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Abstract
Learning to reliably perceive andunderstand the scene is an integral enabler for robots to operate in the real-world. This problem
is inherently challenging due to the multitude of object types as well as appearance changes caused by varying illumination
and weather conditions. Leveraging complementary modalities can enable learning of semantically richer representations that
are resilient to such perturbations. Despite the tremendous progress in recent years, most multimodal convolutional neural
network approaches directly concatenate feature maps from individual modality streams rendering the model incapable of
focusing only on the relevant complementary information for fusion. To address this limitation, we propose a mutimodal
semantic segmentation framework that dynamically adapts the fusion of modality-specific features while being sensitive to
the object category, spatial location and scene context in a self-supervised manner. Specifically, we propose an architecture
consisting of twomodality-specific encoder streams that fuse intermediate encoder representations into a single decoder using
our proposed self-supervised model adaptation fusion mechanism which optimally combines complementary features. As
intermediate representations are not aligned across modalities, we introduce an attention scheme for better correlation. In
addition, we propose a computationally efficient unimodal segmentation architecture termed AdapNet++ that incorporates a
new encoder with multiscale residual units and an efficient atrous spatial pyramid pooling that has a larger effective receptive
field with more than 10× fewer parameters, complemented with a strong decoder with a multi-resolution supervision scheme
that recovers high-resolution details. Comprehensive empirical evaluations on Cityscapes, Synthia, SUN RGB-D, ScanNet
and Freiburg Forest benchmarks demonstrate that both our unimodal and multimodal architectures achieve state-of-the-
art performance while simultaneously being efficient in terms of parameters and inference time as well as demonstrating
substantial robustness in adverse perceptual conditions.

Keywords Semantic segmentation · Multimodal fusion · Scene understanding · Model adaptation · Deep learning

1 Introduction

Humans have the remarkable ability to instantaneously rec-
ognize and understand a complex visual scene which has
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piqued the interest of computer vision researches to model
this ability since the 1960s (Fei-Fei et al. 2004). There
are numerous ever-expanding applications to this capabil-
ity ranging from robotics (Xiang and Fox 2017; Boniardi
et al. 2019; Radwan et al. 2018b) and remote sensing (Aude-
bert et al. 2018) to medical diagnostics (Ronneberger et al.
2015) and content-based image retrieval (Noh et al. 2017).
However, there are several challenges imposed by the mul-
tifaceted nature of this problem including the large variation
in types and scales of objects, clutter and occlusions in the
scene as well as outdoor appearance changes that take place
throughout the day and across seasons.

Deep Convolutional Neural Network (DCNN) based
methods (Long et al. 2015; Chen et al. 2016; Yu and Koltun
2016) modelled as a Fully Convolutional Neural Network
(FCN) have dramatically increased the performance on sev-
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(a) Input Image (b) Segmented Output

Fig. 1 Example real-world scenarios where current state-of-the-art
approaches demonstratemisclassifications. The first row shows an issue
of mismatched relationship as well as inconspicuous classes where a
decal on the train is falsely predicted as a person and the decal text is
falsely predicted as a sign. The second row shows misclassifications
caused by overexposure of the camera due to car exiting a tunnel (Color
figure online)

eral semantic segmentation benchmarks. Nevertheless, they
still face challenges due to the diversity of scenes in the real-
world that cause mismatched relationship and inconspicuous
object classes. Figure 1 shows two example scenes from real-
world scenarios inwhichmisclassifications are produced due
to the decal on the train which is falsely predicted as a person
and a traffic sign (first row), and overexposure of the cam-
era caused by the vehicle exiting a tunnel (second row). In
order to accurately predict the elements of the scene in such
situations, features from complementary modalities such as
depth and infrared can be leveraged to exploit properties
such as geometry and reflectance, respectively. Moreover,
the network can exploit complex intra-modal dependencies
more effectively by directly learning to fuse visual appear-
ance information from RGB images with learned features
from complementary modalities in an end-to-end fashion.
This not only enables the network to resolve inherent ambi-
guities and improve reliability but also obtain a more holistic
scene segmentation.

While most existing work focuses on where to fuse
modality-specific streams topologically (Hazirbas et al.
2016; Schneider et al. 2017; Valada et al. 2016c) and what
transformations can be applied on the depth modality to
enable better fusion with visual RGB features (Gupta et al.
2014; Eitel et al. 2015), it still remains an open question as
to how to enable the network to dynamically adapt its fusion
strategy based on the nature of the scene such as the types
of objects, their spatial location in the world and the present
scene context. This is a crucial requirement in applications
such as robotics and autonomous driving where these sys-
tems run in continually changing environmental contexts.
For example, an autonomous car navigating in ideal weather
conditions can primarily rely on visual information but when

it enters a dark tunnel or exits an underpassage, the cameras
might experience under/over exposure, whereas the depth
modality will be more informative. Furthermore, the strategy
to be employed for fusion also varieswith the types of objects
in the scene, for instance, infrared might be more useful to
detect categories such as people, vehicles, vegetation and
boundaries of structures but it does not provide much infor-
mation on object categories such as the sky. Additionally, the
spatial location of objects in the scene also has an influence,
for example, the depthmodality provides rich information on
objects that are at nearby distances but degrades very quickly
for objects that are several meters away. More importantly,
the approach employed should be robust to sensor failure and
noise as constraining the network to always depend on both
modalities and use noisy information can worsen the actual
performance and lead to disastrous situations.

Due to these complex interdependencies, naively treat-
ing modalities as multi-channel input data or concatenating
independently learned modality-specific features does not
allow the network to adapt to the aforementioned situations
dynamically. Moreover, due to the nature of this dynamicity,
the fusion mechanism has to be trained in a self-supervised
manner in order to make the adaptivity emergent and to
generalize effectively to different real-world scenarios. As
a solution to this problem, we present the Self-Supervised
Model Adaptation (SSMA) fusion mechanism that adap-
tively recalibrates and fuses modality-specific feature maps
based on the object class, its spatial location and the scene
context. The SSMA module takes intermediate encoder rep-
resentations of modality-specific streams as input and fuses
them probabilistically based on the activations of individ-
ual modality streams. As we model the SSMA block in a
fully convolutional fashion, it yields a probability for each
activation in the feature maps which represents the opti-
mal combination to exploit complementary properties. These
probabilities are then used to amplify or suppress the repre-
sentations of the individual modality streams, followed by
the fusion. As we base the fusion on modality-specific acti-
vations, the fusion is intrinsically tolerant to sensor failure
and noise such as missing depth values.

Our proposed architecture for multimodal segmentation
consists of individual modality-specific encoder streams
which are fused both at mid-level stages and at the end of
the encoder streams using our SSMA blocks. The fused rep-
resentations are input to the decoder at different stages for
upsampling and refining the predictions. Note that only the
multimodal SSMA fusion mechanism is self-supervised, the
semantic segmentation is trained in a supervised manner.
We employ a combination of mid-level and late-fusion as
several experiments have demonstrated that fusing semanti-
cally meaningful representations yields better performance
in comparison to early fusion (Eitel et al. 2015; Valada et al.
2016b; Hazirbas et al. 2016; Xiang and Fox 2017; Radwan
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et al. 2018a). Moreover, studies of the neural dynamics of
the human brain has also shown evidence of late-fusion of
modalities for recognition tasks (Cichy et al. 2016).However,
intermediate network representations are not aligned across
modality-specific streams. Hence, integrating fused multi-
modal mid-level features into high-level features requires
explicit prior alignment. Therefore, we propose an attention
mechanism that weighs the fused multimodal mid-level skip
features with spatially aggregated statistics of the high-level
decoder features for better correlation, followed by channel-
wise concatenation.

Asour fusion frameworknecessitates individualmodality-
specific encoders, the architecture that we employ for the
encoder and decoder should be efficient in terms of the num-
ber of parameters and computational operations, as well
as be able to learn highly discriminative deep features.
State-of-the-art semantic segmentation architectures such as
DeepLab v3 (Chen et al. 2017) and PSPnet (Zhao et al. 2017)
employ the ResNet-101 (He et al. 2015a) architecture which
consumes 42.39M parameters and 113.96B FLOPS, as the
encoder backbone. Training such architectures requires a
large amount of memory and synchronized training across
multiple GPUs. Moreover, they have slow run-times render-
ing them impractical for resource constrained applications
such as robotics and augmented reality. More importantly,
it is infeasible to employ them in multimodal frameworks
that require multiple modality-specific streams as we do in
this work.

With the goal of achieving the right trade-off between
performance and computational complexity, we propose the
AdapNet++ architecture for unimodal segmentation. We
build the encoder of ourmodel basedon the full pre-activation
ResNet-50 (He et al. 2016) architecture and incorporate our
previously proposed multiscale residual units (Valada et al.
2017) to aggregate multiscale features throughout the net-
work without increasing the number of parameters. The pro-
posed units are more effective in learning multiscale features
than the commonly employedmultigrid approach introduced
in DeepLab v3 (Chen et al. 2017). In addition, we propose
an efficient variant of the Atrous Spatial Pyramid Pooling
(ASPP) (Chen et al. 2017) called eASPP that employs cas-
caded and parallel atrous convolutions to capture long range
context with a larger effective receptive field, while simul-
taneously reducing the number of parameters by 87% in
comparison to the originally proposed ASPP. We also pro-
pose a newdecoder that integratesmid-level features from the
encoder usingmultiple skip refinement stages for high resolu-
tion segmentation along the object boundaries. In order to aid
the optimization and to accelerate training,we propose amul-
tiresolution supervision strategy that introduces weighted
auxiliary losses after each upsampling stage in the decoder.
This enables faster convergence, in addition to improving the
performance of the model along the object boundaries. Our

proposed architecture is compact and trainable with a large
mini-batch size on a single consumer grade GPU.

Motivated by the recent success of compressing DCNNs
by pruning unimportant neurons (Molchanov et al. 2017; Liu
et al. 2017; Anwar et al. 2017), we explore pruning entire
convolutional feature maps of our model to further reduce
the number of parameters. Network pruning approaches uti-
lize a cost function to first rank the importance of neurons,
followed by removing the least important neurons and fine-
tuning the network to recover any loss in accuracy. Thus
far, these approaches have only been employed for pruning
convolutional layers that do not have an identity or a pro-
jection shortcut connection. Pruning residual feature maps
(third convolutional layer of a residual unit) also necessitates
pruning the projected feature maps in the same configuration
in order to maintain the shortcut connection. This leads to
a significant drop in accuracy, therefore current approaches
omit pruning convolutional filters with shortcut connections.
As a solution to this problem, we propose a network-wide
holistic pruning approach that employs a simple and yet
effective strategy for pruning convolutional filters invariant
to the presence of shortcut connections. This enables our
network to further reduce the number of parameters and com-
puting operations, making our model efficiently deployable
even in resource constrained applications.

Finally, we present extensive experimental evaluations
of our proposed unimodal and multimodal architectures on
benchmark scene understanding datasets including Citysc-
apes (Cordts et al. 2016), Synthia (Ros et al. 2016), SUN
RGB-D (Song et al. 2015), ScanNet (Dai et al. 2017) and
Freiburg Forest (Valada et al. 2016b). The results demon-
strate that our model sets the new state-of-the-art on all these
benchmarks considering the computational efficiency and
the fast inference time of 72ms on a consumer grade GPU.
More importantly, our dynamically adapting multimodal
architecture demonstrates exceptional robustness in adverse
perceptual conditions such as fog, snow, rain and night-time,
thus enabling it to be employed in critical resource con-
strained applications such as robotics where not only accu-
racy but robustness, computational efficiency and run-time
are equally important. To the best of our knowledge, this is the
first multimodal segmentation work to benchmark on these
wide range of datasets containing several modalities and
diverse environments ranging from urban city driving scenes
to indoor environments and unstructured forested scenes.

In summary, the following are the main contributions of
this work:

1. A multimodal fusion framework incorporating our pro-
posed SSMA fusion blocks that adapts the fusion of
modality-specific features dynamically according to the
object category, its spatial location as well as the scene
context and learns in a self-supervised manner.

123



1242 International Journal of Computer Vision (2020) 128:1239–1285

2. The novel AdapNet++ semantic segmentation architec-
ture that incorporates our multiscale residual units, a new
efficientASPP, a newdecoderwith skip refinement stages
and a multiresolution supervision strategy.

3. The eASPP for efficiently aggregating multiscale fea-
tures and capturing long range context, while having a
larger effective receptive field and over 10× reduction
in parameters compared to the standard ASPP.

4. An attention mechanism for effectively correlating fused
multimodal mid-level and high-level features for better
object boundary refinement.

5. A holistic network-wide pruning approach that enables
pruning of convolutional filters invariant to the presence
of identity or projection shortcuts.

6. Extensive benchmarking of existing approaches with the
same input image size and evaluation setting along with
quantitative and qualitative evaluations of our unimodal
andmultimodal architectures onfive different benchmark
datasets consisting of multiple modalities.

7. Implementations of our proposed architectures are made
publicly available at https://github.com/DeepSceneSeg
and a live demo on all the five datasets can be viewed at
http://deepscene.cs.uni-freiburg.de.

2 RelatedWorks

In the last decade, there has been a sharp transition in
semantic segmentation approaches from employing hand
engineered features with flat classifiers such as Support Vec-
torMachines (Fulkerson et al. 2009),Boosting (Sturgess et al.
2009) or Random Forests (Shotton et al. 2008; Brostow et al.
2008), to end-to-end DCNN-based approaches (Long et al.
2015; Badrinarayanan et al. 2015). We first briefly review
some of the classical methods before delving into the state-
of-the-art techniques.

Semantic Segmentation Semantic segmentation is one
of the fundamental problems in computer vision. Some
of the earlier approaches for semantic segmentation use
small patches to classify the center pixel using flat classi-
fiers (Shotton et al. 2008; Sturgess et al. 2009) followed by
smoothing the predictions using Conditional Random Fields
(CRFs) (Sturgess et al. 2009). Rather than only relying on
appearance based features, structure from motion features
have also been used with randomized decision forests (Bros-
tow et al. 2008; Sturgess et al. 2009). View independent
3D features from dense depth maps have been shown to
outperform appearance based features, that also enabled clas-
sification of all the pixels in an image, as opposed to only the
center pixel of a patch (Zhang et al. 2010). Plath et al. (2009)
propose an approach to combine local and global features
using a CRF and an image classification method. However,

the performance of these approaches is largely bounded by
the expressiveness of handcrafted features which is highly
scenario-specific.

The remarkable performance achieved by CNNs in clas-
sification tasks led to their application for dense prediction
problems such as semantic segmentation, depth estima-
tion and optical flow prediction. Initial approaches that
employed neural networks for semantic segmentation still
relied on patch-wise training (Grangier et al. 2009; Fara-
bet et al. 2012; Pinheiro and Collobert 2014). Pinheiro and
Collobert (2014) use a recurrent CNN to aggregate sev-
eral low resolution predictions for scene labeling. Farabet
et al. (2012) transforms the input image through a Lapla-
cian pyramid followed by feeding each scale to a CNN for
hierarchical feature extraction and classification. Although
these approaches demonstrated improved performance over
handcrafted features, they often yield a grid-like output that
does not capture the true object boundaries. One of the first
end-to-end approaches that learns to directly map the low
resolution representations from a classification network to a
densepredictionoutputwas theFullyConvolutionalNetwork
(FCN) model (Long et al. 2015). FCN proposed an encoder-
decoder architecture in which the encoder is built upon the
VGG-16 (Simonyan and Zisserman 2014) architecture with
the inner-product layers replaced with convolutional layers.
While, the decoder consists of successive deconvolution and
convolution layers that upsample and refine the low reso-
lution feature maps by combining them with the encoder
feature maps. The last decoder then yields a segmented out-
put with the same resolution as the input image.

DeconvNet (Noh et al. 2015) propose an improved archi-
tecture containing stacked deconvolution and unpooling
layers that perform non-linear upsampling and outperforms
FCNs but at the cost of a more complex training proce-
dure. The SegNet (Badrinarayanan et al. 2015) architecture
eliminates the need for learning to upsample by reusing
pooling indices from the encoder layers to perform upsam-
pling. Oliveira et al. (2016) propose an architecture that
builds upon FCNs and introduces more refinement stages
and incorporates spatial dropout to prevent over fitting. The
ParseNet (Liu et al. 2015) architecture models global con-
text directly instead of only relying on the largest receptive
field of the network. Recently, there has been more focus
on learning multiscale features, which was initially achieved
by providing the network with multiple rescaled versions of
the image (Farabet et al. 2012) or by fusing features from
multiple parallel branches that take different image reso-
lutions (Long et al. 2015). However, these networks still
use pooling layers to increase the receptive field, thereby
decreasing the spatial resolution, which is not ideal for a
segmentation network.

In order to alleviate this problem, Yu and Koltun (2016)
propose dilated convolutions that allows for exponential
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increase in the receptive field without decrease in resolu-
tion or increase in parameters. DeepLab (Chen et al. 2016)
andPSPNet (Zhao et al. 2017) build upon the aforementioned
idea andpropose pyramidpoolingmodules that utilize dilated
convolutions of different rates to aggregate multiscale global
context. DeepLab in addition uses fully connected CRFs in
a post processing step for structured prediction. However,
a drawback in employing these approaches is the computa-
tional complexity and substantially large inference time even
using modern GPUs that hinder them from being deployed
in robots that often have limited resources. In our previ-
ous work (Valada et al. 2017), we proposed an architecture
that introduces dilated convolutions parallel to the conven-
tional convolution layers and multiscale residual blocks that
incorporates them, which enables the model to achieve com-
petitive performance at interactive frame rates. Our proposed
multiscale residual blocks aremore effective at learningmul-
tiscale features compared to the widely employed multigrid
approach from DeepLab v3 (Chen et al. 2017). While in
this work, we propose several new improvements for learn-
ing multiscale features, capturing long range context and
improving the upsampling in the decoder, while simultane-
ously reducing the number of parameters and maintaining a
fast inference time.

Multimodal Fusion The availability of low-cost sensors
has encouraged novel approaches to exploit features from
alternate modalities in an effort to improve robustness as
well as the granularity of segmentation. Silberman et al.
(2012) propose an approach based on SIFT features and
MRFs for indoor scene segmentation using RGB-D images.
Subsequently, Ren et al. (2012) propose improvements to
the feature set by using kernel descriptors and by com-
bining MRF with segmentation trees. Munoz et al. (2012)
employ modality-specific classifier cascades that hierarchi-
cally propagate information and do not require one-to-one
correspondence between data across modalities. In addition
to incorporating features based on depth images, Hermans
et al. (2014) propose an approach that performs joint 3Dmap-
ping and semantic segmentation using RandomizedDecision
Forests. There has also been work on extracting combined
RGB and depth features using CNNs (Couprie et al. 2013;
Gupta et al. 2014) for object detection and semantic seg-
mentation. In most of these approaches, hand engineered or
learned features are extracted from individual modalities and
combined together in a joint feature set which is then used
for classification.

More recently, there has been a series of DCNN-based
fusion techniques (Eitel et al. 2015; Kim et al. 2017; Li
et al. 2016) that have been proposed for end-to-end learn-
ing of fused representations from multiple modalities. These

fusion approaches can be categorized into early, hierarchical
and late fusion methods. An intuitive early fusion technique
is to stack data from multiple modalities channel-wise and
feed it to the network as a four or six channel input. However,
experiments have shown that this often does not enable the
network to learn complementary features and cross-modal
interdependencies (Valada et al. 2016b;Hazirbas et al. 2016).
Hierarchical fusion approaches combine feature maps from
multiple modality-specific encoders at various levels (often
at each downsampling stage) and upsample the fused fea-
tures using a single decoder (Hazirbas et al. 2016; Kim et al.
2017). Alternatively, Schneider et al. (2017) propose a mid-
level fusion approach in which NiN layers (Lin et al. 2013)
with depth as input are used to fuse feature maps into the
RGB encoder in the middle of the network. Li et al. (2016)
propose a Long-Short TermMemory (LSTM) context fusion
model that captures and fuses contextual information from
multiple modalities accounting for the complex interdepen-
dencies between them. (Qi et al. 2017) propose an interesting
approach that employs 3D graph neural networks for RGB-D
semantic segmentation that accounts for both 2D appear-
ance and 3D geometric relations, while capturing long range
dependencies within images.

In the late fusion approach, identical network streams
are first trained individually on a specific modality and the
feature maps are fused towards the end of network using
concatenation (Eitel et al. 2015) or element-wise summa-
tion (Valada et al. 2016b), followed by learning deeper fused
representations. However, this does not enable the network
to adapt the fusion to changing scene context. In our previous
work (Valada et al. 2016a), we proposed amixture-of-experts
CMoDE fusion scheme for combining featuremaps from late
fusion based architectures. Subsequently, in (Valada et al.
2017) we extended the CMoDE framework for probabilistic
fusion accounting for the types of object categories in the
dataset which enables more flexibility in learning the opti-
mal combination. Nevertheless, there are several real-world
scenarios in which class-wise fusion is not sufficient, espe-
cially in outdoor scenes where different modalities perform
well in different conditions. Moreover, the CMoDE mod-
ule employs multiple softmax loss layers for each class to
compute the probabilities for fusion which does not scale for
datasets such as SUNRGB-Dwhich has 37 object categories.
Motivated by this observation, in this work, we propose a
multimodal semantic segmentation architecture incorporat-
ing our SSMA fusion module that dynamically adapts the
fusion of intermediate network representations from multi-
ple modality-specific streams according to the object class,
its spatial location and the scene context while learning the
fusion in a self-supervised fashion.
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Fig. 2 Overview of our proposed Adapnet++ architecture. Given an
input image, we use the full pre-activation ResNet-50 architecture aug-
mented with our proposed multiscale residual blocks to yield a feature
map 16-times downsampled with respect to the input image resolution,
then our proposed efficient atrous spatial pyramid (eASPP) module is

employed to further learn multiscale features and to capture long range
context. Finally, the output of the eASPP is fed into our proposed deep
decoder with skip connections for upsampling and refining the semantic
pixel-level prediction (Color figure online)

3 AdapNet++ Architecture

In this section, we first briefly describe the overall topology
of the proposedAdapNet++ architecture and ourmain contri-
butions motivated by our design criteria. We then detail each
of the constituting architectural components and our model
compression technique.

Our network follows the general fully convolutional en-
coder-decoder design principle as shown in Fig. 2. The
encoder (depicted in blue) is based on the full pre-activation
ResNet-50 (He et al. 2016) model as it offers a good trade-off
between learning highly discriminative deep features and the
computational complexity required. In order to effectively
compute high resolution feature responses at different spatial
densities, we incorporate our recently proposed multiscale
residual units (Valada et al. 2017) at varying dilation rates
in the last two blocks of the encoder. In addition, to enable
our model to capture long-range context and to further learn
multiscale representations, we propose an efficient variant of
the atrous spatial pyramid pooling module known as eASPP
which has a larger effective receptive field and reduces the
number of parameters required by over 87% compared to
the originally proposed ASPP in DeepLab v3 (Chen et al.
2017). We append the proposed eASPP after the last resid-
ual block of the encoder, shown as green blocks in Fig. 2. In
order to recover the segmentation details from the low spa-
tial resolution output of the encoder section, we propose a
new deep decoder consisting of multiple deconvolution and
convolution layers. Additionally, we employ skip refinement
stages that fuse mid-level features from the encoder with
the upsampled decoder feature maps for object boundary
refinement. Furthermore, we add two auxiliary supervision
branches after each upsampling stage to accelerate training
and improve the gradient propagation in the network. We
depict the decoder as orange blocks and the skip refinement

stages as gray blocks in the network architecture shown in
Fig. 2. In the following sections, we discuss each of the afore-
mentioned network components in detail and elaborate on the
design choices.

3.1 Encoder

Encoders are the foundation of fully convolutional neu-
ral network architectures. Therefore, it is essential to build
upon a good baseline that has a high representational abil-
ity conforming with the computational budget. Our critical
requirement is to achieve the right trade-off between the
accuracy of segmentation and inference time on a consumer
grade GPU, while keeping the number of parameters low.
As we also employ the proposed architecture for multimodal
fusion, our objective is to design a topology that has a rea-
sonable model size so that two individual modality-specific
networks can be trained in a fusion framework and deployed
on a single GPU. Therefore, we build upon the ResNet-50
architecturewith the full preactivation residual units (He et al.
2016) instead of the originally proposed residual units (He
et al. 2015a) as they have been shown to reduce overfitting,
improve the convergence and also yield better performance.
The ResNet-50 architecture has four computational blocks
with varying number of residual units. We use the bottleneck
residual units in our encoder as they are computationally
more efficient than the baseline residual units and they enable
us to build more complex models that are easily trainable.
The output of the last block of the ResNet-50 architecture is
32-times downsampled with respect to the input image res-
olution. In order to increase the spatial density of the feature
responses and to prevent signal decimation, we set the stride
of the convolution layer in the last block (res4a) from two to
one which makes the resolution of the output feature maps
1/16-times the input image resolution. We then replace the
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Fig. 3 The proposed encoder is built upon the full pre-activation
ResNet-50 architecture. Specifically, we remove the last downsampling
stage in ResNet-50 by setting the stride from two to one, therefore the
final output of the encoder is 16-times downsampled with respect to
the input. We then replace the residual units that follow the last down-

sampling stage with our proposed multiscale residual units. The legend
enclosed in red lines show the original pre-activation residual units in
the bottom left (yellow, light green and dark green), while our proposed
multiscale residual units are shown in the bottom right (cyan and purple)
(Color figure online)

residual blocks that follow this last downsampling stage with
our proposed multiscale residual units that incorporate par-
allel atrous convolutions (Yu and Koltun 2016) at varying
dilation rates.

A naive approach to compute the feature responses at the
full image resolution would be to remove the downsampling
and replace all the convolutions to atrous convolutions hav-
ing a dilation rate r ≥ 2 but this would be both computation
and memory intensive. Therefore, we propose a novel multi-
scale residual unit (Valada et al. 2017) to efficiently enlarge
the receptive field and aggregate multiscale features without
increasing the number of parameters and the computational
burden. Specifically, we replace the 3× 3 convolution in the
full pre-activation residual unit with two parallel 3×3 atrous
convolutions with different dilation rates and half the num-
ber of feature maps each. We then concatenate their outputs
before the following 1 × 1 convolution.

By concatenating their outputs, the network additionally
learns to combine the feature maps of different scales. Now,
by setting the dilation rate in one of the 3 × 3 convolu-
tional layers to one and another to a rate r ≥ 2, we can
preserve the original scale of the features within the block
and simultaneously add a larger context. While, by varying
the dilation rates in each of the parallel 3 × 3 convolutions,
we can enable the network to effectively learnmultiscale rep-
resentations at different stages of the network. The topology
of the proposed multiscale residual units and the correspond-
ing original residual units are shown in the legend in Fig. 3.
The lower left two units show the original configuration,
while the lower right two units show the proposed config-

uration. Figure 3 shows our entire encoder structure with the
full pre-activation residual units and the multiscale residual
units.

We incorporate the first multiscale residual unit with
r1 = 1, r2 = 2 before the third block at res3d (unit before the
block where we remove the downsampling asmentioned ear-
lier). Subsequently, we replace the units res4c, res4d, res4e,
res4f with our proposed multiscale units with rates r1 = 1
in all the units and r2 = 2, 4, 8, 16 correspondingly. In addi-
tion, we replace the last three units of block four res5a, res5b,
res5c with the multiscale units with increasing rates in both
3 × 3 convolutions, as (r1 = 2, r2 = 4), (r1 = 2, r2 = 8),
(r1 = 2, r2 = 16) correspondingly. We evaluate our pro-
posed configuration in comparison to the multigrid method
of DeepLab v3 (Chen et al. 2017) in Sect. 5.5.

3.2 Efficient Atrous Spatial Pyramid Pooling

In this section, we first describe the topology of the Atrous
Spatial Pyramid Pooling (ASPP) module, followed by the
structure of our proposed efficient Atrous Spatial Pyramid
Pooling (eASPP). ASPP has become prevalent in most state-
of-the-art architectures due to its ability to capture long
range context and multiscale information. Inspired by spa-
tial pyramid pooling (He et al. 2015c), the initially proposed
ASPP in DeepLab v2 (Liang-Chieh et al. 2015) employs
four parallel atrous convolutions with different dilation
rates. Concatenating the outputs of multiple parallel atrous
convolutions aggregates multi-scale context with different
receptive field resolutions. However, as illustrated in the sub-
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(a) (b)

Fig. 4 Depiction of the ASPP module from DeepLab v3 and our
proposed efficient eASPP module. eASPP reduces the number of
parameters by 87.87% and the number of FLOPS by 89.88%, while
simultaneously achieving improved performance. Note that all the

convolution layers have batch normalization and we change the cor-
responding dilation rates in the 3 × 3 convolutions in ASPP to 3, 6, 12
as the input feature map to the ASPP is of dimensions 48 × 23 in our
network architecture (Color figure online)

sequent DeepLab v3 (Chen et al. 2017), applying extremely
large dilation rates inhibits capturing long range context due
to image boundary effects. Therefore, an improved version of
ASPP was proposed (Chen et al. 2017) to add global context
information by incorporating image-level features.

The resulting ASPP shown in Fig. 4a consists of five
parallel branches: one 1×1 convolution and three 3×3 convo-
lutionswith different dilation rates.Additionally, image-level
features are introduced by applying global average pooling
on the input feature map, followed by a 1×1 convolution and
bilinear upsampling to yield an output with the same dimen-
sions as the input feature map. All the convolutions have 256
filters and batch normalization layers to improve training.
Finally, the resulting feature maps from each of the parallel
branches are concatenated and passed through another 1× 1
convolution with batch normalization to yield 256 output fil-
ters. The ASPP module is appended after the last residual
block of the encoder where the feature maps are of dimen-
sions 65 × 65 in the DeepLab v3 architecture (Chen et al.
2017), therefore dilation rates of 6, 12 and 18 were used in
the parallel 3× 3 atrous convolution layers. However, as we
use a smaller input image, the dimensions of the input fea-
ture map to the ASPP is 24 × 48, therefore, we reduce the
dilation rates to 3, 6 and 12 in the 3 × 3 atrous convolution
layers respectively.

Thebiggest caveat of employing theASPP is the extremely
large amount of parameters and floating point operations per
second (FLOPS) that it consumes. Each of the 3 × 3 convo-
lutions have 256 filters, which in total for the entire ASPP
amounts to 15.53 M parameters and 34.58 B FLOPS which
is prohibitively expensive. To address this problem, we pro-
pose an equivalent structure called eASPP that substantially
reduces the computational complexity. Our proposed topol-

ogy is based on two principles: cascading atrous convolutions
and the bottleneck structure. Cascading atrous convolutions
effectively enlarges the receptive field as the latter atrous
convolution takes the output of the former atrous convolu-
tion. The receptive field size F of an atrous convolution is be
computed as

F = (r − 1) · (N − 1) + N , (1)

where r is the dilation rate of the atrous convolution and
N is the filter size. When two atrous convolutions with the
receptive field sizes as F1 and F2 are cascaded, the effective
receptive field size is computed as

Fef f = F1 + F2 − 1. (2)

For example, if two atrous convolutions with filter size
F = 3 and dilation r = 3 are cascaded, then each of the con-
volutions individually has a receptive field size of 7, while
the effective receptive field size of the second atrous convolu-
tion is 13. Moreover, cascading atrous convolutions enables
denser sampling of pixels in comparison to parallel atrous
convolution with a larger receptive field. Therefore, by using
both parallel and cascaded atrous convolutions in the ASPP,
we can efficiently aggregate dense multiscale features with
very large receptive fields.

In order to reduce the number of parameters in the ASPP
topology, we employ a bottleneck structure in the cascaded
atrous convolution branches. The topology of our proposed
eASPP shown in Fig. 4b consists of five parallel branches
similar to ASPP but the branches with the 3×3 atrous convo-
lutions are replaced with our cascaded bottleneck branches.
If c is the number of channels in the 3×3 atrous convolution,
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Fig. 5 Our decoder consists of three upsampling stages that recover
segmentation details using deconvolution layers and two skip refine-
ment stages that fuse mid-level features from the encoder to improve
the segmentation along object boundaries. Each skip refinement stage

consists of concatenation of mid-level features with the upsampled
decoder feature maps, followed by two 3 × 3 convolutions to improve
the discriminability of the high-level features and the resolution of the
refinement (Color figure online)

we add a 1× 1 convolution with c/4 filters before the atrous
convolution to squeeze only the most relevant information
through the bottleneck. We then replace the 3 × 3 atrous
convolution with two cascaded 3 × 3 atrous convolutions
with c/4 filters, followed by another 1 × 1 convolution to
restore the number of filters to c. The proposed eASPP only
has 2.04 M parameters and consumes 3.62 B FLOPS which
accounts to a reduction of 87.87% of parameters and 89.53%
of FLOPS in comparison to the ASPP. We evaluate our pro-
posed eASPP in comparison to ASPP in the ablation study
presented in Sect. 5.5.2 and show that it achieves improved
performance while being more than 10 times efficient in the
number of parameters.

3.3 Decoder

The output of the eASPP in our network is 16-times down-
sampled with respect to the input image and therefore it has
to be upsampled back to the full input resolution. In our
previous work (Valada et al. 2017), we employed a simple
decoder with two deconvolution layers and one skip refine-
ment connection.Although the decoderwasmore effective in
recovering the segmentation details in comparison to direct
bilinear upsampling, it often produced disconnected seg-
ments while recovering the structure of thin objects such as
poles and fences. In order to overcome this impediment, we
propose a more effective decoder in this work.

Our decoder shown in Fig. 5 consists of three stages.
In the first stage, the output of the eASPP is upsampled
by a factor of two using a deconvolution layer to obtain
a coarse segmentation mask. The upsampled coarse mask
is then passed through the second stage, where the feature
maps are concatenated with the first skip refinement from
Res3d. The skip refinement consists of a 1 × 1 convolution
layer to reduce the feature depth in order to not outweigh
the encoder features. We experiment with varying number of
feature channels in the skip refinement in the ablation study
presented in Sect. 5.5.3. The concatenated feature maps are
then passed through two 3 × 3 convolutions to improve the

resolution of the refinement, followed by a deconvolution
layer that again upsamples the feature maps by a factor of
two. This upsampled output is fed to the last decoder stage
which resembles the previous stage consisting of concatena-
tion with the feature maps from the second skip refinement
from Res2c, followed by two 3 × 3 convolution layers. All
the convolutional and deconvolutional layers until this stage
have 256 feature channels, therefore the output from the two
3×3 convolutions in the last stage is fed to a 1×1 convolution
layer to reduce the number of feature channels to the number
of object categories C . This output is finally fed to the last
deconvolution layer which upsamples the feature maps by a
factor of four to recover the original input resolution.

3.4 Multiresolution Supervision

Deep networks often have difficulty in training due to the
intrinsic instability associated with learning using gradi-
ent descent which leads to exploding or vanishing gradient
problems. As our encoder is based on the residual learning
framework, shortcut connections in each unit help propagat-
ing the gradient more effectively. Another technique that can
be used to mitigate this problem to a certain extent is by
initializing the layers with pretrained weights, however our
proposed eASPP and decoder layers still have to be trained
from scratch which could lead to optimization difficulties.
Recent deep architectures have proposed employing an aux-
iliary loss in the middle of encoder network (Lee et al. 2015;
Zhao et al. 2017), in addition to themain loss towards the end
of the network. However, as shown in the ablation study pre-
sented in Sect. 5.5.1 this does not improve the performance
of our network although it helps the optimization to converge
faster.

Unlike previous approaches, in this work, we propose a
multiresolution supervision strategy to both accelerate the
training and improve the resolution of the segmentation. As
described in the previous section, our decoder consists of
three upsampling stages. We add two auxiliary loss branches
at the end of the first and second stage after the deconvolution
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Fig. 6 Depiction of the two auxiliary softmax losses that we add before
each skip refinement stage in the decoder in addition to the main soft-
max loss in the end of the decoder. The two auxiliary losses are weighed

for balancing the gradient flow through all the previous layers. While
testing the auxiliary branches are removed and only the main stream as
shown in Fig. 5 is used (Color figure online)

layer in addition to the main softmax loss Lmain at the end
of the decoder as shown in Fig. 6. Each auxiliary loss branch
decreases the feature channels to the number of category
labels C using a 1× 1 convolution with batch normalization
and upsamples the feature maps to the input resolution using
bilinear upsampling.We only use simple bilinear upsampling
which does not contain any weights instead of a deconvolu-
tion layer in the auxiliary loss branches as our aim is to force
the main decoder stream to improve its discriminativeness
at each upsampling resolution so that it embeds multiresolu-
tion information while learning to upsample. We weigh the
two auxiliary losses Laux1 and Laux2 to balance the gradient
flow through all the previous layers. While testing, the aux-
iliary loss branches are discarded and only the main decoder
stream is used. We experiment with different loss weightings
in the ablation study presented in Sects. 5.5.3 and in 5.5.1
we show that each of the auxiliary loss branches improves
the segmentation performance in addition to speeding-up the
training.

3.5 Network Compression

As we strive to design an efficient and compact semantic
segmentation architecture that can be employed in resource
constrained applications, we must ensure that the utilization
of convolutional filters in our network is thoroughly opti-
mized.Often, even themost compact networks have abundant
neurons in deeper layers that do not significantly contribute
to the overall performance of the model. Excessive con-
volutional filters not only increase the model size but also
the inference time and the number of computing operations.
These factors critically hinder the deployment of models in
resource constrained real-world applications. Pruning of neu-
ral networks can be traced back to the 80s when LeCun et al.
(1990) introduced a technique called Optimal Brain Damage
for selectively pruning weights with a theoretically justified
measure. Recently, several new techniques have been pro-

posed for pruning weight matrices (Wen et al. 2016; Anwar
et al. 2017; Liu et al. 2017; Li et al. 2016) of convolutional
layers as most of the computation during inference is con-
sumed by them.

These approaches rank neurons based on their contribu-
tion and remove the low ranking neurons from the network,
followed by fine-tuning of the pruned network. While the
simplest neuron ranking method computes the �1-norm of
each convolutional filter (Li et al. 2016), more sophisticated
techniques have recently been proposed (Anwar et al. 2017;
Liu et al. 2017; Molchanov et al. 2017). Some of these
approaches are based on sparsity based regularization of
network parameters which additionally increases the com-
putational overhead during training (Liu et al. 2017; Wen
et al. 2016). Techniques have also been proposed for struc-
tured pruning of entire kernels with strided sparsity (Anwar
et al. 2017) that demonstrate impressive results for pruning
small networks. However, their applicability to complex net-
works that are to be evaluated on large validation sets has
not been explored due its heavy computational processing.
Moreover, until a year ago these techniqueswere only applied
to simpler architectures such as VGG (Simonyan and Zisser-
man 2014) and AlexNet (Krizhevsky et al. 2012), as pruning
complex deep architectures such as ResNets requires a holis-
tic approach. Thus far, pruning of residual units has only been
performedonconvolutional layers that donot have an identity
or shortcut connection as pruning them additionally requires
pruning the added residual maps in the exact same configura-
tion. Attempts to prune them in the same configuration have
resulted in a significant drop in performance (Li et al. 2016).
Therefore, often only the first and the second convolutional
layers of a residual unit are pruned.

Our proposed AdapNet++ architecture has shortcut and
skip connections both in the encoder as well the decoder.
Therefore, in order to efficiently maximize the pruning of
our network, we propose a holistic network-wide pruning
technique that is invariant to the presence of skip or shortcut
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connections. Our proposed technique first involves pruning
all the convolutional layers of a residual unit, followed by
masking out the pruned indices of the last convolutional layer
of a residual unit with zeros before the addition of the residual
maps from the shortcut connection. Asmasking is performed
after the pruning, we efficiently reduce the parameters and
computing operations in a holistic fashion, while optimally
pruning all the convolutional layers and preserving the short-
cut or skip connections. After each pruning iteration, we
fine-tune the network to recover any loss in accuracy. We
illustrate this strategy adopting a recently proposed greedy
criteria-based oracle pruning technique that incorporates a
novel ranking method based on a first order Taylor expan-
sion of the network cost function (Molchanov et al. 2017).
The pruning problem is framed as a combinatorial optimiza-
tion problem such that when the weights B of the network
are pruned, the change in cost value will be minimal.

min
W ′ |C(T |W ′) − C(T |W)| s.t. ‖W ′‖0 ≤ B, (3)

where T is the training set, W is the network parame-
ters and C(·) is the negative log-likelihood function. Based
on Taylor expansion, the change in the loss function from
removing a specific parameter can be approximated. Let hi
be the output feature maps produced by parameter i and
hi = {z10, z20, · · · , zCl

L }. The output hi can be pruned by set-
ting it to zero and the ranking can be given by

|ΔC(hi )| = |C(T , hi = 0) − C(T , hi )|, (4)

Approximating with Taylor expansion, we can write

ΘT E (hi ) = |ΔC(hi )| =
∣
∣
∣
∣
C(T , hi ) − δC

δhi
hi − C(T , hi )

∣
∣
∣
∣

=
∣
∣
∣
∣

δC
δhi

hi

∣
∣
∣
∣
. (5)

ΘT E (z(k)l ) =
∣
∣
∣
∣
∣

1

M

∑

m

δC
δz(k)l,m

z(k)l,m

∣
∣
∣
∣
∣
, (6)

where M is the length of the vectorized feature map. This
ranking can be easily computed using the standard back-
propagation computation as it requires the gradient of the
cost function with respect to the activation and the product
of the activation. Furthermore, in order to achieve adequate
rescaling across layers, a layer-wise �2-norm of the rankings
is computed as

Θ̂(z(k)l ) = Θ(z(k)l )
√

∑

j Θ
2(z( j)l )

. (7)

The entire pruning procedure can be summarized as
follows: first the AdapNet++ network is trained until conver-

gence using the training protocol described in Sect. 5.1. Then
the importance of the feature maps is evaluated using the
aforementioned ranking method and subsequently the unim-
portant feature maps are removed. The pruned convolution
layers that have shortcut connections are then masked at the
indices where the unimportant feature maps are removed to
maintain the shortcut connections. The network is then fine-
tuned and the pruning process is reiterated until the desired
trade-off between accuracy and the number of parameters has
been achieved. We present results from pruning our Adap-
Net++ architecture in Sect. 5.4, where we perform pruning
of both the convolutional and deconvolutional layers of our
network in five stages by varying the threshold for the rank-
ings. For each of these stages, we quantitatively evaluate the
performance versus number of parameters trade-off obtained
using our proposed pruning strategy in comparison to the
standard approach.

4 Self-SupervisedModel Adaptation

In this section, we describe our approach to multimodal
fusion using our proposed self-supervised model adapta-
tion (SSMA) framework. Our framework consists of three
components: a modality-specific encoder as described in
Sect. 3.1, a decoder built upon the topology described in
Sect. 3.3 and our proposed SSMA block for adaptively
recalibrating and fusing modality-specific feature maps. In
the following, we first formulate the problem of seman-
tic segmentation from multimodal data, followed by a
detailed description of our proposed SSMA units and finally
we describe the overall topology of our fusion architec-
ture.

We represent the training set formultimodal semantic seg-
mentation as T = {(In, Kn, Mn) | n = 1, . . . , N }, where
In = {ur | r = 1, . . . , ρ} denotes the input frame from
modality a, Kn = {kr | r = 1, . . . , ρ} denotes the corre-
sponding input frame from modality b and the groundtruth
label is given by Mn = {mr | r = 1, . . . , ρ}, where
mr ∈ {1, . . . ,C} is the set of semantic classes. The image In
is only shown to the modality-specific encoder Ea and sim-
ilarly, the corresponding image Kn from a complementary
modality is only shown to the modality-specific encoder Eb.
This enables each modality-specific encoder to specialize in
a particular sub-space learning their own hierarchical rep-
resentations individually. We assume that the input images
In and Kn , as well as the label Mn have the same dimen-
sions ρ = H × W and that the pixels are drawn as i .i .d.

samples following a categorical distribution. Let θ be the
network parameters consisting of weights and biases. Using
the classification scores s j at each pixel ur , we obtain prob-
abilities P = (p1, . . . , pC ) with the softmax function such
that
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Fig. 7 The topology of our proposed SSMA unit that adaptively recal-
ibrates and fuses modality-specific feature maps based on the inputs in
order to exploit themore informative features from themodality-specific
streams. η denotes the bottleneck compression rate (Color figure online)

p j (ur , θ | In, Kn) = σ
(

s j (ur , θ)
) = exp

(

s j (ur , θ)
)

∑C
k exp (sk (ur , θ))

(8)

denotes the probability of pixel ur being classified with label
j . The optimal θ is estimated by minimizing

Lseg(T , θ) = −
N

∑

n=1

ρ
∑

r=1

C
∑

j=1

δmr , j log p j (ur , θ | In, Kn),

(9)

for (In, Kn, Mn) ∈ T , where δmr , j is the Kronecker delta.

4.1 SSMA Block

In order to adaptively recalibrate and fuse feature maps from
modality-specific networks, we propose a novel architec-
tural unit called the SSMA block. The goal of the SSMA
block is to explicitly model the correlation between the two
modality-specific feature maps before fusion so that the net-
work can exploit the complementary features by learning to
selectively emphasize more informative features from one
modality, while suppressing the less informative features
from the other.We construct the topology of the SSMAblock
in a fully-convolutional fashionwhich empowers the network
with the ability to emphasize features from a modality-
specific network for only certain spatial locations or object
categories, while emphasizing features from the comple-
mentary modality for other locations or object categories.
Moreover, the SSMA block dynamically recalibrates the fea-
ture maps based on the input scene context.

The structure of the SSMA block is shown in Fig. 7. Let
Xa ∈ R

C×H×W and Xb ∈ R
C×H×W denote the modality-

specific feature maps from modality A and modality B
respectively, where C is the number of feature channels
and H × W is the spatial dimension. First, we concate-
nate the modality-specific feature maps Xa and Xb to yield

Xab ∈ R
2·C×H×W .We then employ a recalibration technique

to adapt the concatenated featuremaps before fusion. In order
to achieve this,wefirst pass the concatenated featuremapXab

through a bottleneck consisting of two 3 × 3 convolutional
layers for dimensionality reduction and to improve the rep-
resentational capacity of the concatenated features. The first

convolution has weights W1 ∈ R
1
η
·C×H×W with a channel

reduction ratio η and a non-linearity function δ(·). We use
ReLU for the non-linearity, similar to the other activations in
the encoders and experiment with different reductions ratios
in Sect. 5.10.2. Note that we omit the bias term to simplify the
notation. The subsequent convolutional layer with weights
W2 ∈ R

2·C×H×W increases the dimensionality of the feature
channels back to concatenation dimension 2C and a sigmoid
function σ(·) scales the dynamic range of the activations to
the [0, 1] interval. This can be represented as

s = Fssma(Xab;W) = σ
(

g
(

Xab;W
))

= σ
(

W2δ
(

W1Xab
))

. (10)

The resultingoutput s is used to recalibrate or emphasize/de-
emphasize regions in Xab as

X̂
ab = Fscale(Xab; s) = s ◦ Xab, (11)

where Fscale(Xab, s) denotes Hadamard product of the fea-
ture maps Xab and the matrix of scalars s such that each
element xc,i, j inXab is multiplied with a corresponding acti-
vation sc,i, j in s with c ∈ {1, 2, . . . , 2C}, i ∈ {1, 2, . . . , H}
and j ∈ {1, 2, . . . ,W }. The activations s adapt to the con-
catenated input feature map Xab, enabling the network to
weigh features element-wise spatially and across the chan-
nel depth based on the multimodal inputs In and Kn . With
newmultimodal inputs, the network dynamically weighs and
reweighs the feature maps in order to optimally combine
complementary features. Finally, the recalibrated feature

maps X̂
ab

are passed through a 3×3 convolutionwithweights
W3 ∈ R

C×H×W and a batch normalization layer to reduce
the feature channel depth and yield the fused output f as

f = Ff used(X̂
ab;W) = g(X̂

ab;W) = W3X̂
ab

. (12)

As described in the following section, we employ our pro-
posed SSMA block to fuse modality-specific feature maps
both at intermediate stages of the network and towards the
end of the encoder. Although we utilize a bottleneck struc-
ture to conserve the number of parameters consumed, further
reduction in the parameters can be achieved by replacing the
3×3 convolution layerswith 1×1 convolutions,which yields
comparable performance. We also remark that the SSMA
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Fig. 8 Topology of our Adapnet++ encoder for multimodal fusion.
The encoder employs a late fusion technique to fuse feature maps from
modality-specific streams using our proposed SSMA block. The SSMA
block is employed to fuse the latent features from the eASPP as well as
the feature maps from the skip refinements (Color figure online)

blocks can be used for multimodal fusion in other tasks such
as scene classification as shown in Sect. 5.9.

4.2 Fusion Architecture

Wepropose a framework formultimodal semantic segmenta-
tion using a modified version of our AdapNet++ architecture
and the proposed SSMA blocks. For simplicity, we consider
the fusion of twomodalities, but the framework can be easily
extended to arbitrary number of modalities. The encoder of
our framework shown in Fig. 8 contains two streams, where
each stream is based on the encoder topology described in
Sect. 3.1. Each encoder stream is modality-specific and spe-
cializes in a particular sub-space. In order to fuse the feature
maps from both streams, we adopt a combination of mid-
level and late fusion strategy in which we fuse the latent
representations of both encoders using the SSMA block and
pass the fused feature map to the first decoder stage. We
denote this as latent SSMA fusion as it takes the output of
the eASPP from each modality-specific encoder as input. We
set the reduction ratio η = 16 in the latent SSMA. As the
AdapNet++ architecture contains skip connections for high-
resolution refinement, we employ an SSMA block at each
skip refinement stage after the 1 × 1 convolution as shown
in Fig. 8. As the 1× 1 convolutions reduce the feature chan-
nel depth to 24, we only use a reduction ratio η = 6 in the
two skip SSMAs as identified from the ablation experiments
presented in Sect. 5.10.2.

In order to upsample the fused predictions, we build upon
our decoder described in Sect. 3.3. The main stream of our
decoder resembles the topology of the decoder in our Adap-
Net++ architecture consisting of three upsampling stages.
The output of the latent SSMA block is fed to the first
upsampling stage of the decoder. Following the AdapNet++
topology, the outputs of the skip SSMA blocks would be

concatenated into the decoder at the second and third upsam-
pling stages (skip1 after thefirst deconvolution and skip2 after
the second deconvolution). However, we find that concate-
nating the fused mid-level features into the decoder does
not substantially improve the resolution of the segmenta-
tion, as much as in the unimodal AdapNet++ architecture.
We hypothesise that directly concatenating the fused mid-
level features and fused high-level features causes a feature
localizationmismatch as eachSSMAblock adaptively recali-
brates at different stages of the network where the resolution
of the feature maps and channel depth differ by one half
of their dimensions. Moreover, training the fusion network
end-to-end from scratch also contributes to this problem as
without initializing the encoders with modality-specific pre-
trained weights, concatenating the uninitialized mid-level
fused encoder feature maps into the decoder does not yield
any performance gains, rather it hampers the convergence.

With the goal of mitigating this problem, we propose two
strategies. In order to facilitate better fusion, we adopt a
multi-stage training protocol where we first initialize each
encoder in the fusion architecture with pre-trained weights
from the unimodal AdapNet++ model. We describe this pro-
cedure in Sect. 5.1.2. Secondly, we propose a mechanism to
better correlate the mid and high-level fused features before
concatenation in the decoder. We propose to weigh the fused
mid-level skip featureswith the spatially aggregated statistics
of the high-level decoder features before the concatenation.
Following the notation convention, we defineD ∈ R

C×H×W

as the high-level decoder feature map before the skip con-
catenation stage. A feature statistic s ∈ R

C is produced by
projecting D along the spatial dimensions H × W using a
global average pooling layer as

sc = Fshrink(dc) = 1

H × W

H
∑

i=1

W
∑

j=1

dc(i, j), (13)

where sc represents a statistic or a local descriptor of the
cth element of D. We then reduce the number of feature
channels in s using a 1 × 1 convolution layer with weights
W4 ∈ R

C×H×W , batch normalization and an ReLU activa-
tion function δ to match the channels of the fused mid-level
feature map f, where f is computed as shown in Eq. (12). We
can represent resulting output as

z = Freduce(s;W) = δ(W4s). (14)

Finally, we weigh the fused mid-level feature map f with
the reduced aggregateddescriptors zusing channel-wisemul-
tiplication as

f̂ = Floc(fc; zc) = (z1f1, z2f2, . . . , zcfc) . (15)

123



1252 International Journal of Computer Vision (2020) 128:1239–1285

Fig. 9 Topology of the modified AdapNet++ decoder used for multi-
modal fusion. We propose a mechanism to better correlate the fused
mid-level skip refinement features with the high-level decoder fea-

ture before integrating into the decoder. The correlation mechanism
is depicted following the fuse skip connections (Color figure online)

As shown in Fig. 9, we employ the aforementioned mech-
anism to the fused feature maps from skip1 SSMA as well as
skip2 SSMA and concatenate their outputs with the decoder
feature maps at the second and third upsampling stages
respectively. We find that this mechanism guides the fusion
of mid-level skip refinement features with the high-level
decoder feature more effectively than direct concatenation
and yields a notable improvement in the resolution of the
segmentation output.

5 Experimental Results

In this section, we first describe the datasets that we bench-
mark on, followed by comprehensive quantitative results
for unimodal segmentation using our proposed AdapNet++
architecture in Sect. 5.3 and the results for model compres-
sion in Sect. 5.4. We then present detailed ablation studies
that describe our architectural decisions in Sect. 5.5, fol-
lowed by the qualitative unimodal segmentation results in
Sect. 5.6. We present the multimodal fusion benchmarking
experiments with the various modalities contained in the
datasets in Sect. 5.7 and the ablation study on our multi-
modal fusion architecture in Sect. 5.10. We finally present
the qualitative multimodal segmentation results in Sect. 5.11
and in challenging perceptual conditions in Sect. 5.12.

All our models were implemented using the TensorFlow
(Abadi et al. 2015) deep learning library and the experiments
were carried out on a system with an Intel Xeon E5 with
2.4GHz and an NVIDIA TITAN X GPU. We primarily use
the standard Jaccard Index, also known as the intersection-
over-union (IoU) metric to quantify the performance. The
IoU for each object class is computed as IoU = TP/(TP +
FP + FN), where TP, FP and FN correspond to true pos-
itives, false positives and false negatives respectively. We
report the mean intersection-over-union (mIoU) metric for
all the models and also the pixel-wise accuracy (Acc), aver-
age precision (AP), global intersection-over-union (gIoU)
metric, false positive rate (FPR), false negative rate (FNR)
in the detailed analysis. All the metrics are computed as

defined in the PASCAL VOC challenge (Everingham et al.
2015) and additionally, the gIoU metric is computed as
gIoU = ∑

C TPC/
∑

C(TPC + FPC + FNC), where C is the
number of object categories. The implementations of our pro-
posed architectures are publicly available at https://github.
com/DeepSceneSeg and a live demo can be viewed at http://
deepscene.cs.uni-freiburg.de.

5.1 Training Protocol

In this section,we first describe the procedure thatwe employ
for training our proposed AdapNet++ architecture, followed
by the protocol for training the SSMA fusion scheme. We
then detail the various data augmentations that we perform
on the training set.

5.1.1 AdapNet++ Training

We train our network with an input image of resolution
768×384 pixels, therefore we employ bilinear interpolation
for resizing the RGB images and the nearest-neighbor inter-
polation for the other modalities as well as the groundtruth
labels. We initialize the encoder section of the network with
weights pre-trained on the ImageNet dataset (Deng et al.
2009), while we use the He initialization (He et al. 2015b) for
the other convolutional and deconvolutional layers. We use
the Adam solver for optimization with β1 = 0.9, β2 = 0.999
and ε = 10−10. We train our model for 150K iterations using
an initial learning rate of λ0 = 10−3 with amini-batch size of
8 and a dropout probability of 0.5. We use the cross-entropy
loss function and set the weights λ1 = 0.6 and λ2 = 0.5 to
balance the auxiliary losses. The final loss function can be
given as L = Lmain + λ1Laux1 + λ2Laux2.

5.1.2 SSMA Training

We employ a multi-stage procedure for training the multi-
modal models using our proposed SSMA fusion scheme.We
first train each modality-specific Adapnet++ model individ-
ually using the training procedure described in Sect. 5.1.1.
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In the second stage, we leverage transfer learning to train
the joint fusion model in the SSMA framework by initializ-
ing only the encoders with the weights from the individual
modality-specific encoders trained in the previous stage. We
then set the learning rate of the encoder layers to λ0 = 10−4

and the decoder layers to λ0 = 10−3, and train the fusion
model with a mini-batch of 7 for a maximum of 100K
iterations. This enables the SSMA blocks to learn the opti-
mal combination of multimodal feature maps from the well
trained encoders, while slowly adapting the encoder weights
to improve the fusion. In the final stage, we fix the learn-
ing rate of the encoder layers to λ0 = 0 while only training
the decoder and the SSMA blocks with a learning rate of
λ0 = 10−5 and a mini-batch size of 12 for 50K iterations.
This enables us to train the network with a larger batch size,
while focusing more on the upsampling stages to yield the
high-resolution segmentation output.

5.1.3 Data Augmentation

The training of deep networks can be significantly improved
by expanding the dataset to introduce more variability. In
order to achieve this, we apply a series of augmentation
strategies randomly on the input data while training. The
augmentations that we apply include rotation (− 13◦ to 13◦),
skewing (0.05–0.10), scaling (0.5–2.0), vignetting (210–
300), cropping (0.8–0.9), brightnessmodulation (− 40 to 40),
contrast modulation (0.5–1.5) and flipping.

5.2 Datasets

We evaluate our proposed AdapNet++ architecture on five
publicly available diverse scene understanding benchmarks
ranging fromurban driving scenarios to unstructured forested
scenes and cluttered indoor environments. The datasets
were particularly chosen based on the criteria of contain-
ing scenes with challenging perceptual conditions including
rain, snow, fog, night-time, glare, motion blur and other
seasonal appearance changes. Each of the datasets contain
multiple modalities that we utilize for benchmarking our
fusion approach. We briefly describe the datasets and their
constituting semantic categories in this section.

Cityscapes The Cityscapes dataset (Cordts et al. 2016) is
one of the largest labeled RGB-D dataset for urban scene
understanding. Being one of the standard benchmarks, it is
highly challenging as it contains images of complex urban
scenes, collected from over 50 cities during varying seasons,
lighting and weather conditions. The images were captured
using a automotive-grade 22cm baseline stereo camera at
a resolution of 2048 × 1024 pixels. The dataset contains
5000 finely annotated images, ofwhich 2875 are provided for
training, 500 are provided for validation and 1525 are used

AHH(b)BGR(a)

(c) Depth (d) Depth Filled

Fig. 10 Example image from theCityscapes dataset showing a complex
urban scene with many dynamic objects and the corresponding depth
map representations (Color figure online)

for testing. As a supplementary training set, 20,000 coarse
annotations are also provided. The testing images are not
publicly released, they are used by the evaluation server for
benchmarking on 19 semantic object categories. We report
results on the full 19 class label set for both the validation
and test sets. Additionally, in order to facilitate comparison
with previous fusion approaches we also report results on the
reduced 11 class label set consisting of: sky, building, road,
sidewalk, fence, vegetation, pole, car/truck/bus, traffic sign,
person, rider/bicycle/motorbike and background.

In our previous work (Valada et al. 2017), we directly used
the colorized depth image as input to our network. We con-
verted the stereo disparity map to a three-channel colorized
depth image by normalizing and applying the standard jet
color map Fig. 10a, c show an example image and the corre-
sponding colorized depth map from the dataset. However, as
seen in the figure, the depth maps have considerable amount
of noise and missing depth values due to occlusion, which
are undesirable especially when utilizing depth maps as an
input modality for pixel-wise segmentation. Therefore, in
this work, we employ a recently proposed state-of-the-art
fast depth completion technique (Ku et al. 2018) to fill any
holes that may be present. The resulting filled depth map
is shown in Fig. 10d. The depth completion algorithm can
easily be incorporated into our pipeline as a preprocessing
step as it only requires 11ms while running on the CPU
and it can be further parallelized using a GPU implementa-
tion. Additionally, Gupta et al. (2014) proposed an alternate
representation of the depth map known as the HHA encod-
ing to enable DCNNs to learn more effectively. The authors
demonstrate that the HHA representation encodes proper-
ties of geocentric pose that emphasizes on complementary
discontinuities in the image which are extremely hard for
the network to learn, especially from limited training data.
This representation also yields a three-channel image con-
sisting of: horizontal disparity, height above ground, and the
angle between the local surface normal of a pixel and the
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(a) RGB (b) Depth (c) HHA

Fig. 11 Example image from the Synthia dataset showing an outdoor
urban scene and the corresponding depth map representations (Color
figure online)

(a) RGB (b) Depth (c) HHA

Fig. 12 Example image from the SUN RGB-D dataset showing an
indoor scene and the corresponding depth map representations (Color
figure online)

inferred gravity direction. The resulting channels are then
linearly scaled and mapped to the 0 to 255 range. However,
it is still unclear if this representation enables the network
to learn features complementary to that learned from visual
RGB images as different works show contradicting results
(Hazirbas et al. 2016; Gupta et al. 2014; Eitel et al. 2015). In
this paper, we perform in-depth experiments with both the jet
colorized and the HHA encoded depth map on a larger and
more challenging dataset than previous works to investigate
the utility of these encodings.

Synthia The Synthia dataset (Ros et al. 2016) is a large-scale
urban outdoor dataset that contains photo realistic images
and depth data rendered from a virtual city built using the
Unity engine. An example image and the corresponding
modalities from this dataset is shown in Fig. 11. It con-
sists of several annotated label sets. In this work, we use
the Synthia-Rand-Cityscapes and the video sequences which
have images of resolution 1280 × 760 with a 100◦ horizon-
tal field of view. This dataset is of particular interest for
benchmarking the fusion approaches as it contains diverse
traffic situations under different weather conditions. Synthia-
Rand-Cityscapes consists of 9000 images and the sequences
contain 8000 images with groundtruth labels for 12 classes.
The categories of object labels are the same as the aforemen-
tioned Cityscapes label set.

SUN RGB-D The SUN RGB-D dataset (Song et al. 2015)
is one of the most challenging indoor scene understanding
benchmarks to date. It contains 10,335 RGB-D images that
were captured with four different types of RGB-D cameras
(Kinect V1, Kinect V2, Xtion and RealSense) with different
resolutions and fields of view. This benchmark also com-
bines several other datasets including 1449 images from the
NYU Depth v2 (Silberman et al. 2012), 554 images from
the Berkeley B3DO (Janoch et al. 2013) and 3389 images

(a) RGB (b) Depth (c) Depth Filled

(d) HHA (e) Ground truth label

Fig. 13 Example image from the Scannet dataset showing a complex
indoor scene, the corresponding depth map representations and the
groundtruth semantic segmentation mask (Color figure online)

from the SUN3D (Xiao et al. 2013). An example image and
the corresponding modalities from this dataset is shown in
Fig. 12. We use the original train-val split consisting of 5285
images for training and 5050 images for testing. We use the
refined in-painted depth images from the dataset that were
processed using a multi-view fusion technique. However,
some refined depth images still have missing depth values at
distances larger than a few meters. Therefore, as mentioned
in previous works (Hazirbas et al. 2016), we exclude the
587 training images that were captured using the RealSense
RGB-Dcamera as they contain a significant amount of invalid
depth measurements that are further intensified due to the in-
painting process.

This dataset provides pixel-level semantic annotations for
37 categories, namely: wall, floor, cabinet, bed, chair, sofa,
table, door, window, bookshelf, picture, counter, blinds, desk,
shelves, curtain, dresser, pillow, mirror, floor mat, clothes,
ceiling, books, fridge, tv, paper, towel, shower curtain, box,
whiteboard, person, night stand, toilet, sink, lamp, bathtub
and bag. Althoughwebenchmark on all the object categories,
16 out of the 37 classes are rarely present in the images and
about 0.25% of the pixels are not assigned to any of the
classes, making it extremely unbalanced. Moreover, as each
scene contains many different types of objects, they are often
partially occluded andmay appear completely different in the
test images.

ScanNet The ScanNet RGB-Dvideo dataset (Dai et al. 2017)
is a recently introduced large-scale indoor scene understand-
ing benchmark. It contains 2.5M RGB-D images accounting
to 1512 scans acquired in 707 distinct spaces. The data was
collected using an iPad Air2 mounted with a depth camera
similar to the Microsoft Kinect v1. Both the iPad camera and
the depth camera were hardware synchronized and frames
were captured at 30Hz. The RGB images were captured
at a resolution of 1296 × 968 pixels and the depth frames
were captured at 640 × 480 pixels. The semantic segmenta-
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tion benchmark contains 16,506 labelled training images and
2537 testing images. From the example depth image shown
in Fig. 13b, we can see that there are a number of missing
depth values at the object boundaries and at large distances.
Therefore, similar to the preprocessing that we perform on
the cityscapes dataset, we use a fast depth completion tech-
nique (Ku et al. 2018) to fill the holes. The corresponding
filled depth image is shown in Fig. 13c. We also compute
the HHA encoding for the depth maps and use them as an
additional modality in our experiments.

The dataset provides pixel-level semantic annotations for
21 object categories, namely: wall, floor, chair, table, desk,
bed, bookshelf, sofa, sink, bathtub, toilet, curtain, counter,
door, window, shower curtain, refrigerator, picture, cabinet,
other furniture and void. Similar to the SUNRGB-D dataset,
many object classes are rarely present making the dataset
unbalanced. Moreover, the annotations at the object bound-
aries are often irregular and parts of objects at large distances
are unlabelled as shown in Fig. 13e. These factors make the
task even more challenging on this dataset.

Freiburg Forest In our previous work (Valada et al. 2016b),
we introduced the Freiburg Multispectral Segmentation
benchmark, which is a first-of-a-kind dataset of unstruc-
tured forested environments. Unlike urban and indoor scenes
which are highly structured with rigid objects that have dis-
tinct geometric properties, objects in unstructured forested
environments are extremely diverse and moreover, their
appearance completely changes from month to month due
to seasonal variations. The primary motivation for the intro-
duction of this dataset is to enable robots to discern obstacles
that can be driven over such as tall grass and bushes to
obstacles that should be avoided such as tall trees and boul-
ders. Therefore, we proposed to exploit the presence of
chlorophyll in these objects which can be detected in the
Near-InfraRed (NIR)wavelength.NIR images provide a high
fidelity description on the presence of vegetation in the scene
and as demonstrated in our previous work (Valada et al.
2017), it enhances border accuracy for segmentation.

The dataset was collected over an extended period of time
using our Viona autonomous robot equipped with a Bum-
blebee2 camera to capture stereo images and a modified
camera with the NIR-cut filter replaced with a Wratten 25A
filter for capturing the NIR wavelength in the blue and green
channels. The dataset contains over 15,000 images that were
sub-sampled at 1Hz, corresponding to traversing over 4.7km
each day. In order to extract consistent spatial and global veg-
etation information we computed vegetation indices such
as Normalized Difference Vegetation Index (NDVI) and
Enhanced Vegetation Index (EVI) using the approach pre-
sented by Huete et al. (1999). NDVI is resistant to noise
caused due to changing sun angles, topography and shad-
ows but is susceptible to error due to variable atmospheric

(a) RGB (b) NIR (c) NDVI

(d) NRG (e) EVI (f) Depth

Fig. 14 Example image from the Freiburg Forest dataset showing the
various spectra and modalities: Near-InfraRed (NIR), Normalized Dif-
ference Vegetation Index (NDVI), Near-InfraRed-Red-Green (NRG),
Enhanced Vegetation Index (EVI) and Depth (Color figure online)

and canopy background conditions (Huete et al. 1999). EVI
was proposed to compensate for these defects with improved
sensitivity to high biomass regions and improved detection
though decoupling of canopy background signal and reduc-
tion in atmospheric influences. Figure 14 shows an example
image from the dataset and the correspondingmodalities. The
dataset contains hand-annotated segmentation groundtruth
for six classes: sky, trail, grass, vegetation, obstacle and
void. We use the original train and test splits provided by
the dataset.

5.3 AdapNet++ Benchmarking

In this section, we report results comparing the performance
of our proposed AdapNet++ architecture against several well
adopted state-of-the-art models includingDeepLab v3 (Chen
et al. 2017), ParseNet (Liu et al. 2015), FCN-8s (Long
et al. 2015), SegNet (Badrinarayanan et al. 2015), Fast-
Net (Oliveira et al. 2016), DeepLab v2 (Chen et al. 2016),
DeconvNet (Noh et al. 2015) and Adapnet (Valada et al.
2017). We use the official implementations of these archi-
tectures that are publicly released by the authors to train
on the input image resolution of 768 × 384 pixels. For the
Cityscapes and ScanNet benchmarking results reported in
Tables 2 and 6, we report results directly from the official
benchmark leaderboard. For each of the datasets, we report
the mIoU score, as well as the per-class IoU score. In order
to have a fair comparison, we also evaluate the models at the
same input resolution using the same evaluation settings. We
do not apply multiscale inputs or left–right flips during test-
ing as these techniques require each crop of each image to
be evaluated several times which significantly increases the
computational complexity and runtime (Note: We do not use
crops for testing, we evaluate on the full image in a single
forward-pass). Moreover, these techniques do not improve
the performance of themodel in real-time applications. How-
ever, we show the potential gains that can be obtained in
the evaluation metric utilizing these techniques and with a
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Table 1 Performance comparison of AdapNet++ with baseline models on the Cityscapes validation set with 11 semantic class labels (input image
dim: 768 × 384) (Color table online)

Network Sky Building Road Sidewalk Fence Vegetation Pole Car Sign Person Cyclist mIoU (%)

FCN-8s 76.51 83.97 93.82 67.67 24.91 86.38 31.71 84.80 50.92 59.89 59.11 59.97

SegNet 73.74 79.29 92.70 59.88 13.63 81.89 26.18 78.83 31.44 45.03 43.46 52.17

FastNet 77.69 86.25 94.97 72.99 31.02 88.06 38.34 88.42 52.34 61.76 61.83 68.52

ParseNet 77.57 86.81 95.27 74.02 33.31 87.37 38.24 88.99 53.34 63.25 63.87 69.28

DeconvNet 89.38 83.08 95.26 68.07 27.58 85.80 34.20 85.01 27.62 45.11 41.11 62.02

DeepLab v2 74.28 81.66 90.86 63.3 26.29 84.33 27.96 86.24 44.79 58.89 60.92 63.59

AdapNet 92.45 89.98 97.43 81.43 49.93 91.44 53.43 92.23 65.32 69.86 69.62 77.56

DeepLab v3 92.82 89.02 96.74 78.13 41.00 90.81 49.74 91.02 64.48 66.52 66.98 75.21

AdapNet++ (ours) 94.18 91.49 97.93 84.40 54.98 92.09 58.85 93.86 72.61 75.52 72.90 80.80

Note that no left–right flips or multiscale testing is performed. Corresponding multimodal results are reported in Table 17
Bold numbers indicate the best performance among the compared methods

higher resolution input image in the ablation study presented
in Sect. 5.5.6. Additionally, we report results with full resolu-
tion evaluation on the test set of the datasets when available,
namely for Cityscapes and ScanNet.

Table 1 shows the results on the 11 class Cityscapes
validation set. AdapNet++ outperforms all the baselines in
each individual object category as well in the mIoU score.
AdapNet++ outperforms the highest baseline by a margin of
3.24%.Analyzing the individual class IoU scores, we can see
thatAdapNet++yields the highest improvement in object cat-
egories that contain thin structures such as poles for which
it gives a large improvement of 5.42%, a similar improve-
ment of 5.05% for fences and the highest improvement for
7.29% for signs. Most architectures struggle to recover the
structure of thin objects due to downsampling by pooling and
striding in the network which causes such information to be
lost. However, these results show that AdapNet++ efficiently
recovers the structure of such objects by learning multiscale
features at several stages of the encoder using the proposed
multiscale residual units and the eASPP.We further show the
improvement in performance due to the incorporation of the
multiscale residual units and the eASPP in the ablation study
presented in Sect. 5.5.1. In driving scenarios, information
of objects such as pedestrians and cyclists can also be lost
when they appear at far away distances. A large improvement
can also be seen in categories such as person in which Adap-
Net++ achieves an improvement of 5.66%. The improvement
in larger object categories such as cars and vegetation can
be attributed to the new decoder which improves the seg-
mentation performance near object boundaries. This is more
evident in the qualitative results presented in Sect. 5.11. Note
that the colors shown below the object category names serve
as a legend for the qualitative results.

We also report results on the full 19 class Cityscapes vali-
dation and test sets in Table 2.We compare against the top six

published models on the leaderboard, namely, PSPNet (Zhao
et al. 2017), DeepLab v3 (Chen et al. 2017), Mapilary (Bulò
et al. 2018), DeepLab v3+ (Chen et al. 2018b), DPC (Chen
et al. 2018a), andDRN(Zhuang et al. 2018). The results of the
competing methods reported in this table are directly taken
from the benchmark leaderboard for the test set and from the
corresponding manuscripts of the methods for the validation
set. We trained our models on 768× 768 crops from the full
image resolution for benchmarking on the leaderboard. Our
AdapNet++ model with a much smaller network backbone
achieves a comparable performance as other top perform-
ing models on the leaderboard. Moreover, our network is the
most efficient architecture in terms of both the number of
parameters that it consumes as well as the inference time
compared to other networks on the entire first page of the
Cityscapes leaderboard.

We benchmark on the Synthia dataset largely due to the
variety of seasons and adverse perceptual conditions where
the improvement due tomultimodal fusion can be seen.How-
ever, even for baseline comparison shown in Table 3, it can be
seen that AdapNet++ outperforms all the baselines, both in
the overall mIoU score as well as in the score of the individ-
ual object categories. It achieves an overall improvement of
3.87% and a similar observation can bemade in the improve-
ment of scores for thin structures, reinforcing the utility of
our proposed multiscale feature learning configuration. The
largest improvement of 13.14% was obtained for the sign
class, followed by an improvement of 7.8% for the pole class.
In addition a significant improvement of 5.42% can also be
seen for the cyclist class.

Compared to outdoor driving datasets, indoor benchmarks
such as SUNRGB-D and ScanNet pose a different challenge.
Indoor datasets have vast amounts of object categories in var-
ious different configurations and images captured frommany
different viewpoints compared to driving scenarioswhere the
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Table 2 Benchmarking results
on the Cityscapes dataset with
full resolution evaluation on 19
semantic class labels

Network Backbone mIoU (%) Parms. (M) Time (ms)

Val Test

PSPNet ResNet-101 80.91 81.19 56.27 172.42

DeepLab v3 ResNet-101 79.30 81.34 58.16 79.90

Mapillary WideResNet-38 78.31 82.03 135.86 214.46

DeepLab v3+ Modified Xception 79.55 82.14 43.48 127.97

DPC Modified Xception 80.85 82.66 41.82 144.41

DRN WideResNet-38 79.69 82.82 129.16 1259.67

AdapNet++ (ours) ResNet-50 81.24 81.34 30.20 72.92

SSMA (ours) ResNet-50 82.19 82.31 56.44 101.95

Only the eight top performing published models in the leaderboard are listed in this table. The inference time
is reported for an input image resolution of 768 × 384 pixels and it was computed on an NVIDIA TITAN X
(PASCAL) GPU using the official implementation of each method
Bold numbers indicate the best performance among the compared methods

Table 3 Performance comparison of AdapNet++ with baseline models on the Synthia validation set (input image dim: 768 × 384) (Color table
online)

Network Sky Building Road Sidewalk Fence Vegetation Pole Car Sign Person Cyclist mIoU (%)

FCN-8s 92.36 91.92 88.94 86.46 48.22 77.41 36.02 82.63 30.37 57.10 46.84 67.11

SegNet 91.90 87.19 83.72 80.94 50.02 71.63 26.12 71.31 1.01 52.34 32.64 58.98

FastNet 92.21 92.41 91.85 89.89 56.64 78.59 51.17 84.75 32.03 69.87 55.65 72.28

ParseNet 93.80 93.09 91.05 88.98 53.22 79.48 46.15 85.37 36.00 63.30 50.82 71.02

DeconvNet 95.88 93.83 92.85 90.79 66.40 81.04 48.23 84.65 0.00 69.46 52.79 70.54

DeepLab v2 94.07 93.34 88.07 88.93 55.57 80.22 45.97 85.87 38.73 64.40 52.54 71.61

AdapNet 96.95 95.88 95.60 94.46 76.30 86.59 67.14 92.20 58.85 80.18 66.89 82.83

DeepLab v3 95.30 92.75 93.58 91.56 73.37 80.71 55.83 88.09 44.17 75.65 60.15 77.38

AdapNet++ (ours) 97.77 96.98 96.60 95.70 79.87 89.63 74.94 94.22 71.99 83.64 72.31 86.70

Note that no left–right flips or multiscale testing is performed. Corresponding multimodal results are reported in Table 18
Bold numbers indicate the best performance among the compared methods

camera is always parallel to the ground with similar view-
points from the perspective of the vehicle driving on the road.
Moreover, indoor scenes are often extremely cluttered which
causes occlusions, in addition to the irregular frequency dis-
tribution of the object classes that make the problem even
harder.Due to these factors SUNRGB-D is considered one of
the hardest datasets to benchmark on. Despite these factors,
as shown in Table 4, AdapNet++ outperforms all the base-
line networks overall by a margin of 2.66% compared to the
highest performing DeepLab v3 baseline which took 30,000
iterations more to reach this score. Unlike the performance
in the Cityscapes and Synthia datasets where our previously
proposed AdapNet architecture yields the second highest
performance, AdapNet is outperformed by DeepLab v3 in
the SUN RGB-D dataset. AdapNet++ on the other hand,
outperforms the baselines in most categories by a large mar-
gin, while it is outperformed in 13 of the 37 classes by
small margin. It can also be observed that the classes in
which AdapNet++ get outperformed are the most infrequent
classes. This canbe alleviatedby adding supplementary train-

ing images containing the low-frequency classes from other
datasets or by employing class balancing techniques. How-
ever, our initial experiments employing techniques such as
median frequency class balancing, inverse median frequency
class balancing, normalized inverse frequency balancing,
severely affected the performance of our model.

We report results on the ScanNet validation set in Table 5.
AdapNet++outperforms the state-of-the-art overall by amar-
gin of 2.83%. The large improvement can be attributed to the
proposed eASPP which efficiently captures long range con-
text. Context aggregation plays an important role in such
cluttered indoor datasets as different parts of an object are
occluded from different viewpoints and across scenes. As
objects such as the legs of a chair have thin structures, multi-
scale learning contributes to recovering such structures. We
see a similar trend in the performance as in the SUN RGB-D
dataset, where our network outperforms the baselines inmost
of the object categories (16 of the 20 classes) significantly,
while yielding a comparable performance for the other cat-
egories. The largest improvement of 5.70% is obtained for
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Table 6 Bechmarking results on theScanNet test setwith full resolution
evaluation

Network Multimodal mIoU (%)

Enet – 37.6

PSPNet – 47.5

3DMV (2d proj) � 49.8

FuseNet � 52.1

AdapNet++ (ours) – 50.3

SSMA (ours) � 57.7

Results were obtained from the ScanNet benchmark leaderboard
Bold numbers indicate the best performance among the comparedmeth-
ods

the toilet class, followed by an improvement of 5.34% for
the bed class which appears as many different variations in
the dataset. An interesting observation that can be made is
that the highest parametrized network DeconvNet which has
252M parameters has the lowest performance in both SUN
RGB-D and ScanNet datasets, while AdapNet++ which has
about 1/9th of the parameters, outperforms it by more than
twice themargin.However, this is only observed in the indoor
datasets, while in the outdoor datasets DeconvNet performs
comparable to the other networks. This is primarily due to the
fact that indoor datasets have more number of small classes
and the predictions of DeconvNet do not retain them.

Table 6 shows the results on the ScanNet test set. We
compare against the top performing models on the leader-
board, namely, FuseNet (Hazirbas et al. 2016), 3DMV (2d
proj) (Dai and Nießner 2018), PSPNet (Zhao et al. 2017),
and Enet (Paszke et al. 2016). Note that 3DMV and FuseNet
are multimodal fusion methods. Our proposed AdapNet++
model outperforms all the unimodal networks and achieves
state-of-the-art performance for unimodal semantic segmen-
tation on the ScanNet benchmark.

Finally, we also benchmark on the Freiburg Forest dataset
as it contains several modalities and it is the largest dataset
to provide labeled training data for unstructured forested
environments. We show the results on the Freiburg Forest
dataset in Table 7, where our proposed AdapNet++ outper-
forms the state-of-the-art by 0.82%. Note that this dataset
contains large objects such trees and it does not contain
thin structures or objects in multiple scales. Therefore, the
improvement produced by AdapNet++ is mostly due to the
proposed decoder which yields an improved resolution of
segmentation along the object boundaries. The actual utility
of this dataset is seen in the qualitative multimodal fusion
results, where the fusion helps to improve the segmentation
in the presence of disturbances such as glare on the optics
and snow. Nevertheless, we see the highest improvement of
3.52% in the obstacle class, which is the hardest to segment
in this dataset as it contains many different types of objects
in one category and it has comparatively fewer examples in
the dataset

Moreover, we also compare the number of parameters and
the inference time with the baseline networks in Table 7.
Our proposed AdapNet++ architecture performs inference
in 72.77ms on an NVIDIA TITAN X which is substantially
faster than the top performing architectures in all the bench-
marks. Most of them consume more than twice the amount
of time and the number of parameters making them unsuit-
able for real-world resource constrained applications. Our
critical design choices enable AdapNet++ to consume only
10.98ms more than our previously proposed AdapNet, while
exceeding its performance in each of the benchmarks by a
large margin. This shows that AdapNet++ achieves the right
performance vs. compactness trade-off which enables it to be
employed in not only resource critical applications, but also
in applications that demand efficiency and a fast inference
time.

Table 7 Performance comparison of AdapNet++ with baseline models on the Freiburg Forest validation set (input image dim: 768 × 384) (Color
table online)

Network Trail Grass Veg. Sky Obst. mIoU gIoU FPR FNR Params. Time
(%) (%) (%) (%) (M) (ms)

FCN-8s 82.60 85.69 88.78 89.97 40.40 77.49 86.64 6.21 7.15 134.0 101.99

SegNet 82.12 84.99 88.64 89.90 27.23 74.58 86.24 6.77 6.98 29.4 79.13

ParseNet 85.67 87.33 89.63 89.17 43.08 78.97 87.65 6.34 6.01 20.5 286.54

FastNet 85.70 87.53 90.23 90.73 43.76 79.67 88.18 6.09 5.72 21.0 49.31

DeconvNet 86.37 87.17 89.63 92.20 34.80 78.04 89.06 6.53 6.78 252.0 168.54

DeepLab v2 88.75 88.87 90.29 91.65 49.55 81.82 89.98 5.94 5.79 43.7 128.90

AdapNet 88.99 88.99 91.18 92.89 48.80 82.17 90.67 4.89 5.42 24.4 61.81

DeepLab v3 88.62 88.84 90.55 91.75 51.61 82.28 90.08 5.21 5.82 58.16 82.83

AdapNet++ (ours) 89.27 89.41 91.43 93.01 52.32 83.09 90.75 4.84 5.37 28.1 72.77

Note that no left–right flips or multiscale testing is performed. Corresponding multimodal results are reported in Table 21
Bold numbers indicate the best performance among the compared methods
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Table 8 Comparison of network
compression approaches on our
AdapNet++ model trained on
the Cityscapes dataset and
evaluated on the validation set

Technique mIoU (%) Param. (M) FLOPS (B) Reduction % of

Param. FLOPS

Original 80.77 30.20 138.47 – –

Baseline 80.67 28.57 136.05 −5.40 −1.75

Oracle 80.80 28.34 135.64 −6.15 −2.04

80.56 23.67 125.33 −21.62 −9.49

80.18 21.66 83.84 −28.28 −39.45

79.65 19.91 81.72 −34.07 −40.98

77.95 17.79 79.84 −41.09 −42.34

Oracle with skip (ours) 80.80 28.14 135.17 −6.82 −2.38

80.58 23.16 124.14 −23.31 −10.34

80.21 21.11 83.01 −30.10 −40.05

79.68 19.75 81.53 −34.60 −41.12

78.05 17.63 79.48 −41.62 −42.60

Bold numbers denote the highest performance among the compared methods

5.4 AdapNet++ Compression

In this section, we present empirical evaluations of our
proposed pruning strategy that is invariant to shortcut con-
nections in Table 8. We experiment with pruning entire
convolutional filters which results in the removal of its corre-
sponding feature map and the related kernels in the following
layer. Most existing approaches only prune the first and the
second convolution layer of each residual block, or in addi-
tion, equally prune the third convolution layer similar to the
shortcut connection. However, this equal pruning strategy
always leads to a significant drop in the accuracy of the
model that is not recoverable (Li et al. 2016). Therefore,
recent approaches have resorted to omitting pruning of these
connections. Contrarily, our proposed technique is invariant
to the presence of identity or projection shortcut connections,
thereby making the pruning more effective and flexible. We
employ a greedy pruning approach but rather than pruning
layer by layer and fine-tuning the model after each step,
we perform pruning of entire residual blocks at once and
then perform the fine-tuning. As our network has a total of
75 convolutional and deconvolutional layers, pruning and
fine-tuning each layer will be extremely cumbersome. Nev-
ertheless, we expect a higher performance employing a fully
greedy approach.

We compare our strategy with a baseline approach (Li
et al. 2016) that uses the �1-norm of the convolutional fil-
ters to compute their importance as well as the approach
that we build upon that uses the Taylor expansion crite-
ria (Molchanov et al. 2017) for the ranking as described in
Sect. 3.5.We denote the approach ofMolchanov et al. (2017)
as Oracle in our results. In the first stage, we start by prun-
ing only the Res5 block of our model as it contains the most
number of filters, therefore, a substantial amount of parame-

Fig. 15 Evaluation of network compression approaches shown as the
percentage of reduction in the number of parameters with the corre-
sponding decrease in the mIoU score for various baseline approaches
versus our proposed technique. The results are shown for the Adap-
Net++ model trained on the Cityscapes dataset and evaluated on the
validation set (Color figure online)

ters can be reduced without any loss in accuracy. As shown
in Table 8, our approach enables a reduction of 6.82% of
the parameters and 3.3B FLOPS with a slight increase in
the mIoU metric. Similar to our approach the original Ora-
cle approach does not cause a drop in the mIoU metric but
achieves a lower reduction in parameters. Whereas, the base-
line approach achieves a smaller reduction in the parameters
and simultaneously causes a drop in the mIoU score.

Our aim for pruning in the first stage was to compress the
model without causing a drop in the segmentation perfor-
mance, while in the following stages, we aggressively prune
themodel to achieve the best parameter to performance ratio.
Results from this experiment are shown as the percentage in
reduction of parameters in comparison to the change inmIoU
in Fig. 15. In the second stage, we prune the convolutional
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Table 9 Effect of the various contributions proposed in the AdapNet++ architecture

Model Encoder MS Decoder Skip ASPP Aux Loss He mIoU (%)
Residual dil 3, 6, 12 2× Init

M1 ResNet-50 – c1n ↑16
n – – – – 75.22

M2 ResNet-50 � c1n ↑16
n – – – – 76.92

M3 ResNet-50 � c1n ↑2
2n ⊕ ↑8

n 3d – – – 77.78

M4 PA ResNet-50 � c1n ↑2
2n ⊕ ↑8

n 3d – – – 78.44

M5 PA ResNet-50 � c1n ↑2
2n ⊕ ↑8

n 3d � – – 78.93

M6 PA ResNet-50 � c1n ↑2
2n ⊕ ↑2

2n ⊕ ↑8
n 3d,2c � – – 79.19

M7 PA ResNet-50 � ↑2‖ c3 c3 ↑2‖ c3 c3 c1n ↑8
n 3d,2c � – – 79.82

M8 PA ResNet-50 � ↑2‖ c3 c3 ↑2‖ c3 c3 c1n ↑8
n 3d,2c � � – 80.34

M9 PA ResNet-50 � ↑2‖ c3 c3 ↑2‖ c3 c3 c1n ↑8
n 3d,2c � � � 80.67

The performance is shown for the model trained on the Cityscapes dataset and evaluated on the validation set. ↑k
f refers to a deconvolution layer

and ckf refers to a convolution layer with f number of filters, k × k kernel size and n is the number of classes. PA ResNet-50 refers to the full
preactivation ResNet-50 architecture. The weights for the two auxilary losses were set to L1 = 0.5 and L2 = 0.6 for this experiment
Bold numbers denote the highest performance among the compared methods

feature maps of Res2, Res3, Res4 and Res5 layers. Using
our proposed method, we achieve a reduction of 23.31% of
parameters with minor drop of 0.19% in the mIoU score.
Whereas, the Oracle approach yields a lower reduction in
parameters as well as a larger drop in performance. A similar
trend can also be seen for the other pruning stages where our
proposed approach yields a higher reduction in parameters
and FLOPS with a minor reduction in the mIoU score. This
shows that pruning convolutional feature maps with regular-
ity leads to a better compression ratio than selectively pruning
layers at different stages of the network. In the third stage, we
perform pruning of the deconvolutional feature maps, while
in the fourth and fifth stages we further prune all the layers of
the network by varying the threshold for the rankings. In the
final stage we obtain a reduction of 41.62% of the parame-
ters and 42.60% of FLOPSwith a drop of 2.72% in the mIoU
score. Considering the compression that can be achieved, this
minor drop in themIoU score is acceptable to enable efficient
deployment in resource constrained applications.

5.5 AdapNet++ Ablation Studies

In order to evaluate the various components of our Adap-
Net++ architecture, we performed several experiments in
different settings. In this section, we study the improvement
obtained due to the proposed encoder with the multiscale
residual units, a detailed analysis of the proposed eASPP,
comparisons with different base encoder network topologies,
the improvement that can be obtained by using higher resolu-
tion images as input and using multiscale testing. For each of
these components,we also study the effect of different param-
eter configurations. All the ablation studies presented in this
section were performed on models trained on the Cityscapes
dataset.

5.5.1 Detailed Study on the AdapNet++ Architecture

We first study the major contributions made to the encoder as
well as the decoder in our proposed AdapNet++ architecture.
Table 9 shows results from this experiment and subsequent
improvement due to each of the configurations. The sim-
ple base model M1 consisting of the standard ResNet-50 for
the encoder and a single deconvolution layer for upsampling
achieves a mIoU of 75.22%. The model M2 that incorpo-
rates our multiscale residual units achieves an improvement
of 1.7% without any increase in the memory consumption.
Whereas, the multigrid approach from DeepLab v3 (Chen
et al. 2017) in the same configuration achieves only 0.38%
of improvement in the mIoU score. This shows the nov-
elty in employing our multiscale residual units for efficiently
learning multiscale features throughout the network. In the
M3 model, we study the effect of incorporating skip con-
nections for refinement. Skip connections that were initially
introduced in the FCN architecture are still widely used for
improving the resolution of the segmentation by incorpo-
rating low or mid-level features from the encoder into the
decoder while upsampling. The ResNet-50 architecture con-
tains the most discriminative features in the middle of the
network. In our M3 model, we first upsample the encoder
output by a factor two, followed by fusing the features from
Res3d block of the encoder to refinement and subsequently
using another deconvolutional layer to upsample back to
input resolution. This model achieves a further improvement
of 0.86%.

In the M4 model, we replace the standard residual units
with the full pre-activation residual units which yields an
improvement of 0.66%. As mentioned in the work by He
et al. (2016), the results corroborate that pre-activation resid-
ual units yields a lower error than standard residual units due
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Table 10 Evaluation of various atrous spatial pyramid pooling configurations

Model ASPP conv. Decoder conv. mIoU (%) Param (M) FLOPS (B)

M91 [c3256] [c1256] 80.06 41.3 115.99

M92 [c3256] [c3256] 80.27 42.5 142.42

M93 [c3256] [c3256] × 2 80.67 43.7 169.62

M94 [c164 c364 c1256] [c3256] × 2 80.42 30.1 138.21

M95 [c164 c364 c364 c1256] [c3256] × 2 80.77 30.2 138.47

The performance is shown for the model trained on the Cityscapes dataset and evaluated on the validation set. ↑k
f refers to a deconvolution layer

and ckf refers to a convolution layer with f number of filters and k × k kernel size. The weights for the two auxilary losses were set to L1 = 0.5
and L2 = 0.6 for this experiment
Bold numbers indicate the best performance among the compared methods

to the ease of training and improved generalization capabil-
ity. Aggregating multiscale context using ASPP has become
standard practice inmost classification and segmentation net-
works. In the M5 model, we add the ASPP module to the
end of the encoder segment. This model demonstrates an
improved mIoU of 78.93% due to the ability of the ASPP to
capture long range context. In the subsequent M6 model, we
study if adding another skip refinement connection from the
encoder yields a better performance. This was challenging as
most combinations along with the Res3d skip connection did
not demonstrate any improvement. However, adding a skip
connection from Res2c showed a slight improvement.

In all the models upto this stage, we fused the mid-level
encoder features into the decoder using element-wise addi-
tion. In order to make the decoder stronger, we experiment
with improving the learned decoder representations with
additional convolutions after concatenation of the mid-level
features. Specifically, the M7 model has three upsampling
stages, the first two stages consist of a deconvolution layer
that upsamples by a factor of two, followed by concatenation
of the mid-level features and two following 3 × 3 convo-
lutions that learn highly discriminative fused features. This
model shows an improvement of 0.63% which is primarily
due to the improved segmentation along the object bound-
aries as demonstrated in the qualitative results in Sect. 5.11.
OurM7model contains a total of 75 convolutional anddecon-
volutional layers, making the optimization challenging. In
order to accelerate the training and to further improve the
segmentation along object boundaries, we propose a mul-
tiresolution supervision scheme in which we add a weighted
auxiliary loss to each of the first two upsampling stages. This
model denoted asM8achieves an improvedmIoUof 80.34%.
In comparison to aforementioned scheme, we also experi-
mented with adding a weighted auxiliary loss at the end of
the encoder of the M7 model, however it did not improve the
performance, although it accelerated the training. Finally we
also experimented with initializing the layers with the He ini-
tialization (He et al. 2015b) scheme (also known as MSRA)
in the M9 model which further boosts the mIoU to 80.67%.

The following section further builds upon the M9 model to
yield the topology of our proposed AdapNet++ architecture.

5.5.2 Detailed Study on the eASPP

In this section, we quantitatively and qualitatively evaluate
the performance of our proposed eASPP configuration and
the new decoder topology.We perform all the experiments in
this section using the best performingM9model described in
Sect. 5.5.1 and report the results on the Cityscapes validation
set in Table 10. In the first configuration of the M91 model,
we employ a single 3×3 atrous convolution in theASPP, sim-
ilar the configuration proposed in DeepLab v3 (Chen et al.
2017) and use a single 1 × 1 convolution in the place of the
two 3×3 convolutions in the decoder of the M9 model. This
model achieves anmIoU score of 80.06%with 41.3Mparam-
eters and consumes 115.99B FLOPS. In order to better fuse
the concatenated mid-level features with the decoder and to
improve its discriminability, we replace the 1×1 convolution
layer with a 3 × 3 convolution in the M92 model and with
two 3×3 convolutions in theM93model. Both these models
demonstrate an increase in performance corroborating that a
simple 1 × 1 convolution is insufficient for object boundary
refinement using fusion of mid-level encoder features.

In an effort to reduce the number of parameters,we employ
a bottleneck architecture in the ASPP of the M94 model by
replacing the 3 × 3 atrous convolution with a structure con-
sisting of a 1× 1 convolution with half the number of filters,
followedby a 3×3 atrous convolutionwith half the number of
filters and another 1×1 convolution with the original amount
of filters. This model achieves an mIoU score of 80.42%
which accounts to a reduction of 0.25% in comparison to the
M93 model, however, it reduces computational requirement
by 13.6M parameters and 31.41B FLOPS which makes the
model very efficient. Nevertheless, this drop in performance
is not ideal. Therefore, in order to compensate for this drop,
we leverage the idea of cascading atrous convolutions that
enables an increase in the size of the effective receptive field
and the density of the pixel sampling. Specifically, in theM95
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Table 11 Performance comparison of our proposed eASPP with vari-
ous other ASPP configurations

ASPP topology mIoU
(%)

Param (M) FLOPS (B)

ASPP v2 80.25 18.87 50.96

ASPP v3 80.67 15.53 34.58

ASPP v3 with separable conv. 80.27 3.00 5.56

DenseASPP 80.62 4.23 9.74

eASPP (ours) 80.77 2.04 3.62

The results are reported for the models trained on the Cityscapes dataset
and evaluated on the validation set
Bold numbers indicate the best performance among the comparedmeth-
ods

model, we add a cascaded 3 × 3 atrous convolution in place
of the single 3 × 3 atrous convolution in the M94 model.
This model achieves a mIoU score of 80.77% which is an
increase of 0.35% in the mIoU with only a minor increase of
0.1Mparameters in comparison to ourM94model. The origi-
nally proposed ASPP module consumes 15.53M parameters
and 34.58B FLOPS, where the cascaded bottleneck struc-
ture in theM95model only consumes 2.04M parameters and
3.62B FLOPS which is over 10 times more computation-
ally efficient. We denote this cascaded bottleneck structure
as eASPP.

Furthermore, we present detailed experimental compar-
isons of our proposed eASPPwith otherASPP configurations
inTable 11. Specifically,we compare against the initialASPP
configuration proposed in DeepLab v2 (Chen et al. 2016)
which we denote as ASPP v2, the improved ASPP configura-
tion that also incorporates image-level features as proposed in
DeepLab v3 (Chen et al. 2017) which we denote as ASPP v3,
the ASPP configuration with separable convolutions and the
more recently proposed DenseASPP (Yang et al. 2018) con-
figuration. In order to have a fair comparison, we use the
same AdapNet++ architecture with the different ASPP con-
figurations for this experiment and present the results on the
Cityscapes validation set. The four parallel atrous convolu-
tion layers in the ASPP v2 configuration of DeepLab v2 have
the number of feature channels equal to the number of object
classes in the dataset, while the ASPP v3 configuration of
DeepLab v3 has the number of feature channels equal to 256
in the three parallel atrous convolution layers.

The ASPP v2 model with the convolution feature chan-
nels set to the number of object classes achieves a mIoU of
79.22% and increasing the number of convolution feature
channels to 256 yields a mIoU of 80.25%. By incorporat-
ing image-level features using a global pooling layer and
removing the fourth parallel atrous convolution in ASPP v2,
the ASPP v3 model achieves an improved performance of
80.67%with a minor decrease in the parameters and FLOPs.
Recently, separable convolutions are being employed in place

of the standard convolution layer as an efficient alternative to
reduce the model size. Employing atrous separable convolu-
tions in the ASPP v3 configuration significantly reduces the
number of parameters and FLOPs consumed by the model to
3M and 5.56B respectively. However, this also reduces the
mIoU of the model to 80.27% which is comparable to the
ASPP v2 configuration with 256 convolutional filters. The
model with the DenseASPP configuration achieves a mIoU
of 80.62% which is still lower than the ASPP v3 configura-
tion but it reduces the number of parameters and FLOPs to
4.23M and 9.74B respectively. It should be noted that in the
work of Yang et al. (2018), DenseASPP was only compared
to ASPP v2 with the number of convolutional feature chan-
nels equal to the number of object classes (mIoU of 79.22%).
In comparison to the aforementioned ASPP topologies, our
proposed eASPP achieves the highest mIoU score of 80.77%
with the lowest consumption of parameters and FLOPs. This
accounts to a reduction of 86.86% of the number of param-
eters and 89.53% of FLOPs with a increase in the mIoU
compared to the previously best performing ASPP v3 topol-
ogy.

In order to illustrate the phenomenon caused by cascad-
ing atrous convolutions in our proposed eASPP, we visualize
the empirical receptive field using the approach proposed by
Zhou et al. (2014). First, for each feature vector represent-
ing an image patch, we use a 8 × 8 mean image to occlude
the patch at different locations using a sliding window. We
then record the change in the activation by measuring the
Euclidean distances as a heat map which indicates which
regions are sensitive to the feature vector. Although the size
of the empirical receptive fields is smaller than theoretical
receptive fields, they are better localized and more represen-
tative of the information they capture (Zhou et al. 2014). In
Fig. 16, we show visualizations of the empirical receptive
field size of the convolution layer of the ASPP that has one
3 × 3 atrous convolution in each branch in comparison to
our M95 model that has cascaded 3× 3 atrous convolutions.
Figure 16b, c show the receptive field at the annotated yellow
dot for the atrous convolution with the largest dilation rate in
ASPP and in our eASPP correspondingly. It can be seen that
our eASPP has amuch larger receptive field that enables cap-
turing large contexts. Moreover, it can be seen that the pixels
are sampled much denser in our eASPP in comparison to
the ASPP. In Fig. 16d, h, we show the aggregated receptive
fields of the entiremodule inwhich it can be observed that our
eASPP has much lesser isolated points of focus and a cleaner
sensitive area than theASPP.We evaluated the generalization
of our proposed eASPP by incorporating the module into our
AdapNet++ architecture and benchmarking its performance
in comparison toDeepLabwhich incorporates theASPP. The
results presented in Sect. 5.3 demonstrate that our eASPP
effectively generalizes to a wide range of datasets containing
diverse environments.
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Fig. 16 Comparison of the receptive field of ASPP and our proposed eASPP. The receptive field is visualized for the annotated yellow dot. Our
proposed eASPP has larger receptive field size and denser pixel sampling in comparison to the ASPP (Color figure online)

Table 12 Effect on varying the number of filters in the skip refinement
connections in the M95 model

Skip channels 12 24 36 48 60

mIoU (%) 80.50 80.77 80.67 80.59 80.56

The performance is shown for the model trained on the Cityscapes
dataset and evaluated on the validation set
Bold numbers denote the highest performance among the compared
methods

5.5.3 Improving Granularity of Segmentation

In our AdapNet++ architecture, we propose two strategies to
improve the segmentation along object boundaries in addi-
tion to the new decoder architecture. The first being the two
skip refinement stages that fuse mid-level encoder features
from Res3d and Res2c into the decoder for object boundary
refinement. However, as the low and mid-level features have
a large number of filters (512 in Res3d and 256 in Res2c)
in comparison to the decoder filters that only have 256 fea-
ture channels, they will outweigh the high level features and
decrease the performance. Therefore, we employ a 1 × 1
convolution to reduce the number of feature channels in the
low andmid-level representations before fusing them into the
decoder. In Table 12, we show results varying the number of
feature channels in the 1× 1 skip refinement convolutions in
theM95model fromSect. 5.5.2.We obtain the best results by
reducing the number of mid-level encoder feature channels
to 24 using the 1 × 1 convolution layer.

The second strategy that we employ for improving the
segmentation along object boundaries is using our pro-
posed multiresolution supervision scheme. As described in
Sect. 3.4, we employ auxiliary loss branches after each of
the first two upsampling stages in the decoder to improve
the resolution of the segmentation and to accelerate training.
Weighing the two auxiliary losses is critical to balance the
gradient flow through all the previous layers of the network.
We experiment with different loss weightings and report
results for the same M95 model in Table 13. The network
achieves the highest performance for auxiliary loss weight-
ingsλ1 = 0.6 andλ2 = 0.5 forLaux1 andLaux2 respectively.

In order to quantify the improvement specifically along the
object boundaries, we evaluate the performance of our archi-
tecture using the trimap experiment (Kohli and Torr 2009).
The mIoU score for the pixels that are within the trimap
band of the void class labels (255) are computed by applying
the morphological dilation on the void labels. Results from
this experiment shown in Fig. 17 demonstrates that our new
decoder improves the performance along object boundaries
compared to the decoder in AdapNet (Valada et al. 2017),
while the M7 model with the new decoder and the skip
refinement further improves the performance. Finally, the
M8model consisting of our new decoder with the skip refine-
ment stages and our multiresolution supervision scheme for
training significantly improves the segmentation along the
boundaries which is more evident when the trimap band is
narrow.

Table 13 Effect on varying the weighting factor of the auxiliary losses in the M95 model

Aux 1 weight 0.3 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 1.0

Aux 2 weight 0.2 0.2 0.3 0.4 0.6 0.7 0.4 0.5 0.7 0.5 0.6 1.0

mIoU (%) 80.51 80.55 80.68 80.60 80.55 80.49 80.53 80.77 80.69 80.55 80.71 80.37

The performance is shown for the model trained on the Cityscapes dataset and evaluated on the validation set
Bold number denote the highest performance among the compared methods

123



1266 International Journal of Computer Vision (2020) 128:1239–1285

Fig. 17 Influence of the proposed decoder, skip refinement and mul-
tiresolution supervision on the segmentation along objects boundaries
using the trimap experiment. The plot shows the mIoU score as a func-
tion of the trimap band width along the object boundaries. The results
are shown on the Cityscapes dataset and evaluated on the validation set
(Color figure online)

Table 14 Effect of various encoder topologies in the M95 model

Encoder ResNet PA ResNet ResNeXt SEnet Xception

mIoU (%) 79.32 80.77 80.30 78.31 78.70

Param (M) 30.2 30.2 29.7 32.7 27.5

FLOPS (B) 135.28 138.47 145.81 145.34 137.06

The performance is shown for the model trained on the Cityscapes
dataset and evaluated on the validation set
Bold number denote the highest performance among the compared
methods

5.5.4 Encoder Topology

In recent years, several efficient network architectures have
been proposed for image classification that are computa-
tionally inexpensive and have fast inference times. In order
to study the trade-off between accuracy and computational
requirement, we performed experiments using five widely
employed architectures as the encoder backbone. Specif-
ically, we evaluate the performance using ResNet-50 (He
et al. 2015a), full pre-activation ResNet-50 (He et al. 2016),
ResNeXt (Xie et al. 2017), SEnet (Hu et al. 2017) and Xcep-
tion (Chollet 2016) architectures for the encoder topology
and augmented them with our proposed modules similar to
the M95 model described in Sect. 5.5.2.

Results from this experiment are shown in Table 14. Note
that in the comparisons presented in this section, no model
compression has been performed. It can be seen that the full
pre-activation ResNet-50 model achieves the highest mIoU
score, closely followed by the ResNeXt model. However
the ResNeXt model has an additional 7.34M parameters
with a slightly lesser number of FLOPS. While, the stan-
dard ResNet-50 architecture has 3.19M parameters lesser
than the full pre-activation ResNet-50 model, it achieves
a lower mIoU score of 79.32%. Therefore, we choose

Table 15 Performance of the strong decoder that we introduce in our
AdapNet++ architecture in comparison with other progressive upsam-
pling decoder topologies

Decoder topology mIoU (%) Param (M) FLOPs (B)

Bilinear upsampling 74.83 − −
LRR 79.38 2.01 75.88

RefineNet 80.44 14.29 265.33

AdapNet++ (ours) 80.77 4.59 69.84

All the models employ the same AdapNet++ encoder with only the
decoder replacedwith alternative topologies and the results are reported
on the Cityscapes validation set
Bold number denote the highest performance among the compared
methods

the full-preactivation ResNet-50 architecture as the encoder
backbone in our proposed AdapNet++ architecture.

5.5.5 Decoder Topology

In this section, we compare the performance and computa-
tional efficiency of the new strong decoder that we introduce
in our proposed AdapNet++ architecture with other exist-
ing progressive upsampling decoders. For a fair comparison,
we employ the same AdapNet++ encoder in all the mod-
els in this experiment and only replace the decoder with the
topologies proposed in LRR (Ghiasi and Fowlkes 2016) and
RefineNet (Lin et al. 2017). All these decoder topologies
that we compare with utilize similar stage-wise upsampling
with deconvolution layers and refinement with skip con-
nections from higher resolution encoder feature maps. As
a reference, we also compare with a model that employs the
AdapNet++ encoder and direct bilinear upsampling for the
decoder. Therefore, this reference model does not consume
any parameters and FLOPs for the decoder section.

Table 15 shows the results from this experiment in which
we see that the reference model with direct bilinear upsam-
pling achieves a mIoU score of 74.83%. The LRR decoder
model outperforms the reference model and the RefineNet
decoder model further outperforms the LRR decoder model.
However, the RefineNet decoder consumes a significant
amount of parameters and FLOPs compared to the LRR
decoder. Nevertheless, our proposed decoder in AdapNet++
achieves the highest mIoU score of 80.77%, thereby outper-
forming both the other competing progressive upsampling
decoders while consuming the lowest amount of FLOPs and
still maintaining a good parameter efficiency.

5.5.6 Image Resolution and Testing Strategies

We further performed experiments using input images with
larger resolutions as well as with left–right flipped inputs
and multiscale inputs while testing. In all our benchmark-
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Table 16 Effect on using a
higher resolution input image
and employing left–right flip as
well as multiscale inputs during
testing

Image size (pixels) Flip MS mIoU (%) Acc. (%) AP (%) Time (ms)

768 × 384 – – 80.77 96.04 90.97 72.77

768 × 384 � – 81.35 96.18 90.76 148.93

768 × 384 � � 82.25 96.36 91.86 1775.96

896 × 448 – – 81.69 96.06 89.96 88.89

896 × 448 � – 82.28 96.21 90.53 183.57

896 × 448 � � 83.19 96.48 91.52 2342.31

1024 × 512 – – 82.47 96.13 90.63 105.94

1024 × 512 � – 83.07 96.28 91.17 219.28

1024 × 512 � � 84.27 96.66 92.36 3061.11

2048 × 1024 – – 83.10 96.25 90.87 494.97

2048 × 1024 � – 83.58 96.37 91.14 1022.12

2048 × 1024 � � 84.54 96.74 92.48 12188.57

The performance is shown for the model trained on the Cityscapes dataset and evaluated on the validation set
Bold number denote the highest performance among the compared methods

ing experiments, we use an input image with a resolution
of 768 × 384 pixels in order enable training of the mul-
timodal fusion model that has two encoder streams on a
single GPU. State-of-the-art semantic segmentation archi-
tectures use multiple crops from the full resolution of the
image as input. For example for the Cityscapes dataset, eight
crops of 720 × 720 pixels from each full resolution image
of 2048 × 1024 pixels are often used. This yields a down-
sampled output with a larger resolution at the end of the
encoder, thereby leading to a lesser loss of information due
to downsampling and more boundary delineation. Employ-
ing a larger resolution image as input also enables better
segmentation of small objects that are at far away distances,
especially in urban driving datasets such as Cityscapes. How-
ever, the caveat being that it requiresmulti-GPU trainingwith
synchronized batch normalization in order to utilize a large
enoughmini-batch size, whichmakes the trainingmore cum-
bersome. Moreover, using large crops of the full resolution
image significantly increases the inference time of the model
as the inference time for one image is the sumof the inference
time consumed for each of the crops.

Nevertheless, we present experimental results with input
images of resolution 896 × 448 pixels, 1024 × 512 pixels,
and eight crops of 720 × 720 pixels from the full resolu-
tion of 2048 × 1024 pixels, in addition to the resolution of
768×384 pixels that we use. In addition to the varying input
image resolutions, we also test with left–right flips and mul-
tiscale inputs. However, although this increases the mIoU
score it substantially increases the computation complexity
and runtime, therefore rendering it not useful in real-world
applications. A summary of the results from this experiment
are shown inTable 16. It can be seen thatwith each higher res-
olution image, the model yields an increasedmIoU score and
simultaneously consumes a larger inference time. Similarly,
left–right flips and multiscale inputs also yield an improve-

ment in the mIoU score. For the input image resolution of
768×384 pixels that we employ in the benchmarking exper-
iments, left–right flips yields an increase of 0.58% in the
mIoU, while multiscale inputs in addition, yields a further
improvement of 0.9%. The corresponding pixel accuracy
and and average precision also shows an improvement. The
model trainedwith eights crops of 720×720 pixels from each
full resolution image of 2048× 1024 pixels demonstrates an
improvement of 2.33% in the mIoU score in comparison
to the model with a lower resolution image that we use for
benchmarking. Furthermore, using left–right flips and mul-
tiscale inputs yields an overall improvement of 3.77% in the
mIoU and additional improvements in the other metrics in
comparison to the benchmarking model. However, it can be
seen that the inference time full resolutionmodel is 494.98ms
and multiscale testing with left–right flips further increases
it to 12188.57ms, while the inference time of the model that
uses a image resolution of 768× 384 pixels is only 72.77ms
demonstrating that using full resolution of the image and
multiscale testing with left–right flips for real-world robotics
applications is impractical.

5.6 Qualitative Results of Unimodal Segmentation

In this section, we qualitatively evaluate the semantic seg-
mentation performance of our AdapNet++ architecture in
comparison to the best performing state-of-the-art model
for each dataset according to the quantitative results pre-
sented in Sect. 5.3. We utilize this best performing model as
a baseline for the qualitative comparisons presented in this
section. Figure 18 shows two examples for each dataset that
we benchmark on. The colors for the segmented labels shown
correspond to the colors and the object categories mentioned
in the benchmarking tables shown in Sect. 5.3. Figure 18a,
b show examples from the Cityscapes dataset in which the
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Fig. 18 Qualitative segmentation results of our unimodal AdapNet++
architecture in comparison to the best performing state-of-the-art model
on different datasets. In addition to the segmentation output, we also
show the improvement/error map which denotes the misclassified pix-

els in red and the pixels that are misclassified by the best performing
state-of-the-art model but correctly predicted by AdapNet++ in green.
The legend for the segmented labels correspond to the colors shown in
the benchmarking tables in Sect. 5.3 (Color figure online)
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improvement over the baseline output (AdapNet) can be seen
in the better differentiation between inconspicuous classes
such as sidewalk and road as well as pole and sign. This
can be primarily attributed to the eASPP which has a large
receptive field and thus captures larger object context which
helps to discern the differences between the inconspicuous
classes. The improvement due to better boundary segmenta-
tion of thin object classes such as poles can be seen in the
images.

Figure 18c, d show examples from the Synthia dataset,
where objects such as bicycles, cars and people are better
segmented. The baseline output (AdapNet) shows several
missing cars, people and bicycles, whereas the AdapNet++
output accurately captures these objects. Moreover, it can
also be seen that the pole-like structures and trees are often
discontinuous in the baseline output,while they aremorewell
defined in the AdapNet++ output. In Fig. 18d, an interesting
observation ismadewhere an entire fence is segmented in the
baseline output but is absent in the scene. This is due to the
fact that the intersection of the sidewalk and the road gives
an appearance of a fence which is then misclassified. In the
same image, it can also be observed that a small building-like
structure on the right is not captured,whereas ourAdapNet++
model accurately segments the structure.

Figure 18e, f showexamples from the indoor SUNRGB-D
dataset. Examples from this dataset show significant mis-
classification due to inconspicuous objects. Often scenes in
indoor datasets have large objects that require the network to
have very large receptive fields to be able to accurately dis-
tinguish between them. Figure 18e shows a scene in which
parts of the chair and the table are incorrectly classified as a
desk in the output of the baselinemodel (DeepLab v3). These
two classes have very similar structure and appearancewhich
makes distinguishing between them extremely challenging.
In Fig. 18f, we can see parts of the sofa incorrectly classi-
fied in the baseline model output, whereas the entire object is
accurately predicted in the AdapNet++ output. In the base-
line output, misclassification can also be seen for the picture
on the wall which is precisely segmented in the AdapNet++
output.

In Fig. 18g, h, we show examples from the indoor Scan-
Net dataset. Figure 18g shows misclassification in the output
of the baseline model (DeepLab v3) in the boundary where
the wall meets the floor and for parts of the desk that is mis-
classified as other furniture. Figure 18h shows a significant
improvement in the segmentation of AdapNet++ in com-
parison to the baseline model. The cabinet and counter are
entirely misclassified as a desk and other furniture corre-
spondingly in the output of the baseline model, whereas they
are accurately predicted by our AdapNet++ mode.

Finally, Fig. 18i, j show examples from the unstructured
Freiburg Forest dataset where the improvement can largely
be seen in discerning the object boundaries of classes such as

grass and vegetation, as well as trail and grass. By observ-
ing these images, we can see that even for us humans it is
difficult to estimate the boundaries between these classes.
Our AdapNet++ architecture predicts the boundaries com-
paratively better than the baseline model (DeepLab v3). The
improvement in the segmentation can also been seen in the
finer segmentation of the vegetation and the trail path in the
AdapNet++ output.

5.7 Multimodal Fusion Benchmarking

In this section, we present comprehensive results on the per-
formance of our proposed multimodal SSMA fusion archi-
tecture in comparison to state-of-the-art multimodal fusion
methods, namely, LFC (Valada et al. 2016b), FuseNet (Hazir-
bas et al. 2016) and CMoDE (Valada et al. 2017). We
employ the same AdapNet++ network backbone for all the
fusion models including the competing methods. Therefore,
we use the official implementation from the authors as a
reference and append the fusion mechanism to our back-
bone. We also compare with baseline fusion approaches
with the AdapNet++ topology as the backbone such as Late
Fusion: a 1 × 1 convolution layer appended after individ-
ual modality-specific networks and the outputs are merged
by adding the feature maps before the softmax, Stacking:
channel-wise concatenation of modalities before input to
the network, Average: averaging prediction probabilities of
individual modality-specific networks followed by argmax,
and Maximum: maximum of the prediction probabilities of
individual modality-specific networks followed by argmax.
Additionally, we also compare against the performance of the
unimodal AdapNet++ architecture for each of the modalities
in the dataset for reference. We denote our proposed multi-
modal model as SSMA and the model with left–right flips as
well as multiscale testing as SSMA_msf in our experiments.

In Table 17, we show the results on the Cityscapes vali-
dation set considering visual images (RGB), depth and the
HHA encoding of the depth as modalities for the fusion.
As hypothesised, the visual RGB images perform the best
among the other modalities achieving a mIoU of 80.80%.
This is especially observed in outdoor scene understanding
datasets containing stereo depth images that quickly degrade
the information contained, with increasing distance from
the camera. Among the baseline fusion approaches, Stack-
ing achieves the highest performance for both RGB-D and
RGB-HHA fusion, however, their performance is still lower
than the unimodal visual RGB segmentation. This can be
attributed to the fact that the baseline approaches are not
able to exploit the complementary features from the modali-
ties due to the naive fusion. CMoDE fusion with RGB-HHA
achieves the highest performance among state-of-the-art
approaches, surpassing the performance of unimodal seg-
mentation.While, our proposedSSMAmodel forRGB-HHA
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Table 17 Comparison of
multimodal fusion approaches
on the Cityscapes validation set
(input image dim: 768 × 384)

Network Approach mIoU (%) Acc. (%) AP (%)

RGB Unimodal 80.80 96.04 90.97

Depth Unimodal 66.36 91.21 80.23

HHA Unimodal 67.66 91.66 81.81

RGB-D Average 78.84 95.58 90.49

Maximum 78.81 95.58 90.37

Stacking 80.21 95.96 90.05

Late Fusion 78.75 95.57 90.48

LFC 81.04 96.11 91.10

CMoDE 81.33 96.12 90.29

FuseNet 81.54 96.23 90.24

SSMA (ours) 82.29 96.36 90.77

SSMA_msf (ours) 83.44 96.59 92.21

RGB-HHA Average 79.44 95.56 90.27

Maximum 79.40 95.55 90.09

Stacking 80.62 96.01 90.09

Late Fusion 79.01 95.49 90.25

LFC 81.13 96.14 91.32

CMoDE 81.40 96.12 90.29

SSMA (ours) 82.64 96.41 90.65

SSMA_msf (ours) 83.94 96.68 91.99

All the fusion models have the same unimodal AdapNet++ network backbone. Results on the test set are
shown in Table 2
Bold numbers indicate the best performance among the compared methods

fusion achieves a mIoU of 83.29% outperforming all the
other approaches and setting the new state-of-the-art. The
SSMA_msf model further improves upon the performance
of the SMMA model by 1.3%. As the Cityscapes dataset
does not contain harsh environments, the improvement that
can be achieved using fusion is limited to scenes that contain
inconspicuous object classes or mismatched relationship.
However, the additional robustness that it demonstrates due
to multimodal fusion is still notable as shown in the qual-
itative results in the following sections. Additionally, the
benchmarking results on the Cityscapes test set is shown
in Table 2. The results demonstrate that our SSMA fusion
architecturewith theAdapNet++ network backbone achieves
a comparable performance as the top performing DPC and
DRN architectures, while outperforming the other networks
on the leaderboard.

We benchmark on the Synthia dataset to demonstrate the
utility of fusion when both modalities contain rich informa-
tion. It consists of scenes with adverse perceptual conditions
including rain, snow, fog and night, therefore the benefit of
multimodal fusion for outdoor environments is most evi-
dent on this dataset. As the Synthia dataset does not provide
camera calibration parameters, we cannot compute the HHA
encoding, therefore we benchmark using visual RGB and
depth images. Results from benchmarking on this dataset are

Table 18 Comparison of multimodal fusion approaches on the Synthia
validation set (input image dim: 768 × 384)

Network Approach mIoU (%) Acc. (%) AP (%)

RGB Unimodal 86.70 97.18 93.17

Depth Unimodal 87.87 97.78 94.23

RGB-D Average 89.22 98.03 95.04

Maximum 89.13 98.01 94.97

Stacking 88.95 98.03 94.41

Late fusion 89.13 98.01 94.66

LFC 89.48 98.09 94.96

CMoDE 89.57 98.13 94.58

FuseNet 89.62 98.34 94.67

SSMA (ours) 91.25 98.48 95.68

SSMA_msf (ours) 92.10 98.64 96.37

All the fusion models have the same unimodal AdapNet++ network
backbone
Bold numbers indicate the best performance among the comparedmeth-
ods

shown in Table 18. Due to the high-resolution depth informa-
tion, the unimodal depth model achieves a mIoU of 87.87%,
outperforming segmentation using visual RGB images by
1.17%. This demonstrates that accurate segmentation can be
obtained using only depth images as input provided that the
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Fig. 19 Evaluation of our proposed SMMA fusion technique on the
Synthia-Sequences dataset containing a variety of seasons and weather
conditions. We use the models trained on the Synthia-Rand-Cityscapes
dataset and only test on the individual conditions in the Synthia-
Sequences dataset to quantify its robustness. Our model that performs
RGB-D fusion consistently outperforms the unimodal models which
can be more prominently seen qualitatively in Fig. 21c, d (Color figure
online)

depth sensor gives accurate long range information. Among
the baseline fusion approaches and the state-of-the-art tech-
niques, the CMoDE RGB-D fusion approach achieves the
highest mIoU, outperforming the unimodal depth model by
1.7%. While our proposed SSMA architecture demonstrates
state-of-the-art performance of 91.25% and further improves
the mIoU to 92.10% using the SSMA_msf model. This
accounts to a large improvement of 5.4% over the best per-
forming unimodal segmentation model. Other metrics such
as the pixel accuracy and average precision also show similar
improvement.

One of our main motivations to benchmark on this dataset
is to evaluate our SSMA fusion model on a diverse set of
scenes with adverse perpetual conditions. For this experi-
ment, we trained our SSMA fusion model on the Synthia-
Rand-Cityscapes training set and evaluated the performance
on each of the conditions contained in the Synthia-Sequences
dataset. The Synthia-Sequences dataset contains individual
video sequences in different conditions such as summer, fall,
winter, spring, dawn, sunset, night, rain, soft rain, fog, night
rain andwinter night. Results from this experiment are shown
in Fig. 19. The unimodal visual RGBmodel achieves an over-
all mIoU score of 49.27%± 4.04% across the 12 sequences.
Whereas, the model trained on the depth maps achieves a
mIoU score of 67.07% ± 1.12%, thereby substantially out-
performing the model trained using visual RGB images.

As this is a synthetic dataset, the depth maps provided
are accurate and dense even for structures that are several
hundreds of meters away from the camera. Therefore, this
enables the unimodal depth model to learn representations
that accurately encode the structure of the scene and these
structural representations are proven to be invariant to the
change in perceptual conditions. It can also be observed that
the unimodal depth model performs consistently well in all
the conditions with a variance of 1.24%, demonstrating the

generalization to different conditions. However, the visual
RGB model with a variance of 16.30% performs inconsis-
tently across different conditions. Nevertheless, we observe
that our RGB-D SSMA fusion model outperforms the uni-
modal visual RGB model by achieving a mIoU score of
76.51% ± 0.49% across the 12 conditions, accounting to an
improvement of 27.24%.Moreover, the SSMA fusion model
has a variance of 0.24%, demonstrating better generalization
ability across varying adverse perceptual conditions.

We also benchmark on the indoor SUN RGB-D dataset
which poses a different set of challenges than the out-
door datasets. The improvement from multimodal fusion is
more evident here as indoor scenes are often smaller con-
fined spaces with several cluttered objects and the depth
modality provides valuable structural information that can
be exploited. Results from RGB-D and RGB-HHA multi-
modal fusion is shown in Table 19. Among the individual
modalities, segmentation using visual RGB images yields
the highest mIoU of 38.40%. The model trained on depth
images performs 4.13% lower than the visual RGB model.
This can be attributed to the fact that the depth images are
extremely noisy with numerous missing depth values in the
SUN RGB-D dataset. However, our proposed SSMA fusion
on RGB-HHA achieves state-of-the-art performance with a
mIoU of 44.43%, constituting a substantial improvement of
6.03% over the unimodal visual RGB model. Moreover, our
SSMA_msfmodel further improves upon themIoU by 1.3%.
Similar to the performance in other datasets, RGB-HHA
achieves a higher mIoU than RGB-D fusion corroborating
the fact that CNNs learn more effectively from the HHA
encoding but with a small additional preprocessing time.

Table 20 shows the results on the ScanNet validation
set. ScanNet is the largest indoor RGB-D dataset to date
with over 1513 different scenes and 2.5M views. Unlike the
SUN RGB-D dataset, ScanNet contains depth maps of bet-
ter quality with lesser number of missing depth values. The
unimodal visual RGB model achieves an mIoU of 52.92%
with a pixel accuracy of 77.70%, while the unimodal HHA
model achieves an mIoU of 54.19% with an accuracy of
80.20%. For multimodal fusion, CMoDE using RGB-HAA
demonstrates the highest performance among state-of-the-
art architectures achieving a mIoU of 64.07%. While our
proposed SSMARGB-HHAmodel outperforms CMoDE by
yielding a mIoU of 66.34%, which is a significant improve-
ment of 13.42% over the unimodal visual RGB model.
Moreover, the SSMA_msf model further improves the mIoU
score to 67.52%. To the best of our knowledge, this is the
largest improvement due to multimodal fusion obtained thus
far. An interesting observation that can be made from the
results on SUN RGB-D and ScanNet is that the lowest mul-
timodal fusion performance is obtained using the Stacking
fusion approach, reaffirming our hypothesis that fusing more
semantically mature features enables the model to exploit
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Table 19 Comparison of
multimodal fusion approaches
on the SUN RGB-D validation
set (input image dim: 768× 384)

Network Approach mIoU (%) Acc. (%) AP (%)

RGB Unimodal 38.40 76.90 62.78

Depth Unimodal 34.27 73.83 74.39

HHA Unimodal 34.59 74.39 57.18

RGB-D Average 40.70 78.58 64.54

Maximum 40.58 78.50 64.04

Stacking 36.48 76.68 57.92

Late Fusion 41.68 79.27 66.63

LFC 41.82 79.36 66.75

CMoDE 41.87 79.84 66.81

FuseNet 41.85 79.56 66.87

SSMA (ours) 43.90 80.16 66.11

SSMA_msf (ours) 44.52 80.67 67.92

RGB-HHA Average 41.01 78.54 64.93

Maximum 40.91 78.49 64.78

Stacking 37.49 76.42 57.88

Late fusion 41.91 79.49 67.31

LFC 42.42 79.55 67.41

CMoDE 42.55 79.94 65.38

SSMA (ours) 44.43 80.21 64.94

SSMA_msf (ours) 45.73 80.97 67.82

All the fusion models have the same unimodal AdapNet++ network backbone
Bold numbers indicate the best performance among the compared methods

Table 20 Comparison of
multimodal fusion approaches
on the ScanNet validation set
(input image dim: 768 × 384)

Network Approach mIoU (%) Acc. (%) AP (%)

RGB Unimodal 52.92 77.70 77.28

Depth Unimodal 53.80 80.63 74.46

HHA Unimodal 54.19 80.20 73.90

RGB-D Average 58.20 82.31 79.45

Maximum 57.68 82.12 78.35

Stacking 55.89 79.04 77.08

Late fusion 61.37 82.48 80.15

LFC 62.97 83.70 80.93

CMoDE 64.00 84.94 81.27

FuseNet 63.83 84.24 81.02

SSMA (ours) 66.29 86.11 81.81

SSMA_msf (ours) 67.38 86.24 81.93

RGB-HHA Average 58.39 82.36 78.39

Maximum 57.88 82.12 77.34

Stacking 56.48 80.33 77.47

Late fusion 61.45 82.68 80.12

LFC 63.09 83.67 80.67

CMoDE 64.07 84.84 80.80

SSMA (ours) 66.34 86.02 81.49

SSMA_msf (ours) 67.52 86.38 82.21

All the fusion models have the same unimodal AdapNet++ network backbone. Results on the test set are
shown in Table 6
Bold numbers indicate the best performance among the compared methods
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complementary properties from the modalities more effec-
tively. We also benchmark on the ScanNet test set and report
the results in Table 6. Our proposed SSMA fusion architec-
ture with the AdapNet++ network backbone sets the new
state-of-the-art on the ScanNet benchmark.

Finally, we present benchmarking results on the Freiburg
Forest dataset that contains three inherently different modal-
ities including visual RGB images, Depth data and EVI. EVI
or Enhanced Vegetation Index was designed to enhance the
vegetation signal in high biomass regions and it is computed
from the information contained in three bands, namely, Near-
InfraRed, Red and Blue channels (Running et al. 1999). As
this dataset contains scenes in unstructured forested environ-
ments, EVI provides valuable information to discern between
inconspicuous classes such as vegetation and grass. Table 21
shows the results on this dataset for multimodal fusion of
RGB-DandRGB-EVI. For unimodal segmentation, theRGB
model yields the highest performance, closely followed by
the model trained on EVI. While for multimodal segmen-
tation, our SSMA model trained on RGB-EVI yields the
highest mIoU of 83.90% and our SMMA_msf model fur-
ther improves upon the performance and achieves a mIoU of
84.18%. Both these models outperform existing multimodal
fusion methods and set the new state-of-the-art.

5.8 Multimodal Fusion Discussion

To summarize, the models trained on visual RGB images
perform the best in general in comparison to unimodal seg-
mentation with other modalities. However, when the depth
data is less noisy and the environment is a confined indoor
space, themodel trained on depth orHHAencoded depth out-
performs visual RGBmodels. Among the multimodal fusion
baselines, late fusion and Stacking, each perform well in
different environments. Stacking performs better in outdoor
environments, while late fusion performs better indoors. This
can be attributed to the fact that the late fusion method fuses
semantically mature representations. Therefore, in indoor
environments, modalities such as depth maps from stereo
cameras are less noisy than in outdoors and as the envi-
ronment is confined, all the objects in the scene are well
represented with dense depth values. This enables the late
fusion architecture to leverage semantically rich represen-
tations for fusion. However in outdoor environments, depth
values are very noisy and no information is present for objects
at far away distances. Therefore, the semantic representa-
tions from the depth stream are considerably less informative
for certain parts of the scene which does not allow the Late
Fusion network to fully exploit complementary features and
hence it does not provide significant gains. On the other hand,
in indoor or synthetic scenes where the depth modality is
dense and rich with information, late fusion generally out-
performs the stacking approach.

Among the current state-of-the-art methods, CMoDE
outperforms all other approaches in most of the diverse envi-
ronments. To recapitulate, CMoDE employs a class-wise
probabilistic late fusion technique that adaptively weighs
the modalities based on the scene condition. However, our
proposed SSMA fusion techniques outperforms CMoDE in
all the datasets and sets the new state-of-the-art in multi-
modal semantic segmentation. This demonstrates that fusion
of modalities is an inherently complex problem that depends
on several factors such as the object class of interest, the
spatial location of the object and the environmental scene
context. Our proposed SSMA fusion approach dynamically
adapts the fusion of semantically mature representations
based on the aforementioned factors, thereby enabling our
model to effectively exploit complementary properties from
the modalities. Moreover, as the dynamicity is learned in a
self-supervised fashion, it efficiently generalizes to different
diverse environments, perceptual conditions and the types
of modalities employed for fusion. Another advantage of
this dynamic adaptation property of our multimodal SSMA
fusion mechanism is the intrinsic tolerance to sensor failure.
In case one of themodalities becomes unavailable, the SSMA
module can be trained to switch the output of the unavailable
modality-specific encoder off by generating gating probabil-
ities as zeros. This enables themultimodalmodel to still yield
a valid segmentation output using only the modality that is
available and the performance is comparable to that of the
unimodal model with the remaining modality.

5.9 Generalization of SSMA Fusion to Other Tasks

In order to demonstrate the generalization of our proposed
SSMAmodule formultimodal fusion inother tasks,we report
results for the scene type classification task on the Scan-
Net benchmark. The goal of the scene type classification
task is to classify scans of indoor scenes into 13 distinct
categories, namely, apartment, bathroom, bedroom/hotel,
bookstore/library, conference room, copy/mail room, hall-
way, kitchen, laundry room, living room/lounge, misc, office,
storage/basement/garage. The benchmark ranks themethods
according to recall and the intersection-over-union met-
ric (IoU). For our approach, we employ the top–down 2D
projection of the textured scans as one modality and the
jet-colorized depth map of the top–down 2D projection of
the scans as another modality. We utilize the SE-ResNetXt-
101 (Hu et al. 2018) architecture for the unimodal model
and for the multimodal network backbone. Our multimodal
architecture has a late fusion topology with two individual
modality-specific SE-ResNetXt-101 streams that are fused
after block 5 using our SSMA module. The output of the
SSMAmodule is fed to a fully connected layer that has num-
ber of output units equal to the number of scene classes in
the dataset. We evaluate the performance of our multimodal
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Table 21 Comparison of
multimodal fusion approaches
on the Freiburg Forest validation
set (input image dim: 768× 384)

Network Approach mIoU (%) Acc. (%) AP (%)

RGB Unimodal 83.09 95.15 89.83

Depth Unimodal 73.93 91.42 85.36

EVI Unimodal 80.96 94.20 88.88

RGB-D Average 79.51 92.87 90.99

Maximum 81.62 93.93 90.87

Stacking 83.13 95.19 89.95

Late Fusion 82.11 93.95 90.85

LFC 82.53 94.99 90.96

CMoDE 83.21 95.19 90.19

FuseNet 83.10 95.07 90.03

SSMA (ours) 83.81 95.62 92.78

SSMA_msf (ours) 83.99 95.70 93.08

RGB-EVI Average 83.00 95.10 90.19

Maximum 83.00 95.10 90.17

Stacking 83.18 95.21 90.11

Late fusion 82.80 95.01 90.07

LFC 83.00 95.13 90.28

CMoDE 83.31 95.22 90.19

SSMA (ours) 83.90 95.56 92.28

SSMA_msf (ours) 84.18 95.64 92.60

All the fusion models have the same unimodal AdapNet++ network backbone

Table 22 Performance of multimodal SSMA fusion for the scene type
classification task on the ScanNet benchmark

Network Approach mIoU (%) mRecall (%)

RGB Unimodal 33.16 43.37

Depth Unimodal 35.07 44.82

RGB-D Average 34.92 43.99

Maximum 34.75 43.79

Stacking 32.47 41.89

Late fusion 35.17 44.48

SSMA (ours) 37.45 54.28

Results are reported on the validation set
Bold numbers indicate the best performance among the comparedmeth-
ods

SSMA fusion model against the individual modality-specific
networks, as well as the multimodal fusion baselines such as
Average, Maximum, Stacking and Late Fusion, as described
in Sect. 5.7.

Results from this experiment on the ScanNet validation
set are shown in Table 22. It can be seen that the unimodal
depth model outperforms the RGB model in both the mean
IoU (mIoU) score and the mean recall (mRecall). Among the
multimodal fusion baselines, only the Late Fusion network
outperforms the unimodal depth model by a small margin in
the mIoU score but it achieves a lower mean recall. However,
our multimodal SSMA fusion model achieves the state-of-
the-art performance with a mIoU score of 37.45% and a

mean recall of 54.28%. This accounts for an improvement of
2.28% in the mIoU score and 9.8% in the mean recall over
the Late Fusion model, and a larger improvement over the
performance of the unimodal depth model. Since the only
difference in the Late Fusion architecture and the SSMA
architecture is how the multimodal fusion is carried out, the
improvement achieved by the SSMA model can be solely
attributed to the dynamic fusion mechanism of our SSMA
module. We also benchmarked on the ScanNet test set for
scene classification, in which our multimodal SSMA model
achieves a mIoU score of 35.5% and a mean recall of 49.8%,
thereby setting the state-of-the-art for scene type classifica-
tion on this benchmark.

5.10 Multimodal Fusion Ablation Studies

In this section, we study the influence of various contribu-
tions that we make for multimodal fusion. Specifically, we
evaluate the performance by comparing the fusion at dif-
ferent intermediate network stages. We then evaluate the
utility of our proposed channel attention scheme for bet-
ter correlation of mid-level encoder and high-level decoder
features. Subsequently, we experiment with different SSMA
bottleneck downsampling rates and qualitatively analyze the
convolution activation maps of our fusion model at various
intermediate network stages to study the effect ofmultimodal
fusion on the learned network representations.
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Table 23 Performance of
multimodal SSMA fusion
technique with different
real-time backbone networks

Network backbone Modalities mIoU (%) Time (ms)

ERFnet RGB 62.71 43.87

HHA 51.84 43.87

RGB-HHA SSMA 64.60 66.06

MobileNet v2 RGB 74.78 47.43

HHA 61.89 47.43

RGB-HHA SSMA 77.17 73.62

AdapNet++ RGB 80.80 72.77

HHA 67.66 72.77

RGB-HHA SSMA 82.64 99.96

Results are shown on the Cityscapes validation set (input image dim: 768 × 384)

Table 24 Effect of the various
contributions proposed for
multimodal fusion using
AdapNet++ and the SMMA
architecture

Model SSMA Fusion mIoU (%) Acc. (%) AP (%)

ASPP Skip Ch. Agg.

F0 – – – 80.77 96.04 90.97

F1 � – – 81.55 96.19 91.15

F2 � � – 81.75 96.25 91.09

F3 � � � 82.64 96.41 90.65

The performance is shown for RGB-HHA fusion on the Cityscapes dataset and evaluated on the validation
set
Bold numbers indicate the best performance among the compared methods

5.10.1 Experiments with Real-Time Backbone Networks

In the interest of real-time performance, we additionally
trained multimodal models in our proposed SSMA fusion
framework with different real-time-intended backbone net-
works. Specifically, we performed experiments using two
different backbone networks: ERFnet (Romera et al. 2018)
and MobileNet v2 (Sandler et al. 2018). For the ERFnet
fusion model, we replace the two modality-specific encoders
in our multimodal fusion configuration with the ERFnet
encoder andwe replace our decoderwith theERFnet decoder.
While for the fusion model with the MobileNet v2 back-
bone, we employ the MobileNet v2 topology for the two
modality-specific encoders in our multimodal fusion config-
uration andwe append our eASPP aswell as the decoder from
our AdapNet++ architecture. Note that ERFnet is a semantic
segmentation architecture with both an encoder and decoder,
while MobileNet v2 is only a classification architecture and
therefore it only has an encoder topology.

Results from this experiment for RGB-HHA fusion along
with the unimodal RGB and unimodal HHA performance
are shown in Table 23. The ERFnet model in our multi-
modal SSMA fusion configuration achieves a mIoU score
of 64.60% with an inference time of 66.06ms, thereby out-
performing both the unimodal RGB ERFnet model and the
unimodal HHA ERFnet model. The MobileNet v2 model in
our multimodal SSMA fusion configuration further outper-
forms the ERFnet fusionmodel by 12.57% in themIoU score

with an inference time of 73.62ms. In comparison to these
network backbones, our AdapNet++ fusion model achieves
a mIoU score of 82.84% with an inference time of 99.96ms.
Each of these multimodal fusion models outperform their
unimodal counterparts and have an inference time in the
range of 66ms− 99ms. This demonstrates the modularity of
our fusion framework that enables the selection of an appro-
priate network backbone according to the desired frame rate.

5.10.2 Detailed Study on the Fusion Architecture

In our proposed multimodal fusion architecture, we employ
a combination of mid-level fusion and late-fusion. Results
from fusion at each of these stages is shown in Table 24.
First, we employ the main SSMA fusion module at the end
of the two modality-specific encoders, after the eASPPs and
we denote this model as F1. The F1 model achieves a mIoU
of 81.55%, which constitutes to an improvement of 0.78%
over the unimodal F0model.We then employ anSSMAmod-
ule at each skip refinement stage to fuse the mid-level skip
features from each modality-specific stream. The fused skip
features are then integrated into the decoder for refinement
of high-level decoder features. The F2 model that performs
multimodal fusion at both stages, yields a mIoU of 81.75%,
which is not significant compared to the improvement thatwe
achieve in fusion of the mid-level features into the decoder
in our unimodal AdapNet++ architecture. As described in
Sect. 4.2, we hypothesise that this is due to the fact that the
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Table 25 Effect of varying the SSMA bottleneck downsampling rate η

on the RGB-HHA fusion performance

Encoder SSMA Skip SSMA mIoU (%) Acc. (%) AP (%)

ηenc = 2 ηskip = 2 82.15 96.32 91.17

ηenc = 4 ηskip = 4 82.11 96.27 91.34

ηenc = 8 ηskip = 4 82.21 96.32 91.61

ηenc = 16 ηskip = 4 82.25 96.31 91.12

ηenc = 16 ηskip = 6 82.64 96.41 90.65

Results are shown for the model trained on the Cityscapes dataset and
evaluated on the validation set
Bold numbers indicate the best performance among the comparedmeth-
ods

mid-level representations learned by a network do not align
across different modality-specific streams. Therefore, we
employ our channel attention mechanism to better correlate
these features using the spatially aggregated statistics of the
high-level decoder features. The model that incorporates this
proposed attention mechanism achieves an improved mIoU
of 82.64%,which is an improvement of 1.09% in comparison
to 0.2% without the channel attention mechanism. Note that
the increase in quantitative performance due to multimodal
fusion is more apparent in the indoor or synthetic datasets as
shown in Sect. 5.7. The experiment shown in Table 24 shows
a correspondingly larger increase for the contributions pre-
sented in this table. However, as we present the unimodal
ablation studies on the Cityscapes dataset, we continue to
show the multimodal ablation studies on the same dataset.

The proposed SSMAmodule has a bottleneck structure in
which the middle convolution layer downsamples the num-
ber of feature channels according to a rate η as described
in Sect. 4.1. As we perform fusion both at the mid-level
and at the end of the encoder section, we have to estimate
the downsampling rates individually for each of the SSMA
blocks. We start by using values from a geometric sequence
for the main encoder SSMA downsampling rate ηenc and
correspondingly vary the values for the skip SSMA down-
sampling rates ηskip. Results from this experiment shown in
Table 25 demonstrates that the best performance is obtained
for ηenc = 16 and ηskip = 6 which also increases the param-
eter efficiency compared to lower downsampling rates.

5.10.3 Fusion Stage and Reliance on Modalities

In this section, we study the SSMA fusion configuration
in terms of learning dependent or independent probability
weightings that are used to recalibrate the modality-specific
feature maps dynamically. The SSMA configuration that we
depict in Fig. 7 learns independent probability weighting
where the activations at a specific location in the feature
maps from modality A can be independently enhanced or
suppressed regardless of whether the activations at the cor-

responding location in the feature maps from modality B are
going to be enhanced or suppressed. An alternative depen-
dent configuration can be employed by replacing the sigmoid
with a softmax, where the softmax takes the activation at a
specific location from a feature map from modality A and
the activation in the corresponding location from the feature
map from modality B, and outputs dependent probabilities
that are used to weigh the modality-specific activations. This
dependent configuration acts as punishing the modality that
makes themistake while rewarding the other.While the inde-
pendent configuration also considers if a modality is making
a mistake, it does not necessarily punish one and reward the
other, it has the ability to punish both or reward both in addi-
tion. We study the performance of the multimodal fusion
in these two dependent and independent configurations in
this section. Additionally, we study the effect of learning the
fusion in a fully supervised manner by employing an explicit
loss function at the output of each SSMA module after the
fusion. We also study the overall configuration on where the
SSMAmodule is to be placed, at the end of the encoder stage
where the features are highly discriminative or at the end of
the decoder stage where the features are more high-level and
semantically mature.

Table 26 shows the results from this experiment where we
present the multimodal fusion performance for the model in
the dependent SSMA and independent SSMA configuration,
as well as when the SSMA module is placed at the encoder
stages as in our standard configuration or at the decoder
stage, and with and without an explicit supervision for the
fusion. The results are presented for RGB-HHA fusion on
the Cityscapes validation set. It can be seen that the mod-
els S1 to S4 without the explicit supervision outperform the
corresponding models S5 to S8 with the explicit supervi-
sion demonstrating that learning the fusion in self-supervised
manner is more beneficial. Comparing the performance of
models that employ the SSMA fusion at the encoder stages
S1, S2, S5, S6, with the corresponding models at employ
the SSMA fusion at the decoder stage S3, S4, S7, S8, we
see that the encoder fusion models substantially outperform
the decoder fusion models. Finally, comparing the mod-
els with the dependent SSMA configuration S1, S3, S5, S7
with the corresponding models the the independent SSMA
configuration, we observe that independent configuration
always outperforms the dependent configuration. In sum-
mary, these results demonstrate that our multimodal SSMA
fusion scheme that learns independent probabilityweightings
in a self-supervised manner, when employed at the encoder
stages outperforms the other configurations.

5.10.4 Influence of Multimodal Fusion on Activation Maps

In an effort to present visual explanations for the improve-
ment in performance due to multimodal fusion, we study
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Table 26 Comparison of
multimodal SSMA fusion at
different network stages and by
employing a dynamic dependent
probability weighting or
independent probability
weighting configuration

Model SSMA loss Encoder Stage Decoder Stage IoU (%)

Dep. Indep. Dep. Indep.

S1 – � – – – 82.39

S2 – – � – – 82.64

S3 – – – � – 80.96

S4 – – – – � 81.14

S5 � � – – – 82.32

S6 � – � – – 82.52

S7 � – – � – 80.86

S8 � – - – � 81.06

Results are shown for RGB-HHA fusion on the Cityscapes validation set with (supervised) and without
(self-supervised) an explicit loss for the SSMA module
Bold number denote the highest performance among the compared methods

the activation maps at various intermediate network stages
before and after themultimodal fusion using theGradCam++
technique (Chattopadhyay et al. 2017). The approach intro-
duces pixel-wise weighting of the gradients of the output
with respect to a particular spatial location in the convolu-
tional feature map to generate a score. The score provides a
measure of the importance of each location in feature map
towards the overall prediction of the network. We apply a
colormap over the obtained scores to generate a heat map
as shown in Fig. 20. We visualize the activation maps at
five different stages of the network. Firstly, at the output of
eachmodality-specific encoder Xa and Xb which is the input
to the SSMA fusion block. Secondly, after recalibrating the
individual modality-specific feature maps inside the SSMA
block X̂a and X̂b, and finally after the fusion with the 3 × 3
convolution inside the SSMA block f . Figure 20 illustrates
one example for each dataset that we benchmark on with the
activation maps, the input modalities and the corresponding
segmentation output for the particular object category.

For the Cityscapes dataset, we show the activation maps
for the person category. It can be seen that the activation
map Xa from the visual RGB stream is well defined for the
person class but it does not show high activations centered
on the objects, whereas the activation map from the depth
stream Xb is more noisy but high activations are shown on
the objects. For the locations in the input depth map that
show noisy depth data, the activation map correspondingly
shows prominent activations in these regions. After the recal-
ibration of the feature maps, both X̂a and X̂b are less noisy
and maintaining the structure with high activations. Further-
more, the activation map of the fused convolution f shows
very well defined high activations that almost correspond to
the segmented output.

The second column in Fig. 20 shows the activations for the
pole class in the Synthia dataset. As the scene was captured
during rainfall, the objects in the visual RGB image are indis-
tinguishable. However, the depth map still maintains some

structure of the scene. Studying both the modality-specific
activation maps at the input to the SSMAmodule shows sub-
stantial amount of noisy activations spread over the scene.
Therefore, the unimodal visual RGB model only achieves
an IoU of 74.94% for the pole class. Whereas, after the
recalibration of the feature maps, the activation maps show
significantly reduced noise. It can be seen the recalibrated
activation map X̂b of the depth stream shows more defined
high activations on the pole, whereas X̂a of the visual RGB
stream shows less amount of activations indicating that the
network suppresses the noisyRGBactivations in order to bet-
ter leverage the well defined features from the depth stream.
Activations of the final fused convolution layer show higher
activations on the pole than either of the recalibrated acti-
vation maps demonstrating the utility of multimodal fusion.
This enables the fusion model to achieve an improvement of
8.4% for the pole class.

The third column of Fig. 20 shows the activation maps
for the table class in the SUN RGB-D dataset. Interestingly,
both the modality-specific activation maps at the input show
high activations at different locations indicating the com-
plementary nature of the features in this particular scene.
However, the activation map Xb from the HHA stream also
shows high activations on the couch in the backgroundwhich
would cause misclassifications. After the recalibration of the
HHA feature maps, the activation map X̂b no longer has
high activations on the couch but it retains the high activa-
tions on the table. While, the recalibrated activation map X̂a

of the visual RGB stream shows significantly lesser noisy
activations. The activation map of the fused convolution f
shows well defined high activations on the table, more than
the modality-specific input activation maps. The enables the
SSMA fusion model to achieve an improvement of 4.32% in
the IoU for the table category.

For the ScanNet dataset, we show the activation maps for
the bathtub category in the fourth column in Fig. 20. It can
be seen that the modality specific activation maps at the input
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Fig. 20 Visualization of the activation maps with respect to a particu-
lar class at various stages of the network before and after multimodal
fusion. Xa and Xb are at the outputs of the modality-specific encoder
which is input to the SSMA fusion module, X̂a and X̂b are the at the

feature maps after recalibration inside the SSMA block, and f is after
the fusion of both modalities inside the SSMA block. Both the input
modalities and the corresponding segmentation output for the particular
object category is also shown (Color figure online)

of the SSMA module shows high activations at complemen-
tary locations, corroborating the utility of exploiting features
from both modalities. Moreover, the activation map Xb from
theHHA stream shows significantly higher activations on the
object of interest than the RGB stream. This also aligns with
the quantitative results, where the unimodal HHAmodel out-
performs the model trained on visual RGB images. After the
recalibration of the feature maps inside the SSMA block, the
activation maps show considerably lesser noise while main-
taining the high activations at complementary locations. The
activation map of the fused convolution f shows only high

activations on the bathtub and resembles the actual structure
of the segmented output.

The last column of Fig. 20 shows the activation maps for
the trail category in the Freiburg Forest dataset. Here we
show the fusionwith visual RGB and EVI. The EVImodality
does not provide substantial complementary information for
the trail class in comparison to the RGB images. This is also
evident in the visualization of the activations at the input of
the SSMAmodule. The activation maps of the EVI modality
after the recalibration show significantly lesser noise but also
lesser amount of high activation regions than the recalibrated
activation maps of the visual RGB stream. Nevertheless, the
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activation map after the fusion f shows more defined struc-
ture of the trail than either of the modality-specific activation
maps of the input to the SSMA module.

5.11 Qualitative Results of Multimodal
Segmentation

Figure 21 illustrates the visualized comparisons of multi-
modal semantic segmentation for each of the five benchmark
datasets. We compare with the output of unimodal Adap-
Net++ architecture and show the improvement\error map
which denotes the improvement over the unimodal Adap-
Net++ output in green and the misclassifications in red.
Figure 21a, b show interesting examples from the Cityscapes
dataset. In both these examples, we can see a significant
improvement in the segmentation of cyclists. As cyclists con-
stitute to a person riding a bike, often models assign a part
of the pixels on the person riding a bike as the person class,
instead of the cyclist class.

Another common scenario is when there is a person stand-
ing a fewmeters behind aparkedbike, themodelmisclassifies
the person as a cyclist but since he is not on the bike, the right
classification would be the person category. In these exam-
ples, we can see that by leveraging the features from the depth
modality our networkmakes accurate predictions in these sit-
uations. In Fig. 21a, we can also see that parts of the car at
several meters away is not completely segmented in the uni-
modal output but it is accurately captured in the multimodal
output. Furthermore, in the unimodal output of Fig. 21b, we
see parts of the sidewalk behind the people is misclassified
as road and parts of the fence that is several meters away is
misclassified as a sidewalk. As the distinction between these
object categories can clearly be seen in the depth images, our
fusion model accurately identifies these boundaries.

Figure 21c, d show examples on the Synthia dataset. Here
we show the first scene during rainfall and the second scene
during night-time. In the unimodal output of first scene, we
can see significant misclassifications in all the object cate-
gories, except building and vegetation that are substantially
large in size.Whereas, themultimodal fusionmodel is able to
leverage the depth features to identify the objects in the scene.
In Fig. 21d, even for us humans it is impossible to see the peo-
ple on the road due to the darkness in the scene. As predicted,
the unimodal visual RGBmodel misclassifies the entire road
with people as a car, which could lead to disastrous situa-
tions if it occurred in the real-world. The multimodal model
is able to accurately predict the scene with almost no error in
the predictions.

In Fig. 21e, f, we show examples on the indoor SUNRGB-
D dataset. Due to the large number of object categories in
this dataset, several inconspicuous classes exist. Leveraging
structural properties of objects from the HHA encoded depth
can enable better discrimination between them. Figure 21e

shows a scene where the unimodal model misclassifies parts
of thewoodenbed as a chair andparts of thepillow as thebed.
We can see that themultimodal output significantly improves
upon the unimodal counterpart. Figure 21f shows a complex
indoor scene with substantial clutter. The unimodal model
misclassifies the table as a desk and a hatch in the wall is
misclassified as a door. Moreover, partly occluded chairs
are not entirely segmented in the unimodal output. The HHA
encoded depth shows well defined structure of these objects,
which enables the fusion approach to precisely segment the
scene. Note that the window in the top left corner of Fig. 21f
is mislabeled as a desk in the groundtruth.

Figure 21g, h show examples of indoor scenes from
the ScanNet dataset. In the unimodal output of Fig. 21g,
overexposure of the image near the windows causes misclas-
sification of parts of the window as a picture and crumpled
bedsheets as well as the bookshelf is missclassified as a
desk. While the multimodal segmentation output does not
demonstrate these errors. Figure 21h shows an image with
motion-blur due to camera motion. The motion blur causes a
significant percentage of the image to be misclassified as the
largest object in the scene and this case as a bookshelf. Ana-
lyzing the HHA encoded depth map, we can see that it does
not contain overexposed sections or motion-blur, rather it
strongly emphasizes the structure of the objects in the scene.
By leveraging features from the HHA encoded depth stream,
our multimodal model is able to accurately predict the object
classes in the presence of these perceptual disturbances.

In Fig. 21i, j, we show results on the unstructured Freiburg
Forest dataset. Figure 21i shows an oversaturated image due
to sunlight which causes boulders on the grass to be com-
pletely absent in the unimodal segmentation output. Oversat-
uration causes boulders to appear with a similar texture as the
trail or vegetation class. However, the RGB-EVImultimodal
model is able to leverage the complementary EVI features to
segment these structures. Figure 21j shows an example scene
with glare on the camera optics and snow on the ground. In
the unimodal semantic segmentation output, the presence of
these disturbances often causes localized misclassifications
in the areas where they are present. Whereas, the multimodal
semantic segmentation model compensates for these distur-
bances exploiting the complementary modalities.

The final two rows in Fig. 21 show interesting failure
modes where the multimodal fusion model demonstrates
incorrect predictions. In Fig. 21k, we show an example from
theCityscapes datasetwhich contains an extremely thin fence
connected by wires along the median of the road. The thin
wires are not captured by the depthmodality and it is visually
infeasible to detect it from the RGB image. Moreover due its
thin structure, the vehicles on the opposite lane are clearly
visible. This causes both the unimodal and multimodal mod-
els to partially segment the vehicles behind the fence which
causes incorrect predictions according to the groundtruth.
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Fig. 21 Qualitative multimodal fusion results in comparison to the out-
put of the unimodal visual RGB model on each of the five datasets that
we benchmark on. The last two rows show failure modes. In addition
to the segmentation output, we also show the improvement/error map
which denotes the misclassified pixels in red and the pixels that are mis-

classified by the best performing state-of-the-art model but correctly
predicted by AdapNet++ model in green. The legend for the segmented
labels correspond to the colors shown in the benchmarking tables in
Sect. 5.3 (Color figure online)
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Fig. 22 Qualitative multimodal semantic segmentation results in com-
parison themodel trained on visual RGB images on the Synthia-Seasons
dataset. In addition to the segmentation output, we also show the
improvement/error map which denotes the misclassified pixels in red

and the pixels that are misclassified by the best performing state-of-the-
art model but correctly predicted by AdapNet++ in green. The legend
for the segmented labels correspond to the colors shown in the bench-
marking tables in Sect. 5.3 (Color figure online)
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However, we can see that the multimodal model still cap-
tures more of the fence structure than the unimodal model. In
Fig. 21l, we show an example from the SUN RGB-D dataset
in which misclassifications are produced due to inconspic-
uous classes. The scene contains two object categories that
have very similar appearance in some scenes, namely, chair
and sofa. The chair class is denoted in dark green, while the
sofa class is denoted in light green. As we see in this scene,
a single-person sofa is considered to be a chair according to
the groundtruth, whereas only the longer sofa in the middle
is considered to be in the sofa class. In this scene, the single
person sofa is adjacent to the longer sofa which causes the
network to predict the pixels on both of them as the sofa class.

5.12 Visualizations Across Seasons andWeather
Conditions

In this section, we present qualitative results on the Synthia-
Sequences dataset that contains video sequences of 12
different seasons and weather conditions. We visualize the
segmentation output of the multimodal and unimodal mod-
els for which the qualitative results are shown in Table 19.
For this experiment, the models were trained on the Synthia-
Rand-Cityscapes dataset and only evaluated on the Synthia-
Sequences dataset. The Synthia-Sequences dataset contains a
diverse set of conditions such as summer, fall, winter, spring,
dawn, sunset, night, rain, soft rain, fog, night rain and win-
ter night. We show qualitative evaluations on each of these
conditions by comparing the multimodal segmentation per-
formance with the output obtained from the unimodal visual
RGBmodel in Fig. 22. This aimof this experiment is twofold:
to study the robustness of the model to adverse perceptual
conditions such as rain, snow, fog and nightime; Secondly, to
evaluate the generalization of the model to unseen scenarios.

From the examples shown in Fig. 22, we can see the
diverse nature of the scenes containing environments such
as highway driving, inner-city with skyscrapers and small
sized cities. The visual RGB images in all of the scenes
show the changing weather conditions that cause vegetation
to change color in Fig. 22b, snow on the ground and leaf-
less trees in Fig. 22c, glaring light due to sunrise in Fig. 22c,
orange hue due to sunset in Fig. 22f, dark scene with isolated
lights in Fig. 22g, noisy visibility due to rain in Fig. 22h and
blurred visibility due to fog in Fig. 22j. Even for humans it
is extremely hard to identify objects in some of these envi-
ronments. The third column shows the output obtained from
the unimodal visual RGB model. The output shows signifi-
cant misclassifications in scenes that contain rain, fog, snow
or nighttime, whereas the multimodal RGB-D model pre-
cisely segments the scene by leveraging themore stable depth
features. The improvement map in green shown in the last
column of Fig. 22, demonstrates substantial improvement
over unimodal segmentation and minimal error for multi-

modal segmentation. The error is noticeable only along the
boundaries of objects that are far away, which can be reme-
died using a higher resolution input image. Figure 22e, j
show partial failure cases. In the first example in Fig. 22e,
the occluded bus on the left is misclassified as a fence due to
its location beyond the sidewalk, where often fences appear
in the same configuration.While, in Fig. 22j, a segment of the
vegetation severalmeters away ismisclassified as a part of the
building behind. However, overall the multimodal network
is able to generalize to unseen environments and visibility
conditions demonstrating the efficacy of our approach.

6 Conclusion

In this paper, we proposed an architecture for multimodal
semantic segmentation that incorporates our self-supervised
model adaptation blocks which dynamically adapt the fusion
of features from modality-specific streams at various inter-
mediate network stages in order to optimally exploit comple-
mentary features. Our fusion mechanism is simultaneously
sensitive to critical factors that influence the fusion, including
the object category, its spatial location and the environ-
mental scene context in order to fuse only the relevant
complementary information. We also introduced a channel
attention mechanism for better correlating the fused mid-
level modality-specific encoder features with the high-level
decoder features for object boundary refinement. Moreover,
as the fusionmechanism is self-supervised, we demonstrated
that it effectively generalizes to the fusionof differentmodali-
ties, beyond the commonly employedRGB-Ddata and across
different environments ranging from urban driving scenarios
to indoor scenes and unstructured forested environments.

In addition, we presented a computationally efficient uni-
modal semantic segmentation architecture that consists of
an encoder with our multiscale residual units and an efficient
atrous spatial pyramid module, complemented by a strong
decoderwith skip refinement stages.Our proposedmultiscale
residual units outperform the commonly employed multigrid
method and our proposed efficient atrous spatial pyramid
pooling achieves a 10× reduction in the number of parame-
ters with a simultaneous increase in performance compared
to the standard atrous spatial pyramid pooling. Additionally,
we proposed a holistic network-wide pruning approach to
further compress our model to enable efficient deployment.
We presented exhaustive theoretical analysis, visualizations,
quantitative and qualitative results on Cityscapes, Synthia,
SUN RGB-D, ScanNet and Freiburg Forest datasets. The
results demonstrate that our unimodal AdapNet++ archi-
tecture achieves state-of-the-art performance on Synthia,
ScanNet and Freiburg Forest benchmarks while demonstrat-
ing comparable performance onCityscapes andSUNRGB-D
benchmarks with a significantly lesser number of parame-
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ters and a substantially faster inference time in comparison
to other state-of-the-art models. More importantly, our mul-
timodal semantic segmentation architecture sets the new
state-of-the-art on all the aforementioned benchmarks, while
demonstrating exceptional robustness in adverse perceptual
conditions.
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