
International Journal of Computer Vision (2020) 128:1360–1374
https://doi.org/10.1007/s11263-019-01238-5

Model-Based Robot Imitation with Future Image Similarity

A. Wu1 · A. J. Piergiovanni1 ·M. S. Ryoo1,2

Received: 27 July 2018 / Accepted: 18 September 2019 / Published online: 11 October 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We present a visual imitation learning framework that enables learning of robot action policies solely based on expert
samples without any robot trials. Robot exploration and on-policy trials in a real-world environment could often be expen-
sive/dangerous. We present a new approach to address this problem by learning a future scene prediction model solely from
a collection of expert trajectories consisting of unlabeled example videos and actions, and by enabling action selection using
future image similarity. In this approach, the robot learns to visually imagine the consequences of taking an action, and obtains
the policy by evaluating how similar the predicted future image is to an expert sample. We develop an action-conditioned
convolutional autoencoder, and present how we take advantage of future images for zero-online-trial imitation learning. We
conduct experiments in simulated and real-life environments using a ground mobility robot with and without obstacles in
reaching target objects. We explicitly compare our models to multiple baseline methods requiring only offline samples. The
results confirm that our proposed methods perform superior to previous methods, including 1.5× and 2.5× higher success
rate in two different tasks than behavioral cloning.

Keywords Robot action policy learning · Behavioral cloning · Model-based RL

1 Introduction

Learning robot control policies directly from visual input is
a major challenge in robotics. Recently, progress has been
made with reinforcement learning (RL) methods to learn
action policies from images using convolutional neural net-
works (CNNs) (Levine et al. 2016; Zhu et al. 2016; Finn
and Levine 2017; Sadeghi et al. 2017; Peng et al. 2018).
Taking advantage of thousands of online trials aswell aswell-
defined reward signals [e.g., thousands of robot hours (Levine
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et al. 2016)], these approaches provide promising results that
CNNs within the RL framework make better state repre-
sentation learning possible. Model-based RL works (Finn
and Levine 2017) further demonstrated that learning a state-
transitionmodel fromvisual data is able to reduce the number
of samples needed for RL. This ‘state-transition’ model
capturing how state representations change conditioned on
actions is also closely related to ‘future image prediction’ (or
representation regression) models in computer vision (Von-
drick et al. 2016; Oh et al. 2015; Denton and Fergus 2018).

Observing expert behavior can greatly accelerate learn-
ing. Humans are able to adapt and imitate a new ability
without much practice and much more quickly than when
learning fromscratch. For this reason, the ability to learn from
demonstrations (LfD) (Argall et al. 2009) is highly desirable
for autonomous agents. Imitation learning is a form of pol-
icy learning, taking advantage of expert examples instead of
explicit reward signals. There are two standard approaches
to imitation learning: behavioral cloning (BC) and inverse
reinforcement learning (IRL). Behavioral cloning is a super-
vised policy learning problem: the model is given the expert
action taken in a state and attempts to replicate the state-
action distribution. On the other hand, IRL attempts to infer
the underlying reward signal from expert trajectories and
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then derives action policies using reinforcement learning.
This learnsmore generalized policies than behavioral cloning
(Finn et al. 2016; Sutton and Barto 2017).

However, each of the three research directions mentioned
(i.e., model-based RL, behavioral cloning, and IRL-based
imitation learning) has its own limitation when applied to a
real-world robot task. In a real-world robot scenario, it often
is the case that a very limited number of expert examples
is provided for the learning; robot explorations or on-policy
trials could often be expensive and dangerous in a real-world
environment. Behavioral cloning is able to obtain a policy
solely based on such expert trajectories without any further
trials. However, due to the amount of expert sample data
being inevitably limited, encountering unseen states often
leads to a covariate shift that can be irrecoverable with-
out querying the expert (i.e., in unseen states, the predicted
action can be unreliable or random) (Ross et al. 2017). On the
other hand, while model-based RL and IRL-based imitation
learning are able to learn policies that generalize better, both
still require hundreds of real-world, on-policy trials for the
learned policy to become accurate. This makes the learning
process less practical for real-life autonomous agents in com-
plex real-world environments, particularly when they need
to interact with humans or when the environment is not con-
trolled.

Ideally, we desire learning a real-world action policy from
a limited number of expert trajectories without any further
trials that still generalizes well to unseen states and actions.
In this paper, we focus on the development of a convolu-
tional model for such zero-trial policy learning. Our main
idea is to enable (1) learning of a realistic future prediction
(i.e., state-transition) model solely from a limited number of
expert trajectories (i.e., without any robot exploration) with
ourCNN, and tomake (2) better zero-trial action policy learn-
ing possible by taking advantage of such transition model.

We propose a model for imitation learning in continuous
action spaces with completely offline learning (i.e., requiring
no online trials) that produces better robot policies com-
pared to behavioral cloning. We accomplish this through
the use of raw visual sensory inputs (i.e., first person robot
images) using the proposed method of future image predic-
tion, shown in Fig. 1 and described in Sect. 4.1. Our future
image prediction model is a CNN that predicts a realistic
future image given a current image and the action taken. By
learning a model predicting the consequences of taking an
action, we are able to use it to learn a better action policy. In
our approach (i.e., action selection using future image simi-
larity), we learn the function that evaluates how similar the
predicted future image is to expert images along with the
future prediction model. Our action policy directly relies on
this evaluation function as the critic, thereby selecting the
action that leads to future images most similar to the expert
images.

f(It , at )
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L(      ,       )It+1 It+1
^
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Fig. 1 Our future prediction model f (It , at ) learns to predict a future
image given the current state (i.e., image) and action (i.e., change in
pose). This serves as the state transition model to evaluate actions in
imitating expert behavior. Notice that the model was able to predict the
door on the left of the scene to appear as the robot takes the action at
of turning left

We designed a CNN composed of a convolutional autoen-
coder for action-conditioned future image prediction. Given
an input frame, the model maps it to a lower-dimensional
intermediate representation, which abstracts scene informa-
tion of the current image. The model then concatenates
the action vector, and the convolutional decoder produces
an image from this concatenated representation. We design
and evaluate several CNNmodels for our action-conditioned
autoencoder: (i) using a standard linear state-action repre-
sentation, (ii) using a spatial state-action representation, and
(iii) a stochastic version of the model by learning to generate
a prior distribution.

We conduct our experiments using a ground mobility
robot in both real-world office and simulator environments
containing everyday objects (e.g., desks, chairs, monitors).
The robot’s goal is to approach a target object without hit-
ting any obstacles. We do not use any artificial markers or
labels for the target object in our trajectories. The learn-
ing was done entirely based on first-person videos taken
from a robot’s viewpoint without any annotations. This
makes the future prediction model learning challenging as
the entire frame changes based on the action taken, and
not just a few pixels in the frame as in manipulator robots.
Expert first-person robot videos were obtained via teleoper-
ation.

The technical contributions of this paper are: (1) Learning
of a realistic future image prediction (i.e., state-transition)
model from only expert samples. We show it general-
izes to non-expert actions and unseen states. (2) Using
the learned state-transition model to improve behavioral
cloning by taking advantage of the ‘imagined’ (i.e., pre-
dicted) consequences of non-expert actions. Our second
component only relies on expert images, similar to zero-
shot learning works (Torabi et al. 2018; Pathak et al.
2018).
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2 RelatedWorks

Convolutional neural networks are high capacity function
approximators with the ability to learn intermediate rep-
resentations, making them ideal for our models learning
from high-dimensional visual inputs. Although CNNs are
commonly used for the classification of images and videos
(Simonyan and Zisserman 2014; Liu et al. 2016; Carreira and
Zisserman 2017; Piergiovanni and Ryoo 2017), they can also
be used for learning other types of functions [e.g., playing
Atari games using Q-learning (Mnih et al. 2015)].

2.1 Behavioral Cloning and Imitation Learning

There are two main approaches to imitation learning: behav-
ioral cloning (BC) and inverse reinforcement learning (IRL).
Behavioral cloning is a supervised formof imitation learning;
a simple but effective and direct solution. Given a state, or an
observation such as an image, the model learns to produce
an action matching one provided by an expert (Pomerleau
1991). The main challenge of BC is that it is very difficult to
obtain supervised training data that covers all possible test
conditions the robot may encounter and thus difficult for it to
learn a model that generalizes to unseen states. Techniques
such as using additional sensors (Pomerleau 1989; Giusti
et al. 2016; Bojarski et al. 2016) or querying the expert when
unseen states are encountered (Ross et al. 2017) have led to
moderate success. Some have taken a variant approach to BC
by only accessing expert observations and deriving resulting
actions (Liu et al. 2017; Torabi et al. 2018), similar to inverse
dynamics. Others have shown improvements to BC by inject-
ing noise into the expert policy during data collection, forcing
corrective action to disturbances (Laskey et al. 2017).

Inverse reinforcement learning (IRL) techniques recover
a reward signal from the expert trajectories which are state-
action pairs (Ng and Jordan 2000; Abbeel and Ng 2004;
Ziebart et al. 2008; Wulfmeier et al. 2015). The learned
reward function is used with traditional reinforcement learn-
ing methods, which usually spend thousands of trials or
more to learn action policies matching expert behavior.
These methods have recently achieved success with high-
dimensional data inputs (Finn et al. 2016; Ho et al. 2016).
Other works take on an adversarial formulation to imitation
learning, such as GAIL (Ho and Ermon 2016). However,
GAIL requires an extensive trial-and-error learning period by
its nature, suffers from high variance when training stochas-
tic policies, and is not suitable for the scenarios with zero
online trials, which this paper focuses on.

Baram et al. (2017) present a model-based generative
adversarial imitation learning (MGAIL) approach that uses
fewer expert examples and interactions with the environment
than GAIL while achieving similar or better performance
in classical simulated RL experiments (e.g., mountain car,

hopper) through the use of a forward model and multi-step
transitions. However, evenwith such low dimensional inputs,
10’s of thousands of interactions with the environment were
required to train the model. Learning with high dimensional
images with mobility robots in a real-life environment would
make such an approach extremely difficult or nearly pro-
hibitive.

2.2 Model-Based Reinforcement Learning

One major drawback of reinforcement learning is the large
number of online trials needed for the agent to learn the
policy. Although some have trained their agent in a simu-
lated environment (Sadeghi et al. 2017; Zhu et al. 2016) to
minimize the amount of learning needed in a real-life envi-
ronment, it is very challenging to design realistic simulation
models that transfer well to accurate real-world policies.

Model-based RL, utilizing a state-transition model, is
able to significantly reduce the number of on-policy sam-
ples needed for reinforcement learning. Recent works took
advantage of convolutional models to learn image-level state
transitions conditioned on agent/robot actions. For example,
using action-conditionedmodels to predict future scenes (Oh
et al. 2015; Chiappa et al. 2017) or robot states (Peng et al.
2018) has been employed in simulated environments. Oh
et al. (2015) and Chiappa et al. (2017) learn transition mod-
els using recurrent networks to predict scenes for multiple
steps into the future conditioned on a sequence of actions.
Peng et al. (2018) learn an inverse model for multi-jointed
humanoid robots to perform complex tasks such as flip-
ping and spinning. The agent performs imitation learning by
receiving rewards for following reference motions and task
completions. Although the image inputs for theseworkswere
high-dimensional, they were limited to video games or sim-
ulated environments and did not need to address the highly
stochastic nature of the real-world environment. In our robot
experiments, we found that accurate future predictions were
much more challenging to achieve in the real-life environ-
ment than the simulated environment. We discuss this more
with the SSIM measures in Sect. 6.2.

2.3 Model-Based Imitation Learning

There are also approaches utilizing state-transition model
learning (or its inversemodel learning) for imitation learning.
In particular, recent works (Torabi et al. 2018; Pathak et al.
2018) attempted learning of agent policies without expert
action labels. The setting was that although state-action pairs
from robot exploration trajectories (random or guided) could
be used for the state-transition model learning, only the use
of expert states (images in our case) were allowed for policy
learning. This is similar to our learning process in the sense
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that no action labels are used in the policy learning stage (i.e.,
critic learning).

Torabi et al. (2018) presented an approach of behav-
ioral cloning from observation. They first allow the agent to
explore its environment to learn an inverse dynamics model
(i.e., learn the action causing the state to change from st to
st+1). Then they infer the action from the state transitions of
expert trajectories, yielding state-actionin f erred pairs to train
a generative model. Because they are focusing on a more
challenging problem (i.e., they do not access expert actions
directly for the policy learning), many of their experiments
showed worse performance to standard behavioral cloning
using both state and action information.

Forward consistency was a recently developed model that
only relies on off-policy learning (Pathak et al. 2018). The
model built on the premise that reaching a goal ismore impor-
tant than how it is reached - that the path does not need to
be optimal. They first predict an action based on the current
image, a goal image, and the previous action taken. As long
as the predicted action leads to a state that is consistent with
the ground truth state, regardless of the predicted action being
different from a ground truth action, the predicted action is
considered to be ‘consistent’ and the forward consistency
network learns such behavior. This learning could be done
without expert action information, as long as it already has
a state-transition model learned from non-expert state-action
pairs. Although the model requires an additional input (i.e.,
goal image) compared to standard behavioral cloning or imi-
tation learning, it showed a potential in this direction.

2.4 Future Scene Prediction

Several existing works use CNNs to predict (i.e., regress)
future human pose (Chao et al. 2016; Walker et al. 2017;
Lee and Ryoo 2017) or object/pixel movements in a scene
(Vondrick et al. 2016; Finn and Levine 2017; Walker et al.
2014). However, the background in most of these works is
static and only a small portion of the frame (e.g., specific
objects or a robot arm) actually changes. This is particularly
limiting when applied to videos with dynamic camera move-
ments, where pixels in the entire scene move and objects
may newly appear or leave the scene frequently. Furtherwork
on movie scene prediction (Vondrick et al. 2016) contained
some samples with camera motion, but many examples had
a static camera. Liu et al. (2017) proposed a model able
to reconstruct interpolated frames as well as extrapolated
future frames. This was a voxel-based approach using mul-
tiple input frames to determine scene flows. However, these
works were purely designed for computer vision problems
rather than real-world robot applications, making them less
suitable for first-person robot videos. Further, these models
are not action-conditioned, limiting their ability to predict
different futures.

There are also works on future prediction conditioned on
a particular set of parameters, including robot action (Finn
et al. 2016) and camera viewpoint (Tatarchenko et al. 2016;
Dosovitskiy et al. 2017; Zhou et al. 2016). All these models
use a similar approach where an image is fed into a CNN and
the other parameters are concatenated directly with an inter-
mediate representation of the CNN (e.g., at a fully connected
layer). In this paper, we use future prediction architectures
which concatenate a learned spatial form of the action repre-
sentation to the intermediate convolutional layer. This is done
by making a small sub-network learn a better representation
of the action vector using reshaping and dense layers, before
the concatenation.We propose an action-conditioned autoen-
coder CNN architecture for the future image prediction, and
confirm it benefits the robot learning.

Babaeizadeh et al. (2017) proposed a stochastic version
of future prediction, which was also tested with videos of
a manipulator robot but without actual robot control. Den-
ton and Fergus (2018) similarly introduced a stochastic state
representation that can learn a prior distribution capturing the
various outcomes in complex environments. The use of such
state representation allows for generation of different future
images from the same state, based on the learned probabil-
ities of what can happen. We combine this stochastic state
representation with the action-conditioned future predictor
to generate realistic and clear future images. We find that
this stochastic state is particularly beneficial for real-world
data where the environment is quite complex, allowing us
to jointly train the model in an end-to-end fashion for better
policy learning.

3 Problem Formulation

We focus on the problem of ’zero-trial’ imitation learning,
which essentially is the setting of behavioral cloning. By
‘zero-trial’ we mean that we learn an action policy of the
robot solely based on expert trajectories (i.e., human sam-
ples) without any on-policy robot trials. That is, the robot is
prohibited from interactingwith the environment to obtain its
own samples to check/update the policy. The learned policy
is directly applied to the robot in the real-world environment.
Notably, this is different from approaches such as GAIL (Ho
and Ermon 2016), which requires both expert trajectories and
on-policy robot trials to learn the policy.

We formulate the problem of robot policy learning as the
learning of convolutional neural network (CNN) parameters.
Our agent (i.e., a robot) receives an image input It at every
time step t . Given It , our goal is to learn a policy, π , which
given the current state, selects the optimal action to take. That
is, the policy is modeled as a neural network, and takes the
current image as input and produces an action a = π(It ). In
the case of robot imitation learning, π has to be learned from
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expert trajectories (i.e., samples),which are often obtained by
humans controlling the robot. Note that the action at can be
the directmotor control commands. In this work, we consider
continuous state and action spaceswhere the states are simply
images from the robot camera.

4 Zero-Trial Imitation with a Visual Model

We present a new zero-trial imitation learning method using
future image prediction. Our future image prediction model
is a CNN that predicts a realistic future image given its cur-
rent image and an action. The model first learns how the
image (from the robot camera) visually changes when the
robot takes an action, and learns to evaluate the predicted
images to obtain the action policy. The method is illus-
trated at a conceptual level in Fig. 2. Section 4.1 presents the
details of our future image prediction model, designed as an
action-conditioned autoencoder CNN. Our stochastic image
prediction model learns a prior to capture the uncertainty
in an environment and generates clearer images. Section 4.2

f(It , at , zt|θ)

It
It+1
^at

^
V(It+1)
^

zt

Fig. 2 Illustration of the action policy network using a stochastic future
image predictor f (·) and critic V̂ . The stochastic image predictor uses
a learned prior zt , allowing for better generation of images in real-life
environments. The predicted image is used as input to the critic, which
determines the value of the predicted image

describes our approach of selecting actions by learning future
image similarity by leveraging non-expert actions.

4.1 Action-Conditioned Future Prediction CNN

Our CNN architecture is designed to predict future images
based on the current image and an action. This can be viewed
as a state-transition model used in model-based reinforce-
ment learning, following a Markov decision process (MDP).
Further, we learn a prior that captures the stochastic nature
of real-world environments motivated by Denton and Fergus
(2018). Our proposed model is shown in Fig. 3: the action-
conditioned stochastic autoencoder CNN.

The model is composed of two main CNN components:
the encoder Enc and the decoder Dec. The encoder learns
to map the current image to a latent representation, zI =
Enc(It ). We designed our autoencoder to explicitly preserve
the spatial information in its intermediate representations,
making Enc and Dec to be fully convolutional, which allows
our intermediate scene representation to preserve the spatial
shape.

We use another neural network component, Act , which
learns a representation of the action, za = Act(at ). We also
design our action representation CNN Act to have several
fully connected layers followed by a reshaping (i.e., spatial
de-pooling) layer. This makes the output of Act have the spa-
tial dimensionality as the image representation, i.e., Enc(It ),
which allows the two representations to be concatenated
together. Further, this allows for the action representation
learned to be different at each spatial location, in contrast to
previous works (Oh et al. 2015; Finn et al. 2016).

Fig. 3 Illustration of the
stochastic image predictor
model. This model takes input
of the image and action, but also
learns to generate a prior, zt ,
which varies based on the input
sequence. This is further
concatenated with the
representation before future
image prediction. The use of the
prior allows for better modeling
in stochastic environments and
generates clearer images
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Thirdly, the latent variable zt is sampled from a learned
prior distribution pψ also implemented as a neural network.
The latent variable zt , as explained in Denton and Fergus
(2018), captures the stochastic information in videos that is
lacking in deterministic models. A separate inference model
qφ is used only during training and removed during test. qφ

is forced to be close to pψ using a KL-divergence term,
which helps prevent zt from directly copying It . As the
prior learns stochastic characteristics of video across time
from a sequence of images, convolutional LSTMs LST Mφ

and LST Mψ are used to capture the temporal elements. We
use multiple frames as input during training that benefits the
learning of the prior, but we use only a single image during
test. Therefore, we omit the use of an LSTM in the encoder-
decoder network.

The representations of the current image, action, and
learned prior are concatenated together [zI , za, zt ] and used
as input to the decoder which then reconstructs the future
image:

Ît+1 = Dec([Enc(It ), Act(at ), zt ]) (1)

As mentioned above, this can also be viewed as learning a
state-transition model from robot videos,

f (It , at , zt ) = Dec([Enc(It ), Act(at ), zt ])

Figure 4 provides an example of the predicted images in
real-life lab environment and simulation environment given
different actions, visually showing we are able to generate
realistic, unseen future images.

The model has two loss terms. It is trained to minimize
L1 error between the predicted image and the ground truth
future image. It is also simultaneously trained to minimize
the KL-divergence between the prior distribution pψ and an
inferred distribution qφ . β is a hyperparameter set to 0.0001
as was done in Denton and Fergus (2018). We used an input
sequence of T = 5 frames during training and a single frame
during test. Multiple frame inputs during test could improve
learning and thus a worthwhile pursuit in the future.

LF (I1:T+1) =
T∑

t=1

(
| Ît+1 − It+1|

+βDKL [qφ(zt |I1:t+1) || pψ(zt |I1:t )]
)

(2)

Figure 3 shows our full model as well as its losses for the
training. We emphasize that during training, we only have
expert future images as a result of expert actions, greatly
limiting the training data. However, as shown in Fig. 4, our
learned model is able to generalize to unseen, non-expert
actions by generating realistic and accurate images.

-15° -10° -5° +5° +10° +15°Current 
Image

Det-Lin

Det-Conv

Stoch-Lin

Stoch-Conv

-15° -10° -5° +5° +10° +15°Current 
Image

Det-Lin

Det-Conv

Stoch-Lin

Stoch-Conv

Fig. 4 Predicted future images in the real-life lab (top) and simulation
(bottom) environments taking different actions. Top two rows of each
environment: deterministic model with linear and convolutional state
representation, respectively. Bottom two rows: stochastic model with
linear and convolutional state representation, respectively. Center image
of each row is current image with each adjacent image to the left turning
−5◦ and to the right turning +5◦

4.2 Imitation Learning with Future Image Similarity

To use our learned state-transition model for imitation learn-
ing, we train a ‘critic’ function to evaluate how similar a
generated state-action pair is to an expert state-action pair.
The idea is to train a CNN that can distinguish state-action
pairs that look like expert samples from non-expert samples,
similar to the learning of the ‘discriminator’ in a generative
adversarial imitation learning (GAIL) (Ho and Ermon 2016).
Learning such a CNNwill allow for the selection of the opti-
mal action given a state (e.g., image) by enumerating through
several action candidates.

More specifically, we use the above future image predic-
tion to generate images for many different candidate actions.
We then learn a critic CNN that evaluates how similar the
predicted future image is to the ground truth, expert future
image. We train a CNN to model this function, V̂ , which
performs this evaluation.

To train this CNN, we use pixel-wise L1 difference
between the predicted future image and the actual future
image (i.e., |It+1− Ît+1|) as our similarity measure. We train
the CNN V̂ ( Ît+1;w) governed by the parameters w:
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w∗ = arg minw‖V̂ ( Ît+1;w) − |It+1 − Ît+1|‖ (3)

Once learned, given a current robot image It and an action
candidate at , we are able to evaluate how good the action
candidate is solely based on the predicted future image Ît+1

by computing

V̂ ( Ît+1 = Dec([Enc(It ), Act(at ), zt ]);w∗) (4)

The motivation for this approach is that actions taken by
the robot in one state should result in a future image that
is similar to the next expert image, if the imitation is being
done correctly. V̂ reflects this imitation constraint while only
taking advantage of image frames. Note that this is pos-
sible because we have the explicit future image predictor
which allows us to compare two different images (i.e., real
expert images vs. model predicted images), enabling the
training/learning of this visual imitation critic.

The training procedure of this method is illustrated in
Fig. 5. We use our pre-trained future prediction model to
obtain the predicted future image from each state-action pair
(It , at ) in our training set of expert trajectories. We can then
sample many random candidate actions, which contain many
non-expert actions.

The main advantage of this approach is the ability to
‘imagine’ unseen future images resulting from non-expert
actions taken in expert states. This allows the model to ben-
efit from more training data without further interaction with
the environment. Once learned, the optimal action at each
state It is selected by taking the max value from the ran-
domly sampled candidate actions:

at = arg maxa V̂ ( f (It , a, zt )) (5)

where

f (It , a, zt ) = Dec([Enc(It ), Act(a), zt ]) (6)

5 Alternative Models

5.1 Ablations

To evaluate our design decisions, we compare our full model
against other models that replace or remove some of the
components. Specifically, we compared using linear state
representations against convolutional state representations.
Secondly, we examined the impact of the learned prior on
our action policy. Without the learned prior, we simply have
a deterministic image predictor model that is trained without
the latent variable zt . We can see in Fig. 4 that the predicted
images from the deterministicmodels are blurrier, butwanted
to determine if the blurriness had a significant impact on

It

at

It+1
^

Enc D
ec V(It+1)

^

L1

^

|It+1- It+1|
^

zt

Fig. 5 Training of the critic function V̂ with the future predictionmodel
for future image similarity. We generate many future images from the
current image and various actions, and train the critic to match the L1
difference between the predicted and ground truth image

It
at

(b)

It+1

It
at

It+1
^ ^

(a)

Enc

Dec

Enc

Dec

ActAct

Fig. 6 Illustration of the future prediction with a deterministic image
predictor. The networks take an image and action as input, concatenate
the learned representations, then generate the future image. a Linear
state representation. b Convolutional state representation

action policy. The models resulting from these ablations are
shown in Fig. 6.

5.2 Baselines

In addition to different versions of our approach asmentioned
above, we implemented a number of baselines: behavioral
cloning, handcrafted critic learning, and forward consistency
(Pathak et al. 2018). Similar to ours, all of thesemodels do not
perform any learning from interacting with the environment,
as opposed to RL models. Using a CNN formulation, each
baseline is described below.

5.2.1 Behavioral Cloning

Behavioral cloning (BC) is a straightforward approach to
imitation learning, which we formulate as a CNN. The net-
work directly learns a function, ât = π(It ), given current
state (i.e., image) as an input and outputs the correspond-

123



International Journal of Computer Vision (2020) 128:1360–1374 1367

ing action. The BC model is trained using expert samples
consisting of a sequence of image-action pairs in a super-
vised fashion. However, when a given image is not part
of the seen expert samples, BC often does not generalize
well and produces essentially random actions in those states
(Laskey et al. 2017). This is particularly challenging for real-
world robots, where training data is greatly limited. The
model is trained to minimize the error between the expert
action, at , and the CNN predicted action, ât , using the L1

distance:

LB(at , ât ) = |at − ât | (7)

During inference, the current image is used as an input
to the network π and the predicted action is taken by the
robot.

5.2.2 Handcrafted Critic

Borrowing the idea of taking advantage of non-expert actions
behind our future similarity model, we trained a handcrafted
critic CNN based on expert angle change as another base-
line to distinguish state-action pairs that look like expert
samples from non-expert samples. This critic allows the
selection of the optimal action given a state by enumerat-
ing through action candidates, just like our main approach.
This model is simpler in that we formulate this as super-
vised learning and we also handcraft the ‘shape’ of the
outputs.

Given a current image It (serving as the state), we apply a
CNNC to obtain its vector representation. In parallel, we use
a fully-connected neural network, Act , to produce a vector
representation of the action at . The two vectors are concate-
nated and several fully-connected layers follow to produce
the critic for state-action pairs:

Q̂(It , at ) = F([C(It ), Act(at )]) (8)

We train the critic function Q̂ in a supervised fashion
by handcrafting its target values based on the angular dis-
tance between the expert action and each candidate action.
In this approach, we use the change in angular pose δθ as
our action. Although the translational change (δx, δy) can be
independent of angular change, for simplicity, we set the pro-
posed translational change as a function of angular change
δθ = arctan(δy/δx) so that there would be only a single
parameter to learn. That is, we define our supervision signal
to be:

Q(It , at ) = −|δθexp − δθat | (9)

where δθexp is the expert action and δθat is the candidate
action.

Unlike behavioral cloning, this critic function benefits
from the training data with non-expert actions while still
only taking advantage of offline samples. That is, the train-
ing data for the critic CNN may contain pairings of expert
state and non-expert actions. This provides the network with
significantly more data, allowing more reliable learning even
without performing any robot trials. The network is trained
to minimize the L1 error between the critic CNN output,
Q̂(It , at ) and the (handcrafted) ground truth state-action
value, Q(It , at ).

LQ = |Q̂(It , at ) − Q(It , at )|
= |F([C(It ), Act(at )]) − Q(It , at )| (10)

During inference, we select the action that gives the maxi-
mum critic value (i.e., the action that is expected to be most
similar to the expert action):

at = arg maxa Q̂(It , a) (11)

Since our action space is continuous, we randomly sample
20 candidate actions from a uniform distribution from −30◦
to +30◦ relative to the robot’s current pose to learn the critic
function. During inference, we evaluate each of the candidate
actions for the current state, and select the one thatmaximizes
the critic function. For a higher dimensional pose change such
as by an aerial vehicle, the candidateswould be sampled from
a spherical cap instead of an arc for a ground mobility robot,
and the handcrafted target value would become much more
complex. Therefore, it would be desirable to have a critic
function that does not require any handcrafting.

5.2.3 Forward Consistency

We also experimentally compared our proposed method
against themodelwithForwardConsistency loss fromPathak
et al. (2018). Our setting is similar to Pathak et al. (2018)
in that both learn state-transition models first based on off-
policy trajectories and then learn the action policy network
(i.e., GSP in Pathak et al. (2018) and future image similar-
ity critic in ours) without any expert action information by
relying only on expert images. The difference is that they
used exploration trajectories for the training of their transi-
tion model while we used fewer expert trajectories. We took
advantage of the code from the authors of the paper, andmade
it compatible with our problem setting by feeding expert tra-
jectories instead of exploration trajectories for the training
of their state transition model, as well as supplying a goal
image of each task as required by their model.
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Fig. 7 Images of our ground mobility robot (Turtlebot 2) and its envi-
ronment

Fig. 8 Our simulation environment in Gazebo: birdseye view (L) and
side view (R). An obstacle (blue cylinder) is placed between the robot
and the target (construction barrel)

6 Experiments

Weperformed a series of experimentswith ourmethod in two
different environments, a real-life lab setting (Fig. 7) and a
simulation setting (Fig. 8) in Gazebo, each with a different
task. In the lab environment, the robot performed an approach
taskwhere the robotmustmove towards a target object. In the
simulation environment, the robot alsomust approach a target
but needed to avoid an obstacle placed in between. The latter
is a more challenging task as the view of the target from the
robot’s perspective is partially obstructed by the obstacle and
the robot must learn to avoid the obstacle without explicitly
detecting it.

6.1 Datasets

We collected two datasets of ground mobility robot trajec-
tories: one in a real-world room with everyday objects (e.g.,
desks, chairs), without any markers, and another in a sim-
ulated environment with different obstacles (one at a time),
target object, and similar everyday objects. A trajectory is
a sequence of video frames obtained during the robot exe-
cution, and each frame is annotated with the expert action
taken in the state (translational (x, y) and rotational (θ ) coor-
dinates). For each trajectory of the lab dataset, a human expert
controlled the robot to move toward a target object selected

Table 1 Assessment of image predictor models using SSIM with our
real-world lab and simulation datasets. The higher the SSIM score is,
the more accurate the prediction is

Model Lab dataset Sim dataset

Det linear state 0.7029 ± 0.0086 0.8856 ± 0.0036

Det conv state 0.7211 ± 0.0082 0.8983 ± 0.0037

Stoch linear state 0.7255 ± 0.0145 0.9251 ± 0.0083

Stoch conv state 0.7436 ± 0.0153 0.9220 ± 0.0091

from a total of 7 different objects. For the simulated dataset,
the expert controlled the robot to move toward a single target
while avoiding an obstacle object selected from 2 different
objects. The initial robot placement and the target location
were varied leading to varied background scenery. This is a
very challenging setting in the aspect that we never explicitly
annotate any target or obstacle objects, and there are other
distinct everyday objects in the environment such as chairs
and other lab equipment.

For the lab dataset, on average, we collected 35,100-
frame trajectories for each target. We split our dataset into
32 training trajectories and 3 test trajectories per target, a
total of 224 training trajectories and 21 test trajectories. For
the simulation dataset, on average, we collected 100,400-
frame trajectories for each obstacle. We split our dataset into
91 training trajectories and 9 test trajectories per obstacle,
a total of 182 training trajectories and 18 test trajectories.
The objective of our expert trajectory collection was to train
our robot with the imitation learning framework.We perform
both offline evaluation of the robot action model and online
experiments of real-time robot trials, and report the results
in the below subsections.

6.2 Image Predictor Evaluation

Because our method depends on the quality of the predicted
images, we compare the quality of the image predictors using
structural similarity (SSIM) (Wang et al. 2004; Denton and
Fergus 2018; Babaeizadeh et al. 2017). Table 1 compares
image quality of 2000 generated images of the action-
conditioned deterministic and stochastic models, showing
both linear and convolutional state representations. Figures 9
and 10 allow for visual comparison of the different models,
demonstrating that using the learned stochastic prior leads
to clearer images. We note that the real-world lab dataset
benefits more from the convolutional state representation
since it has richer scene appearance and more inherent noise
that needs to be abstracted into the state representation. On
the other hand, the simulation data is much cleaner, suffi-
cient to abstract with lower-dimensional representations. Our
stochastic models perform superior to the deterministic mod-
els in both datasets.
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Current
Image

Next 
Image

Predicted Images

Det-ConvDet-Lin Stoch-Lin Stoch-Conv

Fig. 9 Sample predicted images from the lab dataset. From left to
right: current image; true next image; deterministic linear; determinis-
tic convolutional; stochastic linear; stochastic convolutional. High level
description of action taken for each row starting from the top: turn right;
move forward;move forward slightly;move forward and turn left; move
forward and turn left

Current
Image

Next 
Image

Predicted Images

Det-ConvDet-Lin Stoch-Lin Stoch-Conv

Fig. 10 Sample predicted images from the simulation dataset. From left
to right: current image; true next image; deterministic linear; determinis-
tic convolutional; stochastic linear; stochastic convolutional. High level
description of action taken for each row starting from the top: move for-
ward and turn right; turn right slightly; turn right;move forward slightly;
turn left slightly

Table 2 Real-time robot target approach experiment results reporting
the task success rate

Model Targ1 (%) Targ2 (%) Targ3 (%) Mean (%)

Clone 50 33 28 37

Critic learning-hand 67 61 50 59

Forward consistency 50 39 28 39

Future image
similarity-Sect. 4.2

Det linear state 67 56 56 59

Det conv state 78 78 67 74

Stoch linear state 94 89 89 91

Stoch conv state 100 89 94 94

Table 3 Simulated robot obstacle avoidance experiment results report-
ing the task success rate

Model Obstacle1 (%) Obstacle2 (%) Mean (%)

Clone 41 48 44

Critic learning-hand 59 52 55

Forward consistency 37 41 39

Future image
similarity-Sect. 4.2

Deterministic state 44 37 41

Stochastic state 67 59 63

6.3 Robot Evaluations

We conducted a set of real-time experiments with a ground
mobility robot in complex environments—real-world lab
and simulation—to illustrate the implementation of the
approaches. For eachmodel in the lab environment,we ran 18
trials for each of three different target objects. For the simu-
lation environment, we ran 27 trials for two different obstacle
objects. For the action-conditioned models, each model was
given 60 action candidates to choose from, distributed from
−30◦ to +30◦ relative to the current angular pose of the robot.
For each trial, we altered the target object location and the
robot starting pose, with the constraint that the target object
is within the initial field of view of the robot. We allowed
the robot to take up to 30 steps to reach within 0.5m of the
target. We considered a trial successful if the robot captured
an image of the target within the 0.5m. If the robot did not
reach the target within 30 steps or if the robot went out of
bounds, such as hitting a wall or running into a table, we
counted the trial as a failure.

In Tables 2 and 3, we show the results of the models we
tested in the real-world lab and simulation environments,
respectively. Our future similarity models performed supe-
rior to standard behavioral cloning and forward consistency
(Pathak et al. 2018), demonstrating the advantage of our
action-conditioned future prediction for imitation learning.
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Fig. 11 Examples of successful trajectories with the visible frames. The objective of the robot was to approach the air filter (left) and grocery bag
(right) target objects

Clone Critic-Handcrafted Forward-Consistency Critic-FutSim-Det Critic-FutSim-Stoch

Fig. 12 Example trajectories from the real-time robot experiments. The
red ‘X ′ marks the location of the target object and the blue *marks the
end of each robot trajectory. Note that this is a challenging setting, since

(1) we only provide a limited number of training examples, (2) it was
done in a real-world environment with diverse objects, and (3) we did
not provide any annotation of the target object

Our lab experiments indicate that retaining spatial informa-
tion through convolutional state representation leads to better
performance. The component that makes the greatest contri-
bution for improved performance is the learned stochastic
prior. Note that we only tested the linear state representa-
tion of our stochastic model in the lab environment since it
already achieved a very high success rate with little margin
left for improvement, which led us to omit testing the con-
volutional representation of our stochastic model. Since we
found that the main contributor of improvement came from
learning the stochastic prior, for our obstacle avoidance task
in the simulation environment, we compare only future sim-

ilarity models using the linear state representation as shown
in Table 3.

Figure 11 illustrates the frames our robot obtains and pro-
cesses during its task, and Fig. 12 explicitly compares the
robot trajectories of 5 different models. Each model requires
less than 30 ms to process a single image, measured using
a single Titan X (Maxwell) GPU, which allows us run our
experiments using the Jetson TX2 mounted on our mobile
robot.

We also compared the trajectories of the various meth-
ods to the expert for 10 different robot-target placements in
the lab environment. To measure the similarity between the
expert and each of the methods, we use dynamic time warp-
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Table 4 Similarity scores of various models, comparing their trajecto-
ries to the expert. Lower is better

Model DTW score

Clone 28.26

Critic learning-hand 9.97

Forward consistency 18.36

FutureSim-det 11.22

FutureSim-stoch 5.98

ing (DTW) also used in Vakanski et al. (2012) as a similarity
score to assess how close the learned model performed the
approach task compared to the expert. DTW is useful for
measuring time series of different lengths such as our tra-
jectories by finding the distance of a warp path W . If we
compare two trajectories (X1:M and Y1:N ), their similarity
using DTW is determined by finding the minimum-distance
warp path: Dist(W ) = ∑K

k=1 Dist(wki , wk j ), where i is a
point on path X , j is a point on path Y , k is a point onW , and
K = M ∗N . Dist(wki , wk j ) is the distance between the two

data point indices (one from X and one from Y ) in the kth
element of the warp path (Salvador and Chan 2004). Table 4
shows that our method achieved the best similarity score.

To assess the stability of the various methods, we show
multiple rollouts of several robot-target configurations in
Fig. 13. We ran each method five times for each robot-target
placement of two different target objects. Each configuration
is overlaid by the expert trajectory in black. Qualitatively, we
see that the stochastic model was the most stable.

Our method is robust to distractor objects. We conducted
an experiment where we placed a distractor object in the
scene about equidistant to the robot as the target object. We
varied the target object, the distractor object, and their loca-
tions with respect to the robot. In Fig. 14 (top), we show
examples of the target in the lab environment with and with-
out distractors. Even without any labeling of the target or
distractor objects, our model is able to ignore the distractor
and navigate to the target. A similarity score of 4.94 was
achieved for the trajectories shown in Fig. 14 (bottom) using
the stochastic model, reflecting consistent small deviation
from the expert.

Fig. 13 Runs showing the stability of the methods evaluated. Five runs of each method are shown in each box overlaid by the expert trajectory in
black. Our method is very stable
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Target

TargetTarget

Target Distractor2Distractor1

Fig. 14 Trajectories with various distractors in place. Our method is
immune to distractors, following the same trajectory each time. Top:
Example frames without and with the distractor object, showing the
distractor is quite large and visually similar to the target object. Bottom:
Trajectories of the distractor test

7 Conclusion

We presented several CNN-based approaches for robot imi-
tation learning. The goal was to make a real-time robot learn
to execute a series of actions in real-world and simulation
environments (e.g., an office) solely based on its visual input
without any simulated or real-world trials. The learning was
done without providing any explicit label showing what the
target object looks like or allowing the robot to use other
sensors or pose estimation techniques. Furthermore, it was
done only based on a small set of example videos.

A key part of our action policy model is the future image
predictor, which benefits from a learned prior to capture
stochastic components of real-world videos and, in turn, gen-
erates clearer images. With higher quality images, we are
able to learn a better value function to determine optimal
actions. Our model achieved 2.5× higher success rate in the
real-life approach task than behavioral cloning and forward
consistency models, and 1.5× in the simulation obstacle
avoidance task. Our model was also able to better imitate

the expert, achieving trajectory similarity scores 3× better
than the forward consistency model and 4.5× better than
behavioral cloning.

We designed and experimentally comparedmultiple CNN
models for imitation learning, including the standard CNN-
based behavioral cloning method and the methods using
action-conditioned convolutional future image prediction
(i.e., a visual state transition model). We showed the superior
performance of image based future similarity method.

Appendix

Implementation Details

We implemented the CNNmodels using the PyTorch library.
The encoder/decoder networks followed the architecture of
DCGAN (Radford et al. 2015), using their discriminator as
our encoder CNN and their generator as our decoder CNN.
Specifically, the encoder has 6 convolutional layers with a
3×3 kernel and stride of 2. The network layers have 64, 128,
256, 512, 512, 128 channels. Our input images are resized to
64×64, resulting in a feature map of size 128×3×3. For the
linear-representationmodel shown in Fig. 6a, we reshape this
to be a vector of size 128·3·3 then use a fully-connected layer
to reduce the dimensionality to 4096. Our action network has
two layers to increase the dimensionality to 64 then 256.

In the convolutional-representation model used in Fig. 6b,
we leave the representation as-is. Our actions are
3-dimensional vectors for robot pose (x, y, θ ), which are
used as input to the action network. The action network has
two layers that produces a 576-dimensional vector which we
reshape to a spatial tensor of size 64 × 3 × 3. We concate-
nate this tensor along the channel axis of the convolutional
representation, which is then used as input to the decoder.
The convolutional future prediction model contains 5 convo-
lution layers with a 3× 3 kernel and a stride of 1. The layers
contain 256, 512, 512, 256, 128 channels.

Our decoder contains 6 deconvolutional layers for upsam-
pling. All have a 3 × 3 kernel and a stride of 2. In the
deconvolutional layer, a stride of 2 doubles in output size.
The layers contain 512, 512, 256, 128, 64, 3 channels. The
last layer is followed by a tanh activation function. All other
layers in all networks were followed by batch normalization
and used the LeakyReLU activation function with the neg-
ative slope set to 0.2. We minimize our loss function with
gradient descent using the Kingma and Ba (2014) solver and
learning rate set to 0.001.

The LSTMs are implemented similar to Denton and Fer-
gus (2018). LST Mφ and LST Mψ are both single layer
LSTMs with 256 cells in each layer. Each network has a
linear embedding layer and a fully connected output layer.
At inference, the output of LST Mψ is concatenated to zI
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Fig. 15 Training curves for the image predictor for the simulated and
lab datasets with learning rate = 0.001 and batch size = 60, and the value
function with learning rate = 5E−6

and za , and fed to the decoder. The output dimensionalities
of the LSTM networks are g = 128 and μφ = μψ = 64.

Training Information

Our training curves for the image predictor model and the
critic are shown in Fig. 15. For the image predictor of both
datasets, we set the learning rate = 0.001 and batch size =
60. The β multiplier for the KL loss was set to 0.0001 in
our experiments. The learning rate of the value function was
set to 5E−6. The weights of the image predictor were held
constant when training the value function.
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