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Abstract
Most recently proposed unsupervised domain adaptation algorithms attempt to learn domain invariant features by confusing a
domain classifier through adversarial training. In this paper, we argue that this may not be an optimal solution in the real-world
setting (a.k.a. in the wild) as the difference in terms of label information between domains has been largely ignored. As labeled
instances are not available in the target domain in unsupervised domain adaptation tasks, it is difficult to explicitly capture
the label difference between domains. To address this issue, we propose to learn a disentangled latent representation based
on implicit autoencoders. In particular, a latent representation is disentangled into a global code and a local code. The global
code is capturing category information via an encoder with a prior, and the local code is transferable across domains, which
captures the “style” related information via an implicit decoder. Experimental results on digit recognition, object recognition
and semantic segmentation demonstrate the effectiveness of our proposed method.

Keywords In the wild · Cross-domain · Recognition · Segmentation

1 Introduction

Recently, though deep learning models have shown the great
success on many computer vision applications, collecting
sufficient labeled training data to train a deep model could
be cumbersome. Domain adaptation (Pan and Yang 2010)
aims to mitigate this problem by transferring the knowledge
learned from a domain of rich labeled data to a new tar-
get domain of scarce annotation resource. Recently proposed
unsupervised domain adaptation methods (Bousmalis et al.
2017;Tzeng et al. 2017) leverage the advantage of adversarial
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learning (Goodfellow et al. 2014) to learn domain invariant
features. More recently, Liu et al. (2018) proposed to encode
a shareable latent feature between the source domain and the
target domain based on variational autoencoders (Kingma
and Welling 2013). Hoffman et al. (2018) proposed to align
both pixel level and feature level distributions in an adver-
sarial learning manner.

A major drawback of most of the existing approaches is
that, when aligning distribution between source and target
domains, they only aim to align the data (e.g. feature, pixel)
distributionwhile the category information is largely ignored.
In the real world setting, the category information of differ-
ent domains could be different (Schölkopf et al. 2012). For
example, in a cross-domain recognition task, a target domain
could only contain a portion of category information com-
paredwith the source domain as somedigitsmay appearmore
frequently while others may not, according to Benford’s Law
(Benford 1938) (Fig. 1a). As another example, in a cross-
domain semantic segmentation task, although the category
information is maintained consistently between domains, the
proportion of each categorymay be different (Fig. 1b). Based
on our analysis on performing adaptation using CycleGAN
(Zhu et al. 2017),wefind that the target domain images gener-
ated by CycleGAN using source domain images may belong
to some categories which are not in the label space of the
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target domain. Therefore, we argue that, in order to obtain
enhanced discriminative representations, category informa-
tion should be taken into account.

In this paper, to tackle the problem of unsupervised
domain adaptation in thewild,we propose a novel framework
by leveraging the advantage of disentangling representa-
tion learning. The framework is built upon autoencoders,
which have been widely adopted in deep learning based
domain adaptation methods (Ghifary et al. 2016; Hoffman
et al. 2018; Liu et al. 2017). Different from other disen-
tanglement based domain adaptation methods (e.g. CDRD
Liu et al. 2018 a state-of-the-art domain adaptation method
based on conditional GANs), the conditional code which
captures the category information is learned in an end-to-
end manner instead of being randomly assigned, avoiding
the negative transfer in an efficient manner. In particular, we
take both categories and the non-category style information
into consideration, and build ourmodel upon implicit autoen-
coders (Makhzani 2018). The latent category information is
encoded with the regularization of category distribution, and
the remaining information is captured by the implicit condi-
tional likelihood distribution based on conditional GANs,
with the assumption that the source domain and the tar-
get domain data share a common latent space regarding
the “style” related (a.k.a. non-category) information while
the category information can be largely different. We evalu-
ate our proposed framework on three different vision tasks:
digit recognition, object recognition and semantic segmen-
tation. Experimental results show that the proposed method
can achieve significantly better performance compared with
other state-of-the-art unsupervised domain adaptation meth-
ods.

2 RelatedWorks

2.1 Unsupervised Domain Adaptation

Besides the traditional domain adaptation approaches based
on either subspace learning (Pan et al. 2011) or instance re-
weighting (Huang et al. 2006), deep learning based methods
have also been proved to be effective for domain adaptation.
Ghifary et al. (2016) showed that the transferable capability
can be improved with reconstruction loss. The Deep Adap-
tation Network (Long et al. 2015) applied Maximum Mean
Discrepancy (MMD) to multiple layers based on AlexNet
(Krizhevsky et al. 2012), where network parameters as well
as the parameters for the RBF kernel are jointly optimized
to obtain a suitable distance measurement in a Reproduced
Kernel Hilbert Space (RKHS). Long et al. (2016) further
showed that introducing addition residual block can further
improve the performance by learning more domain-invariant
feature representation. More recently, Pan et al. (2019) pro-

posed to extend MMD by prototypical network embedding
for domain adaptation. BesidesMMD,Haeusser et al. (2017)
proposed a novel discrepancy measure by considering label
information. Moreover, adversarial learning can also benefit
domain adaptation. In Ganin et al. (2016), a domain classi-
fier was introduced to assign a binary label to either source
or target domain, where the domain classifier was encour-
aged that its prediction was close to a uniform distribution of
both source and target domains. The gradient reversal algo-
rithm (ReverseGrad) also introduced a domain classifier by
maximizing the domain loss directly. It was also reported that
simply adopting data augmentationwith self-ensemble learn-
ing can also benefit domain adaptation (French et al. 2017).
As generative adversarial network (GAN) is equivalent to
minimize JS divergence (Goodfellow et al. 2014), several
works also leverage GAN and its extension CycleGAN (Zhu
et al. 2017) for domain adaptation (Bousmalis et al. 2017;
Hoffman et al. 2018; Russo et al. 2018; Tzeng et al. 2017),
which can be further applied to classifier boundary level
(Saito et al. 2018). Recently, Liu et al. (2018) proposed a
domain adaptation method which also aimed at learning dis-
entangled feature representation. In particular, the common
latent representation between source and target domains was
encoded through variational autoencoder while the attribute
information was represented by a random distribution reg-
ularized by an auxiliary classifier to maximize the mutual
information between randomdistribution and the synthesized
images,which is knownas infoGAN(Chen et al. 2016).How-
ever, the authors in Liu et al. (2018) proposed to capture the
categorical information only by randomly assigning one-hot
vector as the input based on conditional GAN,whichmay fail
to handle the imbalanced category situation for unsupervised
domain adaptation problem. Different from Liu et al. (2018),
we aim to conduct disentanglement by learning the category
information in an end-to-end learning manner, where cate-
gory information can be captured by matching it with a prior
distribution instead of randomly assigning one-hot vector. It
is worth mentioning that there are several works which tar-
geted on partial domain adaptation (e.g. Cao et al. 2019).
However, compared with these approaches, our proposed
method is more general as the existing techniques based on
partial domain adaptation only considered object recognition
task for evaluation.

2.2 Image-to-Image Translation

The problem of image-to-image translation has attracted
more and more attentions due to the success of GAN. Isola
et al. (2017) proposed the first framework for small-scale
image-to-image translation problem based on conditional
GAN, which has been further extended to high-resolution
image inWanget al. (2017).Besides conditionalGAN, recent
works also focus on conducting image translation in an unsu-
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Fig. 1 Illustrations of our motivation for the proposed unsupervised
domain adaptation in the wild, where imbalanced category settings are
observed. The first and second rows show the samples from source
and target domains, respectively. First row: according to the Benford’s
Law, a target domain can only contain a portion of category information
compared with the source domain. Second row: although the category

information is similar between source and target domain, the propor-
tion of each category may be different. For example, the trees in the
first row are in the middle and right part of the image while the trees
are mainly in the left for the image in the second row, which leads to
category inconsistency in pixel level

pervisedmanner by leveraging pixel values (Shrivastava et al.
2017), pixel gradients (Bousmalis et al. 2017) and semantic
features (Taigman et al. 2016).

Image-to-image translation problem is closely related to
unsupervised domain adaptation, as it can be treated as
aligning distribution divergence between source and target
domains. Bousmalis et al. (2017) also conducted experiments
on domain adaptation by adapting source-domain images to
appear as if drawn from the target domain. In addition, cou-
pled GAN (Liu and Tuzel 2016) and its extension UNIT
(Liu and Tuzel 2016) further assumed that a shared latent
space exists such that the corresponding images from two
domains can be mapped to the same latent code besides
pixel level adaptation. To improve the diversity of trans-
lated images, CycleGAN (Zhu et al. 2017) was proposed
and further applied to unsupervised domain adaptation prob-
lem (Hoffman et al. 2018). Recently, Huang et al. (2018)
leveraged the advantage of disentangled representation learn-
ing by proposing amultimodel unsupervised image-to-image
framework. Our proposed method also leverages the advan-
tage of image-to-image translation for domain adaptation.

2.3 Cross-Domain Semantic Segmentation

To the best of our knowledge, the first work tackling the cross
domain segmentation problem was introduced in Levinkov
and Fritz (2013) with the scene prior based on the Bayesian
model. To reduce the domain shift in the segmentation
task, Hoffman et al. (2016) proposed an adversarial based
approach to align the scene distinction between simulated
and real environments. A number of works further extended
the idea by considering adaptation based on semantic feature

(Chen et al. 2018; Saito et al. 2018), output layout (Tsai et al.
2018; Vu et al. 2019), superpixels (Zhang et al. 2017) and
translated images (Sankaranarayanan et al. 2017; Zhang et al.
2018). In Hoffman et al. (2018), cross-domain segmentation
was conducted by considering adaptation based on seman-
tic level and pixel level. Our motivations in tackling this
problem are twofold. First, the domain shift originates from
different style rendering, such that we aim to conduct disen-
tangling representation by assuming that there exists a space
which captures the style information. Secondly, to ensure that
meaningful category information can be captured through
disentangling representation learning, the category informa-
tion is further used for image reconstruction and translation
based on conditional GAN (Wang et al. 2017).

3 Preliminaries

Before introducing our proposed framework for unsuper-
vised domain adaptation, we first revisit implicit autoen-
coders (Makhzani 2018), which our proposed framework is
built upon and can be regarded as extensions of adversarial
autoencoders (Makhzani et al. 2015) to perform variational
inference by matching the aggregated posterior of the latent
code with an arbitrary prior in an adversarial training man-
ner. Specifically, let x be a data point which is drawn from
a distribution p(x). The encoder defines a posterior distri-
bution q(z|x) which maps data x to the latent vector z. The
decoder defines a conditional distribution p(x|z) to output a
reconstructed data point x̂. Therefore, the aggregated poste-
rior distribution q(z) and the reconstruction distribution r(x̂)
can be defined as
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Fig. 2 The proposed domain adaptation framework. a Implicit autoen-
coder framework where the parameters of encoder and generator are
shared by source and target domains (the discriminators are omitted for

better visualization). b Conditional network for reconstruction GAN
(Makhzani 2018; Makhzani and Frey 2017). cAdversarial loss for prior
matching

q(z) =
∫
x
q(x, z)dx =

∫
x
q(z|x)p(x)dx,

r(x̂) =
∫
z
r(x̂, z)dz =

∫
z
q(z)p(x|z)dz, (1)

where q(z) is regularized by a predefined prior p(z) (cate-
gorical prior in our case) in an adversarial manner,

Lprior = Ez∼p(z)[log(Dprior (z))]
+Ez∼q(z)[log(1 − Dprior (z))]. (2)

An implicit autoencoder is different from an adversar-
ial autoencoder in two aspects. First, instead of learning a
decoder based on the aggregated latent code, the implicit
autoencoder learns a decoder based on the conditional GAN,
which takes another prior as the conditional extra informa-
tion. Second, the implicit autoencoder proposes adversarial
reconstruction insteadof the deterministic L1/L2 reconstruc-
tion loss adopted by other autoencoders frameworks (e.g.
Makhzani et al. 2015; Ngiam et al. 2011). The adversarial
reconstruction loss is given by

Lrecon = Ex,z∼q(x,z)[log(Drecon(x, z))]
+E ˆx,z∼r(x̂,z)[log(1 − Drecon(x̂, z))]. (3)

4 ProposedMethodology

Recently proposed deep learning based domain adaptation
methods (Hoffman et al. 2018; Liu et al. 2017; Tzeng et al.
2015, 2017) share a common assumption that there exists a
latent code which can capture the domain invariant informa-
tion between the source and the target domains. However,
as shown in Ming Harry Hsu et al. (2015), directly conduct-
ing domain adaptation based on feature level may lead to
negative transfer, as the category information is ignored. To
mitigate this problem, we propose to decompose the latent
code into two parts in an end-to-end learning manner: one is
to capture the category information, which can be different
across domains, and the other is to capture the transferable
information. In particular, we extend implicit autoencoders
(Makhzani 2018) to the unsupervised domain adaptation
setting. We aim to train a classifier based on the encoder.
To encourage the output of encoder to capture the discrete
category information,we introduce a prior distribution to reg-
ularize the latent code, and a generator based on the decoder
to further impose reconstruction constraints for cross-domain
image translation.
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4.1 Framework

Our proposed algorithm is built upon the implicit autoen-
coders introduced in Sect. 3. We illustrate the whole frame-
work in Fig. 2. The whole architecture consists of six
subnetworks: one encoder E , one generator G and four
discriminators Dprior , Dpixel , Drecon and D f eat . In our
domain adaptation setting,wehave the source domain images
XS = {xS}’s and the target domain images XT = {xT }’s,
where xS, xT ∈ R

H×W×C with H andW denoting the height
and width of an image respectively, and C is the size of input
channel. The encoder E = Ec ◦ E f acts as a combination
of a feature mapping E f and a classifier Ec by mapping the
input xS or xT to a semantic feature representation E f (xS) or
E f (xT ) and a softmax global code E(xS) or E(xT ). The gen-
erator G with the output size RH×W×2C defines an implicit
conditional model distribution for the image reconstruction
and the image generation purposes, which can be defined as
[x̂S, xS→T ] = G(E(xS),n), [xT→S, x̂T ] = G(E(xT ),n),
where n is the local code randomly generated based on a
Gaussian distribution and is shared by both the source and
the target domains, x̂S, x̂T ∈ R

H×W×C are the reconstructed
images of xS, xT , respectively. xS→T , xT→S ∈ R

H×W×C ,
xS→T ∈ XS→T , xT→S ∈ XT→S are the translated images
based on xS, xT , respectively. In our setting, the firstC chan-
nels of the output of G correspond to the source domain and
the lastC channels correspond to the target domain. To imple-
ment how the reconstruction GAN conditions on the global
code, we adopt a conditional network where the global code
is used as the input as inMakhzani (2018) andMakhzani and
Frey (2017), and the output is added to the first layer of the
discriminator as an adaptive bias.

4.2 Implicit Autoencoders with Domain Adaptation

We then introduce the domain adaptation formulation.As our
encoder directly maps input to the softmax global code, we
impose a classification lossLclass supervised by groundtruth
label/annotation YS based on the source domain. As we
aim to conduct latent feature disentangling where the cat-
egory information is captured by the encoder, we directly
impose the standard cross-entropy loss based on the output
of encoder.

For the domain adaptation loss, in analogous to (Hoffman
et al. 2018), we also consider feature level adaptation as well
as pixel level adaptation. Conducting feature level adapta-
tion in an adversarial manner was proved to be effective for
unsupervised domain adaptation. However, as the category
information between the source and the target domains can
be imbalanced, directly aligning latent feature representation
may lead to negative transfer. We propose to disentangle the
latent feature to category related code (a.k.a. global code) as
well as style related code (a.k.a. local code) to address this

problem. In particular, we first regularize the global code
based on the target domain as

Lprior = Ez∼p(zT )[log(Dprior (z))]
+Ex∼XT [log(1 − Dprior (E(x)))], (4)

where Dprior is the discriminator defined in Sect. 4.1 by
encouraging the posterior to match the prior. We only reg-
ularize the global code in the target domain as the source
domain global code can be learned with cross-entropy loss.
We define p(zT ) as categorical distribution prior based on the
target domain which can help the latent global code to cap-
ture discrete factors of variation. The details regarding how to
construct p(zT ) are provided in the experimental section. To
capture the transferable information, we propose a shareable
local coden between source and target domainswhich is gen-
erated by random Gaussian distribution and for feature level
adaptation in non-categorical level. Thus, the disentangling
of latent feature representation can be achieved. The local
code n will be conditioned on the global code as the input to
the generator G. In addition, as suggested in Hoffman et al.
(2018) andTzeng et al. (2017), we also conduct semantic fea-
ture adaptation between the source and the target domains,
which leads to an additional feature level adversarial loss

L f eat = Ex∼XT [log(D f eat (E f (x)))]
+Ex∼XS [log(1 − D f eat (E f (x)))]. (5)

For pixel level adaptation,we introduce a generatorG defined
inSect. 4.1 as amapping fromsource to target/target to source
as xS→T and xT→S as well as a discriminator Dpixel for
distinguishing purpose.

Lpixel = ExS∼XS [log(Dpixel(xS))]
+ExT→S∼XT→S [log(1 − Dpixel(xT→S))]
+ExT ∼XT [log(Dpixel(xT ))]
+ExS→T ∼XS→T [log(1 − Dpixel(xS→T ))]. (6)

4.3 Model Training

By considering the objectives together, the loss function of
our proposed framework is defined as

L = λ0Lclass + λ1Lprior + λ2L f eat

+λ3Lpixel + λ4Lrecon, (7)

where the first term serves as classification purpose with
cross-entropy loss on the source domain labeled data, the sec-
ond is to capture prior information, the third and fourth term
are for semantic feature- and pixel- level domain adaptation,
respectively, and the last term is the stochastic reconstruction
loss induced by the autoencoder based on both the source and
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the target domains. For implementation, we follow (Good-
fellow et al. 2014) to train the encoder by maximizing
log D(E(x)) instead of minimizing log(1 − D(E(x))), as
we find it can lead to more stable training.

Similar to Hoffman et al. (2018), a two-stage training pro-
cess is conducted which can help with reducing the GPU
memory cost and potential for volatile training. In particular,
we first train with classification loss and the semantic feature
adaptation loss, and then train the model with (7) by remov-
ing the semantic feature adaptation loss. During each training
iteration, we forward the source image batch {xS} ∈ XS with
its corresponding groundtruth {yS} ∈ YS , aswell as the target
image batch {xT } ∈ XT to our model. The model is trained
in an adversarial manner. We also discuss the performance
by considering jointly training of the proposed objective in
the experimental section. The whole process is summarized
in Algorithm 1.

Algorithm 1 Unsupervised Domain Adaptation in the Wild
with Implicit Autoencoders
Input: XS , XT and YS , initialized parameters E , G, Drecon , Dprior ,
D f eat and Dpixel .
Output: Learned parameters E∗, G∗, D∗

recon , D∗
prior , D∗

f eat and
D∗

pixel .
%: First Stage
while Stopping criterion is not met do

1:Sample imagebatch {xS} and {xT } fromXS andXT , respectively.

2: Compute the gradient of λ0Lclass + λ2L f eat w.r.t. D f eat .
3: Take a gradient step to update D f eat to maximize the objective
in step 2 of first stage.
4: Compute the gradient of objective in step 2 of first stage w.r.t.
E .
3: Take a gradient step to update E to to minimize the objective in
step 2 of first stage.

end while
%: Second Stage
while Stopping criterion is not met do

1: Sample image batch {xS} and {xT } from XS and XT , respec-
tively. Randomly generate Gaussian noise n. Generate categorical
distribution zT with the same size as the output of E .
2: Compute the gradient of λ0Lclass + λ1Lprior + λ3Lpixel +
λ4Lrecon w.r.t. Drecon , Dprior and Dpixel .
3: Take a gradient step to update Drecon , Dprior and Dpixel to
maximize the objective in step 2 of second stage.
4: Compute the gradient of the objective in step 2 of second stage
w.r.t. E and G.
5: Take a gradient step to update E andG tominimize the objective
in step 2 of second stage.

end while

4.4 Theoretical Analysis

We give an explanation of our proposed methodology in the
perspective of transfer learning theory in Ben-David et al.
(2010).

Theorem 1 Let θ ∈ H be a hypothesis, ε1(θ) and ε2(θ) be
the expected risks of domain 1 and 2 respectively, then

ε2(θ) ≤ ε1(θ) + 2dH(S, T ) + Const (8)

where dH(S, T ) is to measure the distribution divergence
between source and target domain (Ben-David et al. 2010).

We further show that our proposed objective is equivalent
to minimize the upper bound in Theorem 1.

Theorem 2 Let (xS, zS) ∼ S, (xT , zT ) ∼ T , the empirical
risk based on target domain can be represented as shown
below

ε2(θ) = ET [− log q(zT |xT )] ≤ Lclass + Lprior

+ 1

2
(Lpixel + Lrecon) + Const (9)

where dH(S, T ) = 1
2Lprior + 1

4 (Lpixel + Lrecon). Lclass

is the classification loss on source domain, which is ε1(θ)

in Eq. 8, Lprior is the regularization loss by matching the
latent categorical information with the prior distribution,
Lpixel is the adversarial loss between source and target
domain data, Lrecon is stochastic reconstruction loss and
Const = ES,T [| log p(xS)

p(xT )
|], which is a constant determined

by the input data.

To prove the theorem, we assume the joint distribution of
a batch from a domain can approximate the joint distribution
of its ideal domain, which yield q(xS, zS) = p(xS, zS) and
q(xT , zT ) = p(xT , zT ). Such assumption has been adopted
in many deep learning based domain adaptation techniques,
which aimed to match the distribution of minibatch instead
of the whole source and target domain. The proof is given
below.

Proof

ET [− log q(zT |xT )] = ET [| − log q(zT |xT )|]
≤ ES,T [| − log q(zT |xT ) + log q(zS|xS)|]
+ ES [| − log q(zS|xS)|]
≤ ES,T [| − log p(xT |zT ) + log p(xS|zS) − log q(zT )

+ log q(zS)|] + ES [| − log q(zS|xS)|]
+ ES,T

[∣∣∣∣log p(xS)
p(xT )

∣∣∣∣
]

≤ ES,T

[∣∣∣∣12 log p(xT |zT ) − 1

2
log p(xS)

∣∣∣∣
]

+ ES,T

[∣∣∣∣12 log p(xT |zT ) − 1

2
log p(xT )

∣∣∣∣
]

+ ES,T

[∣∣∣∣12 log p(xS|zS) − 1

2
log p(xS)

∣∣∣∣
]
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+ ES,T

[∣∣∣∣12 log p(xS|zS) − 1

2
log p(xT )

∣∣∣∣
]

+ ES [| − log q(zS|xS)|] + ES,T

[∣∣∣∣log p(xS)
p(xT )

∣∣∣∣
]

+ ES,T [| log q(zS) − log q(zT ) − log p(z) + log p(z)|]
≤ 1

2
(dist(p(xS), r(x̂T )) + dist(p(xT ), r(x̂S)))︸ ︷︷ ︸

cross domain loss

+ 1

2
(dist(p(xS), r(x̂S)) + dist(p(xT ), r(x̂T )))

︸ ︷︷ ︸
reconstruction loss

+ dist(q(zS), p(z)) + dist(q(zT ), p(z))︸ ︷︷ ︸
prior loss

+ ES [| − log q(zS|xS)|]︸ ︷︷ ︸
classi f ication loss

+ES,T

[∣∣∣∣log p(xS)
p(xT )

∣∣∣∣
]

As q(zS) is supervised by label information from the source
domain, dist(q(zS), p(z)) is alsominimized. This completes
the proof. �	

In summary, our proposed method can be treated as min-
imizing the empirical risk on source domain as well as
aligning the joint distribution of source and target domain
on both pixel level and category level. While the pixel level
adaptation is achieved by Lpixel , the category level adapta-
tion is jointly determined by matching the latent code with
a Categorical prior, as well as stochastic reconstruction. The
Categorical prior mainly aims to capture category infor-
mation, and stochastic reconstruction further encourage the
output of encoder to capture reliable categorical information,
which can be used for reconstruction purpose. Surprisingly,
wenotice that the upper boundonly depends the secondphase
of training. We show in our experimental study that remov-
ing semantic feature adaptation term has less impact to the
final performance compared with other terms. However, we
experimentally find that semantic feature adaptation term can
help to train the model stably.

5 Experiment

We evaluate our proposed method for unsupervised domain
adaptation in the wild on location-invariant and location-
dependent tasks. For the first one, the cross-domain digit
recognition and object recognition are considered. For the
latter one,we focus on the semantic segmentation task,which
aims to adapt the learned model based on synthetic dataset
to the real-world one.

5.1 Cross-Domain Digit Recognition

5.1.1 Setting of Experiment

We first evaluate our method on cross-domain digit recogni-
tion by considering three different datasets, MNIST (LeCun
et al. 1998), USPS (Hull 1994) and SVHN (Netzer et al.
2011). In particular, we consider two scenarios, (1) domain
shift between different style grayscale images, (2) domain
shift between RGB and grayscale images. We show some
examples of MNIST, USPS and SVHN in Fig. 3.

5.1.2 MNIST↔ USPS

To evaluate the effectiveness of our proposed methodol-
ogy, we conduct experiments by considering the balanced
setting, where all category information is available in the tar-
get domain, as well as the imbalanced setting, where the
category information in the target domain is only a sub-
set of the category information in the source domain. We
adopt a LeNet like encoder in order to fairly compare with
other baseline methods. Moreover, for the imbalanced set-
ting, we choose to compare with four different baseline
methods which conducted domain adaptation from differ-
ent perspectives, ADDA (Tzeng et al. 2017) for feature level
adaptation, MCD (Saito et al. 2018) for boundary level adap-
tation, CDRD (Liu et al. 2018), CYCADA (Hoffman et al.
2018) based on both feature level and pixel level and ETN
(Pan et al. 2019), which is a recent proposed imbalanced
domain adaptation algorithm.1 We conduct the experiments
for ten times and the average performances are reported for
our proposed method. For the baselines, we report the best
results obtained from the published papers. For imbalanced
setting, we report their best results on the test data by varying
their parameters in a wide range.

We set the batch size to 128, and follow the protocol in
Bousmalis et al. (2017) and Russo et al. (2018) for parameter
setting, which leads to λ0 = λ2 = 1, λ1 = 2, λ3 = λ4 = 10.
We use Stochastic Gradient Descend (SGD) as suggested
in Makhzani and Frey (2017) to optimize our model and
set the learning rate as 0.1 for encoder, generator as well as
discriminator.RegardingCategorical distributiongeneration,
wefirst compute the pseudo-label of target domain data based
on the network trained by classification loss and semantic
feature adaptation loss, and compute the histogram density
hk (where k = {0, 1, 2, . . . , 9} for digit recognition) based on
the predicted label. We set the probability pk of Categorical

1 We omit other baseline methods under this setting as they can be
categorized into the aforementioned baselines and achieved poorer per-
formance.
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Fig. 3 Examples of MNIST,
USPS and SVHN datasets

Table 1 Network architectures used for MNIST ↔ USPS

Encoder Generator Disc. prior Disc. feat

Conv5, maps 20 Linear 1024, BN 1024 Linear 100, ReLU Linear 500, ReLU

Max Pool 2, Stride 2, ReLU Linear 6272, BN 6272 Linear 100, ReLU Linear 500, ReLU

Conv5, maps 50, Dropout(0.5) DeConv4, Stride 2, maps 64, BN 64, ReLU Linear 1 Linear 1

Max Pool 2, Stride 2, ReLU DeConv4, Stride 2, maps 2, tanh

Linear 500, ReLU, Dropout(0.5)

Linear 10, Softmax

The architectures of the discriminator of pixel adaptation and reconstruction are the same as the encoder except that the output dimension of the
last fully connected network is set as 1

Table 2 Unsupervised domain adaptation performance based on MNIST and USPS

Source only PixelDA ADDA CoGAN UNIT MCD SBADA-GAN CDRD CYCADA TPN Ours

MNIST to USPS 0.822 0.959 0.894 0.957 0.959 0.965 0.976 0.951 0.956 0.921 0.976

USPS to MNIST 0.696 – 0.901 0.932 0.936 0.941 0.950 0.944 0.965 0.941 0.972

Bold values indicate the best performance
We report the best results obtained for the baseline methods from the published papers

distribution as

pk =
{

1
NK

, {k|hk > τ }
0, {k|hk ≤ τ } (10)

where NK is the total number of category where hk > τ (we
empirically set τ = 0.03 for the trade-off between category
imbalance andwrong label prediction).We set the dimension
of the encoder output as 10 which is the same as the number
of categories from source domain, and experimentally set the
dimension of local code as 512 initialized as N ∼ (0, 1). The
details of the network are listed Table 1.

For the balanced setting, the results are shown in Table 2.
It is clearly observed that our proposed method can outper-
form all other baselines under all scenarios by considering
different protocols. For ADDA (Tzeng et al. 2017) and
PixelDA (Bousmalis et al. 2017), only the feature repre-
sentation induced from LeNet or reconstructed pixel was
aligned with adversarial loss for domain adaptation, respec-
tively, which may not be sufficient for domain adaptation
task. Thus it is reasonable that ADDA and PixelDA can not
achieve desired performance. Although MCD proposed to
employ two discriminators in an elegant way, the semantic
and pixel information between two domains were ignored.
Though CBADA-GAN (Russo et al. 2018) can achieve good

Table 3 Imbalanced
unsupervised domain adaptation
performance based on MNIST
and USPS

Source only ADDA MCD CDRD CYCADA ETN Ours

MNIST to USPS (0–4) 0.916 0.919 0.887 0.941 0.955 0.860 0.951

USPS to MNIST (0–4) 0.778 0.764 0.902 0.934 0.954 0.857 0.968

MNIST to USPS (5–9) 0.618 0.656 0.669 0.776 0.898 0.660 0.931

USPS to MNIST (5–9) 0.597 0.782 0.829 0.831 0.901 0.798 0.925

Bold values indicate the best performance
(0–4) and (5–9) denotes only category 0–4 and 5–9 are contained in the target domain, respectively
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performance when training on MNIST and testing on USPS,
the performance regarding training on USPS and testing on
MNIST cannot compete with CYCADA as only pixel adap-
tation is considered. For CoGAN (Liu and Tuzel 2016) and
CDRD (Liu et al. 2018) baselines, the two distributions were
aligned by a random generated vector with the adversarial
loss. However, as have already been discussed in the existing
works (e.g. Liu et al. 2017), simply generating images based
on random noise may fail to capture generalized informa-
tion, which limit their domain adaptation capability. UNIT
(Liu et al. 2017) aimed to improve CoGAN by imposing
image transfer regularization with reconstruction loss, which
achieved better performance. CYCADA (Hoffman et al.
2018) considered both image transfer as well as feature level
adaptation based onCycleGAN(Zhu et al. 2017). Last but not
the least, though TPN (Pan et al. 2019) can induce theoretical
lower bound of target domain risk, it may not be able to lead
to an optimal embedding due to the network architecture. Our
method can also be treated as aligning distribution based on
pixel level and semantic level, as we impose a implicit dis-
tribution based on a Gaussian vectors shared by source and
target domains with style transfer regularization. Moreover,
we also take category information into account. We show
in ablation study that these factors can jointly improve the
performance of domain adaptation.

We then evaluate our method by considering imbalanced
domain adaptation setting by only taking partial category
information into account. The results are shown in Table 3.
Based on the results, we observe that our proposed method
can achieve significantly better performance compared with
ADDA, MCD and CDRD. Though ADDA can perform bet-
ter compared with directly training on source domain, the
improvements are not significantly large, which shows that
only applying semantic feature adaptation may not be suffi-
cient. For MCD, though the adaptation is considered based
on boundary level, it did not take imbalance setting into con-
sideration, and both pixel and semantic feature adaptation
were ignored, which also leads to poor performance under
this setting. For CDRD, we observe that the performance
is also not desired. We conjecture the reason that although
disentanglement is considered, the categorical information
was randomly generated and further imposed on conditional
GAN, which may not be capable to handle the imbalanced
setting. For CYCADA, it can achieve reasonably good per-
formance under this scenario, which we conjecture that
CycleGAN architecture can preserve category information
during adaptation to some extent. We further consider to
compare with the recently proposed Example Transfer Net-
work (ETN) (Cao et al. 2019), whichwas designed for partial
domain adaptation algorithm.2 We find it cannot achieve

2 We adopt the LeNet as backbone network, which is the benchmark
for MNIST and USPS datasets.

Fig. 4 Category output distribution on USPS dataset by considering
adapting from MNIST to USPS (5–9). Left: category output obtained
without semantic feature adaptation.Right: category outputwith seman-
tic feature adaptation

desired performance in this scenario. We conjecture that it
did not take autoencoder into considering thus the latent fea-
ture may not be able to preserve distinguishable information.
Nevertheless, our algorithmcan achieve the best performance
in general, which indicate the importance of disentangle-
ment through implicit autoencoders for unsupervised domain
adaptation task.

As we adopt the semantic feature adaptation to obtain the
Categorical prior for digit recognition task, we are also inter-
ested in how the semantic feature adaptation contributes in
this imbalanced setting. To this end, we show the distribution
of predicted output of target domain in Fig. 4 by considering
the challenging case where MNIST is used as source domain
and USPS (5–9) as target domain without semantic feature
adaptation and with semantic feature adaptation during the
first stage. As we can observe, a more reliable prior can be
obtained by applying semantic feature adaptation which ben-
efits domain adaptation under imbalanced setting. We also
evaluate whether a reliable prior can be obtain through other
adaptation, such as pixel adaptation based on our proposed
framework, but found itmaynot achieve desired performance
as semantic feature adaptation.

We further conduct experiments to understand the impact
of different components of our proposed algorithm on the
domain adaptation task under balanced category setting.
Experimental results are shown in Table 4. “No Prior” means
that we remove the adversarial loss of matching the output
of encoder with the Category distribution. “No Pixel” means
that we remove the pixel level adaptation. “NoRecon”means
that we remove reconstruction loss. “No Feat” means that
we remove the feature adaptation. Moreover, we also con-
sider using the deterministic reconstruction loss L1 and L2
as baseline instead of the adopted stochastic reconstruction
loss (3).

From the table, we observe that removing the regulariza-
tion based on the prior distribution, image translation and
reconstruction, or replace the stochastic reconstruction loss
with L1, L2 loss lead to poorer performance. This verifies
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Table 4 Impact of different components on performance

MNIST to USPS USPS to MNIST

No prior 0.739 0.755

No pixel 0.828 0.743

No recon 0.935 0.906

No feat 0.976 0.970

Ours (L1) 0.953 0.972

Ours (L2) 0.957 0.970

Ours (stochastic) 0.976 0.972

Bold values indicate the best performance

Table 5 Performance comparison of single-stage training and multi-
stage training

MNIST → USPS USPS → MNIST

Multi-stage 0.976 0.972

Single-stage 0.977 0.974

the effectiveness of our proposed framework: (1) imposing
pixel level adaptation can benefit domain adaptation task,
which has also been discussed in existing works (Hoffman
et al. 2018; Liu et al. 2017, 2018), (2) imposing prior con-
straint is significant to capture categorical information, as
we observe it can lead to negative transfer without prior con-
straint. We conjecture the reason that the encoder can be
overfitted to the classification loss thus the model fails to
achieve disentanglement for target domain data, (3) impos-
ing reconstruction loss can guarantee the latent code capture
meaningful representation of the input images which also
benefit domain adaptation, (4) we do not observe perfor-
mance drop after removing semantic feature adaptation.
However, the semantic feature adaptation term can help with
training a more stable network especially for the imbalanced
setting, (5) compared with using deterministic reconstruc-
tion loss L1, L2, imposing stochastic reconstruction can
only capture the abstract and high-level information of given
image (Makhzani 2018) which benefits disentangling feature
representation learning and domain adaptation.

Aswe followCYCADA (Hoffman et al. 2018) conducting
a multi-stage training, it is valuable to investigate the perfor-
mance by jointly training the whole objective in a single
stage. The results are shown in Table 5. As we can observe,
by jointly training the objective, we can even achieve slightly
better performance, which is reasonable as training multiple
loss jointly can help avoid the network overfit to one partic-
ular regularization. However, as also indicated in Hoffman
et al. (2018), multi-stage training can benefit the situation
where no sufficient GPU memory available and also help
with preventing potential volatile training.

To further evaluate the effectiveness that our proposed
framework which can learn disentangling representation, we
use the one-hot vectors which represent digits from 0 to 9
together with randomly generated Gaussian vectors as the
input of the generation model, which is trained by MNIST
as the source domain and USPS as the target domain. The
visualization results are shown in Fig. 5. As we can see,
based on the cross-domain setting, the global code retains
the label information of digit, while the local code captures
the variations of in the style of the digits, which shows the
effectiveness of our algorithm for disentangling representa-
tion learning and can capture the transferable information
between source and target domains, which benefit unsuper-
vised domain adaptation.

5.1.3 SVHN↔MNIST

Subsequently,we consider domain adaptationbetweenSVHN
and MNIST which have distinct properties. SVHN contains
images with diverse color background with multiple digits
which are very blurred while MNIST is in grayscale and
much sharper. In order to conduct domain adaptation between
SVHN and MNIST, we first convert the images in MNIST
to RGB and then resize the images to 32 × 32, as suggested
in Liu et al. (2017), and further conduct processing (French
et al. 2017) on MNIST when using it as source domain. We
adopt the model in Saito et al. (2018) as the encoder. We
set the batch size to 128, and follow the protocol in Bous-
malis et al. (2017) and Russo et al. (2018) for parameter
setting, which leads to λ0 = 10, λ1 = 2, λ2 = λ3 = 1 and
λ4 = 0.01.We use Adam (Kingma and Ba 2014) to optimize
the model with learning rate as 2× 10−4, which is also con-
sistent with (Makhzani and Frey 2017). We follow MNIST
↔ USPS setting for prior generation. The dimensions of the
encoder output and local code are set as 10 and 512, respec-
tively. The local code is initialized as N ∼ (0, 1). The details
of the network are listed in Table 6.

As can be observed from Table 7, all domain adapta-
tion algorithms can outperform the baseline by training only
based on source domain. The performance improvement of
ADDA ismuch smaller comparedwith othermethods, which
is consistent with the results in Table 2. The performance of
SBADA-GAN is also not desired, as feature level adapta-
tion is missing. However, an interesting observation is that,
MCD can achieve much better performance compared with
UNIT and CYCADA. We conjecture two possible reasons,
(1) only conducting image style translation is not sufficient
to handle the domain shift when source and target domain are
distinct, as it only considers distribution divergence based on
data level, (2) aligning classifier is also important for domain
adaptation task, as it can be treated as reducing distribution
divergence by considering category distribution divergence
based on conditional distribution with given input data. Our

123



International Journal of Computer Vision (2021) 129:267–283 277

Fig. 5 Image generation of
MNIST and USPS with one-hot
vector as label (each row
represents a label) and random
Gaussian noise as style. Left:
MNIST, right: USPS

Table 6 Network architectures used for SVHN ↔ MNIST

Encoder Generator Disc. prior Disc. feat

Conv5, maps 64, BN 64, ReLU Linear 4096, BN 4096, ReLU Linear 100, ReLU Linear 2048, ReLU

Max Pool 3, Stride 2 DeConv4, Stride 2, maps 128, BN 128, ReLU Linear 100, ReLU Linear 2048, ReLU

Conv5, maps 128, BN 128, ReLU DeConv4, Stride 2, maps 64, BN 64, ReLU Linear 1 Linear 1

Max Pool 3, Stride 2 DeConv4, Stride 2, maps 6, tanh

Linear 3072, BN 3072, ReLU, Dropout(0.5)

Linear 2048, BN 2048, ReLU

Linear 10, Softmax

The architectures of discriminator of pixel adaptation and reconstruction are the same as the encoder except that the output dimension of the last
fully connected network is set as 1

Fig. 6 Examples of CIFAR-100 datasets. The first row shows the clean samples without Gaussian noise distortion. The second to the last rows
show the images with five different severity levels ranging from 1 to 5

123



278 International Journal of Computer Vision (2021) 129:267–283

Table 7 Unsupervised domain adaptation on SVHN and MNIST

SVHN to MNIST MNIST to SVHN

Source only 0.671 0.260

ADDA 0.760 –

UNIT 0.905 –

MCD 0.962 –

CYCADA 0.904 –

SBADA-GAN 0.761 0.611

Ours 0.978 0.662

Bold values indicate the best performance

algorithm achieves the best performance, aswe consider both
pixel- and semantic-level adaptation, aswell as category level
regularization.

5.2 Cross-Domain Object Recognition

Next, we consider cross-domain object recognition task
based on CIFAR-100 dataset (Krizhevsky and Hinton 2009).
The CIFAR-100 dataset consists of 60,000 32 × 32 color
images in 100 classes. In particular, we consider the clean
CIFAR-100 as source domain and the corrupted CIFAR-100
by adding Gaussian noise with five different severity levels
ranging from 1 to 5 (std = {0.04, 0.08, 0.12, 0.15, 0.18} by
normalizing the clean images in the range of [0, 1]) as target
domain. Such setting is one of recent benchmarks to evalu-
ate the robustness of deep neural networks (Hendrycks and
Dietterich 2019). We show several examples of clean and
corrupted image from CIFAR-100 dataset in Fig. 6. We also
utilize wider ResNet (Zagoruyko and Komodakis 2016) with
depth as 40 and widen factor as 2 as the encoder. We adopt
the algorithms including ADDA and MCD, where the fully
connected layer is adopted as classifier and the remaining
as feature extractor, as baselines for comparison. For the dis-
criminator ofADDA,weuse a similar architecture as adopted
in Tzeng et al. (2017). Regarding the architecture, parameter
setting and prior generation, we follow the same setting for
SVHN/MNIST task except that we set the probability pk of
Categorical distribution as 1

100 with the number of category as
100 and adoptwiderResNet as encoderwith the dimension of
output as 100. For other methods, we report their best results
on the test data by varying their parameters in a wide range.
The results are shown in Table 8. As we can see, even adding
subtle Gaussian noise on target domain can lead to huge per-
formance drop (the recognition drops from 0.765 to 0.423
when setting the standard value of Gaussian noise to 0.04).
Nevertheless, our proposed method can also handle the diffi-
cult domain adaptation task with large number of categories.
We also observe that our proposed method can achieve bet-
ter performance compared with ADDA and MCD, which is
reasonable as we include prior regularization as well as pixel

Table 8 Unsupervised domain adaptation performance based on
CIFAR-100 and corrupted CIFAR-100

Target severity 1 2 3 4 5 Clean

Source only 0.423 0.255 0.155 0.121 0.104 0.765

ADDA 0.431 0.283 0.191 0.145 0.129 –

MCD 0.429 0.260 0.173 0.132 0.107 –

Ours 0.469 0.328 0.233 0.174 0.151 –

Bold values indicate the best performance
We conduct the experiments for ten times and report the average per-
formance

Fig. 7 Examples of GTA5 (first row), SYNTHIA (second row) and
CityScape datasets (third row)

adaptation in our proposed method. Compared with ADDA,
MCD achieves slightly worse performance. We conjecture
the reasons that directly conducting domain alignment based
on category level may not be suitable to handle the scenario
where there are large number of categories involves. This
observation further justifies our motivation to conduct fea-
ture disentangling. Noted that we did not compare with other
autoencoder based methods, as it is not clear how to build a
suitable encoding and decoding architecture based on wider
ResNet while we can directly adopting wider ResNet as the
encoder.

5.3 Cross-Domain Semantic Segmentation

In this section, we evaluate our proposed method on cross-
domain semantic image segmentation task between the syn-
thetic dataset GTA5 (Richter et al. 2016), SYNTHIARAND-
CITYSCAPES (SYNTHIA) (Ros et al. 2016) and real-world
dataset CITYSCAPES (Cordts et al. 2016), where one of the
synthetic dataset is used as source domain andCITYSCAPES
for target domain.We showseveral examples from these three
datasets in Fig. 7.
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The GTA5 dataset consists of 24,966 images with the
resolution of 1914 × 1052 by extracting frames from the
computer game Grand Theft Auto. The SYNTHIA dataset
contains 9400 synthesized images taken from a virtual array
of cameras. The CITYSCAPES dataset contains real urban
street images with 5000 images which as splitted into three
subsets, 2975 images in train set, 500 images in the val set
and 1595 images in the test set. We follow our baseline
methods by considering the val set in CITYSCAPES as our
target domain. We use 19 common classes between GTA5
and CITYSCAPES, and 16 common classes between SYN-
THIA and CITYSCAPES as our label. We report the final
performance based onmean intersection-over-union (mIoU).
We compare with the recent unsupervised domain adapta-
tion methods, including FCN in the wild (Hoffman et al.
2016), MCD (Saito et al. 2018), AdaptSeg (Tsai et al. 2018),
CYCADA (Hoffman et al. 2018) and the recent proposed
AdvEnt (Vu et al. 2019).

Implementation In all our experiments, the images are
resized to 1024 × 512. For efficiency, we use the one-hot
resized groundtruth annotation yS ∈ YS of the input image
from source domain as the categorical prior. We experimen-
tally set λ0 = 1, λ1 = λ2 = 0.001 and λ3 = λ4 = 1e−5. In
order to fairly compare with other baseline algorithms, we
only consider FCN8s (Long et al. 2015) as the encoder with
batch size as 1. The FCN8s is initialized with the weights of
the VGG16 (Simonyan and Zisserman 2014) model trained
on Imagenet (Deng et al. 2009). For the local code, we gener-
ate random Gaussian distribution N ∼ (0, 1) with the same
size of the encoder output. Regarding the generator, we fol-
low the architecture in Zhu et al. (2017) with 6 residue blocks
(the number of feature map is set to 2×#Cat for input and 6
for output), where #Cat is the number of category. Regarding
the discriminator, we impose five convolutional layers with
kernel size 4× 4 with stride of 2. The number of channels in
each convolutional layer are set as 64, 128, 256, 512, 1. Sim-
ilar toHoffman et al. (2016),we consider the output of the last
layer before pixel prediction for semantic feature adaptation.
For evaluation, we first obtain the predictions on the resized
image and then upsample the prediction to get 2048 × 1024
to get the final label map.

We first summarize the results in Table 9 by considering
GTA5 as source domain. We observe that domain adaptation
benefits cross-domain semantic segmentation task. FCN in
the wild and MCD achieve relatively poorer performance as
they only consider either semantic level adaptation or classi-
fier level adaptation, respectively. CYCADA achieves better
performance as it take pixel and semantic information into
consideration. Similar to CYCADA,we also conduct domain
adaptation in multiple levels. However, as we also consider
Categorical priormatching based on the output of the encoder
from the target domain, which can be treated as category
regularization, it is reasonable that our method outperforms

CYCADA. Although our method only achieves slightly bet-
ter performance compared with the AdvEnt, our method is
more general as AdvEnt is purely designed for segmentation
task.

Noted that the segmentation performance for some cate-
gories (e.g. bicycle) are not desired.We conjecture the reason
that it can be related the imbalance segmentation labelling
which our prior relies on. As the instance segmentation can
associate to the proportion of each instance as well as its
layout. Thus, the pixels are likely to be categorized to the
instances which appear more frequently than others.

We then analyze the performance in Table 10 by con-
sidering SYNTHIARAND-CITYSCAPE as source domain.
Generally, the cross-domain performance is worse com-
pared with the results by using GTA5 as source domain. We
conjecture the reason that scene images inSYNTHIARAND-
CITYSCAPE contains more diverse viewpoints than the
ones in GTA5. Nevertheless, we can still achieve better
performance compared with other baselines. Noted that in
AdaptSeg (Tsai et al. 2018), only 13 classes are adopted
for evaluation. We can still outperform AdaptSeg as we can
achieve 39.3% mIoU while AdaptSeg achieved 37.6%.

Finally, we show some visualization results in Fig. 8 by
considering GTA5 as source domain. We observe that, com-
pared with the results without adaptation, we can largely
improve the segmentation results. However, we observe that
our results are to some extent over-smoothed, which may
due to the reason that we resize the input image from
2048 × 1024 to 1024 × 512 and upsample again, which
make the final segmentation map over-smooth. Such phe-
nomenon has also been observed in traditional segmentation
task (e.g. RefineNet Lin et al. 2017) based on intra-domain
setting. To deal with this problem, onemay further consider a
Condition-Random-Field process to conduct post-processing
of the output to obtain better performance.

Similar to digit recognition task, we also consider to con-
duct ablation study by analyzing the impact of different
components for cross-domain segmentation task. In partic-
ular, we consider GTA5 as source domain and Cityscape
as target domain. The results are shown in Table 11. As
we can see, compared with semantic feature adaptation,
the prior regularization, pixel adaptation and reconstruction
regularization play a more important role for cross-domain
segmentation task. Such results are also consistent with the
finding in Hoffman et al. (2016, 2018). Nevertheless, we
find adopting semantic feature adaptation can lead to slightly
better performance.We conjecture the reason that amore reli-
able latent code from target domain can be obtained, which
can further benefit prior alignment in the second stage. On
the other hand, we also find introducing prior adaptation can
lead to significant improvement of final performance, which
is reasonable as it can benefit feature disentangling of the
target domain.
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Fig. 8 Example results of our proposed method from GTA5 to CITYSCAPES

5.4 Discussion of Categorical Prior

We observe that the Categorical prior plays an important role
in both recognition task and segmentation task. The idea of
categorical prior bygenerating one-hot vectorwas introduced
in Makhzani et al. (2015), which is for digit generation and
semi-supervised learning task. We adopt such idea and fur-
ther introduce a threshold for our digit recognition domain
adaptation task. We have tried to consider the category prob-
ability for each digit of source domain to construct the prior,
and find there is almost no difference compared with the
prior by generating using the equally distributed Categorical
distribution.

We also used the randomly generated one-hot vector for
each resized pixel for cross-domain segmentation task as
well. However, compared with digit recognition task, seg-
mentation task is more difficult due to its imbalance category
as well as the category layout. We also consider to adopt
the category probability from source domain to construct the
prior by assuming that the category proportions are consistent
between source and target domain, but find the performance
is not desired. We conjecture that the layout is also important
to construct the prior for segmentation task. As both category
proportion and layout can be important, we directly impose
the groundtruth label from source domain, which can also be
treated as Catagorical distributed, as the prior. How to pro-
pose a reasonable prior for cross-domain segmentation task
will be investigated in our future work.

Table 11 Impact of different components on performance

GTA5 to CityScape

No prior 24.4

No pixel 32.5

No recon 33.2

No feat 36.1

Ours 36.3

Bold value indicates the best performance

6 Conclusion

In this paper, we present a deep learning framework based
on implicit autoencoders for unsupervised domain adaptation
task in the wild. The main idea of our proposed framework
is to conduct disentanglement based on latent feature repre-
sentation. We show that, the global code which captures the
categorical information canbe learnedwith the regularization
of prior distributionmatchingwhile the style information can
be captured by implicit conditional likelihood distribution,
which make our proposed unsupervised domain adaptation
framework effective. We conduct experiments based on digit
recognition, object recognition and semantic segmentation.
The experimental results indicate that our proposed frame-
work is effective to handle unsupervised domain adaptation
task in the wild.
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