying images with these types of occluders at level
L3 compared to the other models. This phenomenon
can also be observed for the “white box“ occluders,
which CompNet-ResNext cannot localize as accurately
as CompNet-VGG16-pool5, while their performance is
on par at level L3.

In general, neural networks can exploit two comple-
mentary approaches to achieve robustness to occlusion,
depending on the backbone architecture: (A1) When the
backbone is powerful enough, the features can become robust
to occlusion, in a similar way as they are robust to illumina-
tion or viewpoint changes.Hence, byusing a powerful feature
extractor, residual models can achieve a very high classifica-
tion performance even when using a rather simple classifier
(global average pooling and one fully-connected layer. (A2)
When the backbone cannot learn features that are robust to
occlusion, then a more complex classifier is required, such
as the multiple fully-connected layers in the VGG network.

Based on this intuition, our experimental results for
occluder localization and object recognition lead us to the
following conjecture: Using powerful residual backbones,
CompositionalNets achieve high classification performance,
because of the highly discriminative features. However,
they cannot localize the occluders as accurately, because
the robustness to occlusion makes it difficult to distinguish
between occluded and non-occluded features. In contrast,
CompositionalNets based on the VGG backbone can local-
ize the occluders well, because the features are not robust to
occlusion.However, thoseCompositionalNets do not achieve
the highest classification performance because the features

are less discriminative compared to those of the residual
backbones. Furthermore, the lower layers in neural networks
typically exhibit less invariance. Therefore, Compositional-
Nets learned from those layer can consistently achieve better
localization performance compared to those learned from
higher layers of the same backbone. Finally, Compositional-
Nets with residual backbones rely more on invariance then
on occluder localization. They perform better on real data,
because the they rely on invariant features that were learned
during ImageNet pre-training. This invariance does do not
generalize well to the artificial occluders, therefore their per-
formance is lower compared to the real occlusion scenario.
In contrast, CompositionalNets learned from VGG rely less
on invariance to occlusion and more on occluder localiza-
tion. As the artificial occluders are easier to localize, their
performance is higher on artificially generated occlusions
compared to the real data.

In general, replacing the standard classifiers with com-
positional models increases the classification performance
under occlusion for all models and also enables them to
localize occluders. However, the ability to localize occlud-
ers and the final classification performance are at odds with
each other, depending on the extent to which the features are
invariant to occlusion.

Occluder Localization in Object Detection Figure 11
illustrates the ROC curve of a context-aware CompNet-
VGG16-pool4 and CompNet-RXT-RB3 for successfully
detected objects. We can observe that they can predict
occluded regions accurately. Furthermore, the performance
increases compared to the classification experiments as the
context-awareness reduces false-positive detections in the
background regions. In Fig. 12a, we show qualitative results
of a context-aware CompNet-VGG16-pool4 at occluder
localization in object detection. We illustrate results for
artificially occluded objects and real occlusions from the
MS-COCO dataset, in which the CompositionalNet could
successfully locate the objects. Overall, the model can locate
occluders with high accuracy, despite their large variability
in terms of appearance and shape. Note how the shape of the
occluders is outlined accurately, although the localization is
done for each pixel in the feature map independently. In sum-
mary, we observe that the occluder localization results for
object detection are consistent with those for image classifi-
cation, in that they confirm the ability of CompositionalNets
at localizing occluders accurately.

6.4.2 Interpretation of vMF Kernels

We further investigate the interpretability of our Composi-
tionalNets using network dissection as proposed byBau et al.
(2017). In short, network dissection looks at the top activation
of the hidden units and correlates them with a large range of
human labeled visual concepts in the Broden dataset.Most of
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Fig. 12 Qualitative results for occluder localization in: a Object
detection with a context-aware CompNet-VGG16-pool4. b Image
classification with a CompNet-VGG16-pool5. CompositionalNets can
localize occluders accurately for different objects under real and arti-

ficial occlusions, despite the high variability of the occluders in terms
of shape and appearance. Note that occluder localization is performed
independently per pixel in the feature maps

the concepts are annotated as segmentation mask with input
resolution and the activation maps are up-scaled to the same
size to calculate the intersection over union (IoU) scores. By
setting a threshold for the best matched score, Network Dis-
section studies the latent representations of various layers in
a network. Since CompositionalNets are unifying part-based

compositional models with deep neural networks, intuitively
we expect to see the hidden units in CompositionalNets to
be more correlated with visual concepts of parts, since the
models evaluated are trained for classifying vehicles in PAS-
CAL3D+,weexpect to seemorevehicle relatedparts emerge.
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Fig. 13 Network dissection results for different backbone architectures
and different activation layers on the Broden dataset “Part“ category.
The horizontal axis of the bar-plots represents the parts with above-
threshold correlation score, and the vertical axis represents the number

of hidden units that are correlated with the specific part. Note that the
vMF kernel activations are more focused on the vehicle related parts,
while after fine-tuning the number of correlated units for each parts is
reduced, hence avoiding redundancies in the representation

For the experiment, we adopt the code from the authors
of Bau et al. (2017) and use most default settings, except
that we change the testing categories into “part” only. This
means that during the hidden unit and visual concepts corre-
lation test, only classes from the part category are involved.
Note that these classes include both vehicle parts (e.g., win-
dowpane, wheel, stern, etc.) and non-vehicle ones (e.g., hair,
torso, muzzle, etc.).

As aforementioned, we expect to see the hidden units
in CompositionalNets to be highly correlated with vehicle
related parts. More specifically, we are interested in studying
(1) what part concepts are correlated with the units before
and after vMF kernels, and (2) how the end-to-end train-
ing affects these correlations. In Fig. 13, we examine three
different backbone architectures, one in each row, and three
different types of hidden units, one in each column. “Fea-
tures” are the hidden units from the layer before the vMF
kernel, which is pool5 for VGG16 and the residual block
four (RB4) layer for ResNet50 and ResNext, all with weights
initialized from ImageNet pretrained models. “vMF Activa-
tions” are the units right after the vMF kernel, where the
kernel weights are initialized by clustering as described in
Sect. 3. “vMF Activations (FT)” shows the same units after
the end-to-end fine-tuning. In the barplots, the horizontal axis
lists the parts with scores above the threshold, while the verti-
cal axis shows the number of hidden units that are correlated
with a specific part.

Comparing the “Features” versus the “vMF Activations”,
we observe that the vMF kernels indeed help the hidden

units to be more concentrated on the vehicle related parts.
The non-vehicle parts, such as “pot” and “cap”, are removed
while more units become correlated with vehicle ones, like
“door” and “stern”. However, this might also introduce a
lot of redundancy in the representation and hence a waste
of computational resources. When comparing “vMF Activa-
tions” with “vMF Activations (FT)”, we find that not only
some non-vehicle parts are further removed, the number of
units correlated to each vehicle part is also reduced. This
indicates the training may help the vMF kernels to recognize
more diverse part representations and reduce the redundancy
in the representation.

It is worth mentioning that the annotation of parts in the
Broden dataset is coarse and not specific for different object
classes, e.g., windowpane is shared for car, airplane, and
house, etc.. Therefore, it may not match the internal repre-
sentations learned by the CompositionalNets. Nevertheless,
the results support our conjecture observed in Fig. 2 that the
vMF kernels work as part detectors and CompositionalNets
learn part representations without supervision.

6.4.3 Interpretation of Mixture Components

In an effort to better understand the inner workings of
CompositionalNets we study what the individual mixture
components have learned to represent during training. We
study a CompNet-VGG16-pool5 with M = 4 mixture com-
ponents, but the following analysis gives very similar results
for other CompositionalNet architectures.
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Fig. 14 Visualization of mixture components p(F |θmy ) for M = 4 components learned from the pool5 layer of a VGG-16 networks and
corresponding azimuth pose distribution (below each visualization). Note how images with different 3D viewpoint are approximately separated
into different components
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Each mixture component is by design of the training pro-
cess specific to a particular object class. We have already
shown that the vMF kernels are responsive to individual
object parts (see Sect. 6.4.2 and Fig. 2). During training the
mixture components are learned by clustering of the spatial
activation patterns of vMF kernel activations. As the spa-
tial distribution of parts of an object varies significantly with
changes in the object pose, the mixture components become
specific to certain viewpoints of the objects. We illustrate
this property of CompositionalNets in Fig. 14 by showing
the training images with highest likelihood in each mixture.
Furthermore,we illustrate the histogramof poses for all train-
ing images in each mixture components as bar plots (using
the pose annotations in the PASCAL3D+ dataset). As vehi-
cles in natural images mostly vary in terms of their azimuth
angle, we restrict the plots to this angle only. Each bar plot
shows the distributions of azimuth angles in the range of
[0◦ − 360◦] degrees. The length of the bars is normalized
such that the longest bar indicates the most frequent azimuth
angle within each mixture. The color of the bar is selected
from the colormap “jet“ and normalized such that the max-
imal value (dark red) is equivalent to more than 10% of the
total number of training images for a particular class. We can
observe from Fig. 14 that for the classes “car“, “bicycle“ and
“bus“ the mixture components are very specific to objects
in a certain azimuth angle. Note that this happens despite a
significant variability in the objects’ appearance and back-
grounds.

In contrast, for the class “airplane“ the pose distribution
is less viewpoint specific. We think that the reason is that
airplanes naturally vary in terms of several pose angles, in
contrast to vehicles on the street which vary mostly in terms
of their azimuth angle w.r.t. the camera. As the number of
mixture components is fixed a-priori it is difficult for the
model to become specific to a certain pose during maxi-
mum likelihood learning from the data. In future work, it
would therefore be useful to explore unsupervised strategies
for determining the number of mixture components per class
based on the training data.

7 Conclusion

In this work, we studied the problem of generalizing beyond
the training data in terms of partial occlusion.We showed that
current approaches to computer visionbasedondeep learning
fail to generalize to out-of-distribution examples in terms of
partial occlusion. In an effort to overcome this fundamental
limitation we made several important contributions:

– We introduced Compositional Convolutional Neural
Networks—a deep model that unifies compositional
part-based representations and deep convolutional neu-

ral networks (DCNNs). In particular we replace the fully
connected classification head of DCNNs with a differen-
tiable generative compositional model.

– We demonstrated that CompositionalNets built from
a variety of popular DCNN architectures (VGG16,
ResNet50 and ResNext) have a significantly increased
ability to robustly classify out-of-distribution data
in terms of partial occlusion compared to their non-
compositional counterparts.

– We found that a robust detection of partially occluded
objects requires a separation of the representation of
the objects’ context from that of the object itself. We
proposed context-aware CompositionalNets that are
learned from image segmentations obtained using bound-
ing box annotations and showed that context-awareness
increases robustness to partial occlusion in object detec-
tion.

– We found that CompositionalNets can exploit two
complementary approaches to achieve robustness to
partial occlusion: learning features that are invariant to
occlusion, or localizing and discarding occluders during
classification. We showed that CompositionalNets that
combine both approaches achieve the highest robustness
to partial occlusion.

Furthermore, we showed that CompositionalNets learned
from class-label supervision only develop a number of
intriguing properties in terms of model interpretability:

– Weshowed thatCompositionalNets can localize occlud-
ers accurately and that the DCNN backbone has a
significant influence on this ability.

– Qualitative and quantitative results show that Compo-
sitionalNets learn meaningful part representations.
This enables them to recognize objects based on the spa-
tial configuration of a few visible parts.

– Qualitative and quantitative results show that the mix-
ture components in CompositionalNets are viewpoint
specific.

– In summary, the predictions of CompositionalNets are
highly interpretable in terms of where the model thinks
the object is occluded and where the model perceives the
individual object parts as well as the objects viewpoint.

Our experimental results also hint at important future
research directions. We observed that a good occluder local-
ization is add odds with classification performance, because
classification benefits from features that are invariant to
occlusion, whereas occluder localization requires features
to be sensitive to occlusion. We believe that it is impor-
tant to resolve this trade-off with new types of models that
achieve high classification performancewhile also being able
to localize occluders accurately.
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