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Abstract
Occlusion-aware instance-sensitive segmentation is a complex task generally split into region-based segmentations, by approx-
imating instances as their bounding box. We address the showcase scenario of dense homogeneous layouts in which this
approximation does not hold. In this scenario, outlining unoccluded instances by decoding a deep encoder becomes difficult,
due to the translation invariance of convolutional layers and the lack of complexity in the decoder. We therefore propose
a multicameral design composed of subtask-specific lightweight decoder and encoder–decoder units, coupled in cascade to
encourage subtask-specific feature reuse and enforce a learning path within the decoding process. Furthermore, the state-
of-the-art datasets for occlusion-aware instance segmentation contain real images with few instances and occlusions mostly
due to objects occluding the background, unlike dense object layouts. We thus also introduce a synthetic dataset of dense
homogeneous object layouts, namely Mikado, which extensibly contains more instances and inter-instance occlusions per
image than these public datasets. Our extensive experiments on Mikado and public datasets show that ordinal multiscale
units within the decoding process prove more effective than state-of-the-art design patterns for capturing position-sensitive
representations. We also show that Mikado is plausible with respect to real-world problems, in the sense that it enables
the learning of performance-enhancing representations transferable to real images, while drastically reducing the need of
hand-made annotations for finetuning. The proposed dataset will be made publicly available.

Keywords Instance boundary and occlusion detection · Fully convolutional encoder–decoder networks · Synthetic data ·
Domain adaptation
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1 Introduction

Outlining object instances and understanding their spatial
layout from a single RGB image without explicit object
models is a core computer vision task in many robotic appli-
cations, such as object picking and autonomous driving in
unknown environments. Indeed, the least occluded instances
are often the most affordable ones to grasp or the closest
obstacles to avoid. Automating such a task remains challeng-
ing as a robot must handle many variations of scene layouts
from a mere grid of RGB values.

Deep fully convolutional networks (FCN) have become
the state of the art for learning generalizable image represen-
tations due to their ability to capture multiscale invariants in
trainable convolution kernels. In this context, a mainstream
strategy for detecting salient instances consist in splitting the
image segmentation into many region-wise segmentations.
Specifically, a two-step FCN is trained to first isolate each
instance in a bounding box by joint classification and regres-
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Meaningful box proposals. Ambiguous box proposals.

Additional examples of dense object layouts in robotics.

Fig. 1 In dense object layouts, occlusions aremostly between instances
that cannot be isolated in a rectangle. Mapping an image or a region that
contains multiple similar instances to an instance-sensitive segmenta-
tion becomes ambiguous, thereby reducing the discriminative power of
the encoded representations

sion of anchor boxes, then for each box proposal fire the
pixels that belong to the visible and occluded instance parts
(Qi et al. 2019; Follmann et al. 2019; Zhu et al. 2017) or
to predefined affordance categories (Do et al. 2018). How-
ever, approximating an instance as a rectangle is not always
relevant. Typically, in dense homogeneous layouts, many
instances of the same object occlude each other. As a result,
a box proposal often contains multiple instances (c.f. Fig. 1).

In such object layouts, mapping an image or a region
to an instance-sensitive segmentation becomes a difficult
task, because a pixel-wise attention to specific instances
requires position-dependent representations, whereas convo-
lution kernels are translation invariant. Generally, pixel-wise
labels are inferred by gradually combining low-resolution
object-level semantics and higher-resolution local cues using
a residual encoder–decoder (RED) network. In such a struc-
ture, the decoder aims to upsample the encoder latent
representations. RED networks have proved efficient for
inferring instance-agnostic categories (Chen et al. 2018)
and instance boundaries (Deng et al. 2018; Wang et al.
2017; Ronneberger et al. 2015). However, a deep encoder
can hardly be decoded for distinguishing similar overlap-
ping instances, due to its built-in translation invariance (c.f.
Fig. 2). Most research efforts to improve object delineation
have been put in the encoder, using densely connected layers
to deepen the encoder blocks (Huang et al. 2017), dilated
convolutions to enlarge the receptive field at the lowest-
resolution encoding level (Chen et al. 2018; Wang et al.
2018b; Yu and Koltun 2016) or coordinate-aware convolu-
tions to associate the latent representations with global pixel
locations (Liu et al. 2018b; Novotný et al. 2018). These
design patterns lead to low-resolution position-dependent
representations of object categories, easier to be upsampled.
However, in dense homogeneous layouts, the decoding pro-
cess has greater importance because the diversity of objects

to encode is much reduced while the pixel embeddings must
discriminate between instances of the same object.

We therefore further the residual encoder–decoder design
in order to approximate a mapping between single RGB
images of homogeneous instance layouts and occlusion-
aware instance-sensitive segmentations. Specifically,we pro-
pose amore complex decoding process to produce contextual
pixel embeddings that better discriminate between similar
instances. Our multicameral design consists of lightweight
decoder and encoder–decoder units densely coupled in
cascade, and differently supervised to decompose the com-
plex task of outlining unoccluded instances into simpler
ones: extracting image cues, detecting instance boundaries,
detecting occluding boundary sides, firing the pixels of
unoccluded instances, refining the segmentation. In con-
trast with the state-of-the-art design patterns for capturing
position-dependent representations, our approach encour-
ages subtask-specific feature reuse and longer-range relations
within the decoding process, thus improving the attention to
unoccluded instances in homogeneous layouts (c.f. Fig. 2).

Furthermore, the state-of-the-art datasets for joint instance
delineation and occlusion detection (Qi et al. 2019; Follmann
et al. 2019; Zhu et al. 2017; Wang and Yuille 2016; Fu et al.
2016) are intrinsically designed for the foreground/back-
ground paradigm. As shown by Fig. 3, the images in
these datasets contain few instances and a large number of
occlusions are due to objects occluding the background. In
addition, these datasets suffer from biased data distributions
due to limited variations and error-prone hand-made annota-
tions. They can hardly be extended, as producing a pixel-wise
ground truth for instance boundaries and occlusions is a
tedious and time-consuming task for human annotators.
Specifically, these datasets never showcase homogeneous
layouts with many occlusions between instances, although
it is a common scenario in robotic applications for manufac-
tured object manipulation.

Therefore, we also propose a synthetic dataset of dense
homogeneous layouts for evaluating the learning of an
instance-sensitive mapping, through the canonical scenario
ofmany sachets piled up in bulk.Our data generation pipeline
flexibly enables lots of inter-instance occlusion variations
and error-free annotations, unlike datasets of real images.

In summary, our contribution is two-fold:

– Amulticameral FCN design to approximate amore com-
plex decoding function for dense homogeneous layouts.
Our extensive experiments show that introducing com-
plexity and task decomposition into ordinal subtasks
within the decoding process proves more effective than
the state-of-the-art design patterns for capturing position-
dependent representations, thus improving the attention
to unoccluded instances from a single RGB image.
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Fig. 2 Due to its built-in translation invariance, a deep encoder can hardly be decoded for distinguishing similar overlapping instances. We show the
importance of decomposing the decoding process into ordinal subtasks to improve the attention to unoccluded instances in homogeneous layouts

– A simulation-based pipeline, referred to as Mikado, to
evaluate the proposed model on dense homogeneous
instance layouts. Our synthetic data1 extensibly contains
more occlusions between similar instances than the pub-
lic datasets for occlusion-aware instance segmentation.
We show that the proposed data is plausible with respect
to real-world problems, through experiments on trans-
fer learning from Mikado to D2SA, a public dataset of
real-world heterogeneous object layouts (Follmann et al.
2019).

Our paper is organized as follows. After reviewing the
related work in Sect. 2, we describe the proposed model in
Sect. 3, the proposed dataset in Sect. 4, then our experimental
protocol in Sect. 5. Our results are finally discussed in Sect. 6.

2 RelatedWork

Occlusion-aware instance-wise attention lies at the intersec-
tion of salient instance segmentation and occlusion detection.
Also, the proposed multicameral design is composed of
shared or task-specific encoders and decoders. In this sec-

1 Publicly available at https://mikado.liris.cnrs.fr

tion, we thus review the state of the art on salient instance
segmentation and occlusion detection from a single RGB
image, FCN architectures for pixel multi-labeling, and the
public datasets for joint instance segmentation and occlusion
detection.

2.1 Salient Instance Segmentation

Graph-based segmentation Instance delineation has been
approached further to pixel-wise object categorization. Specif-
ically, an instance-agnostic category is first assigned to each
pixel, then the pixels within each category region are grouped
into instances using graphical models, such as watershed
transforms from inferred energy maps (Bai and Urtasun
2017) or superpixel-based proposals (Li et al. 2017; Kir-
illov et al. 2017; Pont-Tuset et al. 2017). Indeed, in scenes
with few similar or many heterogeneous instances, category
masks effectively reduce the search space and partially reveal
instance boundaries, as category boundaries are also instance
boundaries. However, in scenes full of many instances of the
same class (Fig. 1), such a categorization is of little use.
Defining instead instance-sensitive categories also fails, due
to the built-in translation invariance of FCNs (Fig. 2).

Recurrent segmentation Instance segmentation has also been
formulated as a recurrent process (Kong and Fowlkes 2018;

123

https://mikado.liris.cnrs.fr


1334 International Journal of Computer Vision (2020) 128:1331–1359

BSDS-BOW (Ren et al, 2006) PIOD (Wang and Yuille, 2016) COCOA (Zhu et al, 2017)

D2SA (Follmann et al, 2019) KINS (Qi et al, 2019) Mikado/Mikado+ (Ours)

Dataset Average
image size

Number of
images

Number of
instances

Instances
per image

Inter-
instance
occlusions
per image

Background
pixels
per image

Ground-truth
annotations

BSDS-BOW1 432×369 200 – – – –

Human-made
PIOD 469×386 10,100 24,797 2.5 1.3 69%

COCOA2 578×483 3,823 34,884 9.1 13.5 33%
D2SA2 1962×1569 5,600 28,703 5.1 2.8 79%
KINS 1695×362 14,991 187,730 12.5 8.0 92%

Mikado (Ours) 640×512 2,400 48,184 20.1 52.9 24% Computer-
generatedMikado+3 (Ours) 640×512 14,560 459,002 31.5 60.5 24%

1 The empty cells are due to the ground truth that consists only of object part-level oriented edges.
2 The statistics are only on the train and validation subsets as the test subset is not provided.
3 Mikado+ is an extension of Mikado used only to show the impact of a richer synthetic data distribution.

Fig. 3 State-of-the-art datasets for occlusion-aware boundary detec-
tion (BSDS-BOW, PIOD) and amodal instance segmentation (COCOA,
D2SA, KINS) compared with our synthetic dataset. Unlike the state-
of-the-art datasets in which occlusions are mostly due to objects

occluding the background, Mikado contains more instances and occlu-
sions between instances per image, thus better representing the variety
of occlusions

Ren and Zemel 2017; Romera-Paredes and Torr 2016).
Specifically, a recurrent FCN is trained to iteratively update a
mean-shift clustering (Kong and Fowlkes 2018) or iteratively
outline each instance (Ren and Zemel 2017; Romera-Paredes
and Torr 2016). Such memory-based pipelines are neverthe-
less harder to train than feedforward networks. (Ren and

Zemel 2017; Romera-Paredes and Torr 2016) also assume
a stationary scene, wheras in robotic applications, the scene
is likely to change between two iterations due to physical
interactions with the detected instances.

Proposal-based segmentation Alternatively, state-of-the-art
strategies rely on two-step FCNs trained to first isolate each
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instance in a rectangle, then infer the corresponding mask
after pooling the high-level features in the box proposal (Liu
et al. 2018c; He et al. 2017; Hayder et al. 2017; Fan et al.
2019; Dai et al. 2016). Although these approaches are good
at producing connected pixel clusters, the resulting mask
boundaries suffer from the pooling quantization effect. Start-
ing instead from binary rectanglemasks on the box detector’s
last feature map (Fan et al. 2019) or using a distance trans-
form (Hayder et al. 2017) to infer instance masks improves
instance delineation, but still for instances that can fit a rect-
angle. As discussed in our introduction, these approaches
also poorly address the problem of translation variance
using FCNs, particularly in the case of multiple overlapping
instances of the same object. Interestingly, mixing con-
volutional embeddings with hard-coded non-convolutional
information, such as pixel locations, enables improvements
in distinguishing adjacent instances (Novotný et al. 2018; Liu
et al. 2018b).

2.2 Occlusion Detection

Depth estimation Finding occlusion relations has mostly
been studied jointly with depth estimation in multiview con-
texts (Zitnick and Kanade 2000; Grammalidis and Strintzis
1998; Geiger et al. 1995) and motion sequences (Sun et al.
2014; Ayvaci et al. 2012; Humayun et al. 2011; He andYuille
2010; Ayvaci et al. 2010; Stein and Hebert 2006; Williams
et al. 2011), as occlusions often translate into missing pixel
correspondences in different points of view or consecutive
frames. Recent works have more ambitiously focused on
learning-based monocular 3D reconstruction using FCNs
(Gan et al. 2018; Fu et al. 2018; Liu et al. 2016; Li et al.
2015; Eigen et al. 2014), but the results are still less accurate
than standard multi-view 3D reconstruction algorithms, and
these techniques require sensor-specific ground-truth depth
maps difficult to obtain. Although depth estimation brings
relevant hints such as depth discontinuities, understanding
occlusions is possible without putting effort into an explicit
dense 3D reconstruction, as shown hereinafter.

Amodal/multiclass segmentation In keepingwith boxproposal-
based instance segmentation (Liu et al. 2018c;He et al. 2017),
two-step FCNs have been adapted for inferring, in each box
proposal, either the mask including the visible and occluded
instance parts (Qi et al. 2019; Follmann et al. 2019; Zhu et al.
2017) or a multiclass segmentation according to predefined
affordance categories (Do et al. 2018). However, in addition
to the cons of box proposal-based segmentation, inferring
masks including occluded instance parts, referred to as
amodal segmentation, is ambiguous because some pixels are
attached to something invisible,whereas these pixels visually
belong to another instance. Without explicit object models,
the learning process is then conditioned on a guess only from

global pixel relations, while fine-grained inferences require
local pixel relations as well. Amodal annotations are also
difficult to obtain unless synthesizing training images, lead-
ing to a domain shift. Defining instead affordance categories
seems more reasonable, but in (Do et al. 2018), affordances
are implicitly mapped to object part categories. For example,
wrapping grasp affordances are cylinder-like objects such as
bottles, bowls, knife handles. In a scene full of overlapping
instances of the same affordance category, this strategy is
prone to fail.

Oriented boundary detection FCNs prove more suitable
for learning oriented contours, as this pixel labeling task
does not require translation variance. Specifically, state-
of-the-art approaches employ encoder–decoder networks
including two task-specific decoders for recovering instance
boundaries and occlusion-based orientations respectively
(Wang et al. 2018a; Wang and Yuille 2016). However,
these approaches have two drawbacks. First, occlusions are
modelled as pixel-specific raw orientations specifying the
occlusion relations, without guarantee of continuity. As a
consequence, a post-inference step is needed to adjust the
noisy inferred orientations using the local tangent vectors
of the inferred boundaries. Most importantly, the inferred
boundaries are not guaranteed to be closed. As a conse-
quence, instance masks cannot be easily extrapolated, e.g.
by considering the dual connected components. An iterative
refinement procedure has been proposed (Batra et al. 2019),
but does not really solve the issue.

2.3 Pixel Multi-labeling

Encoder–decoder networks First introduced for single-task
setups, such as semantic segmentation (Badrinarayanan et al.
2017) and instance boundary detection (Yang et al. 2016),
encoder–decoder networks are designed to infer pixel labels
despite the spatial resolution losswhen encoding object-level
semantics. Specifically, the encoder produces deep hierarchi-
cal features, then the decoder gradually outputs a probability
map using symmetric unpooling stages (c.f. Fig. 4a). How-
ever, in a sequential encoder–decoder, the pixel labels are
inferred only from the last encoder feature maps, where
the information is the most spatially compressed. Instead,
a multiscale view can be given to the decoder through
holistically-nested connections (Fig. 4b) (Liu et al. 2017;
Maninis et al. 2016; Xie and Tu 2015). Nevertheless, such a
late fusion requires to upsample all the latent representations
to the image resolution. A progressive multiscale decoding
through scale-specific skip connections between the encoder
and decoder (c.f. Fig. 4c) has consequently proved superior
(Deng et al. 2018;Wang et al. 2017;Ronneberger et al. 2015).
Indeed, at each decoding stage, the lower-resolution but
higher-level semantics are merged with the higher-resolution
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Fig. 4 State-of-the-art decoding strategies for boundary detection,
using a VGG16-based (Simonyan and Zisserman 2015) encoder. Best
viewed in color (Color figure online)

information lost after pooling the encoder features of the cur-
rent scale. Note that in application contexts requiring high
resolutions, residual encoder–decoder networks may suffer
from checkerboard artifacts, also referred to as the gridding
effect (Liu et al. 2018a; Guan et al. 2018; Shi et al. 2016).
Interestingly, coupling residual encoder–decoder networks
via cross-network skip connections helps to refine the local-
ization of visual landmarks (Tang et al. 2018).

Multi-task learning Sharing representations in learning mul-
tiple tasks generally enables to capture more generalizable
invariants. In the context of semantic segmentation, (Luo
et al. 2017) proposed to merge local and global semantics
through a dual-task training, by jointly decoding pixel labels
and inferring image labels. Image-level classification is how-
ever unfeasible in a category-agnostic problem, although
detecting instance boundaries and inter-instance occlusions
require global cues as well. For pixel multi-labeling, various
strategies of knowledge sharing have been explored, such
as progressive layer splitting (Misra et al. 2016), dynamic
task loss weighing (Kendall et al. 2018), skip connection-like
attention masks between a shared network and task-specific
ones (Liu et al. 2019). These works are however focused on
best learning task-shared and task-specific features to excel
in every task. In this work, we are rather interested in exploit-
ing an ordinal task decomposition to enforce a learning path,
but not to excel in every subtask.

2.4 Datasets

Oriented boundary detection Monocular occlusion-aware
boundary detection raised interest with the BSDS Border
Ownership dataset (BSDS-BOW) (Ren et al. 2006), which

contains 200 real images from the BSDS500 dataset (Mar-
tin et al. 2001), manually annotated with object part-level
oriented contours. As state-of-the-art FCNs require more
training data,Wang andYuille (2016) presented the PASCAL
Instance Occlusion Dataset (PIOD), consisting of 10,100
manually annotated real images from thePASCALVOCSeg-
mentation dataset (Everingham et al. 2015). Despite their
challenging intra-class variability, the images contain few
instances and inter-instance occlusions (c.f. Fig. 3).

Amodal segmentation (Qi et al. 2019; Follmann et al. 2019;
Zhu et al. 2017) also released datasets of real images, respec-
tively the KITTI INStance dataset (KINS), the Densely Seg-
mented Supermarket Amodal dataset (D2SA) and the COCO
Amodal dataset (COCOA), that are subsets of larger datasets
for box proposal-based instance segmentation, respectively
KITTI (Geiger et al. 2013), COCO (Lin et al. 2014) and
D2S (Follmann et al. 2018), manually augmented with
ground-truth amodal annotations. However, overcrowded
scenes are also not represented in these datasets. Moreover,
the ground-truth amodal annotations result from guesses,
thereby introducing human biases in the learning process.

Synthetic images Synthetic datasets have emerged in vari-
ous contexts as they offer rich multimodal annotations from
fully controlled environments (McCormac et al. 2017; Ros
et al. 2016; Gaidon et al. 2016; Grard et al. 2018; Brégier
et al. 2017). Yet, in these datasets, dense homogeneous lay-
outs have received little attention. Proposed for evaluating
pose detection and estimation, the Siléane dataset (Brégier
et al. 2017) consists of top-view depth images of identical
rigid instances in piles. Similarly, (Grard et al. 2018) sug-
gested synthetic depth maps of scanned objects instantiated
in bulk. These synthetic datasets are however generated only
for depth-based perception and elude the learning from a
single RGB image.

3 ProposedModel

In this section, we first describe the proposed multicameral
structuring for occlusion-aware instance-wise attention. Sec-
ond, we detail the associated loss function.

3.1 Problem Statement

We aim to approximate a mapping between RGB images and
instance-sensitive segmentations. As a showcase scenario,
we look for sets of non-overlapping connected pixel clusters
that represent unoccluded instances (see Fig. 2). Formally, let
X be our set of |X | ∈ N

� RGB images, andP the set of pixel
locations. For an image ofwidthW ∈ N

� and height H ∈ N
�,

we write P = W × H , and P = {1, . . . , W } × {1, . . . , H}.
We aim at approximating a function f defined as follows:
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f : X → {0, 1}P , X �→ Y . (1)

Given an image Xn ∈ X , a pixel p ∈ P is fired, i.e. Y n
p = 1

if it belongs to an unoccluded instance.

3.2 Proposed Architecture

Generally, a residual encoder–decoder (RED) network is a
sequence of scale-specific encoding feature transforms Es ,
and residual decoding feature transforms Ds such that:

xs = Es(xs−1), (2)

ys = Ds(ys+1, xs), (3)

where xs and ys are the latent image representations at the
resolution level s in the encoder and decoder respectively.
For example, x1 = E1(X). If we note E = {Es}s∈{1,...,S}
and D = {Ds}s∈{1,...,S} then a RED network is a sequence
[E, D]. In a RED network, the decoder aims to gradually
upsample the deep representations of the encoder. This is
however unsufficient to discriminate between instances of
the same object.

By contrast, amulticameral (MC) network is a sequence of
T residual decoder and encoder–decoder units, densely con-
nected through resolution-wise skip connections, to approx-
imate a more complex decoding function (see Fig. 5). If we
define encoders and decoders as multiscale feature trans-
forms, then a multicameral structuring is a matrix-like layout
of latent representations at S different resolutions. Each row
thereby conveys high-level semantics at a fixed resolution.
As the starting point is an image, the first element is a
deep encoder based on a common backbone, for example
a VGG16 encoder (Simonyan and Zisserman 2015). The
first three decoders in cascade gradually recover the instance
boundaries, the occluding boundary sides, and the seg-
mentation outlining the unoccluded instances respectively.
These ordinal units aim to structure the decoding process. It
also encourages subtask-specific feature reuse: an occluding
boundary side is expected to be near an instance bound-
ary, and a pixel in an unoccluded instance is expected to be
isotropically surrounded by occluding boundary sides. After
these decoders, an encoder–decoder unit refines the segmen-
tation.

Formally, let xt
s be the latent representation at the row

s ∈ {1, . . . , S} and column t ∈ {1, . . . , T }. Then an encoding
transform Et

s and a decoding transform Dt
s at this position

are defined respectively as:

xt
s = Et

s(x
t
s−1, x

t−1
s , . . . , x1s ), (4)

xt
s = Dt

s(x
t
s+1, x

t−1
s , . . . , x1s ). (5)
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Fig. 5 Proposed multicameral structuring with ordinal intermediate
supervisions (MC6†) for monocular attention to unoccluded instances.
Best viewed in color (Color figure online)

If we note Et = {Et
s}s∈{1,...,S} and Dt = {Dt

s}s∈{1,...,S},
then a multicameral design is the sequence [E1, D2, D3,

D4, E5, D6]. In the following, we refer to a multicameral
structure of T columns as MCT . For examples, MC4 =
[E1, D2, D3, D4], MC3 = [E1, D2, D3], and RED =
MC2 = [E1, D1].
Feature transforms In the decoder and encoder–decoder units
except the first encoder, the default encoding and decoding
feature transforms consist of three operations: (1) concate-
nate the inputs along the channel axis (Concat); (2) apply
a pixel-wise affine transformation (Conv); (3) apply a non-
linear activation (ReLU). Only the transforms E1

s in the first
encoder consists of more operations, such as sequential con-

123



1338 International Journal of Computer Vision (2020) 128:1331–1359

N × CnHW CHW

5×5
d=1

(a) Convolution.

N × CnHW

2HW

CHW

Pixel coordinates

5×5
d=1

(b) Coordinate-aware convolution (Coords).

N × CnHW CHW

1 × 1 5×5
d=1

5×5
d=3

5×5
d=6

1 × 1

CHW 3 × CHW

(c) Atrous spatial pyramid (Atrous).

N × CnHW �

σ

CHW

1 × 1

1 × 1

5×5
d=1

5×5
d=1

CHW CHW

(d) Attention branch (MTAN).

kernel size
dilation rate

Concat+Conv+ReLU Conv
kernel size

Fig. 6 State-of-the-art node-level mechanisms for learning a contex-
tual representation of size C H W from N latent representations of size
Cn H W respectively, where n ∈ {1, . . . , N }. a Soft feature sampling
using gradient-based weights. b Features are attached to global pixel
coordinates before sampling (Liu et al. 2018b; Novotný et al. 2018).
c Longer-range sampling using aggregated dilated convolutions (Chen
et al. 2018; Wang et al. 2018b; Yu and Koltun 2016). d Soft feature
sampling using inferred masks (Liu et al. 2019)

volutions, to match common encoder backbones, such as a
VGG16-based encoder (Simonyan andZisserman2015). The
encoder and decoder transforms Et>1

s and Dt>1
s of a row

s have the same number of filters. In practice, we set this
number to be half the number of layers of the encoder rep-
resentation (see details in our experimental setup in Sect. 5).
In our experiments, we also consider the sparse use of alter-
native feature transforms for capturing position-dependent
representations (c.f. Fig. 6 for an overview of these trans-
forms).

Skip connections We use skip connections by concatena-
tion. Concatenation is favored over element-wisemax or sum
operators because suchoperators are special cases of concate-
nation. Formally, let K ∈ N

� be the depth of two layers to
merge, and e, d, f ∈ R

K feature vectors respectively for the
encoder, the decoder, and the resulting fusion. Let w,w′ ∈
R

K×K be trainable parameters. Using element-wise max
operators: ∀k ∈ {1, . . . , K }, fk = ∑K

i=1 wik max(eik, dik).
Using element-wise sum operators: ∀k ∈ {1, . . . , K }, fk =
∑K

i=1 wik(eik +dik). Using concatenation,∀k ∈ {1, . . . , K },

fk = ∑N
i=1(wikeik + w′

ikdik). If needed, an element-wise
sum operator can then be modelled by setting w = w′.
Similarly, an element-wise max operator can be obtained by
setting wik = 0 or w′

ik = 0 depending on which of the i th
encoder or decoder channel has greater importance.

Pooling types We use max operators in our spatial pool-
ing layers, except in in the encoder (E5) for refinement. In
E5, we use instead average pooling to gradually average
the pixel embeddings within each instance. As a conse-
quence, if the decoder D4 infers an instance part instead
of the whole instance, the representation of this instance
will be altered. However, if an entire instance is correctly
classified, then its average pixel embedding will remain
unchanged. This behavior would not be possible with max
pooling becausemaxoperators highlight salient pixel embed-
dings.Awrongly classified instance part could then represent
the whole instance.

3.3 Proposed Training

A multicameral structure is an acyclic graph, trainable end-
to-end. As detecting instance boundaries, detecting occlud-
ing boundary sides, and outlining unoccluded instances can
be formulated as binary classification tasks, we use balanced
cross-entropy loss functions, with instance boundary-aware
penalties to synchronize the different supervisions. We are
aware of alternative loss functions that address the imbal-
ance between positive and negative examples (Deng et al.
2018; Yu et al. 2018; Lin et al. 2017). As it is not our main
focus in this work, we leave the reader to adapt the following
loss functions if needed.

Loss functions Formally, let p ∈ P be a pixel location –
typically P = {1, .., W } × {1, .., H} for an image of width
W ∈ N

∗ and height H ∈ N
∗. We noteN = {1, .., N } where

N ∈ N
∗ is the number of training images, and Mp ∈ V

the value at location p ∈ P in a matrix M ∈ VP . Let
Bn, On, Y n ∈ {0, 1}P be the ground-truth binary images
for instance boundaries, occluding boundary sides, and seg-
mentation respectively. Let B̂n , Ôn , Ŷ n ∈ [0, 1]P be the
corresponding network inferences.

– For instance boundary detection, the decoder D2 mini-
mizes the loss function Lb(θ) defined as follows:

Lb(θ) = − 1

|N ||P|
∑

n∈N

∑

p∈P
αBn

p log(B̂n
p) (6)

+ (1 − Bn
p) log(1 − B̂n

p),

where α ∈ R is a penalty to counterbalance the low num-
ber of boundary pixels against non-boundary pixels. In
our experiments, we set α = 10.
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– For occluding boundary side detection, the decoder D3

minimizes the loss function Lb(θ) defined as follows:

Lo(θ) = − 1

|N ||P|
∑

n∈N

∑

p∈P
αOn

p log(Ôn
p) (7)

+ β(1 − On
p) log(1 − Ôn

p),

where β = α i f Bn
p = 1 else 1.

– For segmentation, the decoders D4 and D6 bothminimize
the loss function Ls(θ) defined as follows:

Ls(θ) = − 1

|N ||P|
∑

n∈N

∑

p∈P
αY n

p log(Ŷ n
p ) (8)

+β(1 − Y n
p ) log(1 − Ŷ n

p ))).

In the following, if a multicameral structure MCT is
trainedwith these ordinal intermediate supervisions,wewrite
MCT †. For example, MC3† is a bicameral structure trained
for occlusion-aware boundary detection. RED=MC2=MC2†
is a residual encoder–decoder network trained for segmenta-
tion.

Ground truth generation For each training and test images,
we assume that we have the corresponding instance segmen-
tation and the corresponding depth or instance-wise order (in
that case, we consider it as a pseudo-depth). The depth (or
pseudo-depth) is only used to create the ground truth, but
never as input modality.

– The ground-truth boundaries are trivially derived from
the instance segmentation.

– For generating the ground-truth occluding boundary
sides, we sweep all the ground-truth instance boundaries
and at each boundary pixel, we binarize the centered local
region by computing the mean Z-offset in each segment
of the region (see “Fig. 16 in Appendix”). In the end, the
ground truth for occlusions is a binary image inwhich the
positive pixels are the instance boundaries slightly trans-
lated to one side or another, according to the relative depth
difference of the boundary sides. Note that local patches
that contain more than two segments are fully set to 0
as they cannot be binarized. This proves to be a reason-
able limitation as in practice an overwhelming majority
of boundary pixels are between only two instances or
between an instance and the background (e.g. 97.1% of
the boundary pixels in Mikado, and 99.4% in PIOD). We
leave for future work the study of the minority of pixels
at the junction of more than two instances.

– For generating the ground-truth segmentation outlining
the unoccluded instances, we compute the number of
occluding boundary pixels within each instance. If this

+Sachet model

Inputs:

Texture images

Physics simulation of piles of sachets

Top-view camera (RGB and depth) rendering

Training and test data preparation

Fig. 7 Overview of the Mikado pipeline (best viewed in color). Given
a mesh template and texture images, piles of deformed instances are
generated using a physics engine. A top-view camera is then rendered
to capture RGB and depth. The synthetic images and their annotations
(ground-truth boundaries are in blue, unoccluded side in orange) are
finally prepared to be fed-forward through the network (Color figure
online)

ratio is very close to the instance perimeter, then the
instance is considered as unoccluded.

4 Proposed Dataset

In this section, we describe the proposed pipeline for gener-
ating synthetic homogeneous instance layouts, referred to as
Mikado.

4.1 Data Generation

In the same vein of (Brégier et al. 2017; Grard et al. 2018), we
generate synthetic data using custom code on top of Blender
(Blender Online Community 2016) by simulating scenes of
objects piled up in bulk and rendering the corresponding top
views, as depicted in Fig. 7. More precisely, after modelling
a static open box and, on top, a perspective camera, a vari-
able number of object instances, in random initial pose, are
successively dropped above the box using Blender’s physics
engine (a video showing the generation of a scene is provided
in supplementary material). We then render the camera view,
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and the corresponding depth image, using Cycles render
engine. In this configuration, we ensure a large pose variabil-
ity and a lot occlusions between instances. The ground-truth
unoccluded instances and occluding instance boundary sides
can be trivially derived from depth (c.f. Fig. 16).

However, differently from (Brégier et al. 2017; Grard et al.
2018), we consider here piles of many instances with intra-
class variations and using only RGB as input modality. We
generateRGB images of sachets piled up in bulk by randomly
applying global and local deformations to onemesh template
of sachet that we texture successively with one out of 120
texture images of sachets retrieved using the Google Images
search engine2 and manually cropped to remove any back-
ground. Each scene is composed of many instances using the
same texture image so as to make the occlusions between
instances more challenging to detect. Besides, to prevent the
network from simply substracting the background, we apply
to the box a texture randomly chosen among 40 background
images, retrieved using the Google Images search engine as
well. A comprehensive overview of the textures and back-
ground images used for generating the Mikado dataset is
provided in Fig. 16. Between each image generation, we also
randomly jitter the cameras and light locations to prevent the
network from learning a fixed source of light, and so fixed
reflections and shadows. The proposed dataset finally com-
prises on average 20.1 instances per image, hence 8 times
more instances and 40 times more inter-instance occlusions
per image than PIOD. Figure 3 provides samples and sums up
the Mikado characteristics compared to the state-of-the-art
datasets for oriented boundary detection (Wang and Yuille
2016; Fu et al. 2016) and amodal instance segmentation (Qi
et al. 2019; Follmann et al. 2019; Zhu et al. 2017).

Furthermore, to study the benefits of a richer synthetic
data distribution, we make an extension of Mikado, namely
Mikado+, following the same proposed generation pipeline
but using more mesh templates (sachet, square sachet,
box, cylinder-like shape), and more texture and background
images. Figure 8a sums up the differences between Mikado
and Mikado+.

4.2 Data Augmentation

As our RGB images are generated using heuristic rendering
models, the training and evaluationmay be biased by a lack of
realism in the sense that, unlike physical sensors and despite
the variations of textures, deformations, and simulated spec-
ular reflections, a noise-free pixel information is provided
to the network. To remedy this issue, we dynamically filter
one image out of two with a gaussian blur and jitter inde-
pendently the RGB values, as shown in Fig. 8b, randomly
at both training and testing times. The parameters for gaus-

2 https://images.google.com/

Mikado Mikado+

Mesh templates 1 4

Backgrounds 40 600
Textures 120 2,400
Images 2,400 14,560

(a) Offline augmentation.

Raw Jittered Blurred Final

Raw Recolored Darkened Final

(b) Online augmentation.

Fig. 8 Our synthetic data augmentation for Mikado and its extension
Mikado+

sian filtering and value jittering are randomly chosen within
empirically predefined intervals. This prevents the network
from overfitting the too perfect synthetic color variations. In
addition to dynamic blurring andRGB jittering, theMikado+
images are also augmented with random permutation of the
RGB channels and random under or over-exposition, as also
illustrated in Fig. 8b. Thus, Mikado+ depicts more color and
lighting variations than Mikado.

We are aware of optimization-based data augmentation
techniques out of the scope of this paper, such as the use of
generativemodels (Antoniou et al. 2018) or automatic search
to find the best augmentation policies (Cubuk et al. 2019).
Nevertheless, our augmentation strategy is in line with the
work of (Cubuk et al. 2019), for their search space consists
of basic operations, such as rotation and color jittering, just
as the ones that we manually apply on our synthetic images.

5 Experimental Setup

In this section, we describe our experiments to evaluate the
proposed model and check the plausibility of the jointly pro-
posed synthetic data. Specifically, the proposed model is
evaluated on two differents aspects: (i) learning to map an
image or a region that contains multiple overlapping similar
instances to an instance-sensitive segmentation; (ii) learning
to detect occlusion-aware instance boundaries. Our experi-
ments are divided into three parts:
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1. We compare variants of multicameral structures with
alternative encoder–decoder designs, trained for oc-
clusion-aware instance-sensitive segmentation.

2. We compare the bicameral part of our model with alter-
native layer and connection structurings, trained for
occlusion-aware boundary detection.

3. We evaluate the plausibility of the proposed synthetic
data on a real-world setup.

5.1 EvaluationMetrics

We use the same metrics to evaluate occlusion-aware seg-
mentations and boundaries, as they all result from pixel-wise
binary classification tasks. Specifically, we compute the pre-
cision and recall for different binarization thresholds, then
typical derived metrics: the best F-score on dataset scale
(ODS), the average precision (AP), and the average preci-
sion in high-recall regime (AP60).

– ODS is the best harmonic mean of precision and recall
over the full recall interval.

– AP conveys the area under the precision-recall curve over
the full recall interval.

– AP60 is the average precision on the recall interval [.6, 1],
thus without taking into account high precisions due to
empty inferences.

As matching tolerance, i.e. the maximum �2-distance to
the closest ground-truth pixel for a positive or negative
to be considered as true or false respectively, we set a
hard value of 0 pixels for Mikado (which contains per-
fect ground-truth annotations) and a state-of-the-art value of
τ = 0.0075

√
W 2 + H2(	 2.7 pixels for 256×256 images)

for PIOD and D2SA that contain approximative hand-made
annotations, where W ∈ N

� and H ∈ N
� are the image width

and height respectively. Evaluation is performed without
non-maximum suppression, which may artificially improve
precision.

5.2 Instance-Sensitive Segmentation

In our first set of experiments, we evaluate and analyze
the proposed design for instance-sensitive segmentation on
Mikado.

Baselines We first compare our design with state-of-the-
art variants of residual encoder–decoder (RED) networks for
reducing the translation invariance of the latent representa-
tions (see Figs. 6, 9).

– Atrous spatial pyramid (Atrous) Aggregating convolu-
tions with different dilation rates on top of the encoder
enables to capture longer-range pixel relations (Chen

et al. 2018; Wang et al. 2018b; Yu and Koltun 2016).
Such relations are key cues to understand the notions of
instance and occlusion. We compare with a RED net-
work equipped with aggregated dilated convolutions on
top of the encoder (RED-Atrous), similarly to (Chen et al.
2018).

– Coordinate-aware convolutions (Coords) Concatenating
feature maps and hard-coded pixel coordinates, namely
CoordConv, improves the learning of pixel classification
tasks that require some translation variance (Liu et al.
2018b). We compare the proposed model with a RED
network in which all the convolution layers are swapped
to CoordConv ones (RED-Coords).

– Dense encoder blocks (Dense/E) Deepening the encoder
blocks using densely connected layers has proved effi-
cient for capturing more discriminative representations
(Huang et al. 2017). Deeper hierarchical representations
enable to encode more complex and longer-range pixel
relations, as the receptive fields implicitly grow layer
after layer. We include a RED network equipped with
a DenseNet121-based encoder (RED-Dense/E) in our
comparison.

Ablation study To further our evalution, we analyze three
important aspects: the number of units in a multicameral
sequence, the presence of intermediate supervisions, and the
optional use of specific nodes in the decoding process. The
resulting designs are illustrated in Fig. 10.

– Number of cascaded units Adding decoder and encoder–
decoder units in a multicameral sequence implies more
parameters to train and more memory at inference time.
We thus quantify the impact of many decoder units
(MC2 vs. MC3 vs. MC4), and the presence of a refine-
ment encoder–decoder unit (MC2 vs. MC4�†; MC4†
vs. MC6†). Note that MC4�† is a periodic multicameral
sequence of encoder–decoder units. This special case has
been studied in (Tang et al. 2018), as DUNet, for refin-
ing visual landmark detection. Comparing MC4�† with
MC6† therefore also shows the benefits of amore general
coupling of units with ordinal intermediate supervisions.

– Intermediate supervision Generally, intermediate super-
visions improve the training of complex graphs. In this
work, we show the impact of ordinal intermediate super-
visions to enforce a learning path: (1) detect image
cues; (2) infer instance boundaries; (3) infer occluding
boundary sides; (4) infer unoccluded instances. In our
experiments, the first three decoders are supervised to
infer the instance boundaries, the occluding boundary
sides and the unoccluded instances respectively, using the
loss functions presented in Sect. 3 (MC4† and MC6†).
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RED-Atrous RED-Coords RED-Dense/E MC6† (Ours)
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Input image

Conv+Sigmoid (Segmentation)

Conv+Sigmoid (Boundaries)

Conv+Sigmoid (Occlusions)

Intermediate supervision

Concat+Conv+ReLU
ASP layer (c.f . Fig. 6)
CoordConv (c.f . Fig. 6)
DenseNet block
Multicameral node
Spatial pooling (.5×)
Spatial unpooling (2×)

in out1 out2 out out

Detailed MC6† (Ours)

(a) Our multicameral structure compared with alternative design patterns for learning contextual representations.
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(b) Comparative training and validation errors on Mikado.

Architecture Number of Segmentation
parameters ODS AP AP60

RED-Atrous 1,957,137 .631 .619 .506
RED-Coords 1,471,105 .703 .747 .599
RED-Dense/E 1,202,217 .724 .774 .593
MC6† (Ours) 5,411,916 .767 .825 .691

MC2(=RED)4 1,465,105 .696 .732 .587
MC34 2,145,225 .705 .750 .598
MC44 2,961,345 .709 .762 .609
MC4†4 2,961,747 .752 .802 .666
MC2-Coords/D4 1,490,113 .713 .754 .607
MC6†-Coords/D44 5,417,916 .766 .824 .696
MC2-Atrous/D4 1,367,665 .591 .604 .454
MC4�†-Atrous/D24 3,273,834 .609 .626 .476
MC6†-Atrous/D44 5,053,356 .784 .837 .706

(c) Comparative performances on Mikado.
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(d) Comparative precision-recall curves on Mikado.

4 See Figure 10 for an overview of these architectures.

Fig. 9 Comparative results for occlusion-aware instance-sensitive segmentation on Mikado. In these experiments, a pruned VGG16 (or a pruned
DenseNet121 for RED-Dense/E) is used as encoder backbone. Best viewed in color. 4 See Fig. 10 for an overview of these architectures (Color
figure online)
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in out in out in out in out1 out2 out

4CM4CM3CMDER=2CM †

in out in out out in out1 out2 out out

MC2-X/D MC4�†-X/D (DUNet-like) MC6†-X/D4
(Tang et al, 2018)

in

out

out1

out2

out

Input image

Conv+Sigmoid
(Segmentation)

Conv+Sigmoid
(Boundaries)

Conv+Sigmoid
(Occlusions)

Intermediate
supervision

Concat+Conv+ReLU

Spatial pooling (.5×)

Spatial unpooling (2×)

CoordConv if X=Coords
ASP layer if X=Atrous
(c.f . Fig. 6)

Fig. 10 Multicameral structures with different numbers of encoder and decoder units, and different node types for segmentation inference. Best
viewed in color (Color figure online)

Comparing MC4 with MC4† thus shows the impact of
such supervisions.

– Optional specific nodes Dilated and coordinate-aware
convolutions locally reduce the translation invariance
of convolutional embeddings. We try to combine these
designpatternswithin ourmulticameral sequence. Specif-
ically, we compare variants of MC2 and MC6† networks
in which we use such nodes in the first decoder for out-
lining the unoccluded instances (D and D4 respectively).
These variants are thus referred to as MC2-X/D and
MC6†-X/D4 respectively, with X ∈ {Coords,Atrous}.

Implementation detailsDue to hardware limitations,we com-
pare the networks using a pruned VGG16 (or a pruned
DenseNet121 for the RED-Dense/E design) as first encoder
backbone. Specifically, we keep the first quarter of filters at
each layer in the original encoder. For the remaining layers,
we set a kernel size of 5×5 and the numbers of filters reported
in Table 1.

5.3 Occlusion-Aware Boundaries

Ourmost performance-enhancingmulticameral design (MC6†)
includes a bicameral structure (MC3†) trained for occlusion-
aware boundary detection. To further our analysis on the
multicameral components, we evaluate this structure alone
on Mikado and PIOD.

Baselines We compare MC3† with related layer and con-
nection structurings, released concurrently to our work (see
Fig. 12).

– DOOBNet Wang et al. (2018a) proposed an incremental
improvement of (Wang and Yuille 2016) for occlusion-
aware boundary detection. Wang and Yuille (2016)
employed two independentVGG16-based encoder–decoder
networks for boundaries andocclusionorientations respec-
tively. Instead, (Wang et al. 2018a) used a single encoder
and a single low-resolution half-decoder, both shared
by two independent high-resolution decoders. They also
proposed incremental improvements: a ResNet-based
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Input Expected result RED-Atrous RED-Coords RED-Dense/E MC6†-Atrous/D4
(Ours)

Fig. 11 Comparative results on Mikado using different encoder–decoder designs. Best viewed in color (Color figure online)

encoder, an ASP layer on top of it like in (Chen et al.
2018), and a focal loss-like function to drive the training
(Lin et al. 2017). We compare a bicameral structure with
the core DOOBNet design, i.e. without these incremental
improvements.

– MTAN In a more general context, (Liu et al. 2019) have
introduced attention masks at each resolution for pixel-
wise multi-task learning. Such masks enable resolution-

wise task-specific selections of shared features. As learn-
ing jointly boundaries andocclusions also requires shared
and task-specific representations, we compare bicameral
decoders with MTAN-like decoders for boundaries and
occlusions respectively.

Ablation study To further our above comparison, we iso-
late the impacts of sharing a single encoder and cascading
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Table 1 Number of filters for each layer in our full or pruned network implementations, using a full or pruned VGG16 as first encoder backbone
(E1

s )

Resolution E1
s {E, D}t>1

s
VGG16 Full Pruned Full Pruned

s = 1 conv1_x 64 16 32 8

s = 2 conv2_x 128 32 64 16

s = 3 conv3_x 256 64 128 32

s = 4 conv4_x 512 128 256 64

s = 5 conv5_x 512 128 256 64

in out1 out2 in out1 out2 in out1 out2
in

out1

out2

Input image

Conv+Sigmoid
(Boundaries)
Conv+Sigmoid
(Occlusions)

Concat+Conv+ReLU

Attention node (c.f . Fig. 6)

Spatial pooling (.5×)
Spatial unpooling (2×)

(a) DOOBNet-like (b) MTAN-like (c) MC3† (Ours)

Dataset: Mikado PIOD

Architecture Number of Boundaries Occlusions Boundaries Occlusions
parameters ODS AP AP60 ODS AP AP60 ODS AP AP60 ODS AP AP60

DOOBNet-like 1,497,330 .703 .764 .583 .729 .806 .633 .639 .674 .446 .629 .669 .451
MTAN-like 2,075,546 .700 .762 .579 .727 .809 .628 .646 .683 .437 .632 .676 .444
MC3† (Ours) 2,145,426 .701 .762 .581 .737 .815 .645 .642 .673 .450 .633 .683 .454

Comparative performances on Mikado and PIOD.

Fig. 12 A bicameral structure (MC3†) compared with state-of-the-
art design patterns adapted for occlusion-aware boundary detection.
a Encoder and low-resolution half-decoder shared by two independent
high-resolution half-decoders. b Task-specific decoders with attention

mechanisms to select shared features. cEncoder shared by two cascaded
decoders. In these experiments, a pruned VGG16 is used as encoder
backbone. Best viewed in color (Color figure online)

decoders, and we study how bicameral decoders compare
with partially shared decoders (c.f. Fig. 13). In Appendix,
we also study the impact of bicameral skip connections (see
Figs. 18, 19).

– Bicameral components We compare a bicameral struc-
ture with three intermediate designs: two independent
encoder–decoder streams (DOC-like (Wang and Yuille
2016)); two independent decoders sharing a single
encoder; two cascaded decoders sharing a single encoder.

– Partial decoder sharing We compare a bicameral struc-
ture with four alternative levels of decoder sharing:
bicameral decoders sharing their lowest-resolution layer;
sharing their two lowest-resolution layers; their three
lowest-resolution ones; all their layers, which is equiva-
lent to multi-task decoding.

Implementation details We use a pruned VGG16 as
encoder backbone for our comparison with DOOBNet-like
and MTAN-like architectures. In our ablation study, a full
VGG16 is used as encoder backbone. Our pruning scheme
and layer hyperparameters are the same as the ones in
Sect. 5.2.

5.4 Data Plausibility Check

AsMikado is a computer-generated dataset, onemay raise the
question whether it is realistic. The answer is obviously no,
but we claim that it is valuable for significative evaluations.
To prove this point, we evaluate the transferability of features
learned fromMikado to real data. In line with (Yosinski et al.
2014), features learned from a source domain are transferable
if they can be repurposed and boost generalization on a target
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in out1 in out2

Two streams

in out1out2

Shared encoder

in out1 out2

Cascaded decoder

in out1 out2

Bicameral

in

out1

out2

Input image

Conv+Sigmoid
(Boundaries)

Conv+Sigmoid
(Occlusions)

Concat+
Conv+ReLU

Spatial
pooling (.5×)

Spatial
unpooling (2×)

Dataset: Mikado PIOD

Architecture Number of Boundaries Occlusions Boundaries Occlusions
parameters ODS AP ODS AP ODS AP ODS AP

Two streams 46,839,938 (×1.0) .755 .832 .788 .872 .673 .708 .681 .733
Shared encoder 32,125,250 (×.69) .769 .847 .792 .876 .692 .732 .686 .738
Cascaded decoders 29,949,250 (×.64) .766 .844 .795 .880 .694 .735 .689 .748
Multi-task decoder 23,420,770 (×.50) .767 .845 .795 .880 .691 .731 .679 .731
Bicameral (=MC3†) 34,301,250 (×.73) .769 .847 .801 .884 .697 .738 .692 .747
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Two-stream ( / ) and bicameral ( / ) architectures on Mikado (solid)/PIOD (dashed)
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M2-B2

in out1 out2

M1-B3

in out1 out2

Bicameral

Dataset: Mikado PIOD

Architecture Number of Boundaries Occlusions Boundaries Occlusions
parameters ODS AP ODS AP ODS AP ODS AP

Multi-task 23,420,770 (×.50) .767 .845 .795 .880 .691 .731 .679 .731
M3-B1 hydrid 23,548,802 (×.50) .767 .845 .796 .879 .691 .735 .683 .734
M2-B2 hydrid 24,060,866 (×.51) .769 .848 .797 .881 .692 .738 .685 .740
M1-B3 hydrid 26,108,994 (×.56) .771 .848 .802 .885 .693 .737 .685 .739
Bicameral (=MC3†) 34,301,250 (×.73) .769 .847 .801 .884 .697 .738 .692 .747

Fig. 13 Ablation study on a bicameral structure for occlusion-aware
boundary detection. In these experiments, a full VGG16 is used as
encoder backbone. The best overall performances are obtained by shar-

ing a single encoder and cascaded decoders, altogether linked via
resolution-wise skip connections. Best viewed in color (Color figure
online)
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(i)

(ii)

(iii)

(iv)

(a) Comparative results for instance boundary (blue) and occluding boundary side (orange) detection on D2SA. From top to
bottom: input (i), ground truth (ii), prediction using the proposed network trained on D2SA (iii), using the proposed network
pretrained on Mikado then finetuned on D2SA with the first three encoder blocks frozen (iv). Pretraining the proposed network
on Mikado before finetuning on D2SA leads to significant improvements.
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(b) Performances of a bicameral network pretrained on Mikado/Mikado+ then finetuned on D2SA with the encoder
blocks 1, 2, 3 frozen (see also Figure 20 in appendix). The performances are shown w.r.t. the percentage of real images
retained for finetuning. Exploring a wider range of configurations in simulation (Mikado+) enables to learn more abstract
local representations of the boundaries and occlusions, thus achieving state-of-the-art performances while drastically
reducing the number of real images for finetuning.

Fig. 14 Comparative results on D2SA using a bicameral structure trained for occlusion-aware boundary detection, under different pretraining
conditions. Best viewed in color (Color figure online)
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domain. As target domain, we use D2SA (Follmann et al.
2018) (see samples in Fig. 3).

Synthetic feature transferability As deep features transition
fromgeneral to specificby the last layers,we train a bicameral
network for occlusion-aware boundary detection onMikado,
then freeze someof the encoder blocks and retrain the remain-
ing layers on D2SA. We conduct different finetunings, by
reducing progressively the number of D2SA images used for
finetuning.

Synthetic data distribution To highlight the benefits of syn-
thetic data in contrast with hardly extensible real-world
datasets, we additionally study how a richer synthetic data
distribution, i.e. Mikado+, impacts the domain adaptation.
As the ranges of texture, shape, and pose variations are
more widely represented in Mikado+, better transferable
invariants are expected to be learned. In a limited manner,
D2SA addresses this case by overlaying manually isolated
instances into fake training images (Follmann et al. 2018).
We thus compare with this augmentation strategy, referred
to as D2SA+.

Implementation details To expose the most transferable fea-
tures learned from Mikado, we first compare bicameral
networks finetuned on D2SA with different encoder block
at which the network is chopped and retrained (c.f. “Fig. 20
in Appendix”). We define a block as a set of convolutional
layers between two pooling layers. A VGG16-based encoder
is therefore composed of 5 blocks. A block is said “frozen”
when the corresponding parameters remain unchanged dur-
ing finetuning. Note that the choice of the layers to freeze
is application-dependent because the levels of semantics to
freeze depend on the differences between the source and tar-
get domains.

Note also that we consider D2SA instead of PIOD or
COCOA for transfer learning from Mikado because the data
distributions of PIOD and COCOA are very different from
Mikado. Indeed, Ben-David et al. (2010b, a) show that a low
divergence between the source and target domain distribu-
tions is a necessary condition for the success of domain
adaptation. “Figure 17c in Appendix” empirically shows
that this condition is not met for Mikado and PIOD. Unlike
PIOD and COCOA, which contain natural images of indoor
and urban scenes with people, cars and animals, D2SA and
Mikado both contain top-view images of household objects
in bulk.

5.5 Training Settings

Each network is trained and tested in the same conditions
(including fixed random seeds) using Caffe (Jia et al. 2014).

Data preparation The networks are not fed with the original
images but 256×256 sub-images randomly extracted from

each original image, and augmented offlinewith randomgeo-
metric transformations (flipping, scaling and rotation). The
folds of Mikado and Mikado+ are defined such that a tex-
ture appears only in one of the three subsets. The folds of
PIOD and D2SA are defined with respect to the initial split
proposed by their authors. Specifically, the original training
images are used for training or validation in our folds, and the
original validation images for test. The original test images
are never used as they are not publicly available.

Optimization We use the Adam solver (Kingma and Ba
(2015)) with β1 = .9, β2 = .999, ε = 10−8, and an ini-
tial learning rate of 10−4. We add a �2-regularization with
a weight decay of 10−4. The batch size is set to 8, and
the training images are randomly permuted at each epoch.
Since we solve a non-convex optimization problem, without
theoretical convergence guarantees, the number of training
iterations is chosen for each dataset from an empiric analysis
on training and validation subsets. As generally adopted, the
optimization is stopped when the validation error stagnates
or increases while the training error keeps decreasing.

– In our comparative experiments (Figs. 9, 12), we stop
each training after 60 epochs for bothMikado and PIOD.
Due to hardware limitations, each score results from one
data fold.

– In our ablation study on bicameral structuring (Fig. 13),
each optimization is stopped after 20 and 15 epochs for
Mikado and PIOD respectively, and each score is aver-
aged over three optimizations using different data folds.

– In our transfer learning experiments (Fig. 14), each fine-
tuning on D2SA is stopped after 15 epochs, and each
score is averaged over three optimizations using differ-
ent data folds. Pretraining on Mikado+ is stopped after
30 epochs.

Details on the epochs and data folds for each dataset are
provided in Table 2. Please note that although the chosen
stopping criterion may not be optimal for reaching the best
performances on each dataset, it is however sufficient for
significative comparisons since each network is trained under
the same conditions.

Initialization For all experiments, except finetuning from
weights pretrained on Mikado or Mikado+ in our synthetic
data plausiblity check, each network has its first encoder ini-
tialized with weights pretrained on ImageNet (Russakovsky
et al. 2015), and the remaining layers with the Xavier method
(Glorot and Bengio 2010). To avoid overfitting, each con-
volutional block is ended with a dropout layer (we set the
dropout ratio to .5), except in the first encoder.
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Table 2 Image folds for each dataset after offline augmentation

Dataset Mikado PIOD D2SA D2SA+ Mikado+ COCOA
Training images 13,600 9600 512 2960 28,800 12,800

Validation images 800 800 56 328 4800 1424
Test images 4800 800 5992 5992 – 1323

Iterations per epoch 1700 1200 64 370 3600 1600

6 Discussion

In this section, we argue in light of our experimental results
that the proposed multicameral decoder is more effective for
dense homogeneous layouts than alternative design patterns,
and that the jointly proposed synthetic data is plausible with
respect to real-world problems.

6.1 On the ProposedModel

Homogeneous layouts require a complex decoding process
When localizaling specific instances in dense homogeneous
layouts, the decoding process has great importance because
the pixel embeddings must discriminate between instances
of the same object. Figure 9 confirms that a multicameral
design proves more effective onMikado than state-of-the-art
design patterns for capturing position-sensitive represen-
tations. Specifically, our MC6† design outperforms RED-
Atrous, RED-Coords, and RED-Dense/E networks by 20.6,
7.8 and 5.1 points inAP respectively.We explain these differ-
ences as follows: RED-Atrous enlarges the receptive field at
the lowest resolution, which may lead to overfitting the train-
ing object layouts or mistakenly capturing relations between
similar patterns far away from each other; RED-Coords
associates each latent representation with a global location,
thereby reducing the generalizability of these representa-
tions; RED-Dense/E uses DenseNet121 encoder blocks to
softly capture more complex image representations that can
hardly be fully exploited within a simple decoding process.
Using only a VGG16 encoder, our multicameral decoding
process produces higher-quality segmentations and more
contrasted pixel-wise decisions, as illustrated in Fig. 11.Nev-
ertheless, half-outlined instances still appear (see the third
row of Fig. 11), seemingly due to a lack of long-range pixel
associations in the learned representations.

Structured decoding units improves the learning The success
of a multicameral design results from our design choices to

structure the decoding process: cascading subtask-specific
decoder and encoder–decoder units. As reported by Fig. 9c,
cascading simple decoders without intermediate supervi-
sions gradually improves the performances. Starting from
MC2, adding one decoder (MC3) increases AP by 1.8 points,
adding another decoder (MC4) by 3 points. Furthermore,
structuring the backpropagation signals with ordinal inter-
mediate supervisions for instance boundary and occluding
boundary side detections (MC4†) enables an additional gain
of 4 points. Finally appending an encoder–decoder unit
for refining the segmentation (MC6†) leads to an over-
all pixel-wise improvement of 9.3 points over MC2, a
VGG16-based RED network without additional state-of-
the-art components. All these experimental results confirm
that encouraging subtask-specific feature through ordinal
multiscale units is an effective design pattern for dense homo-
geneous layouts.

Learning position-sensitive representations proves more
effective late in the decoding process A multicameral design
can be enhanced by enlarging the receptive fields just before
decoding the unoccluded instances (MC6†-Atrous/D4). As
reported by Fig. 9c,MC6†-Atrous/D4 outperformsMC6† by
1.2 points. Learning explicity position-sensitive representa-
tions late in the decoding process enhances the performances
in alternative design upgrades. Specifically, Fig. 9c reports
various similar improvements. First, using coordinate-aware
convolutions: between RED-Coords and MC2-Coords/D
(note thatMC2 andREDare equal); betweenMC2-Coords/D
and MC6†-Coords/D4. Second, using dilated convolutions:
between MC2-Atrous/D and MC4�†-Atrous/D2; between
MC4�†-Atrous/D2 and MC6†-Atrous/D4. These observa-
tions strongly suggest that the use of position-sensitive
transforms, which partially break the translation invariance
property of convolutional layers, should be thought with
respect to the convolutional and non-convolutional aspects
of the learned task. We applied this principle in our MC6†-
Atrous/D4 design: instance-aware segmentation requires
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some translation variance, while occlusion-aware boundary
detection does not.

Ordinal decoders are important for detecting occlusion-
aware boundaries as well Our discussion on the importance
of structure decoding extends to the lower-level task of
occlusion-aware instance boundary detection. As reported
by Fig. 12, a bicameral network trained for jointly detecting
instance boundaries and occluding boundary sides (MC3†)
compares favorably with DOOBNet-like and MTAN-like
designs. Specifically, our design increases AP in the high-
recall regime for occlusions by 1.7 points and 1 point
on Mikado and PIOD respectively. Indeed, a key differ-
ence between MC3† and these state-of-the-art structurings
is the ordinal relation between our decoders to encour-
age subtask-specific feature reuse. A bicameral structure
is particularly suited to occlusion-aware boundary detec-
tion because occluding boundary sides can be interpreted as
instance boundaries translated in the direction of the occlud-
ing instance.

Our ablation study on bicameral structuring (Fig. 13)
confirms this important aspect. Specifically, a bicameral
structure, which combines a shared encoder and cascaded
decoders, achieves the best overall performances on both
Mikado and PIOD. A bicameral structure also compares
favorably with bicameral decoders that partially share their
layers.

6.2 On the Proposed Synthetic Data

Mikado enables a meaningful evaluation We create Mikado
for our evaluation because, to the best of our knowl-
edge, dense homogeneous layouts are missing from the
public datasets for occlusion-aware instance segmentation.
Although Mikado is a synthetic dataset, it is valuable for a
meaningful evaluation. Our experimental results in Fig. 14
show thatMikado enables transferable feature learning in line
with (Yosinski et al. 2014). Specifically, we show that using
synthetic representations learned from Mikado enables to
better detect occlusion-aware instance boundaries on D2SA
(Follmann et al. 2018). As reported by Fig. 14b, a gain of
more than 10 points in AP for boundaries and 9 points for
occlusions is achievedwhen finetuning the proposed network
on D2SA with the first three encoder blocks frozen after pre-
training on Mikado, instead of training all the layers only on
D2SA (see also “Fig. 20 in Appendix”). This gain is quali-
tatively corroborated by Fig. 14a. It suggests that a network
trained on Mikado, which contains more occlusion relations
between instances than the D2SA images for finetuning,
learns a more general notion of occlusion. Our simulation-

based pretraining also proves more effective than D2SA+
(Follmann et al. 2018), i.e. creating training images by over-
laying manually isolated instances. Despite the domain shift
between Mikado and D2SA, using simulation enables more
physics-consistent rendering at boundaries and less redun-
dancy in terms of poses, unlike brute-force overlaying of
instance segments from real images. Furthermore, almost
equivalent performances are achieved when reducing the
number of human-labeled real images for finetuning. Figure
14b shows that a bicameral network finetuned onD2SAusing
only 25% of the initial D2SA finetuning subset, with the first
three encoder blocks frozen after pretraining onMikado, still
outperforms a bicameral network trained only on D2SA or
D2SA+. All of these results confirm that the representations
learned fromMikado are meaningful w.r.t. real-world setups.

Mikado+ leads to even better results Unlike real-world
datasets, a synthetic dataset is readily extensible. By enrich-
ing Mikado with 20 times more texture images, 15 times
more background images and 4 mesh templates, namely
Mikado+, the ranges of color, texture, shape, and pose varia-
tions are better represented. As shown by Fig. 14b, this leads
to more generalizable invariants. Specifically, pretraining on
Mikado+ instead of training only on D2SA increases AP
by 10.1 points for boundaries and 7.8 points for occlusions
while using only 12.5% of the initial D2SA finetuning set.
By contrast, using Mikado in the same conditions leads to a
gain of 3.4 points for boundaries and 4.1 points for occlu-
sions. These results imply that Mikado+ enables to learn
more abstract local representations than Mikado. However,
when applied on D2SA without finetuning, a pretraining
on Mikado+ proves less effective than on Mikado. Consis-
tently with the results after finetuning on D2SA, this could
be explained by an overgeneralization of the task-specific
layers. The neurons indeed co-adapt to capture the most dis-
criminative patterns that are not likely to be the colors nor
the object and background textures in Mikado+. An over-
randomization of the colors and textures may disconnect
the learned representations from concrete examples. This
has nevertheless the advantage of easing the finetuning on
D2SA, as the real-world scenes then appear as one variation
within the learned range of variations. All these observa-
tions are incentives to favor synthetic training data when
pixel-wise annotations on real-world images are hardly col-
lectable.Hand-made annotationsmay also hinder the training
due to their inaccuracy and incompleteness. As illustrated by
“Fig. 17 in Appendix”, a bicameral network trained on PIOD
is able to fairly predict non-annotated boundaries, e.g. inter-
nal boundaries of instances with holes, missing instances,
or instances ambiguously considered as part of the back-
ground. Furthermore, objects with complex shape, such as
houseplants, which are often coarsely annotated by humans,
are finely delineated by the proposed network.
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7 Conclusion

We aimed at outlining unoccluded instances in dense homo-
geneous layouts, using a deep residual encoder–decoder
design. However, decoding translation-invariant represen-
tations becomes problematic for distinguishing identical
instances. Unlike the state-of-the-art solutions which
strengthen the encoder while reducing the decoder to a
mere upsampling branch, we increased the complexity in
the decoder by coupling decoder and encoder–decoder units
in cascade, using resolution-wise skip connections. We also
introduced a synthetic data generation pipeline (Mikado) to
produce images of dense homogeneous layouts, as this sce-
nario is missing from the public datasets. Our experiments
on Mikado and PIOD showed that: (i) a multicameral design
gives better results than aggregated dilated or coordinate-
aware convolutions; (ii) ordinal multiscale latent represen-
tations improve the attention to unoccluded instances; (iii)
design patterns for reducing the translation invariance are
more efficient later in the decoding process. Furthermore,
our experiments on transfer learning from Mikado to D2SA
showed that a pretraining on Mikado enables state-of-the-art
performances, while reducing by more than 85% the number
of real images for finetuning.

The proposed synthetically pretrained multicameral FCN
establishes a new baseline for parsing images of dense homo-
geneous layouts. Nevertheless, there are still open research
directions. Due to the “horizontal” skip connections, the
number of filters severely increases with the number of
decoding units, which may be prohibitive in terms of com-
putational cost and memory requirements. It would be worth
investigating optimization-based strategies, such as network

architecture search approaches (Cai et al. 2019; Yu et al.
2019), to determine the optimal grid node and subtask order-
ing with respect to the application. Executing the model on
the image at a lower-resolution then using adaptive sparse
representations to iteratively refine the inferred boundaries
could be another path to explore, as suggested by (Kir-
illov et al. 2019). Furthermore, the proposed model does
not explicitly exploit the redundancy within the scene. Yet,
instances of the same object provide many cues to build an
implicit object representation. Explicitly capturing the corre-
spondences between the instances of a pile could be achieved
using graph convolutional modules, in the same vein as dual
graph networks for heterogeneous scenes (Zhang et al. 2019).
Finally, a pretraining onMikado requires some domain adap-
tation to achieve expert-level performances on a specific
application. Although the proposed pretraining drastically
reduces the need of annotations, producing the segmentation
of a dense layout manually is very tedious. Coupling the pro-
posed learning with a generative adversarial network (Dong
et al. 2018) or using self-supervision (Lee et al. 2019) would
enable ordinal decoder units to adapt to novel conditions from
unlabeled images.

Acknowledgements We thank Romain Brégier, Florian Sella, and the
anonymous reviewers for their insightful comments and suggestions
that helped us to greatly improve this article.

Appendix

In this section, we provide additional comparisons, results
and materials (Figs. 15, 16, 17, 18, 19 and 20) related to
Sects. 4 and 5.
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(a)

(b)

(c)

(d)

Approach
All regions Things1 only Stuff1 only

Boundaries Occlusions Boundaries Occlusions Boundaries Occlusions
ODS AP ODS AP ODS AP ODS AP ODS AP ODS AP

(c) Amodal segmentation 2 .492 – .529 – .536 – .608 – .489 – .397 –
(d) MC3† (Ours) .666 .694 .637 .673 .666 .690 .640 .674 .687 .727 .648 .693

1 Things are objects with well-defined shape, e.g. car, person, and stuff instances amorphous regions, e.g. grass, sky (Caesar
et al, 2018).
2 The evaluation is performed on the binary segment proposals made available by the authors. We derive occlusion-aware
boundaries from the ground truth and the precomputed results alike: after intersecting the modal and amodal masks of an
instance, the amodal pixels that don’t belong to the intersection are considered as occluded.

Fig. 15 Comparative results for instance boundary (blue) and unoc-
cluded boundary side (orange) detection on COCOA. From top to
bottom: input (a), ground truth (b), inference by amodal instance seg-
mentation (Zhu et al. 2017) (c), using a bicameral structure (d). Unlike

the proposed approach, using a region proposal-based detection quali-
tatively leads to coarse segmentations and non-detected instances. Best
viewed in color (Color figure online)
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Top-view camera (RGB and depth) rendering

SegmentationRGB Depth

Generating ground-truth boundaries and occlusions

Local depth-based
segmentations

Instance
boundaries

Boundaries and
unoccluded side

Training and test data preparation

(a) Pipeline for generating the
ground-truth occluding boundary side.
At each boundary pixel, a
depth-based binary segmentation of
the neighborhood is performed to
label each side, such that the higher
side is set to 1 and the lower side to 0.

(b) Overview of the sachet textures used for generating Mikado.

(c) Overview of the background textures used for generating Mikado.

Fig. 16 Supplementary material on the proposed synthetic data generation pipeline
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odakiMDOIP

(i)

(ii)

(iii)

(iv)

(a) From top to bottom: input (i), ground truth (ii), inference using two independent streams (iii), using a bicameral structure
(iv). Instance boundaries are in blue, their unoccluded side in orange. Red rectangles highlight some false positive erased when
using instead a single encoder shared by cascaded decoders.

(i)

(ii)

(iv)

(b) From top to bottom: input (i), ground-truth (ii), inference using a bicameral structure (iv). The proposed network fairly infers
non-annotated boundaries and delineates instances coarsely annotated by humans.

Tests on Mikado

Trained on Boundaries Occlusions
ODS AP ODS AP

Mikado .769 .847 .801 .884
PIOD .300 .233 .326 .267

Tests on PIOD

Trained on Boundaries Occlusions
ODS AP ODS AP

PIOD .697 .738 .692 .747
Mikado .405 .350 .400 .349

(c) Cross-dataset performances between Mikado and PIOD using a bicameral design. Both datasets perform
poorly on each other because they follow very different texture, shape, and pose distributions.

Fig. 17 Comparative results for occlusion-aware boundary detection on PIOD and Mikado. Best viewed in color (Color figure online)
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in out1 out2 in out1 out2

With skip connections Without skip connections

in

out1

out2

Input image

Conv+Sigmoid
(Boundaries)

Conv+Sigmoid
(Occlusions)

Concat+
Conv+ReLU

Spatial
pooling (.5×)

Spatial
unpooling (2×)

c1 c2

c3 c4

c1 c2

c3 c4

c1 c2

c3 c4

∑
i={1,...,4} wici

∑
i={1,...,4} w

′
ici

w1(c1 + c3)

w′
1(c2 + c4)

w1 max(c1, c3)

w′
1 max(c2, c4)

(iii)

(ii)

(i)

(a) Left: a bicameral structure with and without skip connections. Right: different skip connection types for merging two
2-channel feature vectors (c1, c2) and (c3, c4) into a new 2-channel one, using parameters wi and w′

i. From top to bottom: by
element-wise max (i); by element-wise sum (ii); by concatenation (iii).

Dataset: PIOD Mikado
Skip connections? Boundaries Occlusions Boundaries Occlusions
(Type) ODS AP AP60 ODS AP AP60 ODS AP AP60 ODS AP AP60

No .693 .744 .495 .692 .749 .520 .759 .834 .686 .793 .878 .748
Yes (Element-wise max) .685 .729 .512 .676 .731 .522 .755 .830 .676 .786 .871 .735
Yes (Element-wise sum) .687 .730 .505 .678 .731 .514 .761 .838 .685 .791 .876 .743
Yes (Concatenation) .697 .738 .517 .692 .747 .532 .769 .847 .698 .801 .884 .758

(b) Comparative performances on PIOD and Mikado.

odakiMDOIP

(i)

(ii)

(iii)

Without With Without With Without With Without With

(c) From top to bottom: input and ground truth (i), activation map after the affine transformation on top of the first unpooling
layer of the boundary branch (ii), inference (iii). Combining spatial information and higher-level semantics at each scale using
skip connections between the encoder and decoders enables to detect instance boundaries earlier when decoding.

Architecture Encoder Number of Boundaries Occlusions
backbone parameters ODS AP AP60 ODS AP AP60

Two streams (Baseline) VGG16 46,839,938 (×1.0) .673 .708 .476 .681 .733 .518

Bicameral decoder 34,301,250 (×.73) .697 .738 .517 .692 .747 .532
DenseNet121 33,009,846 (×.70) .712 .761 .529 .714 .778 .556

(d) Plugging a bicameral decoder to a deeper encoder with DenseNet blocks (Huang et al, 2017) enables to capture
better contextual representations of the image, thus improving the detection of occlusion-aware boundaries.

Fig. 18 Comparative results for occlusion-aware boundary detection on PIOD and Mikado, using a bicameral structure: with and without skip
connections, with different types of skip connections, with different encoder backbones. Best viewed in color (Color figure online)
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Bicameral without horizontal skip connections Bicameral with horizontal skip connections

Fig. 19 Training (solid) and test (dashed) errors for instance boundary
(top) and occluding boundary side (bottom) detection on PIOD (left)
andMikado (right) using different network architectures. Lower bound-

ary and occlusion errors are reached when jointly learning boundaries
and occlusions (green, blue, yellow, purple) rather than independently
(red). Best viewed in color (Color figure online)

in out1 out2 in out1 out2 in out1 out2 in out1 out2 in out1 out2

Frozen: 1 Frozen: 1, 2 Frozen: 1 to 3 Frozen: 1 to 4 Frozen: 1 to 5

Pretraining Finetuning Number of real Frozen encoder Boundaries Occlusions
on Mikado on D2SA training images blocks� (in pink) ODS AP ODS AP

No Yes 438 None .700 .715 .725 .756
Augmented (D2SA+) .783 .792 .785 .795

Yes

No 0 – .652 .649 .458 .400

Yes 438

None .780 .808 .794 .830
1 .783 .803 .797 .829

1, 2 .780 .802 .793 .827
1, 2, 3 .793 .819 .810 .849

1, 2, 3, 4 .759 .799 .769 .819
1, 2, 3, 4, 5 .767 .815 .773 .823

� A block is a set of convolutional layers between two pooling layers; a VGG16-based encoder is therefore composed of 5 blocks.

Fig. 20 Comparative performances of a bicameral structure on D2SA using different pretraining conditions. Performances on both boundaries and
occlusions are maximized when freezing at finetuning time the first three encoder blocks pretrained on Mikado. Best viewed in color (Color figure
online)
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