
International Journal of Computer Vision (2021) 129:501–516
https://doi.org/10.1007/s11263-020-01379-y

Binarized Neural Architecture Search for Efficient Object Recognition

Hanlin Chen1 · Li’an Zhuo1 · Baochang Zhang1,2 · Xiawu Zheng3 · Jianzhuang Liu4 · Rongrong Ji3 ·
David Doermann5 · Guodong Guo6,7

Received: 19 December 2019 / Accepted: 28 August 2020 / Published online: 1 October 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Traditional neural architecture search (NAS) has a significant impact in computer vision by automatically designing network
architectures for various tasks. In this paper, binarized neural architecture search (BNAS), with a search space of binarized
convolutions, is introduced to produce extremely compressed models to reduce huge computational cost on embedded devices
for edge computing. The BNAS calculation is more challenging than NAS due to the learning inefficiency caused by opti-
mization requirements and the huge architecture space, and the performance loss when handling the wild data in various
computing applications. To address these issues, we introduce operation space reduction and channel sampling into BNAS
to significantly reduce the cost of searching. This is accomplished through a performance-based strategy that is robust to
wild data, which is further used to abandon less potential operations. Furthermore, we introduce the upper confidence bound
to solve 1-bit BNAS. Two optimization methods for binarized neural networks are used to validate the effectiveness of our
BNAS. Extensive experiments demonstrate that the proposed BNAS achieves a comparable performance to NAS on both
CIFAR and ImageNet databases. An accuracy of 96.53% vs. 97.22% is achieved on the CIFAR-10 dataset, but with a signif-
icantly compressed model, and a 40% faster search than the state-of-the-art PC-DARTS. On the wild face recognition task,
our binarized models achieve a performance similar to their corresponding full-precision models.

Keywords Neural architecture search (NAS) · Binarized network · Object recognition · Edge computing

1 Introduction

Efficient computing has become one of the hottest topics
both in academy and industry. It will be vital for the 5G net-
works by providing hardware-friendly and efficient solutions
for practical and wild applications (Mao et al. 2017). Edge

Communicated by Cha Zhang.

B Baochang Zhang
bczhang@buaa.edu.cn

Hanlin Chen
hlchen@buaa.edu.cn

Li’an Zhuo
lianzhuo@buaa.edu.cn

Xiawu Zheng
zhengxiawu@buaa.edu.cn

Jianzhuang Liu
jz.liu@siat.ac.cn

Rongrong Ji
rrji@buaa.edu.cn

David Doermann
doermann@buffalo.edu

computing is about computing resources that are closer to the
end user. This makes applications faster and users friendly
(Chen andRan 2019). It enablesmobile or embedded devices
to provide real-time intelligent analysis of big data, which
can reduce the pressure on the cloud computing center and
improve the availability (Han et al. 2019). However, edge

Guodong Guo
guoguodong01@baidu.com

1 Beihang University, Beijing, China

2 Shenzhen Academy of Aerospace Technology, Shenzhen
100083, China

3 Xiamen University, Xiamen, Fujian, China

4 Shenzhen Institutes of Advanced Technology, Shenzhen,
China

5 University at Buffalo, Buffalo, NY, USA

6 Institute of Deep Learning, Baidu Research, Beijing, China

7 National Engineering Laboratory for Deep Learning
Technology and Application, Beijing, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-020-01379-y&domain=pdf
http://orcid.org/0000-0001-7396-6218

502 International Journal of Computer Vision (2021) 129:501–516

computing is still challenged by its limited computational
ability, memory and storage and severe performance loss,
making the models for edge computing inefficient for fea-
ture calculation and inference (Li et al. 2019).

One possible solution for efficient edge computing can be
achieved based on compressed deep models, which mainly
fall into three lines: network pruning, knowledge distillation
and model quantization. Network pruning (Han et al. 2015)
aims to remove network connections with less significance,
and knowledge distillation (Hinton et al. 2015) introduces
a teacher-student model, which uses the soft targets gener-
ated by the teacher model to guide the student model with
much smaller model size, to achieve knowledge transfer.
Differently, model quantization (Courbariaux et al. 2016)
calculates neural networks with low-bit weights and activa-
tions to compress a model in a more efficient way, which
is also orthogonal to the other two. The binarized model
is widely considered as one of the most efficient ways to
perform computing on embedded devices with an extremely
less computational cost. Binarized filters have been used in
traditional convolutional neural networks (CNNs) to com-
press deep models (Rastegari etal. 2016; Courbariaux et al.
2016, 2015; Juefei-Xu et al. 2017), showing up to 58-time
speedup and 32-timememory saving. Juefei-Xu et al. (2017),
the XNOR network is presented where both the weights and
inputs attached to the convolution are approximated with
binary values. This results in an efficient implementation of
convolutional operations by reconstructing the unbinarized
filters with a single scaling factor. Zhuang et al. (2018) intro-
duces 2 ∼ 4-bit quantization based on a two-stage approach
to quantize the weights and activations, which significantly
improves the efficiency and performance of quantized mod-
els. Furthermore, WAGE (Wu et l. 2018) is proposed to
discretize both the training and inference processes, and it
quantizes not only weights and activations, but also gradi-
ents and errors. Gu et al. (2019), a projection convolutional
neural network (PCNN) is proposed to realize binarized
neural networks (BNNs) based on a simple back propaga-
tion algorithm. In our previous work (Zhao et al. 2019),
we propose a novel approach, called Bayesian optimized
1-bit CNNs (denoted as BONNs), taking the advantage of
Bayesian learning to significantly improve the performance
of extreme 1-bit CNNs. There are also other practices in
Tang et al. (2017), Alizadeh et al. (2018), and Ding et al.
(2019) with improvements over previous works. Binarized
models show the advantages on computational cost reduc-
tion and memory saving, but they unfortunately suffer from
performance loss when handling wild data in practical appli-
cations. The main reasons are twofold. On the one hand,
there is still a gap between low-bit weights/activations and
full-precision weights/activations on feature representation,
which should be investigated from new perspectives. On
the other hand, traditional binarized networks are based on

the neural architecture manually designed for full-precision
networks, which means that binarized architecture design
remains largely unexplored.

Traditional neural architecture search (NAS) has attracted
great attention with a remarkable performance in various
deep learning tasks. Impressive results have been shown
for reinforcement learning (RL) based methods (Zoph et al.
2018; Zoph and Le 2016), for example, which train and eval-
uatemore than 20,000 neural networks across 500GPUs over
4days.Recentmethods like differentiable architecture search
(DARTS) reduce the search time by formulating the task in
a differentiable manner (Liu et al. 2019). DARTS relaxes the
search space to be continuous, so that the architecture can be
optimized with respect to its validation set performance by
gradient descent, which provides a fast solution for effective
network architecture search. To reduce the redundancy in the
network space, partially-connected DARTS (PC-DARTS)
was recently introduced to perform a more efficient search
without compromising the performance of DARTS (Xu et al.
2019).

Although DARTS or its variants has a smaller model
size than traditional light models, the searched network
still suffers from an inefficient inference process due to
the complicated architectures generated by multiple stacked
full-precision convolution operations. Consequently, the
searched network for embedded device is still computation-
ally expensive and inefficient. At the same time, the existing
gradient-based approaches select operations without amean-
ingful guidance. Not only is the search process inefficient,
but also the selected operation might exhibit significant vul-
nerability to model attacks based on gradient information
(Goodfellow et al. 2014; Madry et al. 2017), also for the wild
data. Clearly, these problems require further exploration to
overcome these challenges.

To address these above challenges, we transfer the NAS
to a binarized neural architecture search (BNAS), by explor-
ing the advantages of binarized neural networks (BNNs) on
memory saving and computational cost reduction. In our
BNAS framework as shown in Fig. 1, we use PC-DARTS as
a warm-up step, which is followed by the performance-based
method to improve the robustness of the resulting BNNs for
the wild data. In addition, based on the observation that the
early optimal operation is not necessarily the optimal one in
the end, and the worst operation in the early stage usually
has a worse performance at the end (Zheng et al. 2019). We
exploit the advantages of both PC-DARTS and performance
evaluation to prune the operation space. This means that the
operations we finally reserve are certainly a near an opti-
mal solution. On the other hand, with the operation pruning
process, the search space becomes smaller and smaller, lead-
ing to an efficient search process. We show that the BNNs
obtained by BNAS can outperform conventional BNN mod-
els by a large margin. It is a significant contribution in the

123

International Journal of Computer Vision (2021) 129:501–516 503

Fig. 1 The overall framework of the proposed binarized neural archi-
tecture search (BNAS). In BNAS, the search cell is a fully connected
directed acyclic graph with four nodes, which is calculated based on

PC-DARTS and a performance-based method. We also reformulate the
optimization of binarization of CNNs in the same framework

field of BNNs, considering that the performance of conven-
tional BNNs are not yet comparable with their corresponding
full-precision models in terms of accuracy. To further val-
idate the performance of our method, we also implement
1-bit BNAS in the same framework. Differently from BNNs
(only kernels are binarized), 1-bitCNNs suffer frompoor per-
formance evaluation problem for binarized operations with
binarzied activations in the beginning due to the insufficient
training. We assume BNAS as a multi-armed bandit prob-
lem and introduce an exploration term based on the upper
confidence bound (UCB) (Auer et al. 2002) to improve the
search performance. The exploration term is used to han-
dle the exploration-exploitation dilemma in the multi-armed
bandit problem. We lead a new performance measure based
on UCB by considering both the performance evaluation and
number of trial for operation pruning in the same framework,
which means that the operation is ultimately abandoned only
when it is sufficiently evaluated.

The search process of our BNAS consists of two steps.
One is the operation potential ordering based on partially-
connected DARTS (PC-DARTS) (Xu et al. 2019) which also
serves as a baseline for our BNAS. It is further improvedwith
a second operation reduction step guided by a performance-
based strategy. In the operation reduction step, we prune one
operation at each iteration from one-half of the operations
with less potential as calculated by PC-DARTS. As such,
the optimization of the two steps becomes faster and faster
because the search space is reduced due to the operation
pruning.We can take advantage of the differential framework
of DARTS where the search and performance evaluation are

in the same setting. We also enrich the search strategy of
DARTS. Not only is the gradient used to determine which
operation is better, but the proposed performance evaluation
is included for further reduction of the search space. The
contributions of our paper include:

– BNAS is developed based on a new search algorithm
which solves the BNNs and 1-bit CNNs optimization
and architecture search in a unified framework. The 1-bit
CNNs are obtained by incorporating the bandit strategy
intoBNAS,which can better evaluate the operation based
on UCB.

– The search space is greatly reduced throughaperformance-
based strategy used to abandon operations with less
potential, which improves the search efficiency by 40%.

– Extensive experiments demonstrate that the proposed
algorithm achieves much better performance than other
light models on wild face recognition, CIFAR-10 and
ImageNet.

This submission is an extension of our conference paper
(Chen et al. 2020) by including: (1) extending our binarized
models to 1-bit models, which are more challenging than
BNNs; In addition, the 1-bit CNNs are achieved based on
the bandit strategy, which can better evaluate the operation
based on UCB; (2) adding more details about optimization
of binarized models; (3) adding more experiments to suf-
ficiently validate the performance of our methods, such as
new experiments on wild face recognition, and results of 1-
bit BNAS on all the datasets.

123

504 International Journal of Computer Vision (2021) 129:501–516

2 RelatedWork

In this section, we introduce the most related works on
network quantization and NAS (DARTS). For the network
quantization, both state-of-the-art BNNs and 1-bit CNNs
are briefly introduced. We also described the PC-DARTS
method, which are combined with binarized models, leading
to a much better performance on object recognition tasks.

2.1 Neural Networks Quantization

To the best of our knowledge, Courbariaux et al. (2016) is
the first attempt to binarize both the weights and activations
of convolution layers in CNNs. It works well in maintaining
the classification accuracy on small datasets like CIFAR-10
and CIFAR-100 (Krizhevsky et al. 2014), which is however
less effective when being applied on large datasets like Ima-
geNet (Rastegari etal. 2016; Deng et al. 2009). Instead of
binarizing the kernel weights into ±1, the work in Rastegari
etal. (2016) adds a layer-wise scalarαl to reconstruct the bina-
rized kernels and proves that the mean absolute value (MAV)
of each layer is the optimal value for αl . Inspired by using a
scalar to reconstruct binarized kernels, HQRQ (Li et al. 2017)
adopts a high-order binarization scheme to achieve more
accurate approximation while preserving the advantage of
binary operation. In order to alleviate the degradation in pre-
diction accuracy, ABC-Net (Lin et al. 2017) adopts multiple
binary weights and activations to approximate full-precision
weights. Leng et al. (2018) decoupled the continuous param-
eters from the discrete constraints of network using ADMM,
which therefore achieves extremely low bit rates. Recently,
Bi-real Net (Liu et al. 2018a) explores a new variant of resid-
ual structure to preserve the real activations before the sign
function, with a tight approximation to the derivative of the
non-differentiable sign function. McDonnell (2018) applied
a warm-restart learning-rate schedule to quantize network
weights into 1-bit, which achieves about 9 ∼ 99% of peak
performance on CIFAR.

Quantizing kernel weights and activations to binary val-
ues is an extreme case of neural network quantization, which
is prone to unacceptable accuracy degradation. Accordingly,
sufficient attention has been paid to quantize DCNNs with
more than 1 bit. Specifically, ternary weights are introduced
to reduce the quantization error in TWN (Li and Liu 2016).
DoReFa-Net (Zhou et al. 2016) exploits convolution kernels
with low bit-width parameters and gradients to accelerate
both the training and inference. TTQ (Zhu et al. 2017) uses
two full-precision scaling coefficients to quantize theweights
to ternary values. Zhuang et al. (2018) presented a 2 ∼ 4-bit
quantization scheme using a two-stage approach to alter-
nately quantize the weights and activations, which provides
an optimal tradeoff among memory, efficiency and perfor-
mance. Furthermore, WAGE (Wu et l. 2018) is proposed to

discretize both the training and inference processes, where
not only weights and activations but also gradients and errors
are quantized.Other practices are shown inTang et al. (2017),
Alizadeh et al. (2018) and Ding et al. (2019) with improve-
ments over previous works.

Despite the excellent efficiency, existing 1-bit CNNs suf-
fer from its limited representation capability, leading to an
inevitable performance loss on the object recognition tasks.
Our previous works (Gu et al. 2019; Zhao et al. 2019) have
significantly improved the performance of state-of-the-art 1-
bit CNNs. However, the performance are still baffled by their
manually designed architectures, and this paper exploits the
BNAS method to further enhance the capability of BNNs,
aiming to significantly reduce the gap to their full-precision
counterparts.

2.2 Neural Architecture Search

Thanks to the rapid development of deep learning, significant
gains in performance have been realized in a wide range of
computer vision tasks, most of which are manually designed
network architectures (Krizhevsky et al. 2012; Simonyan
and Zisserman 2014; He et al. 2016; Huang et al. 2017).
Recently, the new approach called neural architecture search
(NAS) has been attracting increased attention. The goal is
to find automatic ways of designing neural architectures
to replace conventional hand-crafted ones. Existing NAS
approaches need to explore a very large search space and can
be roughly divided into three type of approaches: evolution-
based, reinforcement-learning-based and one-shot-based.

In order to implement the architecture searchwithin a short
period of time, researchers try to reduce the cost of evaluat-
ing each searched candidate. Early efforts include sharing
weights between searched and newly generated networks
(Cai et al. 2018). Later, this method was generalized into a
more elegant framework named one-shot architecture search
(Brock et al. 2017; Cai et al. 2018; Liu et al. 2019; Pham
et al. 2018; Xie et al. 2018; Zheng et al. 2019, ?). In these
approaches, an over-parameterized network or super network
covering all candidate operations is trained only once, and
the final architecture is obtained by sampling from this super
network. For example, Brock et al. (2017) trained the over-
parameterized network using a HyperNet (Ha et al. 2016),
and Pham et al. (2018) proposed to share parameters among
child models to avoid retraining each candidate from scratch.
DARTS (Liu et al. 2019) introduces a differentiable frame-
work and thus combines the search and evaluation stages into
one. Despite its simplicity, researchers have found some of
its drawbacks and proposed a few improved approaches over
DARTS (Xie et al. 2018; Chen et al. 2019). PDARTS (Chen
et al. 2019) presents an efficient algorithm which allows the
depth of searched architectures to grow gradually during the
training procedure, with a significantly reduced search time.

123

International Journal of Computer Vision (2021) 129:501–516 505

ProxylessNAS (Cai et al. 2018) adopted the differentiable
framework and proposed to search architectures on the tar-
get task instead of adopting the conventional proxy-based
framework.

Unlike previous methods, the calculation of BNAS is
more challenging due to the learning inefficiency and huge
architecture search space, we implement BNAS based on
combination of PC-DARTS and new performance measures.
We prune one operation at each iteration from one-half of the
operations with smaller weights calculated by PC-DARTS,
and thus the search becomes faster and faster in the optimiza-
tion. As such, BNAS shows stronger robustness to wild data
than DARTS with gradient-based search strategy.

2.3 Bandit Problem

In probability theory, the multi-armed bandit problem is a
problem in which a decision must be made among compet-
ing choices in a way that maximizes their expected gain.
Each choice’s properties are only partially known at any
given time, andmay become better understood as time passes
or observed after the choices. The selection and following
observations provide information useful in future choices.
The aim is to minimize the distance from the optimal solu-
tion with the shortest time. A lot of breakthroughs have been
made for the bandit problem for constructing the optimal
selection policies with fastest rate of convergence (Lai and
Robbins 1985).

Bandit optimization is commonly used to exemplify the
exploration-exploit- ation trade-off dilemma to avoid an
explosive traversal space and speed up optimal convergence.
The upper confidence bound applied to trees (UCT) was
propoesd as a bandit based Monte Carlo planning (Koc-
sis and Szepesvari 2006). It is also exploited to improve
classical reinforcement learning methods such as Q-learning
(Even-Dar et al. 2006) and state–action–reward–state–action
(SARSA) (Tokic and Palm 2011). AlphaGo (Silver et al.
2017) modifies the original UCB multi-armed bandit pol-
icy by approximately predicting good arms at the start of a
sequence of multi-armed bandit trials, which is called PUCB
(predictor of upper confidence bounded) to balance the result
of simulation and its uncertainty.

Objective functions for the multi-armed bandit problem
tend to take one of two flavors: (1) best arm identifica-
tion (or pure exploration) in which one is interested in
identifying the arm with the highest average payoff, and
(2) exploration-versus-exploitation in which one tries to
maximize the cumulative payoff over time (Bubeck and
Cesa-Bianchi 2012). Many optimization problems are stud-
ied in non-stochastic setting as the pull of each arm without
the i.i.d. assumption (Neu 2015; Li et al. 2017; Jamieson and
Talwalkar 2015). Relatedly, hyperband (Li et al. 2017) solves
the pure-exploration bandit problem in the fixed budget set-

ting without making parametric assumptions and achieves
the state-of-the-art for the hyperparameter optimization. It
extends the Successive Halving Algorithm (Jamieson and
Talwalkar 2015) which evaluates and throws out the worst
half until one remains. We share the similar idea of resources
allocation with hyperband and formulate our BNAS as an
exploration-versus-exploitation problemwhere the sampling
and abandoning are based on UCB.

3 Binarized Neural Architecture Search

In this section, we first describe the search space in a general
form, where the computation procedure for an architecture
(or a cell in it) is represented as a directed acyclic graph.
We then describe binarized optimaization for BNAS and
review the baseline PC-DARTS (Xu et al. 2019), which is
used as warm-up for our method. Then an operation sam-
pling and a performance-based search strategy are proposed
to effectively reduce the search space. Our BNAS framework
is shown in Fig. 2 and additional details of it are described in
the rest of this section. Finally, we reformulate the optimiza-
tion of BNNs in a unified framework.

3.1 Search Space

Following Zoph and Le (2016), Zoph et al. (2018), Liu et al.
(2019) and Real et al. (2019), we search for a computation
cell as the building block of the final architecture. A network
consists of a pre-defined number of cells (Zoph andLe 2016),
which can be either normal cells or reduction cells. Each cell
takes the outputs of the two previous cells as input. A cell is
a fully-connected directed acyclic graph (DAG) of M nodes,
i.e., {B1, B2, . . . , BM }, as illustrated in Fig. 3a. Each node Bi
takes its dependent nodes as input, and generates an output
through a sum operation Bj = ∑

i< j o
(i, j)(Bi). Here each

node is a specific tensor (e.g., a feature map in convolutional
neural networks) and each directed edge (i, j) between Bi
and Bj denotes an operation o(i, j)(·), which is sampled from

O(i, j) = {o(i, j)
1 , . . . , o(i, j)

K }. Note that the constraint i <

j ensures there are no cycles in a cell. Each cell takes the
outputs of two dependent cells as input, andwe define the two
input nodes of a cell as B−1 and B0 for simplicity. Following
Liu et al. (2019), the set of the operationsO consists of K = 8
operations. They include 3 × 3 max pooling, no connection
(zero), 3×3 average pooling, skip connection (identity), 3×3
dilated convolutionwith rate 2, 5×5 dilated convolutionwith
rate 2, 3 × 3 depth-wise separable convolution, and 5 × 5
depth-wise separable convolution, as illustrated in Fig. 3b.
The search space of a cell is constructed by the operations of
all the edges, denoted as {O(i, j)}.

123

506 International Journal of Computer Vision (2021) 129:501–516

Fig. 2 The main steps of our BNAS: (1) search an architecture based
on O(i, j) using PC-DARTS. (2) Select half the operations with less
potential from O(i, j) for each edge, resulting in O(i, j)

smaller . (3) Select
an architecture by sampling (without replacement) one operation from
O(i, j)

smaller for every edge, and then train the selected architecture. (4)

Update the operation selection likelihood s(o(i, j)
k) based on the accu-

racy obtained from the selected architecture on the validation data. (5)
Abandon the operation with the minimal selection likelihood from the
search space {O(i, j)} for every edge

Unlike conventional convolutions, our BNAS is achieved
by transforming all the convolutions inO to binarized convo-
lutions.We denote the full-precision and binarized kernels as
X and X̂ respectively. A convolution operation inO is repre-
sented as Bj = Bi ⊗ X̂ as shown in Fig. 3b, where⊗ denotes
convolution. To build BNAS, one key step is how to binarize
the kernels from X to X̂ , which can be implemented based
on state-of-the-art BNNs, such as XNOR or PCNN. As we
know, the optimization of BNNs is more challenging than
that of conventional CNNs (Gu et al. 2019; Rastegari etal.
2016), which adds an additional burden to NAS. To solve it,
we introduce channel sampling and operation space reduc-
tion into differentiable NAS to significantly reduce the cost
of GPU hours, leading to an efficient BNAS.

3.2 Binarized Optimization for BNAS

The inference process of a BNN model is based on the bina-
rized kernels, whichmeans that the kernels must be binarized
in the forward step (corresponding to the inference) during
training. Contrary to the forward process, during back propa-
gation, the resulting kernels are not necessary to be binarized
and can be full-precision.

In order to achieve binarized weights, we first divide each
convolutional kernel into twoparts (amplitude and direction),
and formulate the current binarized methods in a unified
framework. In addition to Table 1, we elaborate D, A and
Â: Dl

i are the directions of the full-precision kernels Xl
i of

the lth convolutional layer, l ∈ {1, . . . , N }; Al shared by all
Dl
i represents the amplitude of the lth convolutional layer;

Fig. 3 (a) A cell contains 7 nodes, two input nodes B−1 and B0, four
intermediate nodes B1, B2, B3, B4 that apply sampled operations on the
input nodes and upper nodes, and an output node that concatenates the
outputs of the four intermediate nodes. (b) The set of operations O(i, j)

between Bi and Bj , including binarized convolutions

Âl and Al are of the same size and all the elements of Âl are
equal to the average of the elements of Al . In the forward
pass, Âl is used instead of the full-precision Al . In this case,
Âl can be considered as a scalar. The full-precision Al is only
used for back propagation during training. Noted that our for-
mulation can represent both XNOR based on scalar, and also
simplified PCNN (Gu et al. 2019) whose scalar is learnable

123

International Journal of Computer Vision (2021) 129:501–516 507

Table 1 A brief description of the main notations used in Sect. 3.2

X : full-precision kernel X̂ : binarized kernel A: amplitude matrix

F : feature map D: X ′s direction Â: generated from A

i : kernel index g: input feature map index h: output feature map index

S: number of examples l: layer index M : number of facial landmarks

as a projection matrix. We represent X̂ by the amplitude and
direction as

X̂ = Â � D, (1)

where � denotes the element-wise multiplication between
matrices.We then define an amplitude loss function to recon-
struct the full-precision kernels as

L Â = θ

2

∑

i,l

‖Xl
i − X̂ l

i‖2 = θ

2

∑

i,l

‖Xl
i − Âl � Dl

i‖2, (2)

where Dl
i = sign(Xl

i) represents the binarized kernel. Xl
i

is the full-precision model which is updated during the back
propagation process in PCNNs, while Âl is calculated based
on a closed-form solution in XNOR. The element-wise mul-
tiplication combines the binarized kernels and the amplitude
matrices to approximate the full-precision kernels. The final
loss function is defined by considering

LS = 1

2S

∑

s

‖Ŷs − Ys‖22, (3)

where Ŷs is the label of the sth example; Ys is the correspond-
ing classification results. Finally, the overall loss function L
is applied to supervise the training of BNAS in the back prop-
agation as

L = LS + L Â. (4)

The binarized optimization is used to optimize the neural
architecture search, leading to our binarized neural architec-
ture search (BNAS). To this end, we use partially-connected
DARTS (PC-DARTS) to achieve operation potential order-
ing, which serves as a warm-up step for our BNAS. Denote
by Ltrain and Lval the training loss and the validation loss,
respectively. Both losses are determined by not only the
architecture α but also the binarized weights X̂ in the net-
work. The goal for the warm-up step is to find X̂∗ and α∗
that minimize the validation loss Lval(X̂∗, α∗), where the
weights X̂∗ associated with the architecture are obtained by
minimizing the training loss X̂∗ = argmin

X̂

Ltrain(X̂ , α∗).

This implies a bilevel optimization problem with α as the
upper-level variable and X̂ as the lower-level variable:

argmin
α

Lval(X̂
∗, α)

s.t . X̂∗ = argmin
X̂

Ltrain(X̂ , α).
(5)

To better understand our method, we also review the core
idea of PC-DARTS,which can take advantage of partial chan-
nel connections to improve memory efficiency. Taking the
connection from Bi to Bj for example, this involves defining
a channel sampling mask S(i, j), which assigns 1 to selected
channels and 0 to masked ones. The selected channels are
sent to a mixed computation of |O(i, j)| operations, while
the masked ones bypass these operations. They are directly
copied to the output, which is formulated as

f (i, j)(Bi , S
(i, j))

=
∑

oi, jk ∈O(i, j)

exp{α
o(i, j)
k

}
∑

o(i, j)

k
′ ∈O(i, j) exp{αo(i, j)

k
′

} · o(i, j)
k (S(i, j) ∗ Bi)

+ (1 − S(i, j)) ∗ Bi , (6)

where S(i, j) ∗ Bi and (1− S(i, j))∗ Bi denote the selected and
masked channels, respectively, and α

o(i, j)
k

is the parameter of

operation o(i, j)
k between Bi and Bj .

PC-DARTS sets the proportion of selected channels to
1/C by regarding C as a hyper-parameter. In this case, the
computation cost can also be reduced by C times. However,
the size of the whole search space is 2 × K |EM|, where EM
is the set of possible edges with M intermediate nodes in
the fully-connected DAG, and the “2” comes from the two
types of cells. In our case with M = 4, together with the two
input nodes, the total number of cell structures in the search
space is 2× 82+3+4+5 = 2× 814. This is an extremely large
space to search for a binarized neural architectures which
need more time than a full-precision NAS. Therefore, effi-
cient optimization strategies for BNAS are required.

3.3 Performance-Based Strategy for BNAS

Reinforcement learning is inefficient in the architecture
search due to the delayed rewards in network training, i.e.,

123

508 International Journal of Computer Vision (2021) 129:501–516

the evaluation of a structure is usually done after the net-
work training converges. On the other hand, we can perform
the evaluation of a cell when training the network. Inspired
by Ying et al. (2019), we use a performance-based strat-
egy to boost the search efficiency by a large margin. Ying
et al. (2019) did a series of experiments showing that in the
early stage of training, the validation accuracy ranking of
different network architectures is not a reliable indicator of
the final architecture quality. However, we observe that the
experiment results actually suggest a nice property that if
an architecture performs badly in the beginning of training,
there is little hope that it can be part of the final optimal
model.As the training progresses, this observation shows less
uncertainty. Based on this observation, we derive a simple
yet effective operation abandoning process. During training,
along with the increasing epochs, we progressively abandon
the worst performing operation in each edge.

To this end, we reduce the search space {O(i, j)} after the
warm-up step achieved by PC-DARTS to increase search
efficiency. According to {α

o(i, j)
k

}, we can select half of the

operations with less potential from O(i, j) for each edge,
resulting in O(i, j)

smaller . After that, we randomly sample one

operation from the K/2operations inO(i, j)
smaller for every edge,

then obtain the validation accuracy by training the sampled
network for one epoch, and finally assign this accuracy to
all the sampled operations. These three steps are performed
K/2 times by sampling without replacement, leading to each
operation having exactly one accuracy for every edge.

We repeat it T times. Thus each operation for every edge
has T accuracies {y(i, j)

k,1 , y(i, j)
k,2 , . . . , y(i, j)

k,T }. Then we define

the selection likelihood of the kth operation in O(i, j)
smaller for

each edge as

ssmaller (o
(i, j)
k) = exp{ȳ(i, j)

k }
∑

m exp{ȳ(i, j)
m }

, (7)

where ȳ(i, j)
k = 1

T

∑
t y

(i, j)
k,t . And the selection likelihoods of

the other operations not in O(i, j)
smaller are defined as

slarger (o
(i, j)
k) = 1

2 (max
o(i, j)
k

{ssmaller (o
(i, j)
k)}

+ 1
	K/2

∑
o(i, j)
k

ssmaller (o
(i, j)
k)), (8)

where 	K/2
denotes the smallest integer≥ K/2.The reason
to use it is because K can be an odd integer during iteration
in the proposed Algorithm 1. Equation (8) is an estimation
for the rest operations using a value balanced between the
maximum and average of ssmaller (o

(i, j)
k). Then, s(o(i, j)

k) is

updated by

s(o(i, j)
k) ← 1

2
s(o(i, j)

k) + q(i, j)
k ssmaller (o

(i, j)
k)

+ (1 − q(i, j)
k)slarger (o

(i, j)
k), (9)

where q(i, j)
k is a mask, which is 1 for the operations in

O(i, j)
smaller and 0 for the others.
When searching for BNAS, we do not use PC-DARTS as

warm-up for the consideration of efficiency because quantiz-
ing feature maps is slower. Hence, O(i, j)

smaller is O(i, j). Also,
we introduce an exploration term into Eq. (9) based on ban-
dit (Auer et al. 2002). In machine learning, the multi-armed
bandit problem is a classic reinforcement learning prob-
lem that exemplifies the exploration-exploitation trade-off
dilemma: shall we stick to an arm that gave high reward so
far (exploitation) or rather probe other arms further (explo-
ration)? The Upper Confidence Bound (UCB) is widely used
for dealing with the exploration-exploitation dilemma in the
multi-armed bandit problem. Then, with the above analysis,
Eq. (9) becomes

s(o(i, j)
k) ← s(o(i, j)

k) + δ ∗
√
2 log N

n(i, j)
k,t

(10)

where N is the total number of samples, n(i, j)
k,t refers to the

number of times the kth operation of edge (i, j) has been
selected, and t is the index of the epoch. The first item in
Eq. (10) is the value term which favors the operations that
look good historically and the second is the exploration term
which allows operations to get an exploration bonus that
grows with log N . And in this work δ = 2 is used to balance
value term and exploration term. We also test other values,
which achieve a littler worse results. In that, 1-bit convolu-
tions which behave badly in sufficient trials are prone to be
abandoned.

Finally, we abandon the operation with the minimal selec-
tion likelihood for each edge. Such that the search space size
is significantly reduced from 2×|O(i, j)|14 to 2× (|O(i, j)|−
1)14. We have

O(i, j) ← O(i, j) − {argmin
o(i, j)
k

s(o(i, j)
k)}. (11)

The optimal structure is obtained when there is only one
operation left in each edge. Our performance-based search
algorithm is presented in Algorithm 1. Note that in line 1,
PC-DARTS is performed for L epochs as the warm-up to
find an initial architecture, and line 14 is used to update the
architecture parameters α

o(i, j)
k

for all the edges due to the

reduction of the search space {O(i, j)}.

123

International Journal of Computer Vision (2021) 129:501–516 509

Algorithm 1: Performance-Based Search
Input: Training data, Validation data, Searching hyper-graph: G,

K = 8, T = 3, V = 1, L = 5, s(o(i, j)
k) = 0 for all edges;

Output: Optimal structure α;
1 Search an architecture for L epochs based on O(i, j) using
PC-DARTS;

2 while (K > 1) do
3 Select O(i, j)

smaller consisting of 	K/2
 operations with smallest
α
o(i, j)
k

from O(i, j) for every edge;

4 for t = 1, . . . , T epoch do

5 O′(i, j)
smaller ← O(i, j)

smaller ;
6 for e = 1, . . . , 	K/2
 epoch do
7 Select an architecture by sampling (without

replacement) one operation from O′(i, j)
smaller for every

edge;
8 Train the selected architecture and get the accuracy on

the validation data;
9 Assign this accuracy to all the sampled operations;

10 end
11 end

12 Update s(o(i, j)
k) using Eq. 9;

13 if 1 bit then
14 Update s(o(i, j)

k) using Eq. 10;
15 end
16 Update the search space {O(i, j)} using Eq. 11;
17 Search the architecture for V epochs based on O(i, j) using

PC-DARTS;
18 K = K − 1;
19 end

3.4 Gradient Update for BNAS

In BNAS, X̂ l in the lth layer are used to calculated the output
feature maps Fl+1 as

Fl+1 = ACconv(Fl , X̂ l), (12)

where ACconv denotes the designed amplitude convolution
operation in Eq. (13). In ACconv, the channels of the output
feature maps are generated as follows

Fl+1
h =

∑

i,g

Fl
g ⊗ X̂ l

i , (13)

where ⊗ denotes the convolution operation; Fl+1
h is the hth

feature map in the (l + 1)th convolutional layer; Fl
g denotes

the gth feature map in the lth convolutional layer. Note that
the kernels of BNAS are binarized, while for 1-bit BNAS,
both the kernels and the activations are binarized. Similar to
the previous work (Rastegari etal. 2016; Liu et al. 2018a; Gu
et al. 2019), the 1-bit BNAS is obtained via binarizing the ker-
nels and activations simultaneously. In addition, we replace
ReLU with PReLU to reserve negative elements generated
by 1-bit convolution.

InBNAS,what need to be learned and updated are the full-
precision kernels Xi and amplitude matrices A. The kernels
and the matrices are jointly learned. In each convolutional
layer, BNAS update the full-precision kernels and then the
amplitudematrices. Inwhat follows, the layer index l is omit-
ted for simplicity.

We denote δXi as the gradient of the full-precision kernel
Xi , and have

δXi = ∂L

∂Xi
= ∂LS

∂Xi
+ ∂L Â

∂Xi
, (14)

Xi ← Xi − η1δXi , (15)

where η1 is a learning rate. We then have

∂LS

∂Xi
= ∂LS

∂ X̂i
· ∂ X̂i

∂Xi

= ∂LS

∂ X̂i
· Â · 1, (16)

∂L Â

∂Xi
= θ · (Xi − Â � Di), (17)

where Xi is the full-precision convolutional kernel corre-
sponding to Di , and 1 is the indicator function (Rastegari
etal. 2016) widely used to estimate the gradient of non-
differentiable function.

After updating X , we update the amplitude matrix A. Let
δA be the gradient of A. According to Eq. 4, we have

δA = ∂L

∂A
= ∂LS

∂A
+ ∂L Â

∂A
, (18)

A ← |A − η2δA|, (19)

where η2 is another learning rate. Note that the amplitudes
are always set to be non-negative. We then have

∂LS

∂A
=

∑

i

∂LS

∂ X̂i
· ∂ X̂i

∂ Â
· ∂ Â

∂A
=

∑

i

∂LS

∂ X̂i
· Di , (20)

∂L Â

∂A
= ∂L Â

∂ Â
· ∂ Â

∂A
= −θ · (Xi − Â � Di) · Di , (21)

where ∂ Â
∂A is set to 1 for easy implementation of the algorithm.

Note that Â and A are respectively used in the forward pass
and the back propagation in an asynchronous manner. The
above derivations show that BNAS is learnable with the new
BP algorithm.

4 Experiments

In this section, we compare our BNAS with state-of-the-art
NAS methods, and also validate two BNAS models based

123

510 International Journal of Computer Vision (2021) 129:501–516

on XNOR (Rastegari etal. 2016) and PCNN (Gu et al. 2019).
The 1-bit BNASmodels are also included in our experiments
to further validate our methods.

4.1 Experiment Protocol

4.1.1 Datasets

CIFAR-10 CIFAR-10 (Krizhevsky et al. 2014) is a natu-
ral image classification dataset, which is composed of a
training set and a test set, with 50,000 and 10,000 32×32
color images, respectively. These images span 10 different
classes, including airplanes, automobiles, birds, cats, deer,
dogs, frogs, horses, ships and trucks.

ILSVRC12 ImageNet ILSVRC12 ImageNet object classi-
fication dataset (Russakovsky et al. 2015) is more diverse
and challenging. It contains 1.2 million training images, and
50,000 validation images, across 1000 classes.

CASIA-WebFace CASIA-WebFace (Dong et al. 2014) is a
face image dataset collected from over ten thousand different
individuals, containing nearly half a million facial images.
Note that compared to other private datasets used in Deep-
Face (Taigman et al. 2014) (4M), VGGFace (Parkhi et al.
2015) (2M) and FaceNet (Schroff et al. 2015) (200M), our
training data contains just 490K images and is more chal-
lenging.

LFW The labeled faces in the wild (LFW) dataset (Huang
et al. 2008) has 5749 celebrities and collected 13,323 photos
of them from web. The photos are organized into 10 splits,
each of which contain 6000 images. Celebrities in Frontal-
Profile (CFP) (Sengupta et al. 2016) consists of 7000 images
of 500 subjects. The dataset contains 5000 images in frontal
view and 2000 images in extreme profile to evaluate the
performance on coping with the pose variation. The data is
divided into 10 splits, each containing an equal number of
frontal-frontal and frontal-profile comparisons.

AgeDB AgeDB (Moschoglou et al. 2017) includes 16,488
images of various famous people. The images are categorized
to 568 distinct subjects according to their identity, age and
gender attributes.

4.1.2 Train and Search Details

In these experiments, we first search neural architectures on
an over-parameterized network on CIFAR-10, and then eval-
uate the best architecture with a stacked deeper network on
the same dataset. Then we further perform experiments to
search architectures directly on ImageNet. We run the exper-
iment multiple times and find that the resulting architectures

only show slight variation in performance, which demon-
strates the stability of the proposed method.

We use the same datasets and evaluation metrics as exist-
ing NAS works (Liu et al. 2019; Cai et al. 2018; Zoph et al.
2018; Liu et al. 2018b). First, most experiments are con-
ducted on CIFAR-10 (Krizhevsky et al. 2009), and the color
intensities of all images are normalized to [−1,+1]. During
architecture search, the 50K training samples of CIFAR-10
is divided into two subsets of equal size, one for training the
network weights and the other for searching the architecture
hyper-parameters. When reducing the search space, we ran-
domly select 5K images from the training set as a validation
set (used in line 8 of Algorithm 1). Specially for 1-bit BNAS,
we replace ReLU with PReLU to avoid the disappearance of
negative numbers generated by 1-bit convolution, and the
bandit strategy is introduced to solve the insufficient train-
ing problem caused by the binarization of both kernels and
activations. To further show the efficiency of our method, we
also search architecture on ImageNet directly.

In the search process, we consider a total of 6 cells in the
network, where the reduction cell is inserted in the second
and the fourth layers, and the others are normal cells. There
are M = 4 intermediate nodes in each cell. Our experiments
follow PC-DARTS. We set the hyper-parameter C in PC-
DARTS to 2 for CIFAR-10 so only 1/2 features are sampled
for each edge. The batch size is set to 128 during the search
of an architecture for L = 5 epochs based onO(i, j) (line 1 in
Algorithm 1). Note that for 5 ≤ L ≤ 10, a larger L has little
effect on the final performance, but costs more search time as
shown in Table 3. We freeze the network hyper-parameters
such as α, and only allow the network parameters such as fil-
ter weights to be tuned in the first 3 epochs. Then in the next
2 epochs, we train both the network hyper-parameters and
the network parameters. This is to provide an initialization
for the network parameters and thus alleviates the drawback
of parameterized operations compared with free parameter
operations. We also set T = 3 (line 4 in Algorithm 1) and
V = 1 (line 14), so the network is trained less than 60 epochs,
with a larger batch size of 400 (due to few operation sam-
plings) during reducing the search space. The initial number
of channels is 16. We use SGD with momentum to opti-
mize the network weights, with an initial learning rate of
0.025 (annealed down to zero following a cosine schedule),
a momentum of 0.9, and a weight decay of 5 × 10−4. The
learning rate for finding the hyper-parameters is set to 0.01.
When we search architecture directly on ImageNet, we use
the same parameters with searching onCIFAR-10 except that
initial learning rate is set to 0.05

After search, in the architecture evaluation step, our exper-
imental setting is similar to Liu et al. (2019), Zoph et al.
(2018), and Pham et al. (2018). A larger network of 20 cells
(18 normal cells and 2 reduction cells) is trained on CIFAR-
10 for 600 epochs with a batch size of 96 and an additional

123

International Journal of Computer Vision (2021) 129:501–516 511

Table 2 Test error rates for human-designed full-precision networks, human-designed binarized networks, full-precision networks obtained by
NAS, and networks obtained by our BNAS on CIFAR-10

Architecture Test error (%) # Params (M) W A Search cost (GPU days) Search method

ResNet-18 (He et al. 2016) 3.53 11.1 32 32 – Manual

WRN-22 (Zagoruyko and Komodakis 2016) 4.25 4.33 32 32 – Manual

DenseNet (Huang et al. 2017) 4.77 1.0 32 32 – Manual

SENet (Hu et al. 2018) 4.05 11.2 32 32 – Manual

NASNet-A (Zoph et al. 2018) 2.65 3.3 32 32 1800 RL

AmoebaNet-A (Real et al. 2019) 3.34 3.2 32 32 3150 Evolution

PNAS (Liu et al. 2018b) 3.41 3.2 32 32 225 SMBO

ENAS (Pham et al. 2018) 2.89 4.6 32 32 0.5 RL

Path-level NAS (Cai et al. 2018) 3.64 3.2 32 32 8.3 RL

DARTS(first order) (Liu et al. 2019) 2.94 3.1 32 32 1.5 Gradient-based

DARTS(second order) (Liu et al. 2019) 2.83 3.4 32 32 4 Gradient-based

PC-DARTS 2.78 3.5 32 32 0.15 Gradient-based

BNAS (full-precision) 2.84 3.3 32 32 0.08 Performance-based

Network in McDonnell (2018) 6.13 4.30 1 32 – Manual

ResNet-18 (XNOR) 6.69 11.17 1 32 – Manual

ResNet-18 (PCNN) 5.63 11.17 1 32 – Manual

WRN22 (PCNN) (Gu et al. 2019) 5.69 4.29 1 32 – Manual

PC-DARTS∗ 4.86 3.638 1 32 0.15 Gradient-based

PC-DARTS 4.88 3.1 1 32 0.18 Gradient-based

BNAS (XNOR) 5.71 2.3 1 32 0.104 Performance-based

BNAS (XNOR, larger) 4.88 3.5 1 32 0.104 Performance-based

BNAS 3.94 2.6 1 32 0.09375 Performance-based

BNAS† 4.01 2.7 1 32 0.094 Performance-based

BNAS (larger) 3.47 4.6 1 32 0.09375 Performance-based

ResNet-18 (PCNN) (Liu et al. 2019) 14.5 0.59 1 1 – Manual

WRN22 (XNOR) (Zhao et al. 2019) 11.48 4.33 1 1 – Manual

WRN22 (PCNN) (Liu et al. 2019) 8.38 2.4 1 1 - Manual

PC-DARTS 8.94 4.2 1 1 0.21 Gradient-based

BNAS 8.3 4.6 1 1 0.112 Performance-based

BNAS† 6.72 4.7 1 1 0.113 Performance-based

‘W’ and ‘A’ refer to the weight and activation bitwidth respectively. For fair comparison, we select the architectures by NAS with similar parameters
(<5M). In addition, we also train an optimal architecture in a larger setting, i.e.,with more initial channels (44 in XNOR or 48 in PCNN). † Indicate
that BNAS is performed based on Eq. (10), which is also the same case in the following experiments. ∗ Indicate that the result is tested by the
quantized NAS architecture obtained by PC-DARTS

Table 3 With different L , the accuracy and search cost of BNAS based
on PCNN on CIFAR10 dataset

Model L
3 5 7 9 11

Accuracy (%) 95.8 96.06 95.94 96.01 96.03

Search cost 0.0664 0.09375 0.1109 0.1321 0.1687

regularization cutout (DeVries and Taylor 2017). The ini-
tial number of channels is 36. We use the SGD optimizer
with an initial learning rate of 0.025 (annealed down to zero
following a cosine schedule without restart), a momentum

of 0.9, a weight decay of 3 × 10−4 and a gradient clipping
at 5. When stacking the cells to evaluate on ImageNet, the
evaluation stage follows that of DARTS, which starts with
three convolution layers of stride 2 to reduce the input image
resolution from 224 × 224 to 28 × 28. 14 cells (12 normal
cells and 2 reduction cells) are stacked after these three lay-
ers, with the initial channel number being 64. The network is
trained from scratch for 250 epochs using a batch size of 512.
We use the SGD optimizer with a momentum of 0.9, an ini-
tial learning rate of 0.05 (decayed down to zero following a
cosine schedule), and a weight decay of 3×10−5. Additional
enhancements are adopted including label smoothing and an

123

512 International Journal of Computer Vision (2021) 129:501–516

Fig. 4 Detailed structures of the
best cells discovered on
CIFAR-10 using BNAS based
on XNOR. In the normal cell,
the stride of the operations on 2
input nodes is 1, and in the
reduction cell, the stride is 2

auxiliary loss tower during training. All the experiments and
models are implemented in PyTorch (Paszke et al. 2017).

4.2 Results on CIFAR-10

We compare our method with both manually designed
networks and networks searched by NAS. The manu-
ally designed networks include ResNet (He et al. 2016),
Wide ResNet (WRN) (Zagoruyko and Komodakis 2016),
DenseNet (Huang et al. 2017) andSENet (Hu et al. 2018). For
the networks obtained by NAS, we classify them according
to different search methods, such as RL (NASNet Zoph et al.
2018, ENAS Pham et al. 2018, and Path-level NAS Cai et al.
2018), evolutional algorithms (AmoebaNet Real et al. 2019),
Sequential Model Based Optimization (SMBO) (PNAS Liu
et al. 2018b), and gradient-based methods (DARTS Liu et al.
2019 and PC-DARTS Xu et al. 2019).

The results for different architectures on CIFAR-10 are
summarized in Table 2. Using BNAS, we search for two
binarized networks based on XNOR (Rastegari etal. 2016)
and PCNN (Gu et al. 2019). In addition, we also train a larger
XNOR variant with 44 initial channels and a larger PCNN
variant with 48 initial channels.We can see that the test errors
of the binarized networks obtained by our BNAS are com-
parable to or smaller than those of the full-precision human
designed networks, and are significantly smaller than those
of the other binarized networks.

Compared with the full-precision networks obtained by
other NAS methods, the binarized networks by our BNAS
have comparable test errors but with much more compressed
models. Note that the numbers of parameters of all these
searched networks are less than 5M, but the binarized net-
works only need 1 bit to save one parameter, while the
full-precision networks need 32 bits. For 1-bit BNAS, as
shown in Table 2, the UCB improves it by 1.58%, which

Fig. 5 Detailed structures of the best cells discovered on CIFAR-10
using BNAS based on PCNN. In the normal cell, the stride of the oper-
ations on 2 input nodes is 1, and in the reduction cell, the stride is
2

validates the effectiveness of our method. Also, we observe
that up to 1.66% accuracy improvement is gained with 1-bit
BNAS. In terms of search efficiency, compared with the pre-
vious fastest PC-DARTS, our BNAS is 40% faster (tested on
our platform (NVIDIA GTX TITAN Xp). We attribute our
superior results to the proposed way of solving the problem
with the novel scheme of search space reduction. As illus-
trated in Figs. 4 and 5, compared with NAS, the architectures
of BNAS prefer larger receptive fields. It also results in more
pooling operations, most of which can increase the nonlinear
representation ability of BNNs.

Our BNAS method can also be used to search full-
precision networks. In Table 2, BNAS (full-precision) and
PC-DARTS perform equally well, but BNAS is 47% faster.

123

International Journal of Computer Vision (2021) 129:501–516 513

Table 4 Comparison with the state-of-the-art image classification methods on ImageNet

Architecture Accuracy (%) Params (M) W A Search cost (GPU days) Search method
Top1 Top5

ResNet-18 (Gu et al. 2019) 69.3 89.2 11.17 32 32 – Manual

MobileNetV1 (Howard et al. 2017) 70.6 89.5 4.2 32 32 - Manual

NASNet-A (Zoph et al. 2018) 74.0 91.6 5.3 32 32 1800 RL

AmoebaNet-A (Real et al. 2019) 74.5 92.0 5.1 32 32 3150 Evolution

AmoebaNet-C (Real et al. 2019) 75.7 92.4 6.4 32 32 3150 Evolution

PNAS (Liu et al. 2018b) 74.2 91.9 5.1 32 32 225 SMBO

DARTS (Liu et al. 2019) 73.1 91.0 4.9 32 32 4 Gradient-based

PC-DARTS (Xu et al. 2019) 75.8 92.7 5.3 32 32 3.8 Gradient-based

ResNet-18 (PCNN) (Gu et al. 2019) 63.5 85.1 11.17 1 32 – Manual

BNAS 71.3 90.3 6.2 1 32 2.6 Performance-based

ResNet-18 (Bi-Real) (Liu et al. 2018a) 56.4 79.5 11.17 1 1 – Manual

ResNet-18 (BONN) (Zhao et al. 2019) 59.3 81.6 11.17 1 1 – Manual

ResNet-18 (PCNN) (Gu et al. 2019) 57.3 80.0 11.17 1 1 – Manual

BNAS 64.3 86.1 6.4 1 1 3.2 Performance-based

‘W’ and ‘A’ refer to the weight and activation bitwidth respectively. BNAS and PC-DARTS are obtained directly by NAS and BNAS on ImageNet,
others are searched on CIFAR-10 and then directly transferred to ImageNet

Both the binarized methods XNOR and PCNN in our BNAS
performwell, which shows the generalization of BNAS. Fig-
ures 4 and 5 show the best cells searched by BNAS based on
XNOR and PCNN, respectively.

We also use PC-DARTS to perform a binarized archi-
tecture search based on PCNN on CIFAR10, resulting in a
network denoted as PC-DARTS (PCNN). Compared with
PC-DARTS (PCNN), BNAS achieves a better performance
(95.12% vs. 96.06% in test accuracy) with less search time
(0.18 vs. 0.09375 GPU days). We also compare our 1-bit
BNAS with PC-DARTS, and find that our method is bet-
ter than PC-DARTS (93.28% vs. 90.06%) on CIFAR-10 and
about twice as fast as PC-DARTS (0.113 vs. 0.21 GPU days).
The reason for this may be because the performance based
strategy can help find better operations for recognition.

4.3 Results on ImageNet

We further compare the state-of-the-art image classifica-
tion methods on ImageNet. All the searched networks are
obtained directly by NAS and BNAS on ImageNet by stack-
ing the cells. Due to the large number of categories and
data, ImageNet is more challenging than CIFAR-10 for bina-
rized network. Different from the architecture settings for
CIFAR-10, we do not binarize the first convolutional layer
in depth-wise separable convolution and the preprocessing
operations for 2 input nodes. Instead, we replace the concate-
nation with summation for the preprocessing operations and
increase the number of channels for each cell. The benefits
are more focusing on model compression with the state-of-

Fig. 6 Detailed structures of the best cells discovered on ImageNet
using BNAS based on PCNN. In the normal cell, the stride of the oper-
ations on 2 input nodes is 1, and in the reduction cell, the stride is 2

the-art performance. From the results in Table 4, we have
the following observations: (1) BNAS performs better than
human-designed binarized networks (71.3% vs. 63.5%) and
has far fewer parameters (6.1M vs. 11.17M). (2) BNAS has
a performance similar to the human-designed full-precision
light networks (71.3% vs. 70.6%), with a much more highly
compressed model. (3) 1-bit BNAS achieves 5.0% accuracy
improvement than the state-of-the-art human-designed 1-bit
network, with fewer parameters. (4) Compared with the full-
precision networks obtained by other NAS methods, BNAS
has little performance drop, but is fastest in terms of search

123

514 International Journal of Computer Vision (2021) 129:501–516

Table 5 Test accuracies based on ResNet-18, ResNet-34, ResNet-50, ResNet-100 and BNAS on face recognition datasets

Architecture Accuracy (%) # Params (M) W A Search cost (GPU days) Search method
LFW CFP AgeDB

ResNet-18 (He et al. 2016) 98.68 92.33 90.23 24.02 32 32 – Manual

ResNet-34 (He et al. 2016) 99.03 92.98 91.15 36.56 32 32 – Manual

ResNet-50 (He et al. 2016) 99.07 93.73 91.58 45.46 32 32 – Manual

ResNet-100 (He et al. 2016) 99.20 92.22 93.99 75.58 32 32 – Manual

ResNet-18 (XNOR) 92.03 75.04 72.13 24.02 1 1 – Manual

ResNet-18 (PCNN) 94.32 80.01 77.55 24.02 1 1 – Manual

ResNet-34 (XNOR) 91.65 73.94 71.98 36.56 1 1 – Manual

ResNet-34 (PCNN) 94.58 80.59 77.50 36.56 1 1 – Manual

ResNet-50 (XNOR) 92.03 75.50 72.12 45.46 1 1 – Manual

ResNet-100 (XNOR) 92.34 75.01 72.80 75.58 1 1 – Manual

BNAS 98.57 92.46 89.03 10.224 1 32 0.717 Performance-based

BNAS 97.62 89.89 83.6 10.768 1 1 0.856 Performance-based

‘W’ and ‘A’ refer to the weight and activation bitwidth respectively. We train these models on the CASIA-WebFace dataset, but the test process
are performed on the following datasets: LFW, CFP, AgeDB. On all the three test datasets, the results of BNAS consistently outperform the other
methods

efficiency (0.09375 vs. 0.15 GPU days) and is a much more
highly compressed model due to the binarization of the net-
work. The above results show the excellent transferability of
our BNAS method. Figure 6 shows the best cells searched
by BNAS based on PCNN. They perform comparably to the
full-precision networks obtained by NAS methods, but with
highly compressed models.

4.4 Results on Face Recognition

In this section, we compare different kinds of ResNets with
BNAS on face recognition task. Different kinds of ResNets
are ResNet-18, ResNet34, ResNet-50 and ResNet-100 with
kernel stage, 64-128-256-512 and each model has two FC
layers. We directly search on CASIA-Webface for 17.2h
using one TITAN V GPU with 400 batch size, learning rate
of 0.05. We use CASIA-Webface dataset for training and
LFW, CFP, AgeDB datasets for testing. The setting of hyper-
parameters is similar to the strategy of CIFAR experiments,
despite the difference that the learning rate is 0.05 and the
maximum epochs is set to 100. Note that the amount of
parameters of ResNet is huge because we remove the pool-
ing operation before FC layer following the face recognition
code.1 It makes the fully connected layer parameters large.

As demonstrated inTable 5,BNAShas a performance sim-
ilar to the human-designed full-precision networks ResNet-
18, with a much more highly compressed model. Also, 1-bit
BNAS not only achieves the best test result among 1-bit
CNNs but also has fewest parameters. On LFW, 1-bit BNAS
has only 1.06% accuracy degradation compared to the results

1 https://github.com/wujiyang/Face_Pytorch.

of the full-precision models ResNet-18, which verify the
potential of 1-bit networks in practice.

5 Conclusion

In this paper, we introduce BNAS (1-bit BNAS) for efficient
object recognition, which is the first binarized neural archi-
tecture search algorithm. Our BNAS can effectively reduce
the search time by pruning the search space in early training
stages, which is faster than the previous most efficient search
method PC-DARTS. We also introduce the bandit strategy
into 1-bit BNAS, which can significantly improve the per-
formance. The binarized networks searched by BNAS can
achieve excellent accuracies on CIFAR-10, ImageNet, and
wild face recognition. They perform comparably to the full-
precision networks obtained by other NASmethods, but with
much compressed models.

Acknowledgements Theworkwas supported in part byNational Natu-
ral Science Foundation of China under Grants 62076016 and 61672079.
This work is supported by Shenzhen Science and Technology Program
KQTD2016112515134654. Baochang Zhang is also with Shenzhen
Academy of Aerospace Technology, Shenzhen 100083, China. Han-
lin Chen and Li’an Zhuo have the same contributions to the paper.

References

Alizadeh,M., Fernández-Marqués, J., Lane, N.D., &Gal, Y. (2018). An
empirical study of binary neural networks’ optimisation. In Proc.
of ICLR.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis
of the multiarmed bandit problem. Machine Learning, 47(2–3),
235–256.

123

https://github.com/wujiyang/Face_Pytorch

International Journal of Computer Vision (2021) 129:501–516 515

Brock, A., Lim, T., Ritchie, J. M., & Weston, N. (2017). Smash:
One-shot model architecture search through hypernetworks. arXiv
preprint arXiv:1708.05344.

Bubeck, S., & Cesa-Bianchi, N. (2012). Regret analysis of stochastic
and nonstochastic multi-armed bandit problems. arXiv preprint
arXiv:1204.5721.

Cai, H., Chen, T., Zhang, W., Yu, Y., &Wang, J. (2018). Efficient archi-
tecture search by network transformation. In Proc. of AAAI.

Cai, H., Yang, J., Zhang, W., Han, S., & Yu, Y. (2018). Path-level
network transformation for efficient architecture search. arXiv
preprint arXiv:1806.02639.

Cai, H., Zhu, L., & Han, S. (2018). ProxylessNAS: Direct neural archi-
tecture search on target task and hardware. In Proc. of ICLR.

Chen, J., & Ran, X. (2019). Deep learning with edge computing: A
review. In Proceedings of the IEEE.

Chen, H., Zhuo, L., Zhang, B., Zheng, X., Liu, J., Doermann, D., & Ji,
R. (2020). Binarized neural architecture search. In Proc. of AAAI.

Chen, X., Xie, L., Wu, J., & Tian, Q. (2019). Progressive differentiable
architecture search: Bridging the depth gap between search and
evaluation. In Proc. of ICCV.

Courbariaux, M., Bengio, Y., & David, J. P. (2015). BinaryConnect:
Training deep neural networks with binary weights during propa-
gations. In Proc. of NIPS.

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., & Bengio, Y.
(2016). Binarized neural networks: Training deep neural networks
with weights and activations constrained to +1 or −1. arXiv
preprint arXiv:1602.02830.

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009).
ImageNet: A large-scale hierarchical image database. In Proc. of
CVPR.

DeVries, T., & Taylor, G. W. (2017). Improved regularization
of convolutional neural networks with cutout. arXiv preprint
arXiv:1708.04552.

Ding, R., Chin, T. W., Liu, Z., & Marculescu, D. (2019). Regulariz-
ing activation distribution for training binarized deep networks. In
Proc. of CVPR.

Dong, Y., Zhen, L., Liao, S., & Li, S. Z. (2014). Learning face repre-
sentation from scratch. In Computer science.

Even-Dar, E.,Mannor, S.,&Mansour,Y. (2006).Action elimination and
stopping conditions for the multi-armed bandit and reinforcement
learning problems. Machine Learning Research, 7, 1079–1105.

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572.

Gu, J., Li, C., Zhang, B., Han, J., Cao, X., Liu, J., & Doermann, D.
(2019). Projection convolutional neural networks for 1-bit CNNs
via discrete back propagation. In Proc. of AAAI.

Ha, D., Dai, A., & Le, Q. V. (2016). Hypernetworks. arXiv preprint
arXiv:1609.09106.

Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights
and connections for efficient neural network. In Proc. of NIPS.

Han, Y., Wang, X., Leung, V., Niyato, D., Yan, X., & Chen, X. (2019).
Convergence of edge computing and deep learning: A comprehen-
sive survey. In arXiv.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for
image recognition. In Proc. of CVPR.

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in
a neural network. In Computer Science.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Effi-
cient convolutional neural networks formobile vision applications.
arXiv preprint arXiv:1704.04861.

Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks.
In Proc. of CVPR.

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017).
Densely connected convolutional networks. In Proc. of CVPR.

Huang, G. B., Mattar, M., Berg, T., & Learned-Miller, E. (2008).
Labeled faces in the wild: A database for studying face recognition
in unconstrained environments.

Jamieson, K., & Talwalkar, A. (2015). Non-stochastic best arm iden-
tification and hyperparameter optimization. In International con-
ference on artificial intelligence and statistics

Juefei-Xu, F., Naresh Boddeti, V., & Savvides, M. (2017). Local binary
convolutional neural networks. In Proc. of CVPR.

Kocsis, L., & Szepesvari, C. (2006). Bandit based Monte-Carlo plan-
ning. In Proc. of ECML.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of
features from tiny images. Technical Report.

Krizhevsky, A., Nair, V., & Hinton, G. (2014). The CIFAR-10 dataset.
http://www.cs.toronto.edu/kriz/cifar.html

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet clas-
sification with deep convolutional neural networks. In Proc. of
NIPS.

Lai, T., & Robbins, H. (1985). Asymptotically efficient adaptive allo-
cation rules. Advances in Applied Mathematics, 6(1), 4–22.

Leng, C., Dou, Z., Li, H., Zhu, S., & Jin, R. (2018). Extremely low bit
neural network: Squeeze the last bit out with ADMM. In Proc. of
AAAI.

Li, E., Zeng, L., Zhou, Z., & Chen, X. (2019). Edge AI: On-demand
accelerating deep neural network inference via edge computing.
IEEE Transactions on Wireless Communications, 19(1), 447–457.

Li, F., & Liu, B. (2016). Ternary weight networks. In The 1st interna-
tional workshop on efficient methods for deep neural networks.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., & Talwalkar, A.
(2017). Hyperband: A novel bandit-based approach to hyperpa-
rameter optimization. The Journal of Machine Learning Research,
18(1), 6765–6816.

Li, Z., Ni, B., Zhang, W., Yang, X., & Gao, W. (2017). Performance
guaranteed network acceleration via high-order residual quantiza-
tion. In Proc. of ICCV.

Lin, X., Zhao, C., & Pan, W. (2017). Towards accurate binary convolu-
tional neural network. In Proc. of NIPS.

Liu, C., Ding, W., Xia, X., Hu, Y., Zhang, B., Liu, J., Zhuang, B., &
Guo, G. (2019). RBCN: Rectified binary convolutional networks
for enhancing the performance of 1-bit DCNNs. In Proc. of AAAI.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L. J., Fei-Fei,
L., Yuille, A., Huang, J., & Murphy, K. (2018). Progressive neural
architecture search. In Proc. of ECCV.

Liu,H., Simonyan,K.,&Yang,Y. (2019).DARTS:Differentiable archi-
tecture search. In Proc. of ICLR.

Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., & Cheng, K. T. (2018). Bi-
real net: Enhancing the performance of 1-bit CNNs with improved
representational capability and advanced training algorithm. In
Proc. of ECCV.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2017).
Towards deep learning models resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083.

Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B. (2017). Mobile
edge computing: Survey and research outlook. arXiv preprint
arXiv:1701.01090.

McDonnell, M. D. (2018). Training wide residual networks for
deployment using a single bit for each weight. arXiv preprint
arXiv:1802.08530.

Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., &
Zafeiriou, S. (2017). AgeDB: the first manually collected, in-the-
wild age database. In Proc. of CVPR workshops.

Neu, G. (2015). Explore no more: Improved high-probability regret
bounds for non-stochastic bandits. In Proc. of NIPS.

Parkhi, O. M., Vedaldi, A., Zisserman, A., et al. (2015). Deep face
recognition. In Proc. of BMVC.

123

http://arxiv.org/abs/1708.05344
http://arxiv.org/abs/1204.5721
http://arxiv.org/abs/1806.02639
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1609.09106
http://arxiv.org/abs/1704.04861
http://www.cs.toronto.edu/kriz/cifar.html
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1701.01090
http://arxiv.org/abs/1802.08530

516 International Journal of Computer Vision (2021) 129:501–516

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z.,
Lin, Z., Desmaison, A., Antiga, L., & Lerer, A. (2017). Automatic
differentiation in pyTorch. In Proc. of NIPS.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., & Dean, J. (2018). Efficient
neural architecture search via parameter sharing. arXiv preprint
arXiv:1802.03268.

Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016). XNOR-
Net: ImageNet classification using binary convolutional neural
networks. In Proc. of ECCV.

Real, E., Aggarwal, A., Huang, Y., & Le, Q. V. (2019). Regularized
evolution for image classifier architecture search. InProc. of AAAI.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
et al. (2015). ImageNet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3), 211–252.

Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified
embedding for face recognition and clustering. In Proc. of CVPR.

Sengupta, S., Chen, J. C., Castillo, C., Patel, V. M., Chellappa, R., &
Jacobs, D. W. (2016). Frontal to profile face verification in the
wild. In Proc. of WACV.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A.,
Guez, A., et al. (2017). Mastering the game of go without human
knowledge. Nature, 550(7676), 354–359.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556.

Taigman, Y., Ming, Y., Ranzato, M., & Wolf, L. (2014). DeepFace:
Closing the gap to human-level performance in face verification.
In Proc. of CVPR.

Tang, W., Hua, G., & Wang, L. (2017). How to train a compact binary
neural network with high accuracy? In Proc. of AAAI.

Tokic, M., & Palm, G. (2011). Value-difference based exploration:
Adaptive control between epsilon-greedy and softmax. In Annual
conference on artificial intelligence.

Wu, S., Li, G., Chen, F., & Shi, L. (2018). Training and inference with
integers in deep neural networks. In Proc. of ICLR.

Xie, S., Zheng, H., Liu, C., & Lin, L. (2018). SNAS: Stochastic neural
architecture search. arXiv preprint arXiv:1812.09926.

Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G.J., Tian, Q., & Xiong, H.
(2019). Partial channel connections for memory-efficient differen-
tiable architecture search. arXiv preprint arXiv:1907.05737.

Ying, C., Klein, A., Real, E., Christiansen, E., Murphy, K., & Hutter, F.
(2019).NAS-bench-101:Towards reproducible neural architecture
search. In Proc. of ICML.

Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. In
Proc. of BMVC

Zhao, J., Gu, J., Jiang, X., Zhang, B., Jianzhuang, L., Guo, G., & Ji, R.
(2019). Bayesian optimized 1-bit CNNs. In Proc. of ICCV.

Zheng, X., Ji, R., Tang, L., Wan, Y., Zhang, B., Wu, Y., Wu, Y., &
Shao, L. (2019). Dynamic distribution pruning for efficient net-
work architecture search. arXiv preprint arXiv:1905.13543.

Zheng, X., Ji, R., Tang, L., Zhang, B., Liu, J., & Tian, Q. (2019).
Multinomial distribution learning for effective neural architecture
search. In Proc. of ICCV.

Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., & Zou, Y. (2016). DoReFa-
net: Training low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv preprint arXiv:1606.06160.

Zhu, C., Han, S., Mao, H., & Dally, W. J. (2017). Trained ternary quan-
tization. In Proc. of ICLR.

Zhuang, B., Shen, C., Tan, M., Liu, L., & Reid, I. (2018). Towards
effective low-bitwidth convolutional neural networks. In Proc. of
CVPR.

Zoph, B., & Le, Q. V. (2016). Neural architecture search with reinforce-
ment learning. arXiv preprint arXiv:1611.01578.

Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning trans-
ferable architectures for scalable image recognition. In Proc. of
CVPR.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1812.09926
http://arxiv.org/abs/1907.05737
http://arxiv.org/abs/1905.13543
http://arxiv.org/abs/1606.06160
http://arxiv.org/abs/1611.01578

	Binarized Neural Architecture Search for Efficient Object Recognition
	Abstract
	1 Introduction
	2 Related Work
	2.1 Neural Networks Quantization
	2.2 Neural Architecture Search
	2.3 Bandit Problem

	3 Binarized Neural Architecture Search
	3.1 Search Space
	3.2 Binarized Optimization for BNAS
	3.3 Performance-Based Strategy for BNAS
	3.4 Gradient Update for BNAS

	4 Experiments
	4.1 Experiment Protocol
	4.1.1 Datasets
	4.1.2 Train and Search Details

	4.2 Results on CIFAR-10
	4.3 Results on ImageNet
	4.4 Results on Face Recognition

	5 Conclusion
	Acknowledgements
	References

