
International Journal of Computer Vision (2021) 129:638–655
https://doi.org/10.1007/s11263-020-01396-x

Progressive DARTS: Bridging the Optimization Gap for NAS in the Wild

Xin Chen1 · Lingxi Xie2 · Jun Wu3,4 ·Qi Tian2

Received: 20 December 2019 / Accepted: 20 October 2020 / Published online: 3 November 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
With the rapid development of neural architecture search (NAS), researchers found powerful network architectures for a wide
range of vision tasks. Like the manually designed counterparts, we desire the automatically searched architectures to have
the ability of being freely transferred to different scenarios. This paper formally puts forward this problem, referred to as
NAS in the wild, which explores the possibility of finding the optimal architecture in a proxy dataset and then deploying it
to mostly unseen scenarios. We instantiate this setting using a currently popular algorithm named differentiable architecture
search (DARTS), which often suffers unsatisfying performance while being transferred across different tasks. We argue that
the accuracy drop originates from the formulation that uses a super-network for search but a sub-network for re-training.
The different properties of these stages have resulted in a significant optimization gap, and consequently, the architectural
parameters “over-fit” the super-network. To alleviate the gap, we present a progressive method that gradually increases
the network depth during the search stage, which leads to the Progressive DARTS (P-DARTS) algorithm. With a reduced
search cost (7 hours on a single GPU), P-DARTS achieves improved performance on both the proxy dataset (CIFAR10)
and a few target problems (ImageNet classification, COCO detection and three ReID benchmarks). Our code is available at
https://github.com/chenxin061/pdarts.

Keywords Neural architecture search · Optimization gap · Progressive DARTS

1 Introduction

Recently, the research progress of computer vision has been
largely boosted by deep learning (LeCun et al. 2015). The
core part of deep learning is to design and optimize deep neu-
ral networks, for which a few popularmodels have beenman-

Communicated by Mei Chen.

B Jun Wu
wujun@fudan.edu.cn

Xin Chen
1410452@tongji.edu.cn

Lingxi Xie
198808xc@gmail.com

Qi Tian
tian.qi1@huawei.com

1 Tongji University, Shanghai, People’s Republic of China

2 Huawei Inc., Shenzhen, People’s Republic of China

3 School of Computer Science, Fudan University, Shanghai,
People’s Republic of China

4 Shanghai Key Lab of Intelligent Information Processing,
Fudan University, Shanghai, People’s Republic of China

ually designed and achieved state-of-the-art performance at
that time (Krizhevsky et al. 2012; Szegedy et al. 2015; He
et al. 2016; Zhang et al. 2018; Howard et al. 2017). How-
ever, designing neural network architectures requires both
expertise and heavy computational resources. The appear-
ance of neural architecture search (NAS) has changed this
situation, which aims to discover powerful network architec-
tures automatically and has achieved remarkable success in
image recognition (Zoph and Le 2017; Zoph et al. 2018; Liu
et al. 2018a; Tan and Le 2019).

In the early age of NAS, researchers focused on heuris-
tic search methods, which sample architectures from a
large search space and perform individual evaluations. Such
approaches, while being safe in finding powerful architec-
tures, requiremassive computational overheads (Zoph andLe
2017; Real et al. 2018; Zoph et al. 2018). To alleviate this bur-
den, researchers have designed efficient approaches to reuse
computation in the searched architectures (Cai et al. 2018),
which was later developed into constructing a super-network
to cover the entire search space (Pham et al. 2018). Among
them, DARTS (Liu et al. 2019a) is an elegant solution that
relaxes the discrete search space into a continuous, differen-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-020-01396-x&domain=pdf


International Journal of Computer Vision (2021) 129:638–655 639

0

1

2

3

0

1

2

3

Proxy
Dataset

Search Space Searched
Architecture

Search
Algorithm

0

1

2 3

Transfer

0

1

2 3

Person Re-Identification

…

Object Detection

Target Tasks

(a) NASintheWild

Eval. Net.
DARTS

5
Cells

11
Cells

17
Cells

20 
CellsCell

Arch.

Search Net.
P-DARTS

2.50%
on C10

8
Cells

Cell
Architecture

20 
Cells
2.76%
on C10

(b) OurSolution:P-DARTS

Fig. 1 Left: the setting of NAS in the wild, which aims to transfer the
optimal architecture found in the proxy dataset to unknown scenarios.
Right: our solution, P-DARTS (bottom), bridges the optimization gap

between architecture search and evaluation by gradually increasing the
depth of the super-network. DARTS (top) is also placed here for com-
parison. Green and blue indicate search and evaluation, respectively

tiable function. Thus, the search process requires optimizing
the super-network and can be finished within GPU-hours.

Despite the efficiency of super-network-based search
methods, most of them suffer from the issue of instabil-
ity, which indicates that (i) the accuracy can be sensitive
to random initialization, and (ii) the searched architecture
sometimes incurs unsatisfying performance in other datasets
or tasks. While directly searching over the target problem
is always a solution, we argue that studying this topic may
unleash the potentials of NAS. To this end, we formalize a
setting named NAS in the wild, illustrated in Figure 1, which
advocates for the searched architecture on any proxy dataset
to be easily deployed to different application scenarios.

We argue that the instability issue originates from that the
search stage fits the super-network on the proxy dataset, but
the re-training stage actually applies the optimal sub-network
to either the same dataset or a different task. Even if the
proxy dataset and the target dataset are the same, one cannot
expect the best super-network, after being pruned, produces
the best sub-network. This is called the optimization gap.
In this work, we explore a practical method to alleviate the
gap, which involves gradually adjusting the super-network
so that its properties converge to the sub-network by the end
of the search process.

Our approach, named Progressive DARTS (P-DARTS), is
built on DARTS, a recently published method for differen-
tiable NAS. As shown in Figure 1(b), the search process of
P-DARTS is divided into multiple stages, and the depth of
the super-network gets increased at the end of each stage.
This brings two technical issues, and we provide solutions
accordingly. First, since heavier computational overheads are
required when searching with a deeper super-network, we
propose search space approximation, which reduces the
number of candidates (operations) when the network depth
is increased. Second, optimizing a deep super-network may
cause unstable gradients, and thus the search algorithm is

biased heavily towards skip-connect, a learning-free opera-
tor that often falls on a rapid direction of gradient decay.
Consequently, it reduces the learning ability of the found
architecture, for which we propose search space regulariza-
tion, which (i) introduces operation-level Dropout (Srivas-
tava et al. 2014) to alleviate the dominance of skip-connect
during training, and (ii) regularizes the appearance of skip-
connect when determining the final sub-network.

The effectiveness of P-DARTS is firstly verified on the
standard vision setting, i.e., searching and evaluating the
architecture on the CIFAR10 dataset. We achieve state-of-
the-art performance (a test error of 2.50%) on CIFAR10 with
3.4M parameters. In addition, we demonstrate the benefits
of search space approximation and regularization: the for-
mer reduces the search cost to 0.3 GPU-days on CIFAR10,
surpassing ENAS (Pham et al. 2018), an approach known
for search efficiency; the latter largely reduces the fluc-
tuation of individual search trials and thus improving its
reliability. Next, we investigate the application in the wild, in
which the searched architecture on CIFAR10 transfers well
to CIFAR100 classification, ImageNet classification, COCO
detection, and three person re-identification (ReID) tasks,
e.g., on ImageNet, it achieves top-1/5 errors of 24.4%/7.4%,
respectively, comparable to the state-of-the-art under the
mobile setting. Furthermore, architecture search is also per-
formed on ImageNet, and the discovered architecture shows
superior performance.

The preliminary version of this work appeared as (Chen
et al. 2019a). In this journal version, we extend the original
work by several aspects. First, we advocate for a new set-
ting named NAS in the wild, which provides a benchmark
for evaluating the generalization ability of NAS approaches.
Second, to obtain good performance on this new setting, we
extend the depth gap raised in (Chen et al. 2019a) into a
more general optimization gap that exists in differentiable
architecture search and investigate the width gap, another

123



640 International Journal of Computer Vision (2021) 129:638–655

critical factor of optimization gap aside from the depth gap.
As a side benefit, the improved approach can directly search
on ImageNet and thus produces more powerful architectures
for high-resolution input images. Third, we complement a
few diagnostic experiments to further reveal that bridging
the optimization gap is helpful to accomplish the goal of
NAS in the wild.

The remaining part of this paper is organized as follows.
Section 2 briefly introduces related work to our research.
Then, Sect. 3 illustrates the problem, NAS in the wild, and
Sect. 4 elaborates the optimization gap and the P-DARTS
approach. After extensive experiments are shown in Sect. 5,
we conclude this work in Sect. 6.

2 RelatedWork

Image recognition is a fundamental task in computer vision.
In recent years, with the development of deep learning,
CNNs have been dominating image recognition (Krizhevsky
et al. 2012; Simonyan and Zisserman 2015; He et al. 2016).
A few elaborately designed handcrafted architectures have
been proposed, including VGGNet (Simonyan and Zisser-
man 2015), ResNet (He et al. 2016), DenseNet (Huang et al.
2017), etc., all of which highlighted the importance of human
expertise in network design.

In the era of hand-designed architectures, the main
roadmap of architecture design resided in how to enlarge
the depth of CNNs efficiently. AlexNet (Krizhevsky et al.
2012) proposed to use the ReLU activation function and
Local Response Normalization (LRN) to alleviate the gradi-
ent diffusion and achieved the state-of-the-art performance
on ImageNet classification at that time. VGGNet (Simonyan
and Zisserman 2015) proposed to stack convolutions with
identical small kernel size and initialize deeper networks
with previously learned weights of a shallow work, which
resulted in a network of 19 layers. GoogLenet (Szegedy
et al. 2015) introduced to connect convolutions with dif-
ferent kernel sizes in parallel, which led to a reduction of
network parameters, an increase of network depth, and a
promotion on parameter utilization. In ResNet (He et al.
2016), the depth of networks was further increased to 152
layers for ImageNet and even 1202 layers for CIFAR10,
with the help of the newly proposed skip connection and
residual block. After that, DenseNet (Huang et al. 2017)
inserted skip connection between all layers in the building
block to formulate a densely connected CNN, which largely
strengthened information propagation and feature reutiliza-
tion. Apart from this depth route, network width was also a
critical aspect of performance promotion. WRN (Zagoruyko
and Komodakis 2016) explored the possibility of scaling up
the network width of ResNet and achieved brilliant results.
PyramidNet (Han et al. 2017) extended this idea to design

a pyramid-like ResNet, which further promoted the network
capability.

This work lies in the category of the emerging field of
neural architecture search, a process of automating archi-
tecture engineering technique (Elsken et al. 2018). In the
early 2000s, pioneer researchers attempted to generate better
topology automatically with evolutionary algorithms (Stan-
ley andMiikkulainen 2002). Early NASworks tried to search
for basic components and topology of neural networks to
construct a complete network (Baker et al. 2017; Suganuma
et al. 2017; Xie and Yuille 2017), while recent works focused
on finding robust cells (Zoph et al. 2018; Real et al. 2018;
Dong and Yang 2019b). Among these works, heuristic algo-
rithms were widely adopted in the NAS pipeline. Baker et
al. (Baker et al. 2017) firstly applied reinforcement learning
(RL) to neural architecture search and adopted anRNN-based
controller to guide the sampling process for the network con-
figuration. (Xie and Yuille 2017) encoded the architecture of
a CNN into binary codes and used a general evolutionary
algorithm to evolve for a better global network topology.
Considering the weakness of the scalability of a global net-
work architecture, (Zoph et al. 2018) adoptedRL to search for
the configuration of building blocks, which are also referred
to as cells. (Real et al. 2018) proposed to regularize the stan-
dard evolutionary algorithm in the NAS pipeline with aging
evolution and, for the first time, surpassed the best manually
designed architectures on image recognition.

A critical drawback of the above approaches is the
expensive search cost (e.g., 3150 GPU-days for EA-based
AmoebaNet (Real et al. 2018) and 20, 000 GPU-days for
RL-basedNASNet (Zoph and Le 2017)), because their meth-
ods require to sample and evaluate numerous architectures
by training them from scratch. There were two lines of solu-
tions. The first one involved reducing the search space (Zoph
et al. 2018), and the second one optimized the exploration
policy (e.g., learning a surrogate model (Liu et al. 2018a))
in the search space so that the search process becomes more
efficient.

Recently, search efficiency has become one of the main
concerns on NAS, and the search cost was reduced to a few
GPU-days with the help of weight sharing technique (Pham
et al. 2018; Liu et al. 2019a). In this pipeline, a super-
network that contains all candidate architectures in the search
space is trained, and sub-architectures are evaluated with
shared weights from the super-network. ENAS (Pham et al.
2018) proposed to adopt a parameter sharing scheme among
child models to bypass the time-consuming process of can-
didate architecture evaluation by training them from scratch,
which dramatically reduced the search cost to less than one
GPU-day. DARTS (Liu et al. 2019a) introduced a differen-
tiable NAS framework to relax the discrete search space into
a continuous one by weighting candidate operations with
architectural parameters, which achieved comparable perfor-

123



International Journal of Computer Vision (2021) 129:638–655 641

mance and remarkable efficiency improvement compared to
previous approaches. Following DARTS, GDAS (Dong and
Yang 2019b) proposed to use the Gumbel-softmax sampling
trick to guide the sub-graph selection process.With the Bina-
ryConnect scheme, ProxylessNAS (Cai et al. 2019) adopted
the differentiable framework andproposed to search architec-
tures on the target task instead of adopting the conventional
proxy-based framework. Amain drawback of DARTS-based
approaches is the instability issue caused by the optimization
gap depicted in Sect. 1. SNAS (Xie et al. 2019b) proposed to
constrain the architecture parameters to be one-hot to tackle
the inconsistency in optimizing objectives between search
and evaluation scenarios,which can be regarded as an attempt
of reducing the optimization gap. However, SNAS reported
only comparable classification performance to DARTS on
both proxy and target datasets.

3 Problem: NAS in theWild

We investigate the setting of NAS in the Wild, which seeks
for a NAS algorithm that can search in a proxy dataset and
freely transfer to a wide range of target datasets or even other
types of recognition tasks. This is important for real-world
scenarios, as there may not be sufficient resources, in terms
of either data or computation, for a complete NAS process
to be executed.

Note that the community has witnessed a few recent
works, sometimes referred to as proxyless NAS (Cai et al.
2019), in searching neural architectures on the target dataset
directly. Our setting does not contradict these efforts, and
we argue that both settings have their own advantages. On
the one hand, searching on the target dataset directly enables
more accurate properties of the specified dataset to be cap-
tured and, most often, leads to improved performance on the
target dataset. On the other hand, we desire the ability of
directly transferring the searched architecture to other sce-
narios. This task not only makes it easier in application, but
also raises new challenges which we believe beneficial for
the research field of NAS.

The most significant difficulty brought by this setting is
the enlarged gap between the search stage and the evaluation
stage, which we will elaborate in detail in Sect. 4.2. In this
paper, we present a practical solution that largely shrinks this
gap and thus improves the ability of model transfer.

4 Method: Progressive DARTS

4.1 Preliminary: Differentiable Architecture Search

Our work is based on DARTS (Liu et al. 2019a), which
adopts a cell-based search framework that searches for robust

architectures of building blocks, i.e., cells, and then stacks
searched cells orderly for L times to construct the target net-
work. Thus, the search space is represented in the form of
cells. A cell is denoted as a directed acyclic graph (DAG) G
and composed of N nodes (vertexes) and their corresponding
edges. A node xi represents a feature layer, i.e., the output of
a specific operation. The first two nodes of a cell are the input
nodes, which come from the outputs of previous cells or stem
convolutions located at the beginning of the network. We
denote the operation space asO, in which each element rep-
resents a candidate operation (mathematical function) o(·).
An intermediate node x j is connected to all of its preceding
nodes {x0, x1, x2, ..., x j−1} with edge E(i, j)(i < j), where
operations from the operation space are used to link the infor-
mation flow between node xi and x j . To relax the discrete
search space to be continuous, operations on each edge are
weighted with a set of architectural parameters α(i, j), which
is normalized with the Softmax function and is thus formu-
lated as:

fi, j (xi ) =
∑

o∈Oi, j

exp(α(i, j)
o )

∑
o′∈O exp(α(i, j)

o′ )
o(xi ). (1)

All feature maps passed into the intermediate node x j
are integrated together by summation, denoted as x j =∑

i< j fi, j (xi ). The output node is defined as xN−1 =
concat(x2, x3, · · · , xN−2), where concat(·) concatenates all
input signals in the channel dimension.

The architectural parameters in DARTS are jointly opti-
mized with the network parameters, i.e., the convolutional
weights. The output architecture is generated by operation
pruning according to the learned architectural parameters,
with at most one non-zero operation on a specific edge
and two preserved edges for each intermediate node. For
more technical details, please refer to the original DARTS
paper (Liu et al. 2019a).

4.2 The Optimization Gap

The most significant drawback of DARTS, especially when
discussed in the scenario of NAS in the wild, lies in the gap
between search and evaluation. To be specific, the best archi-
tecture found in the search stage is not necessarily the best
one in the evaluation stage. This subsection aims to analyze
the reason of this phenomenon.

We use DS and DE to denote the proxy dataset and the
target dataset, respectively, i.e., the datasets that the NAS
approach is searched and evaluated on. We also use A to
denote the space of architecture search, namely, each ele-
ment in A corresponds to an architecture that is possible to
be chosen. Given A and the architectural parameter, α, one
can determine the final architecture, e.g., in DARTS, this is

123



642 International Journal of Computer Vision (2021) 129:638–655

done by a greedy algorithm and the preserved architecture
is written as A(α). Note that A can be different during the
search and evaluation stage, e.g., in DARTS, the search stage
has 8 cells and the evaluation stage has much more. We use
AS and AE to avoid ambiguity.

With the above notation system, the overall objective of
the search stage can be written as:

α� = argmin
α

{
min
ωS

LS(ωS;AS(α) ,DS)

}
. (2)

This optimization determines the best architecture, AS(α
�)

to be used afterwards. However, at the evaluation stage, it
is possible that the configuration is changed towards better
performance, and so the best architecture is changed into
AE(α�) and thus we have:

ω�
E = argmin

ωE
LE

(
ωE;AE

(
α�

)
,DE

)
, (3)

where ωE denotes the network parameters at the evaluation
time. The above flowchart makes an assumption that if an
individual search process is performed under the same con-
figuration of evaluation, namely,

α� = argmin
α

{
min
ωE

LE(ωE;AE(α) ,DE)

}
, (4)

the best architecture obtained will be the same, or nearly the
same, as that found in Eqn (2). In other words, Eqn (2) is
an inevitable approximation of Eqn (4), since (i) AE can be
more complex thanAS so that the search stage cannot support
multiple operators to be considered under this larger space,
and (ii) in our setting, NAS in the wild, DE is not assumed to
be known beforehand.

Hence, there are possibly a significant mismatch between
search and evaluation scenarios, e.g., in network shape,
hyper-parameters, training policies, etc.We summarize these
problems into the optimization gap between training the
super-network and applying the sub-network to the target net-
work. For example, a typical optimization gap comes from
the inconsistency of the operation pruning process, since the
objective of the super-network is to jointly optimize network
weights ωS of all candidate operations and the architectural
parameters α, while the objective of training the target net-
work is only to optimize the network weights ωE of a few
selected operations. Thesemismatches can result in dramatic
performance deterioration when the discovered architectures
are applied to real-world applications.

Our solution is to reduce the optimization gap as we can.
As the gap between the proxy and target datasets cannot be
eliminated (we will see examples in Sect. 5.4 that how the
domain gap affects the performance of NAS), we mainly
focus on the gap betweenAS(α

�) andAE(α�). Two strategies

are introduced. First, we gradually shrink the gap between
AS and AE during the search process, meanwhile we apply
approximation to keep the algorithm efficient in both time
and memory – we will introduce it as search space approx-
imation in Sect. 4.3.1. Second, we reduce the variation of
the architectural parameter, α�, by applying some reason-
able priors to it. This effectively avoids the search algorithm
to “over-fit” on AS – we will introduce it as search space
regularization in Sect. 4.3.2.

4.3 Progressive Search to Bridge the Depth Gap

Among the optimization gaps, that caused by different net-
work depths is one of the main sources of performance
deterioration. We propose to alleviate it by progressively
increasing the search depth, which is built upon our search
space approximation scheme. Besides, the mismatch on net-
work width, i.e., the number of channels of feature maps, is
also an essential factor associated with performance when
searching architectures on large and complex datasets, and
we tackle it by progressively increasing search width. Here
we mainly discuss the depth gap and leave the discussion on
the width gap to Sect. 5.2.5.

To be specific, the architecture search process of DARTS
is performed on a super-network with 8 cells, and the discov-
ered architecture is evaluatedon anetworkwith either 20 cells
(on CIFAR10) or 14 cells (on ImageNet). There is a consid-
erable difference between the behavior of shallow and deep
networks (Ioffe and Szegedy 2015; Srivastava et al. 2015; He
et al. 2016), which implies that the architectures we discov-
ered in the search process are not necessarily the optimal one
for evaluation. We name this the depth gap between search
and evaluation. To verify it, we executed the search process
of DARTS for multiple times and found that the normal cells
of discovered architectures tend to keep shallow connections
instead of deep ones, i.e., the search algorithm prefers to
preserve those edges connected to the input nodes instead
of cascading between intermediate nodes. This is because
shallow networks often enjoy faster gradient descent during
the search process. However, such property contradicts the
common sense that deeper networks tend to perform bet-
ter (Simonyan and Zisserman 2015; Szegedy et al. 2015;
He et al. 2016; Huang et al. 2017). Therefore, we propose
to bridge the depth gap with the strategy that progressively
increases the network depth during the search process, so
that at the end of the search, the depth of the super-network
is sufficiently close to the network configuration used in
the evaluation. Here we adopt a progressive manner, instead
of directly increasing the search depth to the target level,
because we expect to search in shallow networks to reduce
the search space with respect to candidate operations, so as to
alleviate the risk of search in deep networks. The effective-
ness of this progressive strategywill be verified in Sect. 5.2.1.

123



International Journal of Computer Vision (2021) 129:638–655 643

0

1

2

3

(a) Initial Stage (b) Intermediate Stages (c) Final Stage

0

1

0.21

0.26

0.32

0.18
0.03 (DEL)

0

1

2

3

0

1

0.42

0.38

0.14 (DEL)

0.06 (DEL)

0

1

2

3

0

1

0.17
(DEL)

0.83

Normal
Cell

Image

Reduction 
Cell

Normal
Cell

Reduction 
Cell

Normal
Cell

Softmax

5×

5×

5×

Normal
Cell

Reduction
Cell

Normal
Cell

Reduction
Cell

Normal
Cell

3×

3×

3×

Image

Softmax

Normal
Cell

Normal
Cell

Normal
Cell

1×

1×

1×

Reduction
Cell

Reduction
Cell

Image

Softmax

Fig. 2 The overall pipeline of P-DARTS (best viewed in color). For
simplicity, only one intermediate stage is shown, and only the normal
cells are displayed. The depth of the super-network increases from 5
at the initial stage to 11 and 17 at the intermediate and final stages,
while the number of candidate operations (shown in connections with
different colors) is shrunk from 5 to 4 and 2 accordingly. The dashed

rectangles in (a) and (c) are identical to those in (b), indicating a progres-
sive width growth during the search process. The lowest-scored ones
at the previous stage are dropped (the scores are shown next to each
connection). We obtain the final architecture by considering the final
scores and possibly additional rules

The difficulty comes from two aspects. First, the compu-
tational overhead increases linearly with the search depth,
which brings issues in both time expenses and computa-
tional overheads. In particular, in DARTS, GPU memory
usage is proportional to the depth of the super-network. The
limited GPU memory forms a major obstacle, and the most
straightforward solution is to trim the channel number in each
operation – DARTS (Liu et al. 2019a) tried it but reported
a slight performance deterioration, because it enlarged the
mismatch on network width, another aspect of the optimiza-
tion gap. To address this problem,we propose a search space
approximation scheme to progressively reduce the number
of candidate operations at the end of each stage according to
the architectural parameters, the scores of operations in the
previous stage as the criterion of selection. Details of search
space approximation are presented in Sect. 4.3.1.

Second, we find that when searching on a deeper super-
network, the differentiable approaches tend to bias towards
the skip-connect operation, because it accelerates forward
and backward propagation and often leads to the fastest route
of gradient descent. However, this operation is parameter-
free, which implies a relatively weak ability to learn
visual representations. To this end, we propose another
scheme named search space regularization, which adds an
operation-level Dropout (Srivastava et al. 2014) to prevent
the architecture from “over-fitting” and restricts the number
of preserved skip-connects for further stability. Details of
search space regularization are presented in Sect. 4.3.2.

4.3.1 Search Space Approximation

As demonstrated previously, a straightforward way to tackle
the optimization gap is to directly apply the configuration of
AE during the search process.However, thiswill cause severe
computational overhead, which impels us to consider more
on the efficiency in computation. A toy example is presented
in Figure 2 to demonstrate the idea of search space approxi-
mation. The entire search process is split intomultiple stages,
including an initial stage, one or a few intermediate stages,
and a final stage. For each stage, Sk , the super-network is
constructed with Lk cells and the operation space consists
of Ok candidate operations, i.e., |Ok

(i, j)| = Ok . Note that in
Figure 2, both the depth gap and the width gap are presented
but in this section we focus on the depth gap and leave the
investigation of the width gap to Sect. 5.2.5.

According to our motivation, the super-network of the
initial stage is relatively shallow, but the operation space is
large (O1

(i, j) ≡ O). After each stage,Sk−1, the architectural
parameters αk−1 are optimized and the scores of the can-
didate operations on each edge are ranked according to the
learned αk−1. We increase the depth of the super-network
by stacking more cells, i.e., Lk > Lk−1, and approximate
the operation space according to the ranking scores in the
meantime. As a consequence, the new operation set on each
edge Ok

(i, j) has a smaller size than Ok−1
(i, j), or equivalently,

Ok < Ok−1. The criterion of approximation is to drop a
part of less important operations on each edge, which are

123



644 International Journal of Computer Vision (2021) 129:638–655

specified to be those assigned with a lower weight during
the previous stage,Sk−1. As shown in Table 2, this strategy
is memory-efficient, which enables the deployment of our
approach on regular GPUs, e.g., with a memory of 16GB.

The growth of architecture depth continues until it is suf-
ficiently close to that used in the evaluation. After the last
search stage, the final cell topology (bold lines in Figure 2(c))
is derived according to the learned architecture parameters
αK . Following DARTS, for each intermediate node, we keep
two individual edges whose largest non-zeroweights are top-
ranked and preserve the most important operation on each
retained edge.

4.3.2 Search Space Regularization

At the start of each stage, Sk , we train the (modified)
architecture from scratch, i.e., all network weights and
architectural parameters are re-initialized randomly, because
several candidates have been abandonedon each edge1.How-
ever, training a deeper network is harder than training a
shallow one (Srivastava et al. 2015). In our particular setting,
we observe that information prefers to flow through skip-
connect instead of convolution or pooling, which is arguably
due to the fact that skip-connect often leads to rapid gradi-
ent descent, especially on small proxy datasets (CIFAR10 or
CIFAR100) which are relatively easy to fit. The gradient of
a skip-connect operation with respect to the input is always
1.0,while that of convolutions ismuch smaller (

[
10−3, 10−2

]

according to our statistics). Another important reason is that,
during the start of training, weights in convolutions are less
meaningful, which results in unstable outputs compared to
skip-connect which is weight-free, and such outputs are not
likely to have high weights in classification. Both reasons
make skip-connect accumulate weights much more rapidly
than other operations. Consequently, the search process tends
to generate architectures with many skip-connect operations,
which limits the number of learnable parameters and thus
produces an unsatisfying performance at the evaluation stage.
This is essentially a kind of over-fitting.

We address this problem by search space regularization,
which consists of two parts. First, we insert operation-level
Dropout (Srivastava et al. 2014) after each skip-connect
operation to partially “cut off” the straightforward path
through skip-connect, and facilitate the algorithm to explore
other operations. However, if we constantly block the path

1 We also tried to start with architectural parameters learned from the
previous stage, Sk−1, and adjust them according to Eq. 1 to ensure
that the weights of preserved operations should still sum to one. This
strategy reported slightly lower accuracy. Actually, we find that only
an average of 5.3 (out of 14 normal edges) most significant operations
in S1 continue to have the largest weight in S2, and the number is
only slightly increased to 6.7 from S2 to S3 – this is to say, deeper
architectures may have altered preferences.

through skip-connect, the algorithm will unfairly drop them
by assigning lower weights to them, which is harmful to
the final performance. To address this contradiction, we
gradually decay the Dropout rate during the training pro-
cess in each search stage. Thus, the straightforward path
through skip-connect is blocked at the beginning and treated
equally afterward when parameters of other operations are
well learned, leaving the algorithm itself to make the deci-
sion.

Despite the use of operation-level Dropout, we still
observe that skip-connect, as a special kind of operation,
has a significant impact on recognition accuracy at the eval-
uation stage. Empirically, we perform 3 individual search
processes on CIFAR10 with identical search setting, but find
that the number of preserved skip-connects in the normal
cell, after the final stage, varies from 2 to 4. In the mean-
time, the recognition performance at the evaluation stage is
also highly correlated to this number, as we observed before.
This motivates us to design the second regularization rule,
architecture refinement, which simply restricts the number of
preserved skip-connect operations of the final architecture to
be a constantM . This is donewith an iterative process, which
startswith constructing a cell topologyusing the standard rule
described by DARTS. If the number of skip-connects is not
exactly M , we search for theM skip-connect operations with
the largest architecture weights in this cell topology and set
the weights of others to 0, then redo cell construction with
modified architectural parameters.

We emphasize that the second regularization technique
must be applied on top of the first one, otherwise, in the situ-
ations without operation-level Dropout, the search process is
producing low-quality architectural weights, based on which
we could not build up a powerful architecture even with a
fixed number of skip-connects.

4.4 Relationship to PriorWork

Thoughhaving a similar name,ProgressiveNASorPNAS(Liu
et al. 2018a) was driven by a different motivation. PNAS
explored the search space progressively by searching for
operations node-by-node within each cell. Our approach
shares a similar progressive search manner – we perform
the search at the cell level to enlarge the architecture depth,
while PNAS did it at the operation level (within a cell) to
reduce the number of architectures to evaluate.

There exist other efforts in alleviating the optimization
gap between search and evaluation. For example, SNAS (Xie
et al. 2019b) aimed at eliminating the bias between the search
and evaluation objectives of differentiable NAS approaches
by forcing the architecture weights on each edge to be one-
hot. Our work is also able to get rid of the bias, which we
achieve by enlarging the architecture depth during the search
stage.

123



International Journal of Computer Vision (2021) 129:638–655 645

Another example of bridging the optimization gap is
ProxylessNAS (Cai et al. 2019), which introduced a dif-
ferentiable NAS scheme to directly learn architectures on
the target task (and hardware) without a proxy dataset. It
achieved high memory efficiency by applying binary masks
to candidate operations and forcing only one path in the over-
parameterized network to be activated and loaded into GPU.
Different from it, our approach tackles the memory over-
head by search space approximation. Besides, ProxylessNAS
searched for global topology instead of cell topology, which
requires strong priors on the target task as well as the
search space, while P-DARTS does not need such priors.
Our approach is much faster than ProxylessNAS (0.3 GPU-
days vs. 4.0 GPU-days on CIFAR10 and 2.0 GPU-days vs.
8.3 GPU-days on ImageNet).

Some recent work (Shu et al. 2020; Zela et al. 2020)
pointed out some similar phenomena as ours. (Shu et al.
2020) systematically investigated the convergence condition
of some existing NAS methods built upon cell-based search
space, e.g., DARTS, and revealed that the cells discovered by
these methods tend to keep shallow and wide cell structures
because such topologies leads to smoother loss landscape
and smaller gradient variance than others, which coincides
with the observation in our work. (Zela et al. 2020) studied
the relationship between the eigenspectrum of the Hessian of
the validation loss with respect to the architectural parame-
ters and the generalization error of discovered architectures
and proposed two schemes to stabilize the search process,
i.e., early stopping and inner objective regularization. Our
search space regularization schemes can alsomake the search
process stabilized, while our regularization is different from
theirs.

EfficientNet (Tan and Le 2019) also investigated the
problem that the searched and deployed architectures have
different sizes (depth, width, and resolution). However, it
applied the method that magnifies the searched network
directly which is the same as the DARTS baseline. Our
method allows the searched architecture to grow gradually
to the target size instead of directly scaling. Besides, two
different search spaces are used by these two algorithms. It
was widely accepted in the NAS community that the search
space used by EfficientNet (also used byMnasNet (Tan et al.
2019), ProxylessNAS (Cai et al. 2019), etc.) is more friendly
to ImageNet and the search space used by DARTS is more
friendly to CIFAR10.

Last but not least, we believe that the phenomenon that the
skip-connect operation emergesmay be caused by themathe-
matical mechanism that DARTSwas built upon. Some recent
work (Bi et al. 2019) pointed out issues in optimization, and
we look forward to exploring the relationship between these
issues and the optimization gap.

5 Experiments

5.1 The CIFAR10 and CIFAR100 Datasets

Following standard vision setting, we search and evaluate
architectures on the CIFAR10 (Krizhevsky andHinton 2009)
dataset. To further demonstrate the capability of our proposed
method, we also execute architecture search on CIFAR100.

Each of CIFAR10 and CIFAR100 has 50K/10K train-
ing/testing images with a fixed spatial resolution of 32× 32,
which are distributed over 10/100 classes. In the architec-
ture search scenario, the training set is randomly split into
two equal subsets, one for learning network parameters (e.g.,
convolutional weights) and the other for tuning the architec-
tural parameters (i.e., operation weights). In the evaluation
scenario, standard training/testing split is applied.

5.1.1 Architecture Search

The whole search process is split into 3 stages. The search
space and network configuration are identical to DARTS at
the initial stage (stage 1) except that only 5 cells are stacked in
the search network for acceleration (we tried the original set-
ting with 8 cells and obtained similar results). The number of
stacked cells increases from 5 to 11 for the intermediate stage
(stage 2) and 17 for the final stage (stage 3). The numbers of
operations preserved on each edge of the super-network are
8, 5, and 3 for stage 1, 2, and 3, respectively.

TheDropout probability on skip-connect is decayed expo-
nentially and the initial values for the reported results are
set to be 0.0, 0.4, 0.7 on CIFAR10 for stage 1, 2 and 3,
respectively, and 0.1, 0.2, 0.3 for CIFAR100. For a proper
tradeoff between classification accuracy and computational
overhead, the final discovered cells are restricted to keep at
most 2 skip-connects, which guarantees a fair comparison
with DARTS and other state-of-the-art approaches. For each
stage, the super-network is trained for 25 epochs with a batch
size of 96, where only network parameters are tuned in the
first 10 epochs while both network and architectural param-
eters are jointly optimized in the rest 15 epochs. An Adam
optimizer with learning rate η = 0.0006, weight decay 0.001
andmomentum β = (0.5, 0.999) is adopted for architectural
parameters. The limitation of GPU memory is the main con-
cern when we determine hyper-parameters related to GPU
memory size, e.g., the batch size. The first-order optimiza-
tion scheme of DARTS is leveraged to learn the architectural
parameters in consideration of acceleration, thus the archi-
tectural parameters and network parameters are optimized in
an alternative manner.

The architecture searchprocess onCIFAR10andCIFAR100
is performed on a single Nvidia Tesla P100, which takes
around 7 hours, resulting in a search cost of 0.3 GPU-days.
When we change the GPU device to an Nvidia Tesla V100

123



646 International Journal of Computer Vision (2021) 129:638–655

(a) (c)

(b) (d)

(e)

(h)(g)(f)

Fig. 3 (a)–(d): normal cells discovered by different search stages of
P-DARTS and the second-order DARTS (DARTS_V2) on CIFAR10.
The depths of search networks are 5, 11 and 17 cells for stage 1, 2 and
3 of P-DARTS and 8 for DARTS_V2. When the depth of the search
network increases, more deep connections are preserved. Note that the
operation on edge E(0,1) of stage 1 is a parameter-free skip_connect,
thus it is strictly not a deep connection. (e): number of edges with
different connection levels in the discovered architectures of DARTS

and P-DARTS. More deep connections with higher connection levels
are preserved in architectures discovered by P-DARTS, while only one
exists in the architecture searched by DARTS. The letter C and I in the
legend denote CIFAR10 and ImageNet, respectively. (f)–(h): normal
cells discovered by different search stages of P-DARTS on ImageNet.
The depths of search networks are 5, 8 and 11 cells for stage 1, 2 and
3, respectively

(16GB), the search cost is reduced to 0.2 GPU-days (around
4.5 hours).

Architectures discovered by P-DARTS on CIFAR10 tend
to preservemore deep connections than the one discovered by
DARTS, as shown in Figure 3(c) and Figure 3(d). Moreover,
the deep connections in the architecture discovered by P-
DARTS are deeper than that in DARTS, which means that
the longest path in the cell cascades more levels in depth. In
other words, there are more serial layers in the cell instead of
parallel ones, making the target network further deeper and
achieving better classification performance.

Notably, our method also allows architecture search on
CIFAR100 while prior approaches mostly failed. The evalu-
ation results in Table 1 show that the discovered architecture
on CIFAR100 outperforms those architectures transferred

from CIFAR10. We tried to perform architecture search on
CIFAR100 with DARTS using the code released by the
authors but get architectures full of skip-connects, which
results in much worse classification performance.

5.1.2 Architecture Evaluation

Following the convention(Liu et al. 2019a), an evaluation
network stacked with 20 cells and 36 initial channels is
trained from scratch for 600 epochs with a batch size of 128.
Additional regularization methods are also applied includ-
ing Cutout regularization (DeVries and Taylor 2017; Zhong
et al. 2017) of length 16, drop-path (Larsson et al. 2017) of
probability 0.3 and auxiliary towers (Szegedy et al. 2015) of
weight 0.4. A standard SGD optimizer with a momentum of

123



International Journal of Computer Vision (2021) 129:638–655 647

Table 1 Comparison with state-of-the-art architectures on CIFAR10
and CIFAR100. † indicates that this result is obtained by transferring
the corresponding architecture to CIFAR100. ‡ We ran the publicly

available code with necessary modifications to fit PyTorch 1.0, and a
single run took about 0.5 GPU-days for the first order and 2 GPU-days
for the second order, respectively

Architecture Test Err. (%) Params Search cost Search method
C10 C100 (M) (GPU-days)

DenseNet-BC (Huang et al. 2017) 3.46 17.18 25.6 – Manual

NASNet-A + cutout (Zoph et al. 2018) 2.65 – 3.3 1800 RL

AmoebaNet-A + cutout (Real et al. 2018) 3.34 – 3.2 3150 Evolution

AmoebaNet-B + cutout (Real et al. 2018) 2.55±0.05 – 2.8 3150 Evolution

Hireachical Evolution (Liu et al. 2018b) 3.75±0.12 – 15.7 300 Evolution

PNAS (Liu et al. 2018a) 3.41±0.09 – 3.2 225 SMBO

ENAS + cutout (Pham et al. 2018) 2.89 – 4.6 0.5 RL

DARTS (first order) + cutout (Liu et al. 2019a) 3.00±0.14 17.76† 3.3 1.5‡ Gradient-based

DARTS (second order) + cutout (Liu et al. 2019a) 2.76±0.09 17.54† 3.3 4.0‡ Gradient-based

SNAS + mild constraint + cutout (Xie et al. 2019b) 2.98 – 2.9 1.5 Gradient-based

SNAS + moderate constraint + cutout (Xie et al. 2019b) 2.85±0.02 – 2.8 1.5 Gradient-based

SNAS + aggressive constraint + cutout (Xie et al. 2019b) 3.10±0.04 – 2.3 1.5 Gradient-based

GDAS + cutout (Dong and Yang 2019b) 2.82 18.13 2.5 0.2 Gradient-based

SETN (T=1K) + cutout (Dong and Yang 2019a) 2.69 17.25 4.6 1.8 Gradient-based

PC-DARTS + cutout (Xu et al. 2020) 2.57±0.07 – 3.6 0.1 Gradient-based

ProxylessNAS (Cai et al. 2019) + cutout 2.08 – 5.7 4.0 Gradient-based

P-DARTS (searched on CIFAR10) + cutout 2.50±0.06 17.20 3.4 0.3 Gradient-based

P-DARTS (searched on CIFAR100) + cutout 2.62 15.92±0.18 3.6 0.3 Gradient-based

P-DARTS (searched on CIFAR10, large) + cutout 2.25 15.27 10.5 0.3 Gradient-based

P-DARTS (searched on CIFAR100, large) + cutout 2.43 14.64 11.0 0.3 Gradient-based

0.9, a weight decay of 0.0003 for CIFAR10 and 0.0005 for
CIFAR100 is adopted to optimize the network parameters.
The cosine annealing scheme is applied to decay the learning
rate from 0.025 to 0. To explore the potential of the searched
architectures, we further increase the number of initial chan-
nels from 36 to 64, which is denoted as the large setting.

Evaluation results and comparison with state-of-the-art
approaches are summarized in Table 1. As demonstrated in
Table 1, P-DARTS achieves a 2.50% test error on CIFAR10
with a search cost of only 0.3 GPU-days. To obtain a
similar performance, AmoebaNet (Real et al. 2018) spent
thousands of GPU-hours, which is four orders of mag-
nitude more computational resources. Our P-DARTS also
outperforms DARTS and SNAS by a large margin with com-
parable parameter count. Notably, architectures discovered
by P-DARTS outperform ENAS, one of the previously most
efficient approaches, in both classification performance and
search cost, with fewer parameters.

The architectures discovered both DARTS and P-DARTS
on CIFAR10 are transferred to CIFAR100 to test the trans-
ferability between similar datasets. Obvious superiority of
P-DARTS is observed in terms of classification accuracy. As
mentioned previously, P-DARTS is able to support architec-
ture search on other proxy datasets such as CIFAR100. For

a fair comparison, we tried to perform architecture search
on CIFAR100 with the publicly available code of DARTS
but resulted in architectures full of skip-connect operations.
The discovered architecture on CIFAR100 significantly out-
performs those architectures transferred from CIFAR10. An
interesting point is that the directly searched architectures
perform better when evaluated on the search dataset than
those transferred ones for both CIFAR10 and CIFAR100.
Such a phenomenon provides a proof of the existence of
dataset bias in NAS.

5.2 Diagnostic Experiments

Before continuing to ImageNet search and in-the-wild eval-
uation experiments, we conduct diagnostic studies to better
understand the properties of P-DARTS.

5.2.1 Comparison on the Depth of Search Networks

Since the search process of P-DARTS is divided intomultiple
stages, we perform a case study to extract architectures from
each search stagewith the same rule to validate the usefulness
of bridging the depth gap. Architectures from each stage are
evaluated to demonstrate their capability for image classifica-

123



648 International Journal of Computer Vision (2021) 129:638–655

tion. The topology of discovered architectures (only normal
cells are shown) and their corresponding classification per-
formance are summarized in Figure 3 ((a)–(d)). To show the
difference in the topology of cells searched with different
depth, we add the architecture discovered by second-order
DARTS (DARTS_V2, 8 cells in the search network) for com-
parison.

The lowest test error is achieved by the architecture
obtained from the final search stage (stage 3), which validates
the effectiveness of shrinking the depth gap. From Figure 3
((a)–(d)) we can observe that these discovered architectures
share some common edges, for example sep_conv_3 × 3 at
edge E(ck−2,2) for all stage of P-DARTS and at edge E(ck−1,0)

for stage 2, 3 of P-DARTS and DARTS_V2. These com-
mon edges serve as a solid proof that operations with high
importance are preserved by the search space approxima-
tion scheme. Differences also exist between these discovered
architectures, which we believe is the key factor that affects
the capability of these architectures. Architectures generated
by shallow search networks tend to keep shallow connec-
tions, while with deeper search networks, the discovered
architectures prefer to pick some preceding intermediate
nodes as input, resulting in cells with deep connections. This
is because it is harder to optimize a deep search network, so
the algorithm has to explore more paths to find the optimum,
which results in more complex and powerful architectures.

Additionally, we perform quantitative analysis on the dis-
covered architectures by P-DARTS of three individual runs
and summarize the average levels of their connections in Fig-
ure 3(e). For comparison, we also add the architecture found
by the second-order DARTS into this analysis. While the
preserved edges of DARTS are almost all shallow (7 over 8
of level 1 and level 2), P-DARTS tends to keep more deep
edges.

5.2.2 Effectiveness of Search Space Approximation

The search process takes ∼ 7 hours on a single Nvidia Tesla
P100 GPU with 16GBmemory to produce the final architec-
tures.Wemonitor the GPUmemory usage of the architecture
search process for 3 individual runs and collect the peak value
to verify the effectiveness of the search space approximation
scheme2, which is shown in Table 2. The memory usage is
stably under the limit of the adopted GPU, and out of mem-
ory error barely occurs, showing the validity of the search
space approximation scheme on memory efficiency.

2 Here, we do not change the batch size to fit into the GPU memory
because even under a fixed batch size, the usage of GPU memory can
vary since the set of preserved candidates can differ, for example, a
convolutional operator occupies more memory than a pooling operator.
This is why we need to discuss the stability of GPU memory usage.

Table 2 Peak GPUmemory usage at different stages during three indi-
vidual runs

Run No. Mem. usage (GB)
Stage 1 Stage 2 Stage 3

1 9.8 14.0 14.2

2 9.8 14.4 14.5

3 9.8 14.2 14.3

The memory limit is 16GB

We perform experiments to demonstrate the effectiveness
of the search space approximation schemeon improving clas-
sification accuracy. Only the final stage of the search process
is executed on two different search spaces with identical set-
tings. The first search space is progressively approximated
from previous search stages, and the other is randomly sam-
pled from the full search space. To eliminate the influence of
randomness, we repeat the whole process for the randomly
sampled one for 3 times with different seeds and pick the
best one. The lowest test error for the randomly sampled
search space is 3.43%3, which is much higher than 2.58%,
the one obtained with the approximated search space. More-
over, we performed an additional experiment with a fixed
depth (8 cells) and shrunk sets of operations (8 → 5 → 3,
as used in the paper), which results in a test error of 2.70%,
significantly lower than the 3.00% test error obtained by the
first-order DARTS. These results reveal the necessity of the
search space approximation scheme.

In our pipeline, one or a few intermediate stages are
allowed so that the total stages of the search process can
be more than 3. We have tested another setting with 3 inter-
mediate stages (5 stages in total, the number of cells in each
stage is 5, 8, 11, 14, 17 and the corresponding number of
candidates preserved in each stage is 8, 6, 5, 4, 3). Without
deliberate hyper-parameter fine-tuning, we obtained a test
error of 2.63% on CIFAR10, which is close to the number
2.50% reported in Table 1. This experiment suggests that our
approach is not sensitive to the configuration of progressive
search. Actually, the number of stages and the corresponding
numbers of cells and preserved candidates in each stage can
be adjusted according to the configuration of search space,
character of the target task, and hardware (GPU memory).

5.2.3 Effectiveness of Search Space Regularization

We perform experiments to validate the effectiveness of
search space regularization, i.e., operation-level Dropout,
and architecture refinement.
Effectiveness of operation-level Dropout. Firstly, experi-
ments are conducted to test the influence of the operation-

3 The mean test error of these three trials is 3.61% ± 0.21% (the cor-
responding errors are 3.43%, 3.51% and 3.89%, respectively).

123



International Journal of Computer Vision (2021) 129:638–655 649

level Dropout scheme. Two sets of initial Dropout rates are
adopted, i.e., 0.0, 0.0, 0.0 (without Dropout) and 0.0, 0.3, 0.6
(with Dropout) for stage 1, 2 and 3, respectively. To elimi-
nate the potential influence of the number of skip-connects,
the comparison is made across multiple values of M .

Test errors for architectures discovered without Dropout
are 2.93%, 3.28% and 3.51% for M = 2, 3 and 4,
respectively. When operation-level Dropout is applied, the
corresponding test errors are 2.69%, 2.84% and 2.97%, sig-
nificantly outperforming those without Dropout. According
to the experimental results, all 8 preserved operations in the
normal cell of the architecture discovered without Dropout
are skip-connects before architecture refinement, while the
number is 4 for the architecture discovered with Dropout.
The diminishing on the number of skip-connect operations
verifies the effectiveness of search space regularization on
stabilizing the search process.
Effectiveness of architecture refinement. During experi-
ments, we observe strong coincidence between the classifica-
tion accuracy of architectures and the number of skip-connect
operations in them. We perform a quantitative experiment to
analyze it. Architecture refinement is applied to the same
search process to produce multiple architectures where the
number of preserved skip-connect operations in the normal
cell varies from 0 to 4.

The test errors are positively correlated to the number of
skip-connects except for M = 0, i.e, 2.78%, 2.68%, 2.69%,
2.84% and 2.97% for M = 0 to 4, while the parameters
count is inversely proportional to the skip-connect count, i.e.,
4.1M, 3.7M, 3.3M, 3.0M and 2.7M, respectively. The rea-
son lies in that, with a fixed number of operations in a cell,
the eliminated parameter-free skip-connects are replaced
by operations with trainable parameters, e.g., convolution,
resulting in more complex and powerful architectures.

The above observation inspired us to propose the second
search space regularization scheme, architecture refinement,
whose capability is validated by the following experiments.
We run another 3 architecture search experiments, all with
initial Dropout rates of 0.0, 0.3, and 0.6 for stage 1, 2, and
3, respectively. Before architecture refinement, the test error
is 2.79 ± 0.16% and the discovered architectures are with
2, 3 and 4 skip-connects in normal cells. After architecture
refinement, all three searched architectures are with 2 skip-
connects in normal cells, resulting in a diminished test error
of 2.65± 0.05%. The reduction of the average test error and
standard deviation reveals the improvement of the stability
for the search process.
Applying search space regularization to DARTS. We
apply our proposed search space regularization scheme to the
original first-order DARTS, and the test error on CIFAR10
is reduced to 2.78%, significantly lower than the original
3.00% but still considerably higher than P-DARTS (2.50%).
This reveals that the proposed regularization scheme is also

effective in searching for relatively shallower architectures,
yet another source of improvement comes from increasing
search depth. The positive results indicate that the proposed
search space regularization can also be plugged into other
DARTS-based approaches.

5.2.4 Stability of Progressive DARTS

To verify the stability brought by P-DARTS, we execute two
additional search processes of P-DARTS on CIFAR10 and
the test errors of them are 2.60% and 2.43%, respectively.
Adding the one in Table 1, 2.50%, this results in a mean test
error of 2.51%±0.07%.We have also executed three individ-
ual runs for DARTS and themean test error is 2.85%±0.23%
(three individual runs reported 3.11%, 2.68% and 2.77%,
respectively). That being said, P-DARTS not only enjoys a
lower mean test error, but also the standard deviation is much
smaller, indicating that the stability of search is improved.
Notably, all discovered architectures appear to have deeper
connections than those for DARTS, which is believed to be
one of the key factors to achieve high performance. Aside
from the one in Table 3, two additional search process are
also performed on ImageNet and reports a test error of 24.2%
and 24.1%, respectively, very close to the one in Table 3,
which also verifies the stability of our approach. The above
results demonstrates the effectiveness of the alleviation of
the optimization gap on the stability of the search process.

5.2.5 Discussion: Other Optimization Gaps

Apart from depth gap that we have addressed in this paper,
other aspects of the optimization gap can also affect the
search process of super-network-based NAS approaches.
Here, we briefly discuss two aspects of them.
The width gap. One of the straightforward option comes
from the width of the network. Note that during the search
stage on CIFAR, the base channel number is set to be 16,
while that is enlarged as 48 when the searched architecture is
transferred to ImageNet (see the experimental settings in the
following section). This also claims a significant optimiza-
tion gap.

Therefore, it is natural to progressively increase the net-
work width during the search stage, just like what we have
done for the network depth. However, we find that the
performance gain brought by this strategy is limited. Dig-
ging into the searched architecture, we find that when an
increased network width is used, the search algorithm tends
to find architectures with small (3×3) convolutional kernels,
while the original version tends to find architectures with a
considerable portion of big (5 × 5) kernels. Consequently,
the comparison between these two options is not fair on
CIFAR10, as the original (not progressivelywidened) version
often has a larger number of parameters. This also delivers an

123



650 International Journal of Computer Vision (2021) 129:638–655

Table 3 Comparison with state-of-the-art architectures on ImageNet (mobile setting)

Architecture Test Err. (%) Params ×+ Search cost Search method
Top-1 Top-5 (M) (M) (GPU-days)

Inception V1 (Szegedy et al. 2015) 30.2 10.1 6.6 1448 – Manual

MobileNet (Howard et al. 2017) 29.4 10.5 4.2 569 – Manual

ShuffleNet V1 2× (Zhang et al. 2018) 26.4 10.2 ∼5 524 – Manual

ShuffleNet V2 2× (Ma et al. 2018) 25.1 - ∼5 591 – Manual

NASNet-A (Zoph et al. 2018) 26.0 8.4 5.3 564 1800 RL

NASNet-B (Zoph et al. 2018) 27.2 8.7 5.3 488 1800 RL

NASNet-C (Zoph et al. 2018) 27.5 9.0 4.9 558 1800 RL

AmoebaNet-A (Real et al. 2018) 25.5 8.0 5.1 555 3150 Evolution

AmoebaNet-B (Real et al. 2018) 26.0 8.5 5.3 555 3150 Evolution

AmoebaNet-C (Real et al. 2018) 24.3 7.6 6.4 570 3150 Evolution

PNAS (Liu et al. 2018a) 25.8 8.1 5.1 588 225 SMBO

RandWire-WS (Xie et al. 2019a) 25.3 7.8 5.6 583 – Randomly wiring

MnasNet-92 (Tan et al. 2019) 25.2 8.0 4.4 388 – RL

ProxylessNAS (GPU) (Cai et al. 2019) 24.9 7.5 7.1 465 8.3 Gradient-based

MobileNetV3 (Howard et al. 2019) 24.8 – 5.4 219 – NetAdapt

EfficientNet-B0 (Tan and Le 2019)‡ 22.7 6.5 5.3 390 – RL

DARTS (second order) (Liu et al. 2019a) 26.7† 8.7 4.7 574 4.0 Gradient-based

SNAS (mild constraint) (Xie et al. 2019b) 27.3 9.2 4.3 522 1.5 Gradient-based

GDAS (Dong and Yang 2019b) 26.0 8.5 4.4 581 0.2 Gradient-based

SETN (Dong and Yang 2019a) 25.3 8.0 5.4 599 1.8 Gradient-based

MdeNAS (Zheng et al. 2019) 24.5 7.9 6.1 – 0.2 MDL

PC-DARTS (searched on CIFAR10) (Xu et al. 2020) 25.1 7.8 5.3 586 0.1 Gradient-based

PC-DARTS (searched on ImageNet) (Xu et al. 2020) 24.2 7.3 5.3 597 3.8 Gradient-based

P-DARTS (searched on CIFAR10) 24.4 7.4 4.9 557 0.3 Gradient-based

P-DARTS (searched on ImageNet) 24.1 7.3 5.4 597 2.0 Gradient-based

†: the top-1 test error is 25.4% when the learning rate decay schedule is cosine annealing; ‡: EfficientNet-B0 is equipped with additional network
components like swish activation function and SEmodule, and trainedwith extra techniques such asAutoAugment (Cubuk et al. 2018) and stochastic
depth (Huang et al. 2016)

important message: the value of shrinking the optimization
gap will be enlightened in a relatively “fair” (Chu et al. 2019)
search environment.

While there is no evident improvement on CIFAR10
when addressing the width gap, significant accuracy gain is
obtained when architecture search is performed on ImageNet
with both depth gap and width gap addressed (please refer
to Sect. 5.3). On the one hand, the performance gain on Ima-
geNet owes to the shrinkage of thewidth gap,which enables a
successful search process. On the other hand, directly search-
ing architectures on ImageNet eliminated the dataset gap,
constituting another critical factor for performance improve-
ment.
The gap brought by other hyper-parameters. In the search
setting of DARTS, all the affine parameters of batch normal-
ization are discarded because the architectural parameters are
dynamically learned across thewhole search process, and the
affine parameters will rescale the output of each operation

according to incorrect statistics. On the contrary, the affine
option of batch normalization is switched on to recover the
data distribution during the evaluation scenario, which forms
another aspect of the optimization gap. However, this gap is
hard to address because a bunch of additional issues may
arise if we switch it on.

Furthermore, the data augmentation gap, including the
inconsistent settings of Cutout, is another inconsistency
between search and evaluation. There also may exist other
aspects of the optimization gap, e.g., Dropout, auxiliary loss
tower, etc. In (Bi et al. 2019), the authors briefly discussed
some aspects of the above-mentioned ones, while the influ-
ence of these optionswas not clearly stated. In fact, a different
setting on these aspects may cause other additional problems
to disrupt qualitative and quantitative analysis on them.Addi-
tionally, the fluctuation on small scale datasets like CIFAR10
may also cause dramatic impacts on the analysis, while the

123



International Journal of Computer Vision (2021) 129:638–655 651

computational burden obstructs the analysis on large-scale
datasets.

5.3 The ImageNet Dataset

We also search architectures directly on ImageNet to vali-
date the applicability of our search algorithm to large-scale
datasets. Experiments are performed on ILSVRC2012 (Rus-
sakovsky et al. 2015), a subset of ImageNet (Deng et al. 2009)
which contains 1000 object categories and 1.28M training
and 50Kvalidation images. Following the conventions (Zoph
et al. 2018; Liu et al. 2019a; Wu et al. 2019), we randomly
sample a 100-class subset of the training images for archi-
tecture search. Similar to CIFAR10, all images and standard
dataset partition are adopted during architecture evaluation.

5.3.1 Architecture Search

We use a similar configuration to the one used on CIFAR10
except for some minor changes. We set the numbers of cells
to be 5, 8 and 11 and adjust the dropout rate to 0.0, 0.3, 0.6.
Meanwhile, we increase the number of initial channels from
16 to 28, and 40 for stage 1, 2, and 3, respectively.

Architecture search on ImageNet is executed with 8
Nvidia Tesla V100, which takes around 6 hours, thus a search
cost of 2 GPU-days. The search cost of P-DARTS on Ima-
geNet is even smaller than PC-DARTS(Xu et al. 2020), a
memory-efficient differentiable approach proposed recently,
which demonstrates the efficiency of our proposed search
space approximation scheme.

During the search process, the “over-fitting” phenomenon
is largely alleviated and the number of skip-connect oper-
ation is well controlled. This comes from two aspects. On
the one hand, gradients assigned to skip-connects is suc-
cessfully suppressed by the first search space regularization
method, i.e., adding operation level dropout on skip-connect
operations. On the other hand, the variety and complexity of
ImageNet make it more difficult to fit with those parameter-
free operations than CIFAR10 and CIFAR100, forcing the
network to train those operations with learnable parameters.
Moreover, the discovered architecture is also with plenty
of deep connections, as demonstrated in Figure 3. Such a
character guarantees a favorable classification performance.
We have also attempted to search architectures without pro-
gressively increasing the network width, but the discovered
architectures resulted in worse classification performance,
which demonstrates the usefulness of the progressive width
scheme.

5.3.2 Architecture Evaluation

The transferability to large-scale recognition datasets of
architecture discovered on CIFAR10 is firstly tested on the

ILSVRC2012. Concurrently, the capability of the architec-
ture directly searched on ImageNet is also evaluated. We
apply the mobile setting for the evaluation scenario where
the input image size is 224 × 224, and the number of multi-
add operations is restricted to be less than 600M. A network
configuration identical to DARTS is adopted, i.e., an evalu-
ation network of 14 cells and 48 initial channels. We train
each network from scratch for 250 epochs with batch size
1024 on 8 Nvidia Tesla V100 GPUs, which takes about 3
days with our PyTorch (Paszke et al. 2019) implementation.
The network parameters are optimized using an SGD opti-
mizer with an initial learning rate of 0.5 (decayed linearly
after each epoch), a momentum of 0.9, and a weight decay of
3×10−5. Additional enhancements, including label smooth-
ing (Szegedy et al. 2016) and auxiliary loss tower, are applied
during training. Since large batch size and learning rate are
adopted, we apply learning rate warmup (Goyal et al. 2017)
for the first 5 epochs.

Our evaluation results and the comparison with state-
of-the-art approaches are summarized in Table 3. The
architecture transferred fromCIFAR10outperformsDARTS,
PC-DARTS and SNAS by a large margin in terms of classi-
fication performance, which demonstrates superior transfer
capability of the discovered architectures. Notably, architec-
tures discovered by P-DARTS on CIFAR10 achieve lower
test error than MnasNet (Tan et al. 2019) and Proxyless-
NAS (Cai et al. 2019), whose search space is modified from
theMobileNet-v2 architecturewhichwas originally designed
for ImageNet and, as far as we know, very rarely used for
CIFAR experiments. The architecture directly searched on
ImageNet achieves superior performance compared to those
transferred ones (+0.3% top-1 accuracy gain) and is compa-
rable to the state-of-the-art directly-searched models in the
DARTS-based search space (Xu et al. 2020).

For better reference, we also put some recent work,
MobileNet-v3 (Howard et al. 2019), RandWire-WS (Xie
et al. 2019a) and EfficientNet-B0 (Tan and Le 2019), into
Table 3. However, due to large difference in network con-
figuration (MobileNet-v3 applied multiple additional com-
ponents like the H-swish activation function to improve the
capability, RandWire-WS adopted a quite different search
space, and EfficientNet-B0 adopted multiple techniques
including swish activation function, SE module, AutoAug-
ment (Cubuk et al. 2018) data augmentation, etc. to enhance
its performance4), the comparison between these two meth-
ods and others is less informative. Moreover, EfficientNet

4 Individually, swish activation function reduced the top-1 test error
of NASNet-A from 26.4% to 25.0%(Ramachandran et al. 2017), SE
module brought an performance gain of 0.7% (from 25.5% to 24.8%)
on MnasNet (Tan et al. 2019), and AutoAugment achieved an accuracy
gain of 1.3% on ResNet-50 (Cubuk et al. 2018). With swish activation
function, SE module and AutoAugment, the compound gain is 2.5%
(from 25.2% of MnasNet-92 to 22.7% of EfficientNet-B0. )

123



652 International Journal of Computer Vision (2021) 129:638–655

Table 4 Detection results on the MS-COCO dataset (test-dev). The displayed FLOPs only includes the computations in the network backbone. †

denotes the results in this line are from (Duan et al. 2019); ‡: this model is equipped with BiFPN

Network Input Size Backbone ×+ AP AP50 AP75 APS APM APL

SSD300 (Liu et al. 2016) 300 × 300 VGG-16 31.4B 23.2 41.2 23.4 5.3 23.2 39.6

SSD512 (Liu et al. 2016) 512 × 512 VGG-16 80.4B 26.8 46.5 27.8 9.0 28.9 41.9

SSD513 (Liu et al. 2016)† 513 × 513 ResNet-101 43.4B 31.2 50.4 33.3 10.2 34.5 49.8

SSDLiteV1 (Howard et al. 2017) 320 × 320 MobileNetV1 1.2B 22.2 – – – – –

SSDLiteV2 (Sandler et al. 2018) 320 × 320 MobileNetV2 0.7B 22.1 – – – – –

SSDLiteV3 (Tan et al. 2019) 320 × 320 MnasNet-A1 0.6B 23.0 – – 3.6 20.5 43.2

SSD320 (Liu et al. 2016) 320 × 320 PC-DARTS (ImageNet) 1.2B 28.9 46.9 30.0 7.9 32.0 48.3

EfficientDet-D0 (Tan et al. 2020)‡ 512 × 512 EfficientNet-B0 2.5B 34.6 53.0 37.1 - - -

SSD320 (Liu et al. 2016) 320 × 320 DARTS 1.1B 27.3 45.0 28.3 7.6 30.2 46.0

SSD320 (Liu et al. 2016) 320 × 320 P-DARTS (CIFAR10) 1.1B 28.9 46.8 30.2 7.3 32.2 48.2

SSD320 (Liu et al. 2016) 320 × 320 P-DARTS (ImageNet) 1.2B 29.9 47.8 31.5 9.0 33.2 50.0

SSD512 (Liu et al. 2016) 512 × 512 DARTS 2.9B 31.8 50.3 33.8 11.7 37.1 49.7

SSD512 (Liu et al. 2016) 512 × 512 P-DARTS (CIFAR10) 2.9B 33.6 52.8 35.6 13.3 39.7 51.1

SSD512 (Liu et al. 2016) 512 × 512 P-DARTS (ImageNet) 3.1B 34.1 52.9 36.3 14.3 40.0 52.1

offers a way of building large models with compound scal-
ing. As our work has addressed the depth aspect to build a
deep one, there is little option in the search space we adopt,
while building a larger model may require to adjust multi-
ple options simultaneously as EfficientNet did. While some
recent works showed that a large model did bring higher
performance (Real et al. 2018; Liu et al. 2018a; Zoph et al.
2018), we are not able to try it since massive computations
are required.

5.4 Evaluation in theWild

To further test the transferability of the discovered archi-
tectures to scenarios in the wild, we embed our discovered
architectures as backbones into two other vision tasks, i.e.,
object detection and person re-identification. On both tasks,
we have observed superior performance compared to both
baseline methods and the DARTS backbone, which reveals
that the desirable characters obtained on image recognition
by P-DARTS can bewell transferred to scenarios in the wild.

5.4.1 Transferring to Object Detection

Object detection is also a fundamental task in the vision
community and also an important task of the scenario in
the wild (Liu et al. 2019b). We plug the discovered archi-
tectures and corresponding weights pre-trained on ImageNet
into Single-Shot Detectors (SSD) (Liu et al. 2016), a popu-
lar light-weight object detection framework. The capability
of our backbones is tested on the benchmark dataset MS-
COCO (Lin et al. 2014), which contains 80 object categories
and more than 1.5M object instances. We train the pipeline

with the “trainval35K” set, i.e., a combination of the 80k
training and35kvalidation images. The performance is tested
on the test-dev set.

Results are summarized in Table 4. Equipped with the
P-DARTS backbone searched on CIFAR10, the P-DARTS-
SSD320 achieves a superior AP of 28.9% with only 1.1B
FLOPs, which is 5.7% higher in AP with 29× fewer FLOPs
than SSD300, and even 2.1% higher in AP with 73× fewer
FLOPS than the SSD512. With similar FLOPs, P-DARTS-
SSD320 outperforms the DARTS-SSD320 by 1.6% in AP.
Compared to those light-weight backbones, i.e., backbones
belong to the MobileNet family, our P-DARTS-SSD320
enjoys a superior AP by a large margin, while with an
acceptable amount of extra FLOPs than these light-weight
backbones. With larger input image size, the P-DARTS-
SSD512 surpasses the SSD513 by an AP of 2.4%, while
the FLOPs count of the P-DARTS backbone is 14× smaller
than its ResNet-101 backbone. The results with the backbone
searched by P-DARTS on ImageNet are further impres-
sive, which achieves an AP of 29.9% with the backbone
searched onCIFAR10 for P-DARTS-SSD320, and 34.1% for
P-DARTS-SSD512. With a comparable amount of FLOPs,
our P-DARTS-SSD320 (ImageNet) outperforms the PC-
DARTS-SSD320 (ImageNet), the previous most powerful
one with DARTS-based backbone, by a significant margin of
1.0% on AP. These results indicate that the discovered archi-
tectures by P-DARTS are well transferred to object detection
and produce superior performance.

There also exist works that applied NAS approaches
to improving two-stage object detection, e.g., based on
FPN (Lin et al. 2017). For example, DetNAS (Chen et al.
2019b) achieved an AP of 36.6%, outperforming 33.9%

123



International Journal of Computer Vision (2021) 129:638–655 653

Table 5 Results of person re-identification on Market-1501, DukeMCMT-reID and MSMT17

Backbone # Parts Feat. Dim ×+ Market-1501 DukeMCMT-reID MSMT17
(M) Rank-1 mAP Rank-1 mAP Rank-1 mAP

Auto-ReID (Quan et al. 2019) – – – 94.5 85.1 – – 78.2 52.5

ResNet-50 1 2,048 4,120 87.9 72.8 72.0 57.2 48.3 24.6

DARTS 1 768 573 91.9 79.3 82.1 66.7 61.5 37.9

P-DARTS (CIFAR10) 1 768 556 93.0 81.4 83.8 68.7 67.0 42.0

P-DARTS (ImageNet) 1 768 596 92.0 78.4 83.6 67.8 66.7 39.6

ResNet-50 3 2,048 4,120 92.8 80.3 84.6 71.5 71.6 46.2

DARTS 3 768 573 94.2 83.6 86.2 74.7 77.4 53.0

P-DARTS (CIFAR10) 3 768 556 94.6 84.8 87.3 75.5 79.5 56.0

P-DARTS (ImageNet) 3 768 596 93.7 83.9 90.0 75.3 77.2 53.4

ResNet-50 6 2,048 4,120 93.1 81.0 86.1 74.0 71.1 46.0

DARTS 6 768 573 93.4 83.2 86.4 74.2 77.1 53.8

P-DARTS (CIFAR10) 6 768 556 93.6 83.4 87.3 74.6 79.2 56.4

P-DARTS (ImageNet) 6 768 596 93.0 83.0 86.7 74.0 76.8 53.6

Bold indicates the best one
The displayed FLOPs only includes the computations in the network backbone

reported by ResNet50 that has 10× more FLOPs than the
backbone of DetNAS. NAS-FPN (Ghiasi et al. 2019) used
a more powerful backbone, AmoebaNet (Real et al. 2018),
and reported an even higher detection accuracy. Efficient-
Det (Tan et al. 2020) adopted state-of-the-art backbones, the
EfficientNet series, and equipped a more competitive feature
fusion network, BiFPN (which is reported to improve the
detection AP by a margin of up to 2% compared to a normal
FPN (Tian et al. 2020)), result with sate-of-the-art detec-
tion performance. Deploying DARTS-based backbones onto
FPN or BiFPN requires non-trivial efforts, since the num-
ber of stages for feature extraction does not match. We will
explore this possibility with a newly designed search space.

5.4.2 Transferring to Person Re-Identification

Person re-identification is an important practical vision task
and has been attracting more attention from both academia
and industry (Wang et al. 2018; Li et al. 2018) because of
its broad applications in surveillance and security. Apart
from those task-specific modules, the backbone architecture
is a critical factor for performance promotion. We replace
the previous backbones with our P-DARTS architectures
(searched on both CIFAR10 and ImageNet) and test the
transferability on three benchmark datasets, i.e., Market-
1501 (Zheng et al. 2015), DukeMTMC-reID (Zheng et al.
2017) andMSMT17 (Wei et al. 2018). Experiments are exe-
cuted with the pipeline of Part-based Convolutional Baseline
(PCB) (Sun et al. 2018), and all backbones are pre-trained
on ImageNet. We set the numbers of parts to be 1, 3, and 6
to make an exhaustive comparison.

(a) ImageNet (b) MS-COCO

(c) CIFAR10 (d) Market-1501

Fig. 4 Samples from ImageNet, MS-COCO, CIFAR10 and Market-
1501. Please zoom in to see clearer

Results are summarized in Table 5. The P-DARTS back-
bones outperform the ResNet-50 backbone by a large margin
with fewer FLOPs and a smaller feature dimensionality.With
a similar backbone size, P-DARTS (CIFAR10) surpasses
DARTSon all three datasetswith different part numbers, sug-
gesting a superior transferability of our searched architecture.
However, with the P-DARTS (ImageNet) backbone, the per-

123



654 International Journal of Computer Vision (2021) 129:638–655

formance is only comparable to the DARTS backbone and
worse than the P-DARTS (CIFAR10) backbone. Addition-
ally, we add the NAS-based Auto-ReID (Quan et al. 2019)
into comparison. Compared to the DARTS and P-DARTS
models, the models of Auto-ReID have different network
components, model size, etc., making it unfair to compare
these two set of models. Thus, we only list it here as refer-
ence.

It is worth noting that the preferences to CIFAR-searched
and ImageNet-searched backbones are different between
object detection and person re-identification tasks. This is
due to the domain gap between the architecture search task
and the target tasks. While the original images used in Ima-
geNet classification andCOCOobject detection are similarly
with high resolution and data distribution, images used in
ReID are in worse condition, which is more similar to the
situation in CIFAR10. We showcase in Figure 4 samples
from ImageNet, COCO, CIFAR10, and Market-1501, where
the domain gap between them can be visually observed. A
notable phenomenon is that with the ResNet-50 backbone,
performance keeps rising when increasing the part number,
while the best performance reaches to the peak when the part
number is 3 with both DARTS and P-DARTS backbones.
This is arguably because of the larger feature dimension-
ality adopted in ResNet-50 backbone, which also implies
the potential of further performance promotion on P-DARTS
backboneswith a larger feature dimensionality and part num-
ber. The domain gap seems to be the critical difficulty in the
future of NAS in the wild.

6 Conclusions

In this work, we propose a progressive version of differ-
entiable architecture search to bridge the optimization gap
between search and evaluation scenarios for NAS in the wild.
The core idea, based on that optimization gap is caused by the
difference between the policies of search and evaluation, is to
gradually increase the depth of the super-network during the
search process. To alleviate the issues of computational over-
head and instability, we design two practical techniques to
approximate and regularize the search process, respectively.
Our approach reports superior performance in both proxy
datasets (CIFAR and ImageNet) and target datasets (object
detection and person re-identification added) with signifi-
cantly reduced search overheads.

Our research puts forward the optimization gap in super-
network-based NAS and highlights the significance of the
consistency between search and evaluation scenarios. To
solve it in terms of network depth and width, the P-DARTS
algorithm paves a new way by approximating the search
space. We expect that our initial work serves as a modest
spur to induce more researchers to contribute their ideas to

further alleviate the optimization gap and design effective
and generalized NAS algorithms.

Acknowledgements This work was supported in part by the National
Natural Science Foundation of China under Grant Nos. 61831018,
and 61631017, and Guangdong Province Key Research and Develop-
ment Program Major Science and Technology Projects under Grant
2018B010115002.

References

Baker, B., Gupta, O., Naik, N., & Raskar, R. (2017). Designing neural
network architectures using reinforcement learning. In ICLR.

Bi, K., Hu, C., Xie, L., Chen, X., Wei, L., & Tian, Q. (2019). Sta-
bilizing darts with amended gradient estimation on architectural
parameters. arXiv:1910.11831.

Cai, H., Chen, T., Zhang, W., Yu, Y., &Wang, J. (2018). Efficient archi-
tecture search by network transformation. In AAAI.

Cai, H., Zhu, L., & Han, S. (2019). ProxylessNAS: Direct neural archi-
tecture search on target task and hardware. In ICLR.

Chen, X., Xie, L.,Wu, J., & Tian, Q. (2019a). Progressive differentiable
architecture search: Bridging the depth gap between search and
evaluation. In ICCV.

Chen, Y., Yang, T., Zhang, X., Meng, G., Xiao, X., & Sun, J. (2019b).
Detnas: Backbone search for object detection. In NeurIPS.

Chu, X., Zhang, B., Xu, R., & Li, J. (2019). Fairnas: Rethinking
evaluation fairness of weight sharing neural architecture search.
arXiv:1907.01845.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., & Le, Q. V.
(2018). Autoaugment: Learning augmentation policies from data.
arXiv:1805.09501.

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009).
ImageNet: A large-scale hierarchical image database. In CVPR.

DeVries, T., & Taylor, G. W. (2017). Improved regularization of con-
volutional neural networks with cutout. arXiv:1708.04552.

Dong, X., & Yang, Y. (2019a). One-shot neural architecture search via
self-evaluated template network. In ICCV.

Dong,X.,&Yang,Y. (2019b). Searching for a robust neural architecture
in four gpu hours. In CVPR.

Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., & Tian, Q. (2019). Cen-
ternet: Keypoint triplets for object detection. In ICCV.

Elsken,T.,Metzen, J.H.,&Hutter, F. (2018).Neural architecture search:
A survey. arXiv:1808.05377.

Ghiasi, G., Lin, T. Y., & Le, Q. V. (2019). Nas-fpn: Learning scalable
feature pyramid architecture for object detection. In CVPR.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L.,
Kyrola, A., Tulloch, A., Jia, Y., & He, K. (2017). Accurate, large
minibatch SGD: Training ImageNet in 1 hour. arXiv:1706.02677.

Han, D., Kim, J., & Kim, J. (2017). Deep pyramidal residual networks.
In CVPR.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for
image recognition. In CVPR.

Howard,A., Sandler,M., Chu,G., Chen, L. C., Chen, B., Tan,M.,Wang,
W., Zhu, Y., Pang, R., Vasudevan, V., et al. (2019) Searching for
mobilenetv3. In ICCV.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Effi-
cient convolutional neural networks formobile vision applications.
arXiv:1704.04861.

Huang, G., Sun, Y., Liu, Z., Sedra, D., & Weinberger, K. Q. (2016).
Deep networks with stochastic depth. In ECCV, Springer.

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017).
Densely connected convolutional networks. In CVPR.

123

http://arxiv.org/abs/1910.11831
http://arxiv.org/abs/1907.01845
http://arxiv.org/abs/1805.09501
http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1808.05377
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1704.04861


International Journal of Computer Vision (2021) 129:638–655 655

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In ICML.

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of fea-
tures from tiny images. Tech. rep., Citeseer.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet clas-
sification with deep convolutional neural networks. In NIPS.

Larsson, G., Maire, M., & Shakhnarovich, G. (2017). FractalNet: Ultra-
deep neural networks without residuals. In ICLR.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature,
521(7553), 436–444.

Li, J., Ma, A. J., & Yuen, P. C. (2018). Semi-supervised region metric
learning for person re-identification. IJCV, 126(8), 855–874.

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,
Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common
objects in context. In ECCV.

Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S.
(2017). Feature pyramid networks for object detection. In CVPR.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L. J., Fei-Fei,
L., Yuille, A., Huang, J., &Murphy, K. (2018a). Progressive neural
architecture search. In ECCV.

Liu, H., Simonyan, K., Vinyals, O., Fernando, C., & Kavukcuoglu,
K. (2018b). Hierarchical representations for efficient architecture
search. In ICLR.

Liu, H., Simonyan, K., & Yang, Y. (2019a). DARTS: Differentiable
architecture search. In ICLR.

Liu, L., Ouyang,W.,Wang, X., Fieguth, P., Chen, J., Liu, X., & Pietikäi-
nen, M. (2019b). Deep learning for generic object detection: A
survey. In IJCV.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., &
Berg, A. C. (2016). Ssd: Single shot multibox detector. In ECCV.

Ma, N., Zhang, X., Zheng, H. T., & Sun, J. (2018). ShuffleNet V2:
Practical guidelines for efficient cnn architecture design. InECCV.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. (2019).
Pytorch: An imperative style, high-performance deep learning
library. In NeurIPS.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., & Dean, J. (2018). Efficient
neural architecture search via parameter sharing. In ICML.

Quan, R., Dong, X., Wu, Y., Zhu, L., & Yang, Y. (2019). Auto-reid:
Searching for a part-aware convnet for person re-identification. In
ICCV.

Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Searching for activa-
tion functions. arXiv:1710.05941.

Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2018). Regularized evo-
lution for image classifier architecture search. arXiv:1802.01548.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al.
(2015). ImageNet large scale visual recognition challenge. IJCV,
115(3), 211–252.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C.
(2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In
CVPR.

Shu, Y.,Wang,W., & Cai, S. (2020). Understanding architectures learnt
by cell-based neural architecture search. In ICLR.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional net-
works for large-scale image recognition. In ICLR.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdi-
nov, R. (2014). Dropout: A simple way to prevent neural networks
from overfitting. JMLR, 15(1), 1929–1958.

Srivastava, R. K., Greff, K., & Schmidhuber, J. (2015). Training very
deep networks. In NIPS.

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks
through augmenting topologies.EvolutionaryComputation,10(2),
99–127.

Suganuma, M., Shirakawa, S., & Nagao, T. (2017). A genetic pro-
gramming approach to designing convolutional neural network
architectures. In GECCO.

Sun, Y., Zheng, L., Yang, Y., Tian, Q., & Wang, S. (2018). Beyond part
models: Person retrieval with refined part pooling (and a strong
convolutional baseline). In ECCV.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper
with convolutions. In CVPR.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016).
Rethinking the inception architecture for computer vision. In
CVPR.

Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for
convolutional neural networks. In ICML.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A.,
& Le, Q. V. (2019). Mnasnet: Platform-aware neural architecture
search for mobile. In CVPR.

Tan,M., Pang,R.,&Le,Q.V. (2020). Efficientdet: Scalable and efficient
object detection. In CVPR.

Tian, Z., Shen, C., Chen, H., &He, T. (2020). Fcos: A simple and strong
anchor-free object detector. arXiv:2006.09214.

Wang, H., Zhu, X., Gong, S., & Xiang, T. (2018). Person re-
identification in identity regression space. IJCV, 126(12), 1288–
1310.

Wei, L., Zhang, S., Gao, W., & Tian, Q. (2018). Person transfer gan to
bridge domain gap for person re-identification. In CVPR.

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P.,
Jia, Y.,&Keutzer, K. (2019). Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. InCVPR.

Xie, L., & Yuille, A. (2017). Genetic CNN. In ICCV.
Xie, S.,Kirillov,A.,Girshick,R.,&He,K. (2019a). Exploring randomly

wired neural networks for image recognition. In ICCV.
Xie, S., Zheng, H., Liu, C., & Lin, L. (2019b). SNAS: Stochastic neural

architecture search. In ICLR.
Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G. J., Tian, Q., & Xiong,

H. (2020). PC-DARTS: Partial channel connections for memory-
efficient architecture search. In ICLR.

Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks.
arXiv:1605.07146.

Zela, A., Elsken, T., Saikia, T., Marrakchi, Y., Brox, T., & Hutter, F.
(2020). Understanding and robustifying differentiable architecture
search. In ICLR.

Zhang, X., Zhou, X., Lin, M., Sun, J. (2018). ShuffleNet: An extremely
efficient convolutional neural network for mobile devices. In
CVPR.

Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q. (2015).
Scalable person re-identification: A benchmark. In ICCV.

Zheng, X., Ji, R., Tang, L., Zhang, B., Liu, J., & Tian, Q. (2019).
Multinomial distribution learning for effective neural architecture
search. In ICCV.

Zheng, Z., Zheng, L., & Yang, Y. (2017). Unlabeled samples generated
by gan improve the person re-identification baseline in vitro. In
ICCV.

Zhong, Z., Zheng, L., Kang, G., Li, S., & Yang, Y. (2017) Random
erasing data augmentation. arXiv:1708.04896.

Zoph, B., & Le, Q. V. (2017). Neural architecture search with reinforce-
ment learning. In ICLR.

Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning trans-
ferable architectures for scalable image recognition. In CVPR.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/2006.09214
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1708.04896

	Progressive DARTS: Bridging the Optimization Gap for NAS in the Wild
	Abstract
	1 Introduction
	2 Related Work
	3 Problem: NAS in the Wild
	4 Method: Progressive DARTS
	4.1 Preliminary: Differentiable Architecture Search
	4.2 The Optimization Gap
	4.3 Progressive Search to Bridge the Depth Gap
	4.3.1 Search Space Approximation
	4.3.2 Search Space Regularization

	4.4 Relationship to Prior Work

	5 Experiments
	5.1 The CIFAR10 and CIFAR100 Datasets
	5.1.1 Architecture Search
	5.1.2 Architecture Evaluation

	5.2 Diagnostic Experiments
	5.2.1 Comparison on the Depth of Search Networks
	5.2.2 Effectiveness of Search Space Approximation
	5.2.3 Effectiveness of Search Space Regularization
	5.2.4 Stability of Progressive DARTS
	5.2.5 Discussion: Other Optimization Gaps

	5.3 The ImageNet Dataset
	5.3.1 Architecture Search
	5.3.2 Architecture Evaluation

	5.4 Evaluation in the Wild
	5.4.1 Transferring to Object Detection
	5.4.2 Transferring to Person Re-Identification


	6 Conclusions
	Acknowledgements
	References




