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Abstract
The advancement of visual tracking has continuously been brought by deep learning models. Typically, supervised learning is
employed to train these models with expensive labeled data. In order to reduce the workload of manual annotation and learn to
track arbitrary objects, we propose an unsupervised learning method for visual tracking. The motivation of our unsupervised
learning is that a robust tracker should be effective in bidirectional tracking. Specifically, the tracker is able to forward localize
a target object in successive frames and backtrace to its initial position in the first frame. Based on such a motivation, in the
training process, we measure the consistency between forward and backward trajectories to learn a robust tracker from scratch
merely using unlabeled videos. We build our framework on a Siamese correlation filter network, and propose a multi-frame
validation scheme and a cost-sensitive loss to facilitate unsupervised learning. Without bells and whistles, the proposed
unsupervised tracker achieves the baseline accuracy of classic fully supervised trackers while achieving a real-time speed.
Furthermore, our unsupervised framework exhibits a potential in leveraging more unlabeled or weakly labeled data to further
improve the tracking accuracy.
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1 Introduction

Visual object tracking is a fundamental task in computer
vision with numerous applications including video surveil-
lance, autonomous driving, augmented reality, and human-
computer interactions. It aims to localize a moving object
annotated at the initial frame with a bounding box. Recently,
deep models have improved the tracking accuracies by
strengthening the feature representations (Ma et al. 2015;
Danelljan et al. 2016, 2017) or optimizing networks end-to-
end (Bertinetto et al. 2016; Li et al. 2018;Nam andHan 2016;
Valmadre et al. 2017). These models are offline pretrained
with full supervision, which requires a large number of
annotated ground-truth labels during the training stage.Man-
ual annotations are always expensive and time-consuming,
whereas a huge number of unlabeled videos are readily avail-
able on the Internet. On the other hand, visual tracking differs
from other recognition tasks (e.g., object detection, image
classification) in the sense that object labels vary according
to target initializations on the first frame. The extensive and
uncertain labeling process for supervised learning raises our
interest to develop an alternative learning scheme by using
unlabeled video sequences in the wild.
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Fig. 1 Visual tracking via supervised and unsupervised learnings.
Supervised learning requires ground-truth labels for individual frames
in the training videos, while our proposed unsupervised learning is free
of any labels by measuring trajectory consistency in forward and back-
ward trackings

In this paper, we propose an unsupervised learning
approach for visual tracking. Instead of using off-the-shelf
deep models, we train the visual tracking network from
scratch. The intuition of unsupervised learning resides on the
bidirectional motion analysis in video sequences. Tracking
an object can be executed in both the forward and backward
ways. Initially, given the bounding box annotation of a tar-
get object in the first frame, we can track the target object
forward in the subsequent frames. When tracking backward,
we use the predicted location in the last frame as the ini-
tial target bounding box, and track it backward towards the
first frame. Ideally, the estimated bounding box location in
the first frame is identical with the given one in the forward
pass. In this work, we measure the difference between the
forward and backward target trajectories and formulate it as
a loss function. We use the computed loss to train our net-
work in a self-supervised manner,1 as shown in Fig. 1. By
repeatedly tracking forward and backward, our model learns
to locate target objects in consecutive frames without labeled
supervision.

The proposed unsupervised training aims to learn a
generic feature representation instead of strictly focusing on
tracking a complete object. In the first frame, we initialize a
bounding box that covers the informative local region with
high image entropy. The bounding boxmay contain arbitrary
image content and may not cover an entire object. Then, our
tracking network learns to track the bounding box region in
the training video sequences. Our unsupervised annotation
shares similarity with the part-based (Liu et al. 2016) and
edge-based (Li et al. 2017) tracking methods that track the
subregions of a target object. We expect our tracker not only
to concentrate on the shape of a complete object, but also to
track any part of it. The bounding box initialization by image

1 In this paper, we do not distinguish between the terms unsupervised
and self-supervised, as both refer to learningwithout ground-truth anno-
tations.

entropy gets rid of the manual annotation on the first frame
and thus ensures the whole learning process unsupervised.

We employ unsupervised learning under the Siamese
correlation filter framework. The training steps consist of for-
ward tracking and backward verification. A limitation of the
forward and backward consistency measurement is that the
target trajectory in the forward pass may coincide with that
in the backward pass although the tracker loses the target.
The consistency loss function fails to penalize this situa-
tion because the predicted target region can still backtrace
to the initial position on the first frame regardless of losing
the target. In addition, challenges such as heavy occlusion or
out-of-view in training videos will degrade the CNN feature
representation capability. To tackle these issues, we intro-
duce a multi-frame validation scheme and a cost-sensitive
loss to facilitate unsupervised training. If the tracker loses
the target, the trajectories predicted from the forward and
backward directions are unlikely to be consistent when more
frames are used in the training stage. Besides, we propose a
new cost-sensitive loss to alleviate the impact of the noisy
samples during unsupervised learning. The training samples
containing background texture will be excluded by image
entropy measurement. Based on the multi-frame validation
and sample selection strategies discussed above, our network
training is stabilized.

We evaluate our method on the challenging benchmark
datasets including OTB-2013 Wu et al. (2013), OTB-2015
Wuet al. (2015), Temple-Color Liang et al. (2015),VOT2016
Kristan et al. (2016), VOT2017/2018 Kristan et al. (2018),
LaSOT Fan et al. (2019), and TrackingNet Müller et al.
(2018). Extensive experimental results indicate that with-
out bells and whistles, the proposed unsupervised tracker
is even comparable with the baseline configuration of fully
supervised trackers (Bertinetto et al. 2016; Valmadre et al.
2017; Wang et al. 2017). When integrated with an adaptive
online model update (Danelljan et al. 2016, 2017), the pro-
posed tracker shows state-of-the-art performance. It is worth
mentioning that our tracker trained via unsupervised learning
achieves comparable performance with that via supervised
learning when only limited or noisy labels are available. In
addition, we demonstrate the potential of our tracker to fur-
ther boost the accuracy by using more unlabeled data. A
complete analysis of various training configurations is given
in Sect. 4.2.

In summary, the contributions of this work are three-fold:

– We propose an unsupervised learning method on the
Siamese correlation filter network. The unsupervised
learning consists of forward and backward trackings to
measure the trajectory consistency for network training.

– We propose a multi-frame validation scheme to enlarge
the trajectory inconsistency when the tracker loses the
target. In addition, we propose a cost-sensitive loss and
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an entropy selection metric to reduce the contributions
from easy samples in the training process.

– The extensive experiments carried out on seven standard
benchmarks show the favorable performance of the pro-
posed tracker. We provide an in-depth analysis of our
unsupervised representation and reveal the potential of
unsupervised learning in visual tracking.

In the remainder of this paper,wedescribe the relatedwork
in Sect. 2, the proposed method in Sect. 3, and the experi-
ments in Sect 4. Finally, we conclude the paper in Sect 5.

2 RelatedWork

In this section, we perform a literature review on deep
tracking methods, forward–backward motion analysis, and
unsupervised representation learning.

2.1 DeepVisual Tracking

Deep models have influenced visual tracking mainly from
two perspectives. The first one is to provide a discriminative
CNN feature representation by using off-the-shelf backbones
(e.g., VGG Simonyan and Zisserman 2014; Chatfield et al.
2014), while the second one is to formulate a complete track-
ing network for end-to-end training and predictions. The
discriminative correlation filters (DCFs) (Bolme et al. 2010;
Henriques et al. 2015; Danelljan et al. 2014; Huang et al.
2017; Ma et al. 2018; Sui et al. 2019; LukeźIăź et al. 2018)
handle the visual tracking task by solving a ridge regression
using densely sampled candidates. While being integrated
with discriminative CNN features, the remaining operations
(e.g., regression solver, online update) are kept still in the
DCF trackers (Danelljan et al. 2016; Li et al. 2018; Wang
et al. 2018; Danelljan et al. 2017). On the other hand, the end-
to-end learning network can be categorized as classification
and regression based networks. The classification networks
(Nam andHan 2016; Song et al. 2018; Jung et al. 2018) incre-
mentally train a binary classifier to differentiate the target and
background distractors. The regression networks (Song et al.
2017; Lu et al. 2018) useCNN layers to regress CNN features
of the search region to a response map for accurate localiza-
tion. These end-to-end learning networks need online update
and inevitably increase the computational burden.

Recently, the Siamese network has received huge inves-
tigations because of its efficiency in online prediction.
The SiamFC tracker (Bertinetto et al. 2016) uses a cross-
correlation layer to measure feature similarity between the
template patch and search patches. The fully convolutional
nature of SiamFC efficiently predicts the target response
without redundancy. By incorporating the region proposal
network (RPN) (Ren et al. 2016), the SiamRPN methods (Li

et al. 2018; Zhu et al. 2018) achieve state-of-the-art perfor-
mance while running at 160 FPS. Other improvements based
on Siamese networks include ensemble learning (He et al.
2018), dynamic memory (Yang and Chan 2018), attention
modulation (Wang et al. 2018), capacity increments (Zhipeng
et al. 2019), and reinforcement learning (Huang et al. 2017;
Dong et al. 2018). By integrating the correlation filter, the
Siamese correlation filter network (Valmadre et al. 2017;
Wang et al. 2017) achieves favorable performance even with
an extremely lightweight model. Different from the above
deep trackers that train a CNNmodel in a supervised manner
or directly use off-the-shelf deepmodels, we propose to learn
a tracking network from scratch using unlabeled videos via
unsupervised learning.

2.2 Forward-Backward Analysis

The forward and backward strategy has been investigated
in motion analysis scenarios. Meister et al. (2018) combined
the forward–backward consistency estimation and pixel con-
struction to learn optical flows. Wang et al. (2019) leveraged
the cycle-consistency across multiple steps temporally to
learn feature representations for different tasks. The dif-
ferentiable tracker in Wang et al. (2019) is deliberately
designed to be weak for feature representation learning.
In contrast, aiming at robust visual tracking, we adopt a
strong tracking baseline (Siamese correlation filter network),
which is not fully-differentiable in the trajectory loop due to
the pseudo labeling. However, by repeating forward track-
ing and backward verification, we incrementally promote
the tracking network by pseudo-labeling based self-training.
The forward–backward consistency check is also applied
in image alignment (Zhou et al. 2015, 2016) and depth
estimation (Yin and Shi 2018; Zhou et al. 2017). In the
visual tracking community, the forward–backward consis-
tency is mainly used for the output reliability or uncertainty
measurement. The tracking-learning-detection (TLD) Kalal
et al. (2012) uses the Kanade–Lucas–Tomasi (KLT) tracker
(Tomasi and Kanade 1991) to perform forward–backward
matching to detect tracking failures. Lee et al. (2015) pro-
posed to select the reliable base tracker by comparing the
geometric similarity, cyclic weight, and appearance con-
sistency between a pair of forward–backward trajectories.
However, these methods rely on empirical metrics to iden-
tify the target trajectories. In addition, repeatedly performing
forward and backward trackings brings in a heavy com-
putational cost for online tracking and largely hurts the
real-time performance. Differently, in TrackingNet Müller
et al. (2018), forward–backward analysis is used for evalu-
ating the tracking performance and annotating the sparsely
labeled dataset such as Youtube-BoundingBox Real et al.
(2017) to obtain the per-frame object bounding box labels. In
this work, we target at visual tracking but revisit the forward–
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(b) Unsupervised Learning Pipeline using a Siamese Network
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Fig. 2 Anoverviewof unsupervised learning in deep tracking.We show
our motivation in a that we track forward and backward to compute the
consistency loss for network training. The detailed training procedure

is shown in b, where unsupervised learning is integrated into a Siamese
correlation filter network. In the testing stage, we only track forward to
predict the target location

backward scheme from a different view, i.e., train a deep
visual tracker in an unsupervised manner.

2.3 Unsupervised Representation Learning

Our tracking framework relates to unsupervised represen-
tation learning. Learning feature representations from raw
videos in an unsupervised manner has gained increasing
attention in recent years. These approaches typically design
ingenious techniques to explore and utilize the free super-
vision in images or videos. In Lee et al. (2017), the feature
representation is learned by shuffling the video frames and
then sorting them again to achieve self-supervised training.
The multi-layer autoencoder on large-scale unlabeled data
has been explored in Le et al. (2011). Vondrick et al. (2016)
proposed to anticipate the visual representation of frames in
the future. In Vondrick et al. (2018), colorized gray-scale
videos by copying colors from a reference frame to learn a
CNN model. Wang and Gupta (2015) used the KCF tracker
(Henriques et al. 2015) to pre-process the raw videos, and
then selected a pair of tracked images together with another
random patch for learning CNNs using a ranking loss. Our
method differs fromWang and Gupta (2015) significantly in
two aspects. First, we integrate the tracking algorithm into
unsupervised training instead of merely utilizing an off-the-
shelf tracker as the data pre-processing tool. Second, our
unsupervised framework is coupled with a tracking objective
function, thus the learned feature representation is effective
in presenting the generic target objects.

In the visual tracking community, unsupervised learn-
ing has rarely been touched. To our knowledge, the only

related but different approach is the auto-encoder based
method (Wang and Yeung 2013). However, the encoder-
decoder is a general unsupervised framework (Olshausen
and Field 1997), whereas our unsupervised method is spe-
cially designed for the tracking task. Since the visual objects
or scenes in videos typically change smoothly, the motion
information of the objects in a forward–backward trajectory
loop provides free yet informative self-supervision signals
for unsupervised learning, which is naturally suitable for the
motion-related visual tracking task.

3 ProposedMethod

The motivation of our unsupervised learning is shown in
Fig. 2a. We first select a content-rich local region as the tar-
get object. Given this initialized bounding box label, we track
forward to predict its location in the subsequent frame. Then,
we reverse the sequence and take the predicted bounding box
in the last frame as the pseudo label for backward verification.
The predicted bounding box in the first frame via backward
tracking is ideally identical to the original bounding box. We
measure the difference between the forward and backward
trajectories using the consistency loss to train the network.
Figure 2b shows an overview of our unsupervised Siamese
correlation filter network.

In the following, we first revisit the correlation filter as
well as the Siamese network. In Sect. 3.2, we present our
unsupervised learning prototype for an intuitive understand-
ing. In Sect. 3.3, we improve our prototype to facilitate
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unsupervised training. Finally, training details and online
tracking are elaborated in Sects. 3.4 and 3.5, respectively.

3.1 Revisiting Correlation Tracking

The Discriminative Correlation Filters (DCFs) Bolme et al.
(2010), Henriques et al. (2015) regress the circularly shifted
versions of the input features of a search patch to a soft
target response map for target localization. When training
a DCF, we select a template patch X with the correspond-
ing ground-truth label Y, which is Gaussian-shaped with the
peak localized at the target position. The size of the template
patch is usually larger than that of the target. Figure 2 shows
an example of the template patch, where there are both tar-
get and background contents. The filterW can be learned by
solving the following ridge regression problem:

min
W

‖W ∗ X − Y‖22 + λ‖W‖22, (1)

where λ is a regularization parameter and ∗ denotes the cir-
cular convolution. Equation 1 can be efficiently calculated in
the Fourier domain (Bolme et al. 2010; Danelljan et al. 2014;
Henriques et al. 2015) and the DCF can be computed by

W = F−1
(

F (X) � F �(Y )

F �(X) � F (X) + λ

)
, (2)

where � is the element-wise product, F (·) is the Discrete
Fourier Transform (DFT),F−1(·) is the inverse DFT, and �

denotes the complex-conjugate operation. In each subsequent
frame, given a search patch Z, its corresponding response
map R can be computed in the Fourier domain:

R = W ∗ Z = F−1 (
F �(W) � F (Z)

)
. (3)

The above DCF framework starts from learning the tar-
get template’s correlation filter (i.e., W) using the template
patch and then convolves it with a search patch Z to generate
the response. Recently, the Siamese correlation filter net-
work (Valmadre et al. 2017; Wang et al. 2017) embeds the
DCF in the Siamese framework and constructs two shared-
weight branches to extract feature representations, as shown
in Fig. 2b. The first one is the template branch which takes a
template patch X as input and extracts its features to further
generate a target template filter via DCF. The second one is
the search branch which takes a search patch Z as input for
feature extraction. The template filter is then convolved with
the CNN features of the search patch to generate the response
map. The advantage of Siamese DCF network is that both the
feature extraction CNN and correlation filter are formulated
into an end-to-end framework, so the learned features are
more related to the visual tracking scenarios.

3.2 Unsupervised Learning Prototype

Given two consecutive frames P1 and P2, we crop the
template and search patches from them, respectively. By
conducting forward tracking and backward verification, the
proposed framework does not require additional supervision.
The location difference between the initial bounding box and
the predicted bounding box in P1 will formulate a consis-
tency loss. We utilize this loss to train the network without
ground-truth annotations.

3.2.1 Forward Tracking

Following the previous approaches (Valmadre et al. 2017;
Wang et al. 2017), we build a Siamese correlation filter net-
work to track the initialized bounding box region in frame P1.
After generating the template patchT from the first frame P1,
we compute the corresponding template filterWT as follows:

WT = F−1
(

F (ϕθ (T)) � F �(YT)

F �(ϕθ (T)) � F (ϕθ (T)) + λ

)
, (4)

where ϕθ (·) denotes the CNN feature extraction operation
with trainable networkparameters θ , andYT is the label of the
template patch T. This label is a Gaussian response centered
at the initialized bounding box center. Once we obtain the
learned template filter WT, the response map of a search
patch S from frame P2 can be computed by

RS = F−1(F �(WT) � F (ϕθ (S))). (5)

If the ground-truth Gaussian label of patch S is available,
the network ϕθ (·) can be trained by computing the L2 dis-
tance between RS and the ground-truth label. Different from
the supervised framework, in the following, we present how
to train the network without requiring labels by exploiting
backward trajectory verification.

3.2.2 Backward Tracking

After generating the response map RS for frame P2, we cre-
ate a pseudo Gaussian label centered at its maximum value,
which is denoted by YS. In backward tracking, we switch
the role between the search patch and the template patch. By
treating S as the template patch, we generate a template filter
WS using the pseudo label YS. The template filter WS can
be learned using Eq. 4 by replacing T with S and replacing
YT with YS, as follows:

WS = F−1
(

F (ϕθ (S)) � F �(YS)

F �(ϕθ (S)) � F (ϕθ (S)) + λ

)
. (6)

Then, we generate the responsemapRT of the template patch
through Eq. 5 by replacingWT withWS and replacing Swith
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Fig. 3 The intuition of pseudo-labeling based self-training. We use
the same network for both forward and backward predictions. The
forward stage generates a pseudo label for the search patch. The back-
ward stage updates the tracking network using training pairs via loss
back-propagation. During training iterations, the response map of the
template gradually approaches the initial label via self supervision

T, as shown in Eq. 7.

RT = F−1(F �(WS) � F (ϕθ (T))). (7)

Note that we only use one Siamese correlation filter network
for executing forward and backward trackings. The network
parameters θ are fixed during the tracking steps.

3.2.3 Consistency Loss Computation

After forward and backward tracking, we obtain the response
map RT. Ideally, RT should be a Gaussian label with the
peak located at the initialized target position. In other words,
RT should be as similar as the originally given label YT.
Therefore, the representation network ϕθ (·) can be trained in
an unsupervised manner by minimizing the reconstruction
error as follows:

Lun = ‖RT − YT‖22. (8)

Our unsupervised learning can be viewed as an incremen-
tal self-training process that iteratively predicts labels and
updates themodel to steadily improve the tracking capability.
Figure 3 shows the intuition, where we use the same network
for both forward and backward predictions. In the forward
tracking, we generate a pseudo label YS for the search patch
S. Then we treat generated YS as the label of S and create
a corresponding sample. Using these labeled training pairs
(i.e., with initial or pseudo labels), we can update the Siamese
correlation filter network in a similarway to supervised learn-
ing. During loss back-propagation, we follow the Siamese
correlation filter methods (Wang et al. 2017; Zhang et al.
2018) to update the network:

∂Lun

∂ϕθ (T)
= F−1

(
∂Lun

∂ (F (ϕθ (T)))�
+

(
∂Lun

∂ (F (ϕθ (T)))

)�)
,

∂Lun

∂ϕθ (S)
= F−1

(
∂Lun

∂ (F (ϕθ (S)))�

)
. (9)

The above unsupervised training process is based on the
forward–backward consistency between two frames, which
is summarized byAlgorithm 1. In the next section, we extend
this prototype framework to considermultiple frames for bet-
ter network training.

3.3 Enhancement for Unsupervised Learning

The proposed unsupervised learning method constructs the
objective function based on the consistency between RT and
YT. In practice, the tracker may deviate from the target in
the forward tracking but still return to the original position
during the backward process. However, the proposed loss
function does not penalize this deviation because of the con-
sistent trajectories. Meanwhile, the raw videos may contain
textureless or occluded training samples that deteriorate the
unsupervised learning process. In this section, we propose
a multi-frame validation scheme and a cost-sensitive loss to
tackle these two limitations.

3.3.1 Multi-frame Validation

We propose a multi-frame validation approach to enlarge the
trajectory inconsistency when the tracker loses the target.
Our intuition is to incorporate more frames during training
to reduce the limitation that the erroneous localization in
the subsequent frame successfully backtraces to the initial
position in the first frame. In thisway, the reconstruction error
in Eq. 8 will effectively capture the inconsistent trajectory.
As shown in Fig. 3, adding more frames in the forward stage
further challenges the model tracking capability.

Our unsupervised learningprototype canbe easily extended
to multiple frames. To build a trajectory cycle using three
frames, we can involve another frame P3 which is the sub-
sequent frame after P2. We crop a search patch S1 from
P2 and another search patch S2 from P3. If the generated
responsemapRS1 is different from its corresponding ground-
truth response, the difference tends to become larger in the
next frame P3. As a result, the inconsistency is more likely
to appear in backward tracking, and the generated response
map RT is more likely to differ from YT, as shown in Fig. 4.
By involving more search patches during forward and back-
ward trackings, the proposed consistency loss will be more
effective to penalize the inaccurate localizations.

We can further extend the number of frames utilized for
multi-frame validation. The length of trajectory will increase
as shown in Fig. 5. The limitation of consistent trajectory
when losing the target is more unlikely to affect the training
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Algorithm 1: Unsupervised training prototype
Input: Unlabeled videos.
Output: Pretrained tracking network ϕθ (·).

1 Crop the patches (i.e., T and S) from the raw videos;
2 Initialize the CNN model ϕθ (·) with random weights θ ;
3 for each training epoch do
4 for each training pair do
5 Obtain ϕθ (T) and ϕθ (S);
6 // Forward Trajectory
7 Construct WT using ϕθ (T) and YT (Eq. 4);
8 Compute RS using WT (Eq. 5) and obtain the pseudo

label of S;
9 // Backward Trajectory

10 Construct WS using ϕθ (S) and YS (Eq. 6);
11 Compute the response map RT of T (Eq. 7);
12 // Calculate Consistency Loss
13 Compute the consistency loss of YT and RT (Eq. 8);
14 end
15 Update network ϕθ (·) using the computed loss;
16 end

#1 #2

Search PatchTemplate Patch  Search
Patch #1

#1

#2

#3

 Search
Patch #2

Template Patch 

Coincidental Success Error Accumula�on

Fig. 4 Single frame validation and multi-frame validation. The inac-
curate localization in single frame validation may not be captured as
shown on the left. By involving more frames as shown on the right, we
accumulate the localization errors to break the prediction consistency
during forward and backward trackings

T S

1ST 2S

T 1S 2S 3S

(a)

(b)

(c)

Fig. 5 An overview of multi-frame trajectory consistency. We denote
T as a template and S as a search patch, respectively. Our unsupervised
training prototype is shown in a, where only two frames are involved.
Using more frames as shown in b and c, we can gradually improve the
training performance to overcome consistent trajectories when losing
the target

process. Let R(Sk→T) denote the response map of the tem-
plate T, which is generated (or tracked) by the DCF trained
using the kth search patch Sk . The corresponding consistency
loss function can be computed as follows:

Fig. 6 Examples of the cropped image patches from ILSVRC 2015
Russakovsky et al. (2015). Most of these samples contain meaningful
objects, while some samples are less meaningful (e.g., last row)

Lk = ∥∥R(Sk→T) − YT
∥∥2
2 . (10)

Considering different trajectory cycles, the multi-frame con-
sistency loss can be computed by

Lun =
M∑
k=1

Lk, (11)

where k is the index of the search parch. Taking Fig. 5c as an
example, the final consistency objective contains three losses
(i.e., M = 3 in Eq. 11), which are denoted by the blue, green,
and red cycles in Fig. 5c, respectively.

3.3.2 Cost-sensitive Loss

We initialize a bounding box region as a training sample
in the first frame during unsupervised training. The image
content within this bounding box region may contain arbi-
trary or partial objects. Figure 6 shows an overview of these
regions. To alleviate the background interference,wepropose
a cost-sensitive loss to effectively exclude noisy samples for
network training. For simplicity, we use three consecutive
frames as an example to illustrate sample selection, which
can be naturally extended to more frames. The pipeline of
using three frames is shown in Fig. 5b.

During unsupervised learning, we construct multiple
training triples from video sequences. For a trajectory con-
taining three frames, each training triple consists of one
initialized template patch T in frame P1 and two search
patchesS1 andS2 in the subsequent frames P2 and P3, respec-
tively. We use several triples to form a training batch for
Siamese network learning. In practice, we find that some
training triples with extremely high losses prevent network
training from convergence. To reduce these outlier effects in
pseudo-labeling based self-training, we exclude 10% of the
whole training triples which contain the highest loss values.
Their losses can be computed using Eq. 10. To this end, we
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assign a binary weightAi
drop to each training triple. All these

weights constitute a vector Adrop, where 10% of its elements
are 0 and the others are 1.

In addition to the outlier training pairs, the raw videos
include meaningless image patches, where there are texture-
less backgrounds or still objects. In these patches, the objects
(e.g., sky, grass, or tree) do not contain big movements. We
assign a motion weight vectorAmotion to all the training pairs
to increase the largemotion effect for network learning. Each
element Ai

motion within this vector can be computed by

Ai
motion =

∥∥∥Ri
S1 − Yi

T

∥∥∥2
2
+

∥∥∥Ri
S2 − Yi

S1

∥∥∥2
2
, (12)

where Ri
S1

and Ri
S2

are the response maps in the i-th train-

ing pair, and Yi
T and Yi

S1
are the corresponding initial (or

pseudo) labels. Equation 12 calculates the target motion dif-
ference from frame P1 to P2 and P2 to P3. When the value
of Ai

motion is large, the target object undergoes fast motion in
this trajectory. On the other hand, the large value of Ai

motion
represents the hard training pair which the network should
pay more attention to. We normalize the motion weight and
the binary weight as follows:

Ai
norm = Ai

drop · Ai
motion∑N

i=1 A
i
drop · Ai

motion

, (13)

where N is number of the training pairs in a mini-batch. The
sample weight Ai

norm serves as a scalar that reweighs the
training data without gradient back-propagation.

The final unsupervised loss for the case of Fig. 5b in a
mini-batch is computed as:

L3-frame = 1

N

N∑
i=1

Ai
norm ·

∥∥∥Ri
(S2→T) − Yi

T

∥∥∥2
2
. (14)

We can naturally extend Eq. 14 to the following by using
more frames to construct trajectories of different lengths,
as illustrated by the toy example of Fig. 5c. Combining with
Eq. 11,we compute the final unsupervised loss function using
M subsequent frames as:

Lfinal = 1

N

M∑
k=1

N∑
i=1

Ai
norm · Li

k, (15)

where Li
k =

∥∥∥Ri
(Sk→T) − Yi

T

∥∥∥2
2
is similar to that in Eq. 10

but with the index i for differentiating different samples in a
mini-batch.

Entropy: 7.26 Entropy: 7.43 Entropy: 7.42

Entropy: 6.91 Entropy: 6.54 Entropy: 6.74

...
...

...

Fig. 7 The illustration of training samples generation. The proposed
method crops 5 × 5 patch candidates in the center region of the initial
frame. Then we select the image patch with the highest image entropy.
As shown in the right figure, the background patches (e.g., labeled by
green and red boxes) have a small image entropy

3.4 Unsupervised Training Details

Network Structure. We follow the DCFNet Wang et al.
(2017) to use a shallow Siamese network consisting of two
convolutional layers for tracking. This shallow structure is
demonstrated effective in CFNet Valmadre et al. (2017) to
integrate DCF formulation. The filter sizes of these convo-
lutional layers are 3 × 3 × 3 × 32 and 3 × 3 × 32 × 32,
respectively. Besides, a local response normalization (LRN)
layer is employed at the end of convolutional layers follow-
ing Wang et al. (2017). This lightweight structure enables
efficient forward inferences for online tracking.
Training Data. We choose ILSVRC 2015 Russakovsky
et al. (2015) as our training data, which is the same dataset
employed by existing supervised trackers. In the data pre-
processing step, supervised approaches Bertinetto et al.
(2016), Valmadre et al. (2017), Wang et al. (2017) require
per-frame labels. Besides, the frames will be removed, where
the target object is occluded, partially out-of-view, or in an
irregular shape (e.g., snake). The data pre-precessing for the
supervised approaches is time-consuming with human labor.
In contrast, our method does not rely on manually annotated
labels for data pre-processing.

In our approach, for the first frame in a raw video, we crop
overlapped small patches (5×5 in total) by sliding windows
as shown in Fig. 7. Then, we compute the image entropy of
each image patch. Image entropy effectively measures the
content variance of an image patch. When an image patch
only contains the unitary texture (e.g., the sky), the entropy of
this patch approaches 0. When an image patch contains tex-
tured content, the entropy will become higher. We select the
cropped image patch containing the highest image entropy.
This image patch initializes the KCF Henriques et al. (2015)
tracker for localization in the subsequent frames. Then, we
crop a larger image patch with a padding of 2 times of the
target size following DCFNet Wang et al. (2017), which is
further resized to 125 × 125 as the input of our network.
Figure 6 exhibits some examples of the cropped patches.
We randomly choose 4 cropped patches from the continuous
10 frames in a video to form a training trajectory, and one of
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them is defined as the template and the rest as search patches.
This is based on the assumption that the center located tar-
get objects are unlikely to move out of the cropped region
in a short span of time. We track the content in the image
patch regardless of specific object categories. Although this
entropy-based method may not accurately select a target
region and the KCF tracker is not robust enough to track
the cropped region, this method can well alleviate the mean-
ingless background regions.

3.5 Online Object Tracking

After offline unsupervised learning, we perform online track-
ing in the way of forward tracking as illustrated in Sect. 3.2.
We online update the DCF to adapt to the target appearance
changes. The DCF update follows a moving average opera-
tion shown as follows:

Wt = (1 − αt )Wt−1 + αtW, (16)

where αt ∈ [0, 1] is the linear interpolation coefficient. The
target scale is estimated through a patch pyramid with scale
factors {as |a = 1.015, s = {−1, 0, 1}} (Danelljan et al.
2015). We name our Tracker as LUDT (i.e., Learning Unsu-
pervised Deep Tracking). Besides, we update our model
adaptively via αt and follow the superior DCF formulation as
that in ECO Danelljan et al. (2017). We name the improved
tracker as LUDT+.

We keep the notation of our preliminary tracker UDT and
UDT+ Wang et al. (2019) in the following experiment sec-
tion. Our previous UDT uses a 3-frame cycle (Fig. 5b) and
simply crops the center patch in raw videos. LUDT improves
UDT in two aspects: (1) LUDT combines different trajec-
tory cycles as shown in Fig. 5c and (2) LUDT utilizes image
entropy to select the informative image patches instead of
the center crop. The LUDT+ and UDT+ improve LUDT
and UDT by adopting some online tracking techniques (e.g.,
adaptive update) proposed in Danelljan et al. (2017), respec-
tively.

4 Experiments

In this section, we first analyze the effectiveness of our unsu-
pervised training framework and discuss our network poten-
tials. Then, we compare our tracker LUDT against state-
of-the-art trackers on both standard and recently released
large-scale benchmarks including OTB-2013 Wu et al.
(2013), OTB-2015 Wu et al. (2015), Temple-Color Liang
et al. (2015), VOT2016 Kristan et al. (2016), VOT2017/2018
Kristan et al. (2018), LaSOT Fan et al. (2019), and Track-
ingNet Müller et al. (2018).

4.1 Experimental Details

In our experiments, we use the stochastic gradient descent
(SGD) with a momentum of 0.9 and a weight decay of 0.005
to train our model. Our unsupervised network is trained for
50 epoches with a learning rate exponentially decaying from
10−2 to 10−5 and amini-batch size of 32.We set the trajectory
length as 4. All the experiments are executed on a PC with
4.00GHz Intel Core I7-4790K and NVIDIA GTX 1080Ti
GPU.On a singleGPU, our LUDT and LUDT+ exhibit about
70 FPS and 55 FPS, respectively. The source code will be
updated at https://github.com/594422814/UDT.

The proposed method is evaluated on seven benchmarks.
On the OTB-2013/2015, TempleColor, LaSOT, and Track-
ingNet datasets, we use one-pass evaluation (OPE) with
distance and overlap precision metrics. The distance preci-
sion threshold is set as 20 pixels. The overlap success plot
uses thresholds ranging from 0 to 1, and the area-under-curve
(AUC) is computed to evaluate the overall performance. On
the VOT2016 and VOT2017/2018 datasets, we measure the
performance using Expected Average Overlap (EAO).

4.2 Ablation Experiments and Discussions

4.2.1 Improvements upon UDT

Our preliminary tracker UDT Wang et al. (2019) adopts
a three-frame validation (i.e., Fig. 5b) and the center crop
for sample generation. The improvement upon UDT is that
we construct a multi-supervision consistency loss function
using more frames. We denote this strategy as Trajectory
Enlargement (TE) in Table 1. Meanwhile, we select the RoI
(region of interest) from raw videos using image entropy
and KCF tracker, while only the center region is utilized
in UDT. We denote RoI Selection as RS in the table. Note
that the performance of UDT has been close to that of its
supervised configuration and exceeded several supervised
trackers. Moreover, under the same training configuration,
LUDT steadily improves UDT by using TE and RS during
training. LUDTachieves 60.2%and51.5%under theAUCon
the OTB-2015 and Temple-Color benchmarks, respectively.

4.2.2 Baseline Performance

To verify the effectiveness of the proposed unsupervised
framework, we evaluate our tracker using different feature
extractors. As shown in Table 2, without pre-training, the
model still exhibits a weak tracking capability, which can
be attributed to the discriminating power of the correlation
filter. By adopting the empirical HOG representations, the
performance is still significantly lower than ours. Further-
more, we leverage the auto-encoder framework (Wang and
Yeung 2013) to train the backbone network in an unsuper-
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Table 1 Ablation study of Trajectory Enlargement (TE) and RoI Selec-
tion (RS).WedenoteUDTas our preliminary tracker (Wang et al. 2019).
We integrate TE and RS into UDT during training and report the perfor-
mance improvement. The evaluation metrics are DP and AUC scores
on the OTB-2015 and Temple-Color datasets

OTB-2015 Temple-color
DP/AUC (%) DP/AUC (%)

UDT Wang et al. (2019) 76.0/59.4 65.8/50.7

UDT + TE 76.5/59.8 66.7/51.2

UDT + RS 76.5/60.0 66.9/51.3

UDT + TE + RS 76.9/60.2 67.1/51.5

Table 2 Comparison results of the DCFNet tracking framework with
different feature extractors. Random: the randomly initialized feature
extractor without pre-training

Random HOG ED LUDT (Ours)

DP (%) 59.1 69.2 71.6 76.9

AUC (%) 46.9 52.1 54.5 60.2

HOG: adopting HOG Dalal and Triggs (2005) without deep features.
ED: the backbone network trained via encoder-decoder (Wang and
Yeung 2013). The evaluation metrics are DP and AUC scores on OTB-
2015

vised manner using the same training data. From Table 2,
we can observe that our approach is superior to the encoder-
decoder in this tracking scenario sinceour forward–backward
based unsupervised training is tightly related to object track-
ing.

4.2.3 Training Data

We evaluate the tracking performance using different data
pre-processing strategies. The results are shown in Table 3.
Our unsupervised LUDT method uses the last RoI selection
strategy. During the evaluation, we keep the remaining mod-
ules fixed in LUDT.
Comparison with Full Supervision. Using the same videos
(i.e., ILSVRC2015Russakovsky et al. 2015), we conduct the
supervised training of our network. The supervised learning
with ground-truth annotations can be regarded as the upper
bound of our unsupervised learning.We observe that the per-
formance gap is small (i.e., 2.6% AUC) between the trackers
trained using unsupervised learning (60.0% AUC) and fully
supervised learning (62.6% AUC).
ComparisonwithWeak Supervision. In ILSVRC2015, we
add deviations to the ground-truth boxes to crop the training
samples. The deviations range from -20 pixels to 20 pix-
els randomly. The reason for setting sample deviations from
the ground-truth bounding boxes is that we aim to simu-
late the inaccurate object localizations on in-the-wild videos
using existing object detection or optical flow approaches.

We assume that these deviated samples are predicted by
existing methods and then utilized to train our unsupervised
network. In Table 3, we observe that our tracker learned by
these weakly labeled samples is comparable with the super-
vised results (61.4% vs. 62.6% AUC). Note that 20 pixels
deviations can be achieved with many object localization
methods. The comparable performance indicates that our
method can be applied to raw videos with weakly or sparsely
labeled annotations (e.g., the dataset Youtube-BB Real et al.
2017). On the other hand, existing object detectors and mod-
els are mostly trained by supervised learning. To ensure our
method to be fully unsupervised, we use two unsupervised
data pre-processing methods: center cropping and RoI selec-
tion based on entropy.
Center Cropping. In center cropping, we crop the center
region of the video frame. Although we crop a fixed region
of the image, the image content appears randomly in this
region andwe denote this operation as center cropping. There
may be meaningless content (e.g., textureless sky, ocean) in
this region to disturb our unsupervised learning. The tracker
learned by center cropping achieves an AUC score of 59.4%.
RoI Selection. We use the entropy-based image patch selec-
tion as illustrated in Sect. 3.4. Compared to the center
cropping, image-entropy based selection can suppress the
meaningless background samples such as sky and grass, and
the KCF tracker is able to capture the selected informative
region in the subsequent frames. The RoI selection achieves
better performance than center cropping with an AUC score
of 60.0%.

4.2.4 Trajectory Length

As discussed in Sect. 3.3.1, trajectory enlargement helps
measure the consistency loss when the tracker loses RoI. In
Table 4, we show the performance with different trajectory
lengths on the OTB-2015 dataset. We use center cropping
to generate training samples following UDT for comparison.
The prototype of our unsupervised learning is denoted as
2 frames validation. By incorporating the third frame, the
learned tracker achieves improvement (i.e., 2.8% DP and
2.0% AUC). The 4 frames validation proposed in this work
not only extends the trajectory length but also combines mul-
tiple self-supervision constraints, which further improves the
accuracy. However, the 5 frames validation seems to be less
effective. It may be because the validation with 4 frames
already contains adequate self-supervision and effectively
measures the consistency loss.

4.2.5 Cost-sensitive Loss

On the OTB-2015 dataset, without hard sample reweighing
(i.e.,Amotion in Eq. 13), the performance of our LUDT tracker
drops about 1.5%DP and 1%AUC score.We did not conduct
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Table 3 Evaluation results of our network trained using different data pre-processing strategies. Our LUDT tracker uses RoI selection via image
entropy for unsupervised training. The evaluation metrics are DP and AUC scores on the OTB-2015 dataset

Groundtruth label Groundtruth label with deviations Center cropping RoI selection via entropy
Full supervision Weak supervision Unsupervision Unsupervision

DP (%) 80.6 78.9 76.0 76.5

AUC (%) 62.6 61.4 59.4 60.0

Table 4 Evaluation results of our unsupervised model trained using
different trajectory lengths. Note that the 4 and 5 frames validations
conduct multiple self-supervisions as illustrated in Fig. 5. The evalua-

tionmetrics areDP andAUC score on theOTB-2015 dataset. Compared
with 3 frames validation, using more frames further improves the track-
ing accuracy

Frame number 2 frames 3 frames 4 frames 5 frames
Figure 5a Figure 5b Figure 5c akin to Figure 5c

DP (%) 73.2 76.0 76.8 76.8

AUC (%) 57.4 59.4 59.8 59.7

the ablation study of the sample dropout because we observe
that the unsupervised training cannot well converge without
Adrop illustrated in Eq. 14.

4.2.6 Unlabled Data Augmentation

Few-shot Domain Adaptation. To better fit a new domain
such as OTB, we construct a small training set by collecting
thefirst several frames (e.g., 5 frames in our experiment) from
the videos in OTB-2015with only the ground-truth bounding
box in the first frame available. Using these limited samples,
wefine-tune our network by100 iterations using the forward–
backward pipeline, which takes about 6 minutes. As our
learning method is unsupervised, we can utilize the frames
from test sequences to adapt our tracker. Table 5 shows that
performance is further improved by using this strategy. Our
offline unsupervised training learns general feature represen-
tation, which can be transferred to an interested domain (e.g.,
OTBvideos) using few-shot domain adaptation. This domain
adaptation is similar to that in MDNet Nam and Han (2016),
while our network parameters are initially offline learned in
an unsupervised manner.
Additional Internet Videos. We also utilize more unla-
beled videos to train our network. These videos are from the
OxUvA dataset Valmadre et al. (2018), where there are 337
videos in total. The OxUvA dataset is a subset of Youtube-
BB Real et al. (2017) collected on YouTube. By adding these
videos during training, our tracker improves the original one
by 0.7% DP and 1.2% AUC as shown in Table 5. By lever-
aging another large-scale LaSOT dataset Fan et al. (2019)
where there are 1200 videos collected on the Internet, the
tracking performance is further improved. It indicates that
unlabeled data advances the unsupervised training. As our
framework is fully unsupervised, it has the potential to take

advantage of the in-the-wild videos on the Internet to boost
the performance.

4.2.7 Empirical Features Embedding

As shown in Table 6, we train unsupervised LUDT+ using
more unlabeled video sequences (both ILSVRCandLaSOT),
which outperforms ECOhc Danelljan et al. (2017) leverag-
ing hand-crafted features including HOG Dalal and Triggs
(2005) and ColorName Weijer et al. (2009). In addition,
we can combine the learned CNN features and empirical
features to generate a more discriminative representation.
We add the HOG feature to LUDT+ during tracking and
evaluate its performance. Table 6 shows that this combi-
nation achieves a 65.7% AUC on OTB-2015. Moreover,
embedding the HOG feature helps LUDT+ to outperform
most state-of-the-art real-time trackers as shown in Table
7. Besides feature embedding and adaptive model update,
there are still many improvements from Wang et al. (2018),
Galoogahi et al. (2017), Mueller et al. (2017), Lukezic et al.
(2017) available to benefit our tracker. However, addingmore
additional mechanisms is out the scope of this work. Follow-
ing SiamFC and DCFNet, we currently use LUDT/LUDT+
trackers which are only trained on the ILSVRC dataset for
fair comparison in the following evaluations.

4.3 Visualization of Unsupervised Representation

After learning the unsupervised Siamese tracking network,
we visualize the network response to see how it differs from
the same network trained using supervised learning. Figure 8
shows the visualization performance. The first column shows
the input frames. The network responses from unsupervised
learning and supervised learning are shown in the second and
third columns, respectively. The remaining columns show the
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Table 5 Performance study by
adding additional training data.
Adding more unlabeled dataset
steadily improves the tracking
results. The evaluation metrics
are DP and AUC scores on the
OTB-2015 dataset

LUDT Few-shot fine-tune More data More data
OTB-2015 OxUvA LaSOT

DP (%) 76.9 78.1 77.6 78.2

AUC (%) 60.2 61.5 61.4 62.0

Table 6 Performance potential of our unsupervised tracker. When
using more data (LaSOT) for network training, the performance further
improves. By incorporating empirical features (HOG), our unsuper-

vised tracker achieves superior results. The performance is evaluated
on the OTB-2015 dataset using DP and AUC metrics

ECOhc LUDT + only ILSVRC LUDT + more data LUDT + more data + HOG

DP (%) 85.4 84.3 85.5 85.8

AUC (%) 64.1 63.9 64.9 65.7

Speed (FPS) 60 55 55 42

Table 7 Evaluations with fully-supervised baseline (left) and state-of-
the-art trackers (right) on the popular OTB-2015 benchmark Wu et al.
(2015). The evaluation metrics are DP and AUC scores. Our unsu-

pervised LUDT tracker performs favorably against popular baseline
methods (left), while our LUDT+ tracker achieves comparable results
with the recent state-of-the-art supervised trackers (right)

Trackers SiamFC DCFNet CFNet LUDT EAST HP SA-Siam SiamRPN RASNet SACF Siam-tri RT-MDNet MemTrack StructSiam LUDT+

DP (%) 77.1 - 74.8 76.9 - 79.6 86.5 85.1 - 83.9 78.1 88.5 82.0 85.1 84.3

AUC (%) 58.2 58.0 56.8 60.2 62.9 60.1 65.7 63.7 64.2 63.3 59.2 65.0 62.6 62.1 63.9

FPS 86 70 65 70 25 159 69 160 83 23 86 50 50 45 55
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From le� to right: Conv1 to Conv5 of VGG-19Input

Fig. 8 Visualization of feature representations. First column: input
image patches. Second and third columns: feature representations of
our unsupervised LUDT and fully-supervised LUDT. The rest columns:
feature maps from VGG-19 (from left to right: Conv1-2, Conv2-2,
Conv3-4, Conv4-4, and Conv5-4). The feature map is visualized by
averaging all the channels. Best viewed in color and zoom in

feature responses from the off-the-shelf deep model VGG-
19 Simonyan and Zisserman (2014). We observe that the
responses from the unsupervised learning and supervised
learning are similar with minor differences. Specifically, the
boundary responses from supervised learning are higher than
those of unsupervised learning. This is because of the strong
supervisions brought by the ground-truth labels. The net-

work has learned to differentiate the target and background
distractors according to labels, which increases the network
attention around the object boundaries. In comparison, our
unsupervised learning does not employ this process for atten-
tion enhancement, while still focusing on the center region
of the object responses. From the viewpoint of Siamese
network, both unsupervised and supervised feature represen-
tations focus on the target appearances, which facilitate the
template matching through the correlation operation. Com-
pared with the empirical features (e.g., HOG), we will show
in the following that our unsupervised feature representa-
tions achieve higher accuracy compared with hand-crafted
features.

Our unsupervised representation is comparedwith the off-
the-shelf deep model VGG-19. Note that the VGG model
is trained under image classification task with supervised
learning. We show the feature maps from different layers
(i.e., Conv1-2, Conv2-2, Conv3-4, Conv4-4, andConv5-4) of
the VGG-19. From Fig. 8, we observe that our unsupervised
feature representations share similarities with the low-level
features (i.e., the first two layers) of VGG, which typically
represents spatial details. It has been well studied in HCF
Ma et al. (2015) and C-COT Danelljan et al. (2016) that
only using the first or second layer of the VGG model for
DCF tracking contains limitations. However, our unsuper-
vised representation better suits the tracking scenario since
we jointly combine the feature representation learning with
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Fig. 9 Precision and success plots on the OTB-2013 dataset Wu et al.
(2013) for recent real-time trackers. The legend in each tracker shows
the precision at 20 pixels of precision plot and AUC of success plot

the DCF formulation in an end-to-end fashion. In the deeper
layers of VGG-19 such as Conv4-4 and Conv5-4, the feature
representation gradually loses spatial details but increases
semantics, which can be combined with the low-level fea-
tures to further boost the tracking performance (Ma et al.
2015; Danelljan et al. 2016). The semantic representation
capability is obtained by distinguishing different object cat-
egories (i.e., image classification), while our unsupervised
learning process lacks such image labels. In the future, we
will investigate how to learn rich multiple-level representa-
tions for visual tracking in an unsupervised manner.

4.4 Comparison with State-of-the-art Methods

OTB-2013 Dataset. The OTB-2013 dataset Wu et al. (2013)
contains 50 challenging videos. On the OTB-2013 dataset,
we evaluate our LUDT and LUDT+ trackers with state-of-
the-art real-time trackers including ACT Chen et al. (2018),
ACFN Choi et al. (2017), CFNet Valmadre et al. (2017),
SiamFC Bertinetto et al. (2016), SCT Choi et al. (2016),
CSR-DCF Lukezic et al. (2017), DSST Danelljan et al.
(2014), and KCF Henriques et al. (2015) using precision and
success plots.

As illustrated in Fig. 9, our unsupervised LUDT tracker
outperforms CFNet and SiamFC in both distance precision
and AUC score. It is worth mentioning that both LUDT
and CFNet have similar network capability (network depth),
leverage the same training data, and are not equipped with
additional online improvements. Even though our approach
is free of ground-truth supervision, it still achieves very com-
petitive tracking accuracy. Our improved version, LUDT+,
performs favorably against recent state-of-the-art real-time
trackers such as ACT and ACFN. Besides, our LUDT and
LUDT+ trackers also exhibit a real-time speed of about 70
FPS and 55 FPS, respectively.
OTB-2015 Dataset. The OTB-2015 dataset Wu et al. (2015)
contains 100 challenging videos. On the OTB-2015 dataset
Wu et al. (2015), we evaluate LUDT and LUDT+ trackers
with state-of-the-art real-time algorithms as that in OTB-
2013. In Table 7, we further compare our methods with more
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Fig. 10 Precision and success plots on the OTB-2015 dataset Wu et al.
(2015) for recent real-time trackers. The legend in each tracker shows
the precision at 20 pixels of precision plot and AUC of success plot

state-of-the-art real-time trackers such as StructSiam Zhang
et al. (2018), MemTrack Yang and Chan (2018), RT-MDNet
Jung et al. (2018), Siam-tri Dong and Shen (2018), SACF
Zhang et al. (2018), RASNet Wang et al. (2018), SiamRPN
Li et al. (2018), SA-Siam He et al. (2018), HP Dong et al.
(2018), and EAST Huang et al. (2017).

From Fig. 10 and Table 7, we observe that our unsuper-
vised LUDT tracker is comparable with supervised baseline
methods (e.g., SiamFC and CFNet). On the OTB-2015
dataset, SiamFC achieves 77.1% DP and 58.2% AUC, while
LUDT exhibits 76.9% DP and 60.2% AUC. Compared with
CFNet, LUDT outperforms by 2.1% DP and 3.4% AUC.
The DSST algorithm is a traditional DCF based tracker with
accurate target scale estimation. LUDT significantly outper-
forms it by 8.0% DP and 8.4% AUC, which illustrates that
our unsupervised feature representation is more robust than
empirical features (e.g., HOG). With a better DCF formula-
tion and more advanced online update strategies Danelljan
et al. (2017), our LUDT+ tracker achieves comparable per-
formance with the recent ACFN andACT trackers. In Fig. 10
and Table 7, we do not compare with some remarkable non-
realtime trackers. For example,MDNet Nam andHan (2016)
and ECO Danelljan et al. (2017) can yield 67.8% and 69.4%
AUC on the OTB-2015, but they are far from achieving a
real-time speed.

Table 7 compares more recent supervised trackers. These
latest approaches are mainly based on the Siamese net-
work, which improve the baseline SiamFC method using
various sophisticated techniques. Most trackers in Table 7
are trained using ILSVRC including LUDT+. However, it is
worth mentioning that some algorithms (e.g., SA-Siam and
RT-MDNet) adopt pre-trained CNN models (e.g., AlexNet
Krizhevsky et al. 2012 and VGG-M Chatfield et al. 2014)
for network initialization. The SiamRPN additionally uses
more labeled training videos from the Youtube-BB dataset
Real et al. (2017). Compared with them, LUDT+ does not
require data labels or off-the-shelf deep models, while still
achieving comparable performance and efficiency.
Temple-Color Dataset. Temple-Color Liang et al. (2015)
is a more challenging benchmark with 128 color videos. In
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Fig. 11 Precision and success plots on the Temple-Color dataset Liang
et al. (2015) for recent real-time trackers. The legend in each tracker
shows the precision at 20 pixels of precision plot and AUC of success
plot

this dataset, we compare our trackers with some baseline
and state-of-the-art trackers as on the OTB-2015 benchmark.
Compared with the DCF trackers with empirical features
(e.g., HOG feature), our tracker with unsupervised deep
features exhibits a significant performance improvement as
shown in Fig. 11. Specifically, SiamFC which is learned
with full supervision achieves an AUC score of 50.3%, while
LUDT exhibits 51.3% AUC score. Compared with another
representative supervised method CFNet, LUDT exceeds its
performance by 6.4% DP and 4.7% AUC. Furthermore, our
LUDT+ tracker performs favorably against existing state-of-
the-art trackers.
VOT2016 Dataset. We report the evaluation results on the
VOT2016 benchmark Kristan et al. (2016), which contains
60 videos selected from more than 300 videos. Different
from the OTB dataset, the VOT toolkit will reinitialize when
the tracker fails. The expected average overlap (EAO) is
the final metric for tracker ranking Kristan et al. (2016).
In Fig. 12, we show the accuracy-robustness (AR) plot and
EAO ranking plot on VOT2016 with some participant track-
ers. The VOT2016 champion C-COT uses the pre-trained
VGG-M model for feature extraction while not achieving
real-time performance. The proposed LUDT+ method per-
forms slightly worse than C-COT but runs much faster. It is
worth mentioning that our real-time LUDT+ tracker even
performs favorably against remarkable non-realtime deep
trackers such as MDNet. Our LUDT tracker, without bells
and whistles, surpasses classic DCF trackers such as DSST
and KCF by a considerable margin and is comparable with
some DCF methods with an off-the-shelf deep model (e.g.,
DeepMKCF and HCF).

In Table 8, we include more state-of-the-art trackers
including VITAL Song et al. (2018), DSLT Lu et al. (2018),
RTINet Yao et al. (2018), ACT Chen et al. (2018), SA-Siam
He et al. (2018), SiamRPN Li et al. (2018), SACF Zhang
et al. (2018), StructSiam Zhang et al. (2018), and MemTrack
Yang and Chan (2018) on the VOT2016 benchmark. Com-
pared with the baseline SiamFC, our LUDT tracker yields
favorable results. Compared with fully-supervised trackers,
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Fig. 12 Top: Accuracy-Robustness (AR) ranking plots generated by
sequence mean (left) and sequence pooling (right) on the VOT2016
dataset Kristan et al. (2016). Trackers closer to upper right corner
perform better. Bottom: Expected Average Overlap (EAO) graph with
trackers ranked from right to left evaluated on VOT2016

Table 8 Comparison with state-of-the-art and baseline trackers on the
VOT2016 benchmark Kristan et al. (2016). The evaluation metrics
include Accuracy, Failures (over 60 sequences), and Expected Average
Overlap (EAO). The up arrows indicate that higher values are better for
the corresponding metric and vice versa

Trackers Accuracy (↑) Failures (↓) EAO (↑) FPS (↑)
ECO 0.54 - 0.374 6

VITAL - - 0.323 1

DSLT - - 0.332 6

RTINet 0.57 - 0.298 9

C-COT 0.52 51 0.331 0.3

pyMDNet - - 0.304 2

HCF 0.45 85 0.220 12

ACT - - 0.275 30

SA-Siam 0.53 - 0.291 50

SiamRPN 0.56 - 0.344 160

SACF - - 0.275 23

StructSiam - - 0.264 45

MemTrack 0.53 - 0.273 50

SiamFC 0.53 99 0.235 86

SCT4 0.48 117 0.188 40

DSST 0.53 151 0.181 25

KCF 0.49 122 0.192 170

LUDT (Ours) 0.54 100 0.231 70

LUDT+ (Ours) 0.54 62 0.309 55
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Table 9 Comparison with state-of-the-art and baseline trackers on the
VOT2017/2018 benchmarkKristan et al. (2016). The evaluationmetrics
include Accuracy, Failures (over 60 sequences), and Expected Average
Overlap (EAO). The up arrows indicate that higher values are better for
the corresponding metric and vice versa

Trackers Accuracy (↑) Failures (↓) EAO (↑) FPS (↑)
ECO 0.48 59 0.280 6

C-COT 0.49 68 0.267 0.3

SA-Siam 0.50 - 0.236 50

SiamRPN - - 0.243 160

SiamFC 0.50 125 0.188 86

Staple 0.53 147 0.169 70

TRACA 0.42 183 0.137 100

SRDCF 0.49 208 0.119 5

DSST 0.40 310 0.079 25

KCF 0.45 165 0.135 170

LUDT (Ours) 0.46 149 0.154 70

LUDT+ (Ours) 0.49 88 0.230 55

LUDT+ overall exhibits competitive performance as well as
efficiency.
VOT2017/2018Dataset.TheVOT2017Kristan et al. (2017)
and VOT2018 Kristan et al. (2018) are the same bench-
mark with more challenging videos compared with those
in VOT2016 dataset. In Table 9, we present the Accu-
racy, Failures, and EAO of the state-of-the-art trackers on
VOT2017/VOT2018. The proposed LUDT tracker is still
superior to the standard DCF trackers using hand-crafted
features such as DSST and KCF. Our LUDT+ yields an
EAO score of 0.230, which is comparable with the advanced
Siamese trackers such as SA-Siam and SiamRPN that take
advantage of additional backbone networks or training data.
LaSOT Dataset. We further evaluate our unsupervised
approach on the large-scale LaSOT testing dataset Fan et al.
(2019) with 280 videos. The videos in LaSOT are more chal-
lenging with an average length of about 2500 frames. As
shown in Fig. 13, our LUDT tracker still outperforms hand-
crafted feature based DCF trackers such as BACF Galoogahi
et al. (2017), CSR-DCFLukeźIăź et al. (2018),DSSTDanell-
jan et al. (2014), and SCT4 Choi et al. (2016). Furthermore,
the proposed LUDT+ approach achieves an AUC score of
30.5%, which is even comparable with some state-of-the-
art deep DCF trackers including ECO (32.4%) Danelljan
et al. (2017), STRCF (30.8%) Li et al. (2018), and TRACA
(25.7%) Choi et al. (2018) that leverage off-the-shelf deep
models as feature extractors.
TrackingNet Dataset. The recently released large-scale
TrackingNet dataset Müller et al. (2018) contains more than
30K videos with more than 14 million dense bounding
box annotations. The videos are collected on the Inter-
net (YouTube), providing large-scale high-quality data for
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[0.397] MDNet
[0.390] VITAL
[0.336] SiamFC
[0.335] StructSiam
[0.333] DSiam
[0.324] ECO
[0.314] SINT
[0.308] STRCF
[0.305] LUDT+ (Ours)
[0.304] ECO_HC
[0.275] CFNet
[0.262] LUDT (Ours)
[0.259] BACF
[0.257] TRACA
[0.257] MEEM
[0.250] HCFT
[0.250] PTAV
[0.245] SRDCF
[0.244] CSRDCF
[0.243] Staple
[0.238] Staple_CA
[0.233] SAMF
[0.221] LCT
[0.212] Struck
[0.210] TLD
[0.207] DSST
[0.203] fDSST
[0.194] ASLA
[0.191] SCT4
[0.178] KCF

Fig. 13 Success plots on the LaSOT testing set Fan et al. (2019). The
legend in each tracker shows the AUC of the success plot. Best viewed
in color and zoom in

Table 10 Comparison with state-of-the-art and baseline trackers on the
TrackingNet benchmark Müller et al. (2018). The evaluation metrics
include Precision, Normalized Precision, and Success (AUC score)

Trackers Precision Norm.prec Success

MDNet 0.565 0.705 0.606

CFNet 0.533 0.654 0.578

SiamFC 0.533 0.663 0.571

ECO 0.492 0.618 0.554

ECOhc 0.476 0.608 0.541

CSRDCF 0.480 0.622 0.534

Staple_CA 0.468 0.605 0.529

Staple 0.470 0.603 0.528

BACF 0.461 0.580 0.523

SRDCF 0.455 0.573 0.521

SAMF 0.477 0.598 0.504

ASLA 0.406 0.536 0.478

SAMF_AT 0.447 0.560 0.472

DLSSVM 0.418 0.562 0.470

DSST 0.460 0.588 0.464

MEEM 0.386 0.545 0.460

Struck 0.402 0.539 0.456

DCF 0.419 0.548 0.448

KCF 0.419 0.546 0.447

CSK 0.368 0.503 0.429

TLD 0.336 0.460 0.417

TLD 0.292 0.438 0.400

MOSSE 0.326 0.442 0.388

LUDT (Ours) 0.469 0.593 0.543

LUDT+ (Ours) 0.495 0.633 0.563
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Fig. 14 Attribute-based evaluation on the OTB-2015 dataset Wu et al.
(2015). The 11 attributes are background clutter (BC), deformation
(DEF), fast motion (FM), in-plane rotation (IPR), illumination vari-

ation (IV), low resolution (LR), motion blur (MB), occlusion (OCC),
out-of-plane rotation (OPR), out-of-view (OV), and scale varition (SV),
respectively

LUDT SiamFC CFNet ACFN ACT TRACA DSST

Fig. 15 Qualitative evaluation of our proposed LUDT and other track-
ers including SiamFC Bertinetto et al. (2016), CFNet Valmadre et al.
(2017), ACFN Choi et al. (2017), ACT Chen et al. (2018), TRACA
Choi et al. (2018), and DSST Danelljan et al. (2014) on 8 challenging

videos from OTB-2015. From left to right and top to down are Bas-
ketball, Board, Matrix, CarScale, Diving, BlurOwl, Bolt, and Tiger1,
respectively. Best viewed in color

assessing trackers in the wild. We test our LUDT and
LUDT+ on the testing set with 511 videos. FollowingMüller
et al. (2018), we adopt three metrics including Precision,
Normalized Precision, and Success (AUC) for performance
evaluation. In Table 10, we exhibit the results of our meth-
ods and all the evaluated trackers on this benchmark. On
this dataset, our LUDT achieves an AUC score of 54.3%,
which obviously outperforms other hand-crafted feature
based DCF trackers such as ECOhc, CSR-DCF, and BACF
by 0.2%, 0.9%, and 2.0%. Note that the above DCF trackers
are improved versions with additional regularization terms,
while ours merely utilizes a standard DCF formulation. Our
superior performance illustrates the representational power

of our unsupervised features. Besides, it is worth mentioning
that our LUDT, on this large-scale benchmark, is even com-
parable with the state-of-the-art ECO, which leverages both
hand-crafted and off-the-shelf deep features.Without labeled
data for model training, our improved LUDT+ achieves bet-
ter performance and slightly outperforms ECO by 0.9% in
terms of AUC.
Attribute Analysis. The videos on OTB-2015 Wu et al.
(2015) are annotated with 11 different attributes, namely:
background clutter (BC), deformation (DEF), out-of-plane
rotation (OPR), scale variation (SV), occlusion (OCC), illu-
mination variation (IV), motion blur (MB), in-plane rotation
(IPR), out-of-view (OV), fast motion (FM), and low resolu-
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LUDT Fully-supervised LUDT

Fig. 16 Failure cases of our LUDT tracker. The top and bottom videos
are Skiing and Soccer, respectively. Compared to its fully-supervised
version, our unsupervised method is not robust enough when target
undergoes drastic appearance change and occlusion

tion (LR). On the OTB-2015 benchmark, we further analyze
the performances over different challenges in Fig. 14. On
the majority of challenging scenes, our LUDT tracker out-
performs the popular SiamFC Bertinetto et al. (2016) and
CFNet Valmadre et al. (2017) trackers. However, our per-
formance advantage on DP metric is less obvious than that
under the AUC metric. Compared with the fully-supervised
LUDT tracker, themain performance gaps are from illumina-
tion variation (IV), occlusion (OCC), and fast motion (FM)
attributes. Unsupervised learning can be further improved on
these attributes.
Qualitative Evaluation. We evaluate LUDT with super-
vised trackers (e.g., ACT, ACFN, SiamFC, TRACA, and
CFNet) and a baseline DCF tracker (DSST) on eight chal-
lenging videos, as shown in Fig. 15. On Matrix and Tiger1
videos, the targets undergo partial occlusion and background
clutter, while on BlurOwl, the target is extremely blurry
due to the drastic camera shaking. In these videos, DSST
based on empirical features fails to cope with the challeng-
ing factors while LUDT is able to handle. This illustrates the
robustness of our unsupervised feature representation, which
achieves favorable performance compared to the empiri-
cal features. The SiamFC and CFNet trackers tend to drift
when the target and distractors are similar (e.g., Bolt and
Basketball sequences) while LUDT is able to handle these
challenging scenes because of the discrimination capability
of the DCF and its online model update mechanism.Without
online improvements, LUDT is still able to track the target
accurately, especially on the challenging Board and Diving
videos. It is worth mentioning that such a robust tracker is
learned from raw videos in an unsupervised manner.

4.5 Limitations

Figure 16 shows the limitations of our unsupervised learn-
ing. First, compared with the fully supervised learning, our
tracker trained via unsupervised learning tends to drift when
occlusion or drastic appearance change occurs (e.g., the

targets in Skiing and Soccer sequences). The semantic repre-
sentations brought by ground-truth annotations are missing.
Second, our unsupervised learning involves both forward
and backward trackings. The computational load during the
training phase is a potential drawback although the learning
process is offline.

5 Conclusion

In this paper, we present how to train a visual tracker
using unlabeled videos in the wild, which is rarely inves-
tigated in visual tracking. By designing an unsupervised
Siamese correlation filter network, we verify the feasibility
and effectiveness of our forward–backward based unsuper-
vised training pipeline. To further facilitate the unsupervised
training, we extend our framework to consider multiple
frames and employ a cost-sensitive loss. Extensive experi-
ments exhibit that the proposed unsupervised tracker,without
bells and whistles, performs as a solid baseline and achieves
comparable results with the classic fully-supervised track-
ers. Equipped with additional online improvements such as
a sophisticated update scheme, our LUDT+ tracker performs
favorably against the state-of-the-art tracking algorithms.
Furthermore, we provide a deep analysis of our unsupervised
representation by feature visualization and extensive abla-
tion studies. Our unsupervised framework shows a promising
potential in visual tracking, such as utilizing more unlabeled
data or weakly labeled data to further improve the tracking
accuracy.
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