
International Journal of Computer Vision (2020) 128:1220–1238
https://doi.org/10.1007/s11263-019-01187-z

Semi-supervised Semantic Mapping Through Label Propagation with
Semantic Texture Meshes

Radu Alexandru Rosu1 · Jan Quenzel1 · Sven Behnke1

Received: 19 July 2018 / Accepted: 30 May 2019 / Published online: 13 June 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Scene understanding is an important capability for robots acting in unstructured environments.While most SLAM approaches
provide a geometrical representation of the scene, a semantic map is necessary for more complex interactions with the
surroundings. Current methods treat the semantic map as part of the geometry which limits scalability and accuracy. We
propose to represent the semantic map as a geometrical mesh and a semantic texture coupled at independent resolution.
The key idea is that in many environments the geometry can be greatly simplified without loosing fidelity, while semantic
information can be stored at a higher resolution, independent of the mesh.We construct a mesh from depth sensors to represent
the scene geometry and fuse information into the semantic texture from segmentations of individual RGB views of the scene.
Making the semantics persistent in a global mesh enables us to enforce temporal and spatial consistency of the individual
view predictions. For this, we propose an efficient method of establishing consensus between individual segmentations by
iteratively retraining semantic segmentation with the information stored within the map and using the retrained segmentation
to re-fuse the semantics. We demonstrate the accuracy and scalability of our approach by reconstructing semantic maps of
scenes from NYUv2 and a scene spanning large buildings.

Keywords Semantic mapping · Label propagation · Semantic textured mesh

1 Introduction

Robots acting in real-world environments need the ability
to understand their surroundings, and know their location
within the environment. While the problem of geometrical
mapping and localization canbe solved throughSLAMmeth-
ods (Zollhöfer et al. 2018), many tasks require knowledge
about the semanticmeaning of objects or surfaces in the envi-
ronment. The robot should, for instance, be able to recognize
where the obstacles are in the scene, and also understand

Communicated by Anelia Angelova, Gustavo Carneiro, Niko Sünder-
hauf, Jürgen Leitner.

B Jan Quenzel
quenzel@ais.uni-bonn.de

Radu Alexandru Rosu
rosu@ais.uni-bonn.de

Sven Behnke
behnke@ais.uni-bonn.de

1 Autonomous Intelligent Systems Group, University of Bonn,
Bonn, Germany

whether those obstacles are cars, pedestrians, walls, or oth-
erwise.

The problem of building maps has been extensively stud-
ied (Kostavelis and Gasteratos 2015). Most approaches can
be grouped into the following three categories, based on map
representation:

– Voxel-based: The scene is discretized into voxels, either
using a regular grid, or an adaptive octree. Each voxel
stores the binary occupancy value (occupied, empty,
unknown) or the distance to the surface commonly
referred to as Signed Distance Function (SDF).

– Surfel-based: The map is represented by small surface
elements, which store the mean and covariance of a set
of 3D-points. Surfels suffer from less discretization errors
than voxels.

– Mesh-based: The map is represented as a set of ver-
tices with faces between them. This naturally fills holes
and allows for fast rendering using established graphics
pipelines.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-019-01187-z&domain=pdf
http://orcid.org/0000-0001-7349-4126
http://orcid.org/0000-0003-0556-8175
http://orcid.org/0000-0002-5040-7525


International Journal of Computer Vision (2020) 128:1220–1238 1221

Fig. 1 Semantic Reconstruction: We generate a mesh with RGB tex-
ture and semantic annotations. The mesh enables us to ensure temporal
and spatial consistency between semantic predictions and allows us to
perform label propagation for improved semantic segmentation. Color
coding of semantic labels correspond to NYUv2 dataset (Silberman
et al. 2012)

Current semantic mapping systems treat the semantic
information as part of the geometry, and store label prob-
abilities per map element (voxel, sufel or mesh vertex/face).
This approach has the intrinsic disadvantage of coupling the
resolution of the geometrical representation to the seman-
tics, requiring a large number of elements to represent small
semantic objects or surface parts. This is an undesirable effect
as it leads to unnecessary memory usage especially in man-
made environments, where the geometry is mostly planar,
and high geometrical detail would be redundant. Often, it
suffices to represent the semantics relative to a rough geo-
metric shape.

The key idea of our approach, visualized in Fig. 1, is to
couple the scene geometry with the semantics at independent
resolution by using a semantic texturemesh. In this, the scene
geometry is represented by vertices and faces, whereas the
semantic texture categorizes the surface with higher resolu-
tion. This allows us to represent semantics and geometry at
different resolutions in order to build a large semantic map,
while still maintaining a lowmemory usage. As our segmen-
tation module we make use of RefineNet (Lin et al. 2017) to
predict a semantic segmentation for each individual RGB
view of the scene. These predictions are probabilistically
fused onto the semantic texture that is supported by a coarse
mesh representing the scene geometry. Having a globally
persistent semantic map enables us to establish a temporal
and spatial consistency that was previously unobtainable for
individual-view predictor. To this end, we propose to prop-
agate labels from the stable mesh by projection onto each
camera frame, in order to retrain the semantic segmentation in
a semi-supervised manner. Expectation Maximization (EM)
is then carried out by alternating between fusing semantic
predictions and propagating labels. This iterative refinement

allows us to cope with view points which were not common
in the training dataset. A predictor pretrained on street-level
segmentation will not work well on images captured by
a micro aerial vehicle (MAV) at higher altitudes or close
to buildings. However, projecting confident semantic labels
fused from street level onto less confident parts of views will
enable to learn the semantic segmentation of new viewpoints
(see Fig. 2).

We compare our method with SemanticFusion (McCor-
mac et al. 2017), and evaluate the accuracy on the NYUv2
dataset (Silberman et al. 2012). We show that the increased
resolution of the semantic texture allows for more accurate
semantic maps. Finally, propagation and retraining further
improve the accuracy, surpassing SemanticFusion in every
class.

To showcase the benefits of textured meshes in terms of
scalability and speed, we also recorded a dataset spanning
multiple buildings, annotated with the 66 classes of theMap-
illary dataset (Neuhold et al. 2017). We demonstrate that we
are able to construct a large map using both RGB and seman-
tic information in a time- and memory-efficient manner.

2 RelatedWork

The annotation of large datasets is a costly and time-
consuming matter. Hence, the automation of annotation as
well as the transfer of knowledge across different domains
and datasets are active research topics. Most networks
for image segmentation or their respective backbone (e.g.
RefineNet (Lin et al. 2017) and Mask R-CNN (He et al.
2017) with ResNet-backbone (He et al. 2016) ) are nowa-
days pretrained on large datasets like ImageNet (Deng et al.
2009) and only finetuned for a specific dataset or purpose.

Vezhnevets et al. (2012) classify super pixels in an auto-
mated manner using a pairwise conditional random field and
request human intervention based on the expected change.
Likewise, Jain and Grauman (2016) use a Markov Ran-
dom Field for joint segmentation across images given region
proposals with similar saliency. The resulting proposals are
later fused to obtain foreground masks while supervision is
requested based on an images influence, diversity and the
predicted annotation difficulty. Instead, Yang et al. (2017)
cluster unannotated data based on cosine similarity to other
images and simply choose per cluster the one with most sim-
ilar images for human labeling. Mackowiak et al. (2018)
take a more cost-centric approach and train one CNN for
semantic segmentation and one for a cost model that esti-
mates the necessary clicks for annotating a region. The cost
model predictions are then fused with the vote entropy of the
segmenting networks activation and supervision is requested
for a fixed number of regions. Castrejon et al. (2017) pro-
vide with Polygon-RNN a more interactive approach. Given

123



1222 International Journal of Computer Vision (2020) 128:1220–1238

Fig. 2 Label propagation: Semantic segmentations are probabilistically fused in the scene (left). Frames with largest deviation (middle) from the
stable mesh are used for retraining. Inference is repeated for all images and re-fused into the scene mesh to achieve a more accurate semantic map

a (drawn) bounding box around an object, the RNN with
VGG-16 backbone (Simonyan and Zisserman, 2014) pre-
dicts an enclosing polygon around the object. The polygon
can be corrected by a human annotator and fed back into
the RNN to improve the overall annotation accuracy. Acuna
et al. (2018) improve upon Polygon-RNN through architec-
ture modifications, training with reinforcement learning and
increased polygonal output resolution.

Most semantic segmentation methods are not real-time
capable. Hence, Sheikh et al. (2016) proposed to use quad-
tree based super pixels where only the center is classified by
a random forest and labels are propagated to a new image if
the super pixels location and intensity do not change signifi-
cantly. This inherently assumes small inter frame motion but
does not take spatial correspondences into account, yet runs
on a CPU with up to 30 fps.

While image segmentation is fairly advanced, label-
ing point clouds still has a large potential for improve-
ment. Voxel-based approaches like OctNet (Riegler et al.
2017) precompute a voxel grid and apply 3D- convolu-
tions. Most grid cells are empty for sparse LIDAR point
clouds. Hence, recent research shifts towards using points
directly (Qi et al. 2017a, b), forming cluster of points (Lan-
drieu and Simonovsky 2017), applying convolutions on local
surfaces (Tatarchenko et al. 2018) or lifting points to a high-
dimensional sparse lattice (Su et al. 2018). Thesemethods do
not enforce consistent labels for sequential data and would
need to be recomputed once new data is aggregated while
being stronglymemory constrained. Nevertheless, Zaganidis
et al. (2018) showed that semantic predictions can improve
point cloud registration with GICP and NDT.

Semantic reconstruction and mapping received much
attention in recent years. Civera et al. (2011), for exam-
ple, paved the way towards a semantic SLAM system by
presenting an object reasoning system, able to learn object
models using feature descriptors in an offline step and then
recognizing and registering them to the map at run time.
However, their system was limited to a small number of
objects and apart from the recognized objects, the map was
represented only as a sparse point cloud. Bao and Savarese

(2011) exploit semantics for Structure-from-Motion (SfM) to
reduce the initial number of possible camera configurations
and add a semantic term during Maximum-Likelihood esti-
mation of camera poses and scene structure. Subsequently,
Bao et al. (2013) use the estimated scene structure to gener-
ate dense reconstructions from learned class-specific mean
shapes with anchor points. The mean shape is warped with
a 3D thin plate spline and local displacements are obtained
from actual details of the instance.

Instead, Häne et al. (2013) fuse single frame depth maps
from plane sweep stereo to reconstruct a uniform voxel
grid and jointly label these voxels by rephrasing the fusion
as a multi-label assignment problem. A primal-dual algo-
rithm solves the assignment while penalizing the transition
between two classes based on class-specific geometry priors
for surface orientation. Their method is also able to recon-
struct and label underlying voxels and not only visible ones.

In subsequent work, more elaborate geometry priors have
been learned, e.g. using Wolff shapes from surface normal
distributions (Häne et al., 2014) and recently end-to-end-
learned with a 3D-CNN (Cherabier et al., 2018). The data
term in the optimization has been improved (Savinov et al.
2016), memory consumption and runtime reduced (Cher-
abier et al., 2016; Blaha et al., 2016), and an alignment to
shape priors integrated (Maninchedda et al. 2016).

Schönberger et al. (2018) utilize the approach of Häne
et al. (2013) for visual localization with semantic assistance
to learn descriptors. An encoder-decoder CNN is trained on
the auxiliary task of SceneCompletion given incomplete sub-
volumes. The encoder is then used for descriptor estimation.
Given a bag of words with a corresponding vocabulary one
can thus query matching images for a given input frame.

For incremental reconstruction, Stueckler et al. (2014)
presented a densely- represented approach using a voxel grid
map. Semantic labels were generated for individual RGB-D
views of the modeled scene by a random forest. Labels were
then assigned projectively to each occupied voxel and fused
using aBayesian update. The update effectively improved the
accuracy of backprojected labels compared to instantaneous
segmentation of individual RGB-D views.

123



International Journal of Computer Vision (2020) 128:1220–1238 1223

Similarly, Hermans et al. (2014) fused semantic informa-
tion obtained from segmenting RGB-D frames using random
forests but represented the map as a point cloud. Their
main contribution was an efficient spatial regularizing Con-
ditional Random Field (CRF), which smoothes semantic
labels throughout the point cloud. Li and Belaroussi (2016)
extended this approach to monocular video while using the
semi-dense map of LSD-SLAM (Engel et al. 2014). Here,
the DeepLab-CNN (Chen et al. 2018) was used instead of a
random forest for segmentation.

Vineet et al. (2015) achieve a virtually unbounded scene
reconstruction through the use of an efficient voxel hashed
data structure for the map. This further allows them to incre-
mentally reconstruct the scene. Instead of RGB-D cameras,
stereo cameras were employed and depth was estimated
by stereo disparity. Semantic segmentation was performed
through random forest. The requirement for dense depth
estimates is lifted in the approach of Kundu et al. (2014).
They use only sparse triangulated points obtained through
monocular Visual SLAM and recover a dense volumetric
map through a CRF that jointly infers semantic category and
occupancy for each voxel.

A different approach is used in the keyframe-based
monocular SLAM system by Tateno et al. (2017) where a
CNN predicts per keyframe the pixel-wise monocular depth
and semantic labels.

Lianos et al. (2018) reduce drift in visual odometry via
establishing of semantic correspondences over longer peri-
ods than possible with pure visual correspondences. The
intuition is that the semantic class of a car will stay a car
even under diverse illumination andviewpoint changeswhile
visual correspondences may be lost. However, semantic cor-
respondences are not discriminative in the short term.

Tulsiani et al. (2017) perform single view reconstruction
of a dense voxel grid with a CNN. During training multi-
ple views of the same scene guide the learning by enforcing
the consistency of viewing rays incorporating information
frommultiple sources like foreground masks, depth, color or
semantics. Whereas, Ma et al. (2017) examined the use of
warping RGB-D image sequences into a reference frame for
semantic segmentation to obtainmore consistent predictions.
Sun et al. (2018) extend OctoMap (Hornung et al. 2013) with
a LSTM per cell to be able to account for long term changes
like dynamic obstacles.

Nakajima et al. (2018) segment surfels from the depth
image and semantic prediction using connected component
analysis and further refined incrementally over time. Geo-
metric segments along with their semantic label are stored in
the 3D map. The probabilistic fusion combines the rendered
current view with the current frame and its low resolutional
semantics.

Surfels are also used in the work of McCormac et al.
(2017). The authors integrated semantics into ElasticFu-

sion (Whelan et al. 2015) which represents the environment
as a dense surfel map. ElasticFusion is able to reconstruct
the environment in real-time on a GPU given RGB-D images
and can handle local as well as global loop closure. Semantic
information is stored on a per-surfel basis. Inference is done
by anRGB-D-CNNbefore fusing estimates probabilistically.
SemanticFusion fuses for each visible surfel and all possible
classes which is very time- andmemory-consuming since the
class probabilities need to be stored per surfel and class on the
GPU. Objects normally consist of a large number of surfels
and share in reality a single class label even though semantic
informationwithin a surfel would only be required at the bor-
der of the object where the class is likely to change. Hence,
many surfels store the same redundant information and since
GPUmemory is notoriously limited,memory usage becomes
a problem for larger surfel maps. Furthermore, SemanticFu-
sion tends to create many unnecessary surfels with differing
scales and labels for the same surface when sensed from dif-
ferent distances.

Closely related to our approach is the work of Valentin
et al. (2013). Their map is represented as a triangular mesh.
They aggregate depth images in a Truncated SignedDistance
Function (TSDF) and obtain the explicit mesh representa-
tion via the marching cubes algorithm. Afterwards, semantic
inference is performed for each triangle independently using
a learned classifier on an aggregation of photometric (color
dependent) and handcrafted local geometric (mesh related)
features. Spatial regularization is ensured through aCRFover
themesh faces. Their classifier infers the label with all visible
pixels per face at once and is not designed to incrementally
fuse new information. Furthermore, the pairwise potential
of the CRF does not take the likelihood for other classes in
to account. Especially around object borders this may lead
to suboptimal results. The semantic resolution is tied to the
geometry of the mesh, hence to have fine details the mesh
resolution needs to be fine grained. Geometrically a wall can
be described with a small number of vertices and faces, but
to semantically distinguish between an attached poster and
the wall itself the mesh would need a high resolution.

In comparison, we only store the likelihood for a small
number of most probable classes and the meshing creates a
single simplified surface while the texture resolution can be
chosen independent of the geometry yet appropriate to the
scene. During fusionwe further includeweighting to account
for the sensor distance and in the case of color integration
include vignetting and viewing angle.

3 Overview

In this paper, we present a novel approach to building seman-
tic maps by decoupling the geometry of the environment
from its semantics by using semantic textured meshes. This

123



1224 International Journal of Computer Vision (2020) 128:1220–1238

Fig. 3 System overview: Individual range images are used to create
local meshes for fast normal estimation and cloud simplification. The
resulting points, equipped with normals, are aggregated into a global
point cloud. Poisson reconstruction is employed to extract amesh,which
is simplified and unwrapped to obtain a lightweight scene representa-
tion. In the next step, we perform semantic integration. Individual RGB

views are segmented using RefineNet (Lin et al. 2017). The semantic
labels are then probabilistically fused into a semantic texture. Finally,
label propagation is performed by inferring pseudo ground truth views,
and using them to retrain the predictor. The retrained semantic segmen-
tation is used to re-fuse the labels into themesh yielding amore accurate
semantic map

decoupling allows us to store the geometry of the scene as a
lightweightmeshwhich efficiently represents even city-sized
environments.

Our method (see Fig. 3) operates in three steps: mesh
generation, semantic texturing and label propagation.

In themesh generation step, we create a mesh of the envi-
ronment by aggregating the individual point clouds recorded
by a laser scanner or an RGB-D camera. We assume that the
scans are preregistered into a common reference frame using
any off-the-shelf SLAM system. We calculate the normals
for the points in each scan by estimating an edge-maintaining
local mesh for the scan. Once the full point cloud equipped
with normals is aggregated, we extract a mesh using Poisson
reconstruction (Kazhdan and Hoppe 2013) and further sim-
plify it using QSlim (Garland and Heckbert 1998). Our main
contribution for 3D reconstruction is the proposal of a sys-
tem capable of fast normal estimation by using a local mesh
and also local line simplification which heavily reduces the
number of points, therefore reducing the time and memory
used by Poisson reconstruction.

In the semantic texturing step, we first prepare the mesh
for texturing by parameterizing it into a 2D plane. Seams
and cuts are added to the mesh in order to deform it into a
planar domain. A semantic texture is created in which the
number of channels corresponds to the number of semantic
classes. The semantic segmentation of each individual RGB
frame is inferred by RefineNet and fused probabilistically
into the semantic texture. We ensure bounded memory usage
on the GPU by dynamically allocating and deallocating parts

of the semantic texture as needed. Additionally, the RGB
information is fused in an RGB texture.

In the Label Propagation step, we project the stable
semantics, stored in the textured mesh, back into the camera
frames and retrain the predictor in a semi-supervised manner
using high confidence fused labels as ground truth, allowing
the segmentation to learn from novel view points.

Hence, the contribution presented in this article is four-
fold:

– a scalable system for building accurate meshes from
range measurements with coupled geometry and seman-
tics at independent resolution,

– an edge-maintaining local mesh generation from lidar
scans,

– a label propagation that ensures temporal and spatial con-
sistency of the semantic predictions, which helps the
semantic segmentation to learn and perform segmenta-
tion from novel view points,

– fast integration of probability maps by leveraging the
GPU with bounded memory usage.

4 Notation

In the following, we will denote matrices by bold uppercase
letters and (column-)vectors with bold lowercase letters. The
rigid transformationTF2F1 is represented as 4×4 matrix and
maps points from coordinate frame F1 to coordinate frame

123



International Journal of Computer Vision (2020) 128:1220–1238 1225

F2 by operating on homogeneous coordinates. When neces-
sary, the frame in which a point is expressed is added as a
subscript: e.g. pw for points in world coordinates. A point
pw is projected into frame F with the pose TF and the cam-
era matrix KF ∈ R

3×3. For the camera matrix, we assume a
standard pinhole model with focal length fx , fy , and princi-
pal point cx , cy . The projection of pw into image coordinates
u = (ux , uy)

ᵀ
F ∈ � ⊂ R

2 is given by the followingmapping:

gF (pw) : pw → pF , (1)

(pF , 1)ᵀ = TFw · (pw, 1)ᵀ, (2)

πF (pF ) : pF → uF , (3)

(x, y, z)ᵀF = KF · pF , (4)

uF = (x/z, y/z)ᵀ. (5)

An image or a texture is denoted by I (u) : � → R
n , where

� ⊂ R
2 maps from pixel coordinates u = (ux , uy)

ᵀ to n-
channel values.

5 Method

The input to our system is a sequence of organized point
clouds {P t },1 and RGB images {I t } (t indicates the time
step). We assume that the point clouds are already registered
into a common reference frame, and the extrinsic calibration
Tcd from depth sensor to camera, as well as camera matrices,
are given. The depth sensor can be an RGB-D camera or a
laser scanner. The output of our system is threefold:

– a triangular mesh of the scene geometry, defined as a
tuple M = (V,F) of vertices V and faces F . Each ver-
tex ∈ (R3 × R

2) contains a 3D point and a UV texture
coordinate, while the mesh face is represented by the
indices ∈ N

3 of the three spanning vertices within V .
– a semantic texture S indicating the texels class probabil-
ities,

– an RGB texture C representing the surface appearance.

After describing the necessary depth preprocessing in
Sect. 5.1, we will explain in detail the mesh generation
and parametrization (Sect. 5.2), before elaborating on the
semantic (Sect. 5.3) and color integration (Sect. 5.4), sparse
representation (Sect. 5.5) and label propagation (Sect. 5.6).

5.1 Depth Preprocessing

As previously mentioned, our system constructs a global
mesh from the aggregation of a series of point clouds {P t }
1 An organized point cloud exhibits an image resembling structure, e.g.
from commodity RGB-D sensors.

Fig. 4 Local mesh:We reconstruct an approximate local mesh from the
given range measurements in order to estimate point normals needed
for Poisson reconstruction

(a) Original scanline (b) Simplified
scanline

(c) Simplified with
offset points

Fig. 5 Line simplification: The original scan line (left) is excessively
dense in planar areas. The original simplification greatly reduces the
number of points but creating a global surface using a method like Pois-
son reconstruction overly smoothes the edges (middle). Our extension
simplifies the line andpreserves hard edges by adding further constraints
which allow Poisson reconstruction to maintain sharp features (right)

recorded from a depth sensor. Many surface reconstruction
algorithms require accurate per-point normal. One way to
obtain these normals is by aggregating the full global point
cloud, and using the k-nearest-neighbors to estimate the nor-
mals for each point. However, this would be prohibitively
slow as it requires a spatial subdivision structure, like a Kd-
tree, which can easily grow to a considerable size for large
point clouds, limiting the scalability of the system. For fast
normal estimation we take advantage of the structure of the
recorded point cloud. Since depth from an RGB-D sensor is
typically structured as an image, we can easily query adja-
cent neighboring points. Similarly, rotating lidar sensors can
produce organized scans. A complete revolution of e.g. a
Velodyne VLP-16 produces a 2D array of size 16 × N con-
taining the measured range of each recorded point, where N
is determined by the speed of revolution of the laser scanner.

Given the organized structure, we could create a triangu-
lar local mesh with approximate normals as introduced by
Holz and Behnke (2015). However, this would imply using
all aggregated points despite the fact that a significant num-
ber of them are redundant, since they lay on a common plane.
Hence, we propose a method for fast normal estimation and
point cloud reduction which helps to reconstruct the mesh in
a fast and memory efficient manner (Fig. 4). We first sim-
plify each individual scan to obtain a reduced point cloud
without sacrificing geometrical fidelity. For that, we start
with the line simplification algorithm of Ramer-Douglas-
Peucker (Douglas and Peucker 1973) which is applied on
each scan ring. To maintain hard edges of the point cloud,
we extend Ramer-Douglas-Peucker to create offset points

123



1226 International Journal of Computer Vision (2020) 128:1220–1238

Point cloud Poisson mesh Column from above

No offset
points

With offset
points

Fig. 6 Offset points: The impact of adding offset points during line
simplification is evaluated on the courtyard dataset. The absence of
offset points leads to a Poisson reconstruction that is overly smooth
(first row). Adding offset points increases the density of the point cloud

around the edges of the columns and results in a sharper reconstruc-
tion (second row). The smooth right hand side of the columns is due to
undersampling from occlusion

Fig. 7 Local mesh connections problem: During sudden movements of
the laser scanner, the scan rings are compressed behind and expanded
in front of the sensor. This creates many small and steep triangles which
degrades normal estimation.We perform iterative edge-flipping in order

to connect each vertex with their closest neighboring vertex, hence,
improving the likelihood for estimating correct normals. Furthermore,
we apply line simplification to each scan ring independently for data
reduction without sacrificing mesh fidelity

around the simplified edges to add a further constraint on
the normals of the points, and allow the subsequent mesh
generator to recover sharp features as visualized in Figs. 5
and 6. The local mesh is created by unwrapping the scan in
2D using polar coordinates, and performing a constrained 2D
Delaunay triangulation. Constrained edges are set to the ones
obtained from the line simplification. This ensures that points
that lie on the same scan ring will be connected together by
triangles. After recovering a local mesh from the point cloud,
normals are first estimated per face by calculating the cross
product between twoof the edges, andfinally per vertex using
a Mean Weighted by Angle (MWA) scheme (Thürrner and
Wüthrich 1998) which weighs each triangle’s contribution
by the angle under which it is incident to the vertex:

n f = e1,2 × e3,2
∥
∥e1,2 × e3,2

∥
∥
,

nv =
n

∑

f ∈AdyF(v)

α f · n f ,

nv = nv/ ‖nv‖ .

(6)

where n f and nv denote the face and vertex normals, respec-
tively, and α f is the angle between the two edge vectors e1
and e2 that share the vertex. The angle between the two edge
vectors can be computed using the dot product between them:

α f = arccos
(

e1·e2‖e1‖‖e2‖
)

.

Until now, we have obtained fast normals using only the
points contained in one revolution of theVelodyne. However,
due to the anisotropy in the sampling of a laser scanner, the
connections between points created by the Delaunay trian-
gulation in 2D may not be optimal when lifted to 3D, as seen
in Fig. 7. Since the connections between points are crucial
for an accurate normal estimation, an iterative local mesh
refinement is performed. The refinement ensures that each
point will be connected to the neighbors that lie spatially
close in 3D. Again, in order to avoid cumbersome and slow
spatial subdivision structures we introduce an edge flipping
algorithmwhich iteratively flips the edge shared between two
triangles to increase the following quality measure:

q = 4a
√
3

h21 + h22 + h23
, (7)

123



International Journal of Computer Vision (2020) 128:1220–1238 1227

where a denotes the area of the triangle and h is the length of
the edge. We chose it such that it is monotonically increas-
ing, and promotes more equilateral triangles. We perform
edge flipping in a greedy fashion by choosing first the tri-
angle which will experience the most quality increase. After
performing the flip for a triangle, the quality of adjacent trian-
gles may change and is updated. We continue flipping edges
until the quality measure can no longer be increased.

5.2 Mesh Generation

After aggregation of the points with corresponding normals
from all simplified scans, we perform Poisson reconstruction
to recover a high quality mesh, despite having potentially
noisy data and missing measurements. The resulting mesh
can still be overly dense in areas which are geometrically
simple, like the ground. Hence, we apply a second global
simplification step following theQSlimmethod (Garland and
Heckbert 1998). This approach iteratively collapses edges
until a certain error threshold, or a predetermined number of
faces, is reached.

The last step in the creation of the globalmesh is to prepare
it for texturing by parameterizing the mesh in the 2D domain
in order to obtainUVcoordinates for the vertices. For that,we
make use of the UV smart project function provided within
Blender.2

5.3 Semantic Integration

In this section we detail our approach on how to update
the global semantic texture S using individual color images
I t . For semantic segmentation, we retrain RefineNet on
the Mapillary dataset (Neuhold et al. 2017) for street level
segmentation. The dataset contains 25,000 images densely
labeled with 66 classes. Given the input image Ik , the output
of the predictor can be interpreted as a per-pixel probability
over all the class labels P(Ou = li |Ik), with u denoting pixel
coordinates. One common approach to integrate semantic
information is to perform a Bayesian update over the classes
probability, fusing new observations into the global belief
for the semantic labels. However, this scheme of updating
becomes slow for a large number of classes since the belief
for all labels needs to updated.

In our approach we choose to approximate the probability
over the classes with only the argmax probability. Hence, a
new observation will consist of only the argmax label and its
probability instead of the full distribution. This enables us to
use a fast integration scheme whose runtime is independent
of the number of classes. We observe that in practice this
approximation works well.

2 https://www.blender.org.

We define the best class L and its corresponding proba-
bility P∗ using:

L = argmax
c

P(Ou = li |Ik),
P∗ = max

c
P(Ou = li |Ik).

(8)

We perform a visibility check prior to updating the global
semantic texture using individual segmentation results.
Inspired by shadow mapping techniques in computer graph-
ics, we first render a depth map D from the current camera
view. In order to ensure that every texel is checked for visibil-
ity, we obtain for each texel x with UV coordinates ux the 3D
point px from the vertices of the corresponding mesh face by
barycentric interpolation. The point px is then projected into
the current view, and discarded if the depth dx is larger than
the stored value within the depth map D(π(gF (px ))), as it
lies behind the visible part of the mesh. To indicate visibility,
we use a per texel indicator variable rx ∈ {0, 1}:

rxi =
{

1, if dx ≥ D(π(gF (xw)))

0, otherwise
. (9)

All remaining texels (rx > 0) are fused with the current seg-
mentation result by increasing the probability of the obtained
classes:

S(ux , l)t = S(ux )t−1 + rxi · wxi · pxi , (10)

W (ux )t = W (ux )t−1 + rxi · wxi , (11)

lxi = L(π(gF (px ))), (12)

pxi = P∗(π(gF (px ))). (13)

Additionally, we weigh the fused probability by the faces
distance from the camera under the assumption that pixels
are more difficult to recognize from farther away, due to the
low resolution of semantic segmentation.

wxi =
{

1, if dx ≤ dmin

1 − dx−dmin
dmax−dmin

, otherwise
, (14)

where dx denotes the depth of the current texel, and dmin and
dmax are thresholds for the distance which define a linear
fall-off for the weight. In our experiments we set them to
30m and 100m, respectively.

5.4 Color Integration

In addition to the semantics, we also fuse the raw images into
a global color texture. The fusion is carried out by a weighted
running average:

123

https://www.blender.org


1228 International Journal of Computer Vision (2020) 128:1220–1238

Fig. 8 Semantic probability volume for the courtyard dataset: The
memory consumption of the dense 3D semantic texture (left) is pro-
hibitive for most modern GPUs. Committing memory pages with
non-negligible probabilities results in a sparse volume (middle) with

only 12.29% allocated. Periodically removing low probability pages
(right) further reduces the necessary memory (4.25%) and ensures
bounded memory usage that easily fits into GPU memory

C(ux )t = W (ux )t−1C(ux )t−1 + wx I (π(gF (px )))
W (ux )t−1 + wx

,

W (ux )t = W (ux )t−1 + wx .

(15)

The weight wx takes the distance, the radial intensity fall-off
within an image, and the viewing angle into account:

wx = wdist · wvign · wview,

wdist = (
∥
∥gF (pw,x )

∥
∥
2
2)

−1,

wvign = cos(θx )
4,

wview = (ow − pw,x ) · nx .

(16)

Here, wdist is the inverse distance from the texel to the
camera, which promotes frames that are spatially closer to
the mesh, improving the resolution of the fused colors. The
viewing angle θx between reprojection of the texel and the
principal axis of the camera is used to account for the radial
decrease in intensity by following the cos4 law (Goldman
and Chen 2005). The third term wview increases the weight
for texels that are imaged by the camera originating at ow

from a frontal perspective, further improving the quality of
the fused texture (Fig. 8).

We chose different update schemes for color and seman-
tics as their behavior is radically different. Firstly, the
semantic segmentation is trained to be robust to illumination
changes, hence the vignetting term is unnecessary. Secondly,
it is not clear that the angle to the surface is a good indicator
for confidence in semantic segmentation. In our experiments,
we observed that the predictor learns to some extent the rel-
ative angle of surfaces with respect to camera view, thus
weighting based on relative angle may be adversarial. For
example during sudden cameramovements tilting toward the
ground, the semantic segmentation decreases in accuracy as
the view is unfamiliar to the predictor. Thirdly, the distance
weight assumes that the accuracy of the semantics is more

confident for closer surfaces. However, this is not accurate
for large semantic entities like buildings for which the accu-
racy decreases as we go closer, due to large untextured areas,
and increases as we take a step back and observe the bigger
picture.

5.5 Sparse Semantic Volume

The semantic 3D texture S contains for each texel the
probability distribution over all the classes. However, for rea-
sonable sized resolutions and number of classes, this volume
can occupy more memory than is typically available in mod-
ern GPUs, rendering this process infeasible. For a texture
with 8.192 × 8.192 pixels and the 66 classes of the Mapil-
lary dataset, we would need to allocate a volume of 16.5 GB
(assuming we store each element as a floating point num-
ber of 4 bytes). This problem will only become worse as
we add more class labels or increase texture size. In order
to overcome this issue, we propose to store the semantics
into a sparse 3D texture in which we allocate and deallocate
dynamically the memory, ensuring bounded memory usage.

In the first step, we divide our global semantic volume
into pages of size 128 × 128 × 1. Each page3 stores the
probability for only one class and can be either allocated
in GPU memory or not. The volume starts initially with all
pages in a deallocated state. Hence, it occupies no space on
the GPU.

When fusing the semantic probability from the cur-
rent frame into S, the corresponding pages that will be
affected are computed and targeted for committing on
the CPU. This ensures that we only add the parts that
are actually relevant. After each frame, we also check
for pages that have low probability and deallocate them

3 Page size was chosen based on common supported values formultiple
computers used during development.

123



International Journal of Computer Vision (2020) 128:1220–1238 1229

from memory. The probability for a texel is computed
as:

pxl = S(ux , l)/W (ux ). (17)

If any texel inside a page is above a certain threshold, we
will keep the corresponding page in memory, otherwise
we target it for decommitting. This scheme of commit-
ting and decommitting portions of the memory can be
seen as intrinsically tracking the modes of the distribution
over the classes, ignoring parts with negligible probabil-
ity.

Other schemes for memory reduction can be employed
like quantization of the semantic 3D texture in which the
stored probability is represented with a lower bit depth
(reducing it to 2 bytes or even a mere 1 byte). However this
approach is not scalable to bigger datasets with more classes
and is prone to rounding errors in the case of very low bit
depth. For this reason we deem that taking advantage of the
sparsity in the semantic volume is amore appropriatemethod
to deal with the memory issue.

5.6 Label Propagation

The fusion of semantic information from various view points
into a global representation opens up possibilities to enforce
temporal and spatial consistency of the semantic predictions
by propagating the labels. The key insight is that if the major-
ity of observations of the texture element predicts the correct
class, the fused information S∗ will be confident enough
(pxl ≥ pmin) in order to be used as ground truth. Hence,
we can reproject the mesh into any camera frame, propagate
the label L̃(uF ) and retrain the semantic segmentation in a
semi-supervised fashion to minimize discrepancy between
image predictions L and mesh label S∗. Reprojecting the
semantics into a camera frame is performed as follows:

uF = π(gF (px )),

S∗ = argmax
c

S,

S∗
F (uF ) = S∗(ux ),

L̃(uF ) =
{

S∗
F (uF ), pxl ≥ pmin

Unlabeled, otherwise
.

(18)

The result consists of the image L̃(uF ) which we denote as
pseudo ground truth. This semantic labeling, together with
the corresponding RGB view I will be used to retrain the
predictor.

The retraining ensures that the semantic segmentationwill
segment objects and surfacesmore consistent as belonging to
a certain class, regardless of different or extreme view points
or even illumination changes. Furthermore, the label propa-

gation and retraining stages can be applied iteratively in an
Expectation Maximization scheme, e.g. for a certain number
of iterations, or until all camera frames reach a consensus.
This process is illustrated in Fig. 2. The obvious caveat are
wrongpredictions used for retraining since bootstrapping this
has a self-reinforcing character. We have seen this behavior
only in some rare cases where the initial single-frame pre-
dictions were already incorrect, e.g. the table in the bottom
row of Fig. 11.

Due to the significant number of camera frames contained
in a large-scale dataset, we perform a conservative frame
selection in order to choose only a subset of frames on which
to reproject the semantics for retraining. The frame selection
is based on an inconsistency coefficient, which rates frames
higher the more instantaneous semantic segmentations devi-
ates from mesh semantics.

The inconsistency coefficient γ is calculated as:

γ =
∑

i

B(Li , S
∗
F (uF ))P∗,

B(Li , S
∗
F (uF )) =

{

1, Li 
= S∗
F (uF )

0, Li = S∗
F (uF )

(19)

Given this coefficient for each frame, we select a restricted
percentage of frames with the highest coefficient (in our
experiments we choose 5% of the frames for NYU and 15%
for the courtyard dataset) to be used for retraining. The intu-
ition is that there is more information to gain by retraining on
inconsistent frames as opposed to the ones which are already
correct. Moreover, we also restrict the selected views to be
at least 10 frames apart from one another to avoid adding
redundant views that are too similar. In order to prevent for-
getting during retraining, we add the original training set (in
our case all the images from the NYU or Mapillary dataset,
respectively) to the new views.

Additionally, we experiment with another type of view
selection in which we select for retraining the ones with the
lowest rather than highest inconsistency coefficient. The intu-
ition behind this alternative scheme is that by reinforcing
good frames (or the ones that are close to being good), the
other frames that are “close” to them will also be improved.
Therefore, performing the label propagation iteratively will
eventually “lift” the less consistent frames to become better
by reinforcing the ones that are already good or close to being
good. An illustration of this process is depicted in Fig. 9. We
ignore for this selection type the frameswhich have a too high
consistency level as we saw that in the general case they pro-
vide too little new information. We rather focus on frames
that are quite consistent but not fully. Hence, frames with
more than 98% of consistent pixels are ignored. From the
remaining set we select the same percentages as mentioned
earlier.

123



1230 International Journal of Computer Vision (2020) 128:1220–1238

Fig. 9 Label propagationwith best frames: Semantic segmentations are
probabilistically fused in the scene (left). Frames with low (but not too
low) deviation from the stable mesh are used for retraining (middle).

Close frames are naturally improved thereby. Inference is repeated for
all images and the semantic labels are re-fused into the scene mesh to
achieve a more accurate semantic map (right)

6 Implementation

Our pipeline consists of three modules, the mesh generator,
the semantic texture integrator and the segmentation retrain-
ing. The mesh generator module is fully implemented in C++

and integrated into ROS (Quigley et al. 2009) for ease of
interaction with other ROS packages. The texturer was also
developed in C++ with the addition of OpenGL for rendering
and semantic integration using GLSL compute shaders.

We will describe in detail the optimization choices made
for semantic integration as they are the main focus of this
work. The segmentation map is initially precalculated from
the predictor and stored to disk. An asynchronous module
reads the RGB images and the corresponding segmentation
maps and stores them in ringbuffers ready to be processed
by the texturing module. The texturing module receives the
images and transfers them to the GPU using double buffered
Pixel Buffer Objects (PBO) in amethod commonly known as
ping ponging. This ensures that the transfer can be done on
the GPU side using Direct Memory Access (DMA), freeing
the CPU to do other tasks in the meantime. The semantic
integration is performed fully on the GPU through efficient
compute shaders.

In order to deal with the sparsity of our semantic 3D tex-
ture we make use of the GL_ARB_sparse_texture extension
from OpenGL which provides functionality for committing
and decommitting from sparse (partially resident) textures.
However, the committing and decommitting of pages can
only be performed from the CPU side, which requires syn-
chronization and communication between CPU and GPU.
We use two buffers for this communication, one for signaling
to the CPUwhich pages require committing and one for con-
firmation to theGPU that theywere committed. These buffers
are updated asynchronously and are also double buffered to
prevent stalling the pipeline.

While double buffering allows maximum usage of the
available resources, it also implies a delay of one frame
between the CPU-GPU communication which in our case

does not pose a problem due to the high frame rate at which
the camera images arrive.

7 Experiments

All tests were performed on a Intel Core i7-940 2.93GHz
CPU with an NVIDIA Titan GPU.

7.1 NYUv2 Dataset

For comparison against SemanticFusion (McCormac et al.
2017) we utilize the NYUv2 dataset (Silberman et al. 2012)
and use 108 out of all sequences where ElasticFusion did not
exhibit significant drift. For fairness comparability, we use
the final surfelmap formeshing and the segmentationmodule
of Eigen and Fergus (2015) used within SemanticFusion that
is trained on the 13 NYU classes. Furthermore, we store the
semantics for Intersection-over-Union (IoU) calculation after
the scene is completed and fused semantics are static.

The implementation of SemanticFusion provides two
CNNs pretrained on the NYUv2 dataset, one that receives
RGB only and another that receives RGB-D data from the
Kinect. While the original work of SemanticFusion evalu-
ates their approach using the RGB-D-CNN (including scene
depth as an additional feature map) we use for our evalu-
ation their RGB-CNN since we want our method to work
well even in outdoor scenarios where dense depth may not
be obtainable.

The network is retrained using both methods for view
selection (worse or best frames) with a learning rate of 10−6.
The model is saved after each epoch and training is stopped
when the model begins to overfit or the IoU for the epoch
starts to decrease.

For retraining with the worse frames we add from each
NYU scene 5% of the frames with the highest inconsistency
coefficient. This percentage is chosen such that the amount
of pseudo ground truth frames is comparable to the 795 orig-

123



International Journal of Computer Vision (2020) 128:1220–1238 1231

inally used for training. The retraining then uses both the
original training set and our pseudo ground truth. In the case
of retraining with the best frames we choose the 5% frames
with the lowest inconsistency coefficient, ignoring however
those that have too few inconsistent pixels (in our case we
choose those that have at least 2% of the pixels labeled as
inconsistent).

7.2 Courtyard Dataset

The courtyard dataset (Droeschel andBehnke 2018)was cap-
tured using a DJI Matrice 600, with a horizontally attached
Velodyne VLP-16 laser scanner. The lidar has 16 horizontal
scan lines and a vertical field-of-view of 30◦ with amaximum
range of 100 m. The color images were captured at 10 Hz
using two synchronized global shutter Point Grey Blackfly-S
U3-51S5C-C color cameras, with a resolution of 2448×2048
pixels. The MAV poses for this dataset were provided by
Droeschel and Behnke (2018). The camera poses were cal-
culated from the provided extrinsics and the continuous-time
trajectory under consideration of an additional 40ms time
offset. The two cameras aremounted outward pointing on the
left and right side of the copter to improve visual coverage.
In total 13,458 frames were captured during the experiment.

We densely annotated 48 images spread throughout the
area to conduct accuracy experiments.

RefineNet with ResNeXt 101 (Xie et al. 2017) was
trained on theMapillary dataset for 10 epochs with a learning
rate of 10−5 and a batch size of 1. The final IoU achieved
is 0.4546 placing the result on 3rd position on the Mapil-
lary leaderbord.4 The retraining with pseudo ground truth
has to be done with a larger batch size of 16 to account for
the decreased signal-to-noise-ratio introduced by the pseudo
ground truth.We performed five epochs of further retraining.
The retrained RefineNet achieves 0.4487 IoU on the Mapil-
lary dataset. The slight reduction in accuracy is explained by
the fact that the neural network is forced to learn from a new
dataset which is different from the Mapillary one in which it
is evaluated.

7.3 Accuracy Evaluation

We execute the two variants of Label Propagation for three
iterations on the NYUv2 dataset. We observe that retraining
on the worse frames yields a higher IoU hence we prefer this
option for all further experiments. Furthermore, the high-
est increase in IoU is experienced after the first iteration,
while subsequent ones yield a noticeably less improvement.
We hypothesize that a random selection strategy would be
placed somewhere in between both variants since some with

4 https://eval-vistas.mapillary.com/featured-challenges/1/
leaderboard/1.

0 1 2 3

0.364

0.366

0.368

0.370

0.372

LP iterations

Io
U

LP on worse frames
LP on best frames

Fig. 10 LP variants: We evaluate the IoU increase by performing
LP on the worse or the best frames, respectively. Propagating the
labels towards the worse frames yields a higher IoU. Both LP variants
converge quickly after the first iteration

high and some with low inconsistency coefficients would be
chosen (Fig. 10).

We computed the IoU for different configurations on
the NYUv2 dataset, including single-frame predictions and
Semantic Fusion. Label propagation was performed using
our approach to retrain the predictor. We denote in Table 1
the use of the retrained semantic segmentation as with LP.
Table 1 shows that our method outperforms single-frame
as well as SemanticFusion. Using label propagation further
improves the IoU. A visual comparison is provided in Fig. 11
for four different scenes. Already SemanticFusion improves
single-frame predictions e.g. on the TV (yellow, first row),
the window (blue, third row) and wall (gray, last row), but
the result is noisy and partially inconsistent. We attribute
this mostly to surfels on different scales that are not cor-
rectly fused. In comparison, our mesh is more consistent, for
example on the bath tub (second row), but smoother around
the edges. Yet, the bed (third row) is still mostly classified as a
sofa. Through our label propagation and subsequent retrain-
ing, we were able to correct the classification. In the last
row, we show a failure case in which the Label Propagation
decreases the accuracy as the table (green) gets segmented
as furniture. This decrease in accuracy is due to the fact
that most single-frame predictions are wrongly labeling the
object and establishing consistency through LP reinforces
this wrong labeling. Further complete reconstructed scenes
from NYUv2 are visualized in Fig. 12.

We also conduct accuracy experiments on the courtyard
dataset for which we densely labeled 48 frames around the
scene. For fairness we labeled sky as background due to
missing representation within the mesh. Figure 13 shows
that retraining using label propagation greatly improves the
accuracy for most classes. However, an interesting observa-
tion from this experiment is that the single-frame predictions
have on average higher accuracy than the fused semantics
from the mesh. This is due to the fact that both the camera
poses and the mesh are imperfect, hence fusing the informa-

123

https://eval-vistas.mapillary.com/featured-challenges/1/leaderboard/1
https://eval-vistas.mapillary.com/featured-challenges/1/leaderboard/1


1232 International Journal of Computer Vision (2020) 128:1220–1238

Table 1 NYUv2 results: We compare our method against single-frame predictions and SemanticFusion (McCormac et al. 2017)

Method B
ed

B
oo

ks
he

lf

C
ei

lin
g

C
ha

ir

F
lo

or

Fu
rn

it
ur

e

O
b
je

ct
s

P
ic

tu
re

So
fa

T
ab

le

T
v

W
al

l

W
in

do
w

Mean IoU

Single frame 0.46 0.17 0.13 0.25 0.68 0.34 0.28 0.33 0.22 0.15 0.12 0.51 0.29 0.302

Single frame with LP 0.52 0.20 0.14 0.27 0.68 0.35 0.30 0.35 0.26 0.14 0.14 0.53 0.31 0.322

SemanticFusion 0.47 0.15 0.18 0.30 0.65 0.36 0.30 0.35 0.24 0.15 0.20 0.53 0.33 0.324

SF with LP 0.52 0.18 0.21 0.31 0.65 0.38 0.31 0.38 0.28 0.16 0.20 0.54 0.36 0.343

Ours 0.54 0.17 0.23 0.35 0.71 0.40 0.33 0.39 0.28 0.18 0.21 0.56 0.37 0.363

Ours with LP 0.56 0.20 0.25 0.35 0.68 0.40 0.34 0.41 0.31 0.17 0.23 0.57 0.38 0.372

All cases are evaluated with and without Label Propagation (LP). For the case of single-frame, we exclude pixel without a valid depth measurement.
All evaluations were performed at 320 × 240 resolution

Fig. 11 NYUv2 qualitative results: We compare our method, with
and without Label Propagation, against single-frame predictions and
SemanticFusion. The first three rows show a clear improvement
achieved through Label Propagation, as the predictor learns to segment
the table, bathtub and bed more accurately. The last row shows a failure

case in which the Label Propagation decreases the accuracy as the table
represented in green gets segmented as furniture. This decrease in accu-
racy is due to the fact that most single-frame predictions are wrongly
labeling the object and establishing consistency through LP reinforces
this wrong labeling

tion from various points of view may lead to discrepancies.
This limitation is further reinforced by the fact that the classes
which experience a higher drop in accuracy from the fusing
process are those which are spatially small (lane-markings,
poles, and street lights), while broader classes like build-
ing and vegetation remain largely unaffected by errors from
the scene reconstruction. For this reason we conduct further

experiments to evaluate the impact of misalignments in the
following Sect. 7.4. Nevertheless, we can conclude that label
propagation grants a net improvement in the semantic accu-
racy, increasing the mean IoU for single-frame prediction by
7% and for the fused information by 3%. Figure 14 shows a
visual comparison of the semantics using various view points
from the courtyard. The copters landing gear and rotor arm

123



International Journal of Computer Vision (2020) 128:1220–1238 1233

Fig. 12 Scenes from NYUv2: The mesh (left) is reconstructed from the surfel map of ElasticFusion and textured with RGB appearance (middle)
and semantic labels (right)

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

C
am

er
a

L
ig

ht
C

ur
b

M
an

ho
le

P
ol

e
M

ar
ki

ng
B

as
in

T
ra

sh
P
ar

ki
ng

Si
de

w
al

k
Si

gn
R

oa
d

T
er

ra
in

B
ik

e
Fe

nc
e

W
al

l
B

ill
b
oa

rd
C

ar
V
eg

et
at

io
n

B
ui

ld
in

g

Fig. 13 Courtyard results: We compare our method (bottom) against
single-frame predictions (top). The per class IoU is denoted by blue
bars. An increase in IoU due to Label Propagation is marked in green,
a decrease in red. For single-frame we mask out the landing gear of the
MAV and the areas which are not covered by the mesh (Colour figure
online)

visible within camera images are masked out prior to eval-
uation. A partial failure case is shown in the first row. The
thin lane-markings are actually degraded through fusion and
LP. We trace this back to inaccurate manual extrinsic and
temporal calibration, since the corresponding single-frames
continuously contained the lane-markings. Still, we observe
improvements after LP on the container next to the service
station. The second view was captured from behind the same
service station. Insufficiency in the meshing process cre-
ated only the top of the pole (front, left), which is correctly
classified, but not connected to the ground plane reducing
the overall IoU compared towards single-frame predictions.
Further improvements through LP are especially visible in
the last two rows. The left window is classified as a sign
prior to retraining and a large portion of the sidewalk was
incorrect. Also the building in the background is improved.
The rooftop (third row) presents a unique novel view that
is largely misclassified in the single-frame. Our mesh-based
fusion improves the result as expected and allows successful
retraining.

123



1234 International Journal of Computer Vision (2020) 128:1220–1238

Fig. 14 Courtyard qualitative results: We compare our method against single-frame with and without the label propagated and retrained RefineNet

7.4 Registration Robustness

Mapping with known poses always raises the question of
how robust the system is regardingmisalignment. For this we
perform experiments on the synthetic Synthia dataset (Ros
et al. 2016) which provides ground truth poses, depth and
semantics. We add random noise to the poses in order to
observe the effect on the accuracy of the semantic map.
We chose the seq_4_summer scene, due to the low num-
ber of dynamic objects. We aggregated the depth images and
meshed the resulting point cloud (see Fig. 15). Synthia pro-
vides images from eight cameras arranged in groups of four
to create an omnidirectional view-cone. For simplicity, we
choose for the reconstruction only the front-facing camera
of the left group. In order to analyze the behavior of the
semantic map under incorrect poses or incorrect calibration
between depth and color camera, the IoU is calculated for
increasing amounts of noise on the translational (≤ 0.5 m)
as well as rotational (≤ 5◦) part of the camera poses. The
IoUwith increasing portion of noise is visualized per class in
Fig. 16 with invisible or dynamic classes being disregarded.
We choose to retain the cars as most of them were parked,
and hence do not pose a problem for the reconstruction. As
expected, the IoU decreases faster for smaller object classes,
like poles, lights, and signs, than for buildings or the road. In
conclusion, as the robotics community moves towards larger

Fig. 15 Synthia semantic map: We reconstruct a semantic map from
a subset of frames from the Synthia dataset (Ros et al. 2016). We use
the ground truth data and apply noise to evaluate the impact of camera
misalignment on the semantic map accuracy

and bigger datasets with more semantic classes, the detail
of the semantic maps will heavily depend on correct sensor
poses.

7.5 Runtime Performance

We evaluate the runtime performance of our meshing and
texturing modules separately, as they are performed sequen-
tially with no overlap. Figure 17 shows the resulting meshes
after Poisson reconstruction for our simplified cloud, and the
naïvely aggregated full point set recorded by the Velodyne
scanner. It can be observed that the reconstruction quality

123



International Journal of Computer Vision (2020) 128:1220–1238 1235

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

Noise [%]

In
te

rs
ec

ti
on

-o
ve

r-
U

ni
on

(I
oU

)
Sky

Build.

Road

Path

Veg.

Car

Pole

Sign

Light

Fig. 16 Registration robustness: Incorrect sensor poses for semantic
map creation affects the accuracy as measured by IoU of larger object
classes like buildings less than light posts or signs. Increasing amounts
of noise are applied on the translation (≤ 0.5m) and rotation (≤ 5◦) of
the sensor poses

Fig. 17 Poisson reconstruction comparison: Reconstruction from the
edge-aware simplification (left), and its difference (right) toward the
full reconstruction. The colormap denotes the deviation between the
two meshes where red equals a difference of 15 cm and blue shows no
difference. The deviation is minimal in areas of interest while recon-
struction after simplification is faster (seeTable 2) (Colour figure online)

Table 2 Poisson reconstruction using the naïvely aggregated cloud and
our edge-aware simplified cloud

Cloud #Points #Verts Time (s) Mem (GB)

Full 103M 4.5M 521.9 2.82

Simple 21M 3.3M 193.8 1.99

We report the number of points of the input cloud, the number of vertices
of the reconstructed mesh, and the time and peak memory used by the
reconstruction process

does not suffer while the runtime and memory consumption
is significantly decreased (see Table 2).

The runtime of the semantic integration on the courtyard
dataset is summarized in Fig. 18. We achieve real-time per-
formancewith an average texturing time of 27.1ms per frame
using a 8K texture. Decommitting the sparse volume is, how-
ever, a demanding functionality, and causes the average time
per frame to increase to 90.1 ms. Nevertheless, the semantic
integration achieves 38.6 ms per frame for a smaller texture
resolution of 4K.

1,024 4,096 8,192
0.0

50.0

100.0

150.0

Frame number

T
im

e
(m

s)

W/o at 8K
W/ at 8K
W/ at 4K

Fig. 18 Timing results for the courtyard dataset: Semantic integration
using a texture resolution of 8K without decommitting (blue line) can
be performed in real-time. Enabling the decommiting at the same tex-
ture resolution (red line) proves to be too slow for real-time usage.
Lowering the texture resolution to 4K allows the semantic integration
with decommittment (green line) to be performed at real-time speeds
(Colour figure online)

0 4,096 8,192 13,272

3

6

16

32

Frame number

G
P
U

m
em

or
y
us
ed

(G
B
)

With decommiting
Without decommiting

Dense volume
Max GPU memory

Fig. 19 GPU memory usage for 10K texture on the courtyard dataset:
Dense allocation (red dashed line) would occupy more than 25.7 GB.
Sparse allocation (red line) without decommitting quickly overburdens
the available 6 GB causing a system failure. The memory usage drops
with decommitting (blue line) below 3.1 GB at all times enabling the
full reconstruction of the semantic map (Colour figure online)

7.6 Memory Consumption

Memory usage of the texturing system is also evaluated
with and without decommitting of pages of the sparse tex-
ture. The results for the courtyard dataset are summarized
in Fig. 19. We also analyze the relation between the decom-
mitting threshold (the probability below which the pages in
the sparse texture are deallocated) and the Intersection-over-
Union (IoU) in Fig. 20.We evaluate thismeasure on theNYU
dataset due to the presence of more labeled images than in
the courtyard dataset which allows for a more accurate eval-
uation. We observe that while low values of the threshold
greatly reduces memory usage, higher values cause the IoU
to degrade as more valuable information from the semantic
texture is disregarded. However the decrease is still minor
(≤ 0.6%), as we restrain from decommitting pages that con-
tain the argmax class. For further experiments, we chose a
threshold value of 0.1.

123



1236 International Journal of Computer Vision (2020) 128:1220–1238

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4
1,800

2,000

2,200

Page decommitement aggressivenessM
ax

 G
P

U
m

em
or

y
us

ed
(M

B
)

0.366

0.368

0.370

0.372

In
te

rs
ec

ti
on

-o
ve

r-
U

ni
on

(I
oU

)

Fig. 20 Average GPU memory usage for different decommitting
thresholds on NYUv2: Increasing the decommitting threshold quickly
reduces the memory consumption (blue line), while the IoU decreases
slowly. As a consequence, we typically fix the threshold to 0.1 (Colour
figure online)

0 4,096 12,288
0.26

0.30

0.36

Semantic texture resolution

Io
U

Fig. 21 Texture resolution and IoU: We evaluate the mean IoU on the
courtyard dataset as we increase the resolution of the semantic texture.
The accuracy quickly rises and converges at a resolution of around 4K

7.7 Texture Resolution and Semantic Accuracy

We evaluate the impact of the semantic texture resolution and
the accuracy of the semantic map.We perform the evaluation
on the courtyard dataset as it spans a larger area than theNYU
dataset and therefore the impact of the texture size becomes
more noticeable. Semantic texture integration is performed
for a series of texture resolutions ranging from 512 to 12,288
pixels and IoU is evaluated for each one. We observe that
the IoU steadily increased ans becomes stable at around a
resolution of 4k (Fig. 21).

7.8 DistanceWeighting and Semantic Accuracy

During semantic integration the onlyweighting appliedwhile
projecting from the 2D segmentation into the 3D scene is
based on a linear fall-off between dmin and dmax . The impact
of the weighting is evaluated on the courtyard dataset as it
presents larger variability in terms of distance. Three dif-
ferent values for the distance thresholds are evaluated and
compared to no weighting (full confidence in the semantic
information regardless of distance). The results are gathered
in Table 3. We observe that having no distance weighting
results in the lowest IoU while the highest one was achieved
by a linear fall-off between 0 m and 100 m. Small variations

Table 3 Distance fall-off: We experiment with various thresholds for
dmin and dmax for the linear fall-off during semantic integration on the
courtyard dataset

No weight 30–100 m 0–100m 0–30m

IoU 0.294 0.3259 0.3289 0.309

Having no distance weighting (full confidence in the semantic informa-
tion regardless of distance), achieves the lowest IoU. Modifying dmin
has a marginal effect while restricting dmax is detrimental as too much
distant information is discarded

in the thresholds have little impact unless the dmax is severely
restricted (for example to only 30 m) at which point distant
parts of the scene are ignored and thus severely affecting the
IoU.

8 Limitations

In the previous sections we have seen the impact of incorrect
poses for semantic mapping as well as inadequate geomet-
ric meshes reduce the accuracy especially for small and thin
classes. Another limitation arises from the ExpectationMax-
imization strategy itself. The current belief is reinforced and
thus not able to correct the estimate in all cases. Currently,
dynamic objects are completely disregarded in our approach,
but often present in collected data. This introduces artifacts
in the reconstruction as well as the semantic map and reduces
the accuracy for moving classes like pedestrians or cars.
Furthermore, retraining from such sequences will bias the
semantic segmentation towards static classes. Hence, incor-
porating object tracking could alleviate this problem. In terms
of implementation the sparsity of the probability volume is
greatly influenced by the quality of the UV parametrization.
If areas of the mesh that are spatially close also lie nearby in
the parametric space and are from the same class then they
cover a page in GPU memory more efficiently. However,
in the extreme case where each triangle is mapped to inde-
pendent texture coordinates, the chance for decommitting
reduces significantly. Luckily, mostman-made environments
are generally planar and their parametrization can be eas-
ily performed. Despite this, the limitation is an important
one and it rises the question of a possibly semantic-aware
parametrization in which the parametric area is influenced
by the class, e.g. assigning lower resolution for vegetation
and buildings and higher for cars and pedestrians.

9 Conclusion

Wepresented a novel semanticmapping system that uses tex-
tured meshes to store the semantic information and allows to
couple semantic and geometric representation at independent

123



International Journal of Computer Vision (2020) 128:1220–1238 1237

resolution improving scalability and accuracy even for large
datasets. The mesh-based representation allows to enforce
spatial and temporal consistency over multiple observations
as well as enabling semi-supervised retraining from novel
view points by propagation of labels in an iterative manner.
Quantitative and qualitative results on the NYUv2 dataset
demonstrate the benefits of our approach compared to the
state of the art method SemanticFusion.

Acknowledgements We would like to thank David Droeschel for his
effort in providing accurate poses for the courtyard dataset. This work
was supported by Grant BE 2556/7 of the German Research Foundation
(DFG).

References

Acuna, D., Ling, H., Kar, A., & Fidler, S. (2018). Efficient interac-
tive annotation of segmentation datasets with Polygon-RNN++.
In Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR) (pp. 859–868).

Bao, S. Y., & Savarese, S. (2011). Semantic structure from motion.
In Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR).

Bao, S. Y., Chandraker,M., Lin, Y., & Savarese, S. (2013). Dense object
reconstruction with semantic priors. In Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR)
(pp. 1264–1271).

Blaha, M., Vogel, C., Richard, A., Wegner, J. D., Pock, T., & Schindler,
K. (2016). Large-scale semantic 3D reconstruction: An adaptive
multi-resolutionmodel formulti-class volumetric labeling. InPro-
ceedings of the IEEE conference on computer vision and pattern
recognition (CVPR) (pp. 3176–3184).

Castrejon, L., Kundu, K., Urtasun, R., & Fidler, S. (2017). Annotating
object instances with a Polygon-RNN. In Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR).

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L.
(2018). DeepLab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected CRFs. IEEE
Transactions on Pattern Analysis andMachine Intelligence, 40(4),
834–848.

Cherabier, I., Häne, C., Oswald, M. R., & Pollefeys, M. (2016).
Multi-label semantic 3D reconstruction using voxel blocks. InPro-
ceedings of the international conference on 3D vision (3DV) (pp.
601–610).

Cherabier, I., Schönberger, J. L., Oswald, M. R., Pollefeys, M., &
Geiger, A. (2018). Learning priors for semantic 3D reconstruction.
In Proceedings of the European conference on computer vision
(ECCV).

Civera, J., Gálvez-López, D., Riazuelo, L., Tardós, J. D., & Montiel, J.
(2011). Towards semantic SLAM using a monocular camera. In
Proceedings of the IEEE/RSJ international conference on intelli-
gent robots and systems (IROS) (pp. 1277–1284).

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009).
ImageNet: A large-scale hierarchical image database. In Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition (CVPR) (pp. 248–255).

Douglas, D. H., & Peucker, T. K. (1973). Algorithms for the reduction
of the number of points required to represent a digitized line or
its caricature. Cartographica: The International Journal for Geo-
graphic Information and Geovisualization, 10(2), 112–122.

Droeschel, D., & Behnke, S. (2018). Efficient continuous-time SLAM
for 3D lidar-based online mapping. In Proceedings of the IEEE
international conference on robotics and automation (ICRA).

Eigen, D., & Fergus, R. (2015). Predicting depth, surface normals and
semantic labels with a common multi-scale convolutional archi-
tecture. In Proceedings of the IEEE international conference on
computer vision (ICCV) (pp. 2650–2658).

Engel, J., Schöps, T., & Cremers, D. (2014). LSD-SLAM: Large-scale
direct monocular SLAM. In Proceedings of the European confer-
ence on computer vision (ECCV) (pp. 834–849).

Garland, M., & Heckbert, P. S. (1998). Simplifying surfaces with color
and texture using quadric errormetrics. InProceedings of the IEEE
VIS (pp. 263–269).

Goldman, D., & Chen, J. (2005). Vignette and exposure calibration and
compensation. In Proceedings of the IEEE international confer-
ence on computer vision (ICCV).

Häne, C., Zach, C., Cohen, A., Angst, R., & Pollefeys, M. (2013). Joint
3D scene reconstruction and class segmentation. InProceedings of
the IEEE conference on computer vision and pattern recognition
(CVPR) (pp. 97–104).

Häne, C., Savinov, N., & Pollefeys, M. (2014). Class specific 3D object
shape priors using surface normals. In Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR)
(pp. 652–659).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning
for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR) (pp. 770–778).

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN.
In Proceedings of the IEEE internatioinal conference on computer
vision (ICCV) (pp. 2980–2988).

Hermans, A., Floros, G., & Leibe, B. (2014). Dense 3D semantic map-
ping of indoor scenes from RGB-D images. In Proceedings of the
IEEE international conference on robotics and automation (ICRA)
(pp. 2631–2638).

Holz, D., & Behnke, S. (2015). Registration of non-uniform density 3D
laser scans for mapping with micro aerial vehicles. Robotics and
Autonomous Systems, 74, 318–330.

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., & Burgard,
W. (2013).OctoMap:Anefficient probabilistic 3Dmapping frame-
work based on octrees. Autonomous Robots, 34(3), 189–206.

Jain, S. D., & Grauman, K. (2016). Active image segmentation propa-
gation. In Proceedings of the IEEE conference on computer vision
and pattern recognition (CVPR) (pp. 2864–2873).

Kazhdan, M., & Hoppe, H. (2013). Screened poisson surface recon-
struction. ACM Transactions on Graphics (ToG), 32(3), 29.

Kostavelis, I., & Gasteratos, A. (2015). Semantic mapping for mobile
robotics tasks: A survey. Robotics and Autonomous Systems, 66,
86–103.

Kundu, A., Li, Y., Dellaert, F., Li, F., &Rehg, J.M. (2014). Joint seman-
tic segmentation and 3D reconstruction from monocular video.
In Proceedings of the European conference on computer vision
(ECCV) (pp. 703–718).

Landrieu, L.,&Simonovsky,M. (2017). Large-scale point cloud seman-
tic segmentation with superpoint graphs. In Proceedings of the
IEEE conference on computer vision and pattern recognition
(CVPR).

Li, X., &Belaroussi, R. (2016). Semi-dense 3D semantic mapping from
monocular SLAM. arXiv preprint arXiv:1611.04144

Lianos, K. N., Schönberger, J. L., Pollefeys, M., & Sattler, T. (2018).
VSO: Visual semantic odometry. In Proceedings of the European
conference on computer vision (ECCV) (pp. 234–250).

Lin, G., Milan, A., Shen, C., & Reid, I. (2017). RefineNet: Multi-path
refinement networks for high-resolution semantic segmentation.
In Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR) (pp. 5168–5177).

123

http://arxiv.org/abs/1611.04144


1238 International Journal of Computer Vision (2020) 128:1220–1238

Ma, L., Stückler, J., Kerl, C., & Cremers, D. (2017). Multi-view deep
learning for consistent semantic mapping with RGB-D cameras.
In Proceedings of the IEEE/RSJ international conference on intel-
ligent robots and systems (IROS) (pp. 598–605).

Mackowiak, R., Lenz, P., Ghori, O., Diego, F., Lange, O., & Rother, C.
(2018). CEREALS—cost-effective region-based active learning
for semantic segmentation. arXiv preprint arXiv:1810.09726.

Maninchedda, F., Häne, C., Jacquet, B., Delaunoy, A., & Pollefeys, M.
(2016). Semantic 3D reconstruction of heads. InProceedings of the
European conference on computer vision (ECCV) (pp. 667–683).

McCormac, J., Handa, A., Davison, A., & Leutenegger, S. (2017).
SemanticFusion: Dense 3D semantic mapping with convolutional
neural networks. In Proceedings of the IEEE international confer-
ence on robotics and automation (ICRA) (pp. 4628–4635).

Nakajima, Y., Tateno, K., Tombari, F., & Saito, H. (2018). Fast and
accurate semantic mapping through geometric-based incremental
segmentation. arXiv preprint arXiv:1803.02784.

Neuhold, G., Ollmann, T., Bulo, S.R., & Kontschieder, P. (2017). The
Mapillary Vistas Dataset for Semantic Understanding of Street
Scenes. In Proceedings of the IEEE international conference on
computer vision (ICCV) (pp. 5000–5009).

Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017a). PointNet: Deep
learning on point sets for 3D classification and segmentation. In
Proceedings of the IEEE conference on computer vision and pat-
tern recognition (CVPR).

Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017b). PointNet++: Deep
hierarchical feature learning on point sets in a metric space. In
Advances in neural information processing systems (pp. 5099–
5108).

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J.,
Wheeler, R., & Ng, A. Y. (2009). ROS: An open-source robot
operating system. In ICRA workshop on open source software.

Riegler, G., Ulusoy, A.O., & Geiger, A. (2017). OctNet: Learning deep
3D representations at high resolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR).

Ros, G., Sellart, L., Materzynska, J., Vazquez, D., & Lopez, A. M.
(2016). The SYNTHIA dataset: A large collection of synthetic
images for semantic segmentation of urban scenes. In Proceedings
of the IEEE conference on computer vision and pattern recognition
(CVPR) (pp. 3234–3243).

Savinov, N., Häne, C., Ladicky, L., & Pollefeys, M. (2016). Semantic
3D reconstruction with continuous regularization and ray poten-
tials using a visibility consistency constraint. In Proceedings of
the IEEE conference on computer vision and pattern recognition
(CVPR) (pp. 5460–5469).

Schönberger, J. L., Pollefeys, M., Geiger, A., & Sattler, T. (2018).
Semantic visual localization. CVPR.

Sheikh, R., Garbade, M., & Gall, J. (2016). Real-time semantic seg-
mentation with label propagation. In Proceedings of the European
conference on computer vision (ECCV) (pp. 3–14).

Silberman, N., Hoiem, D., Kohli, P., & Fergus, R. (2012). Indoor
segmentation and support inference from RGBD images. In Pro-
ceedings of the European conference on computer vision (ECCV)
(pp. 746–760).

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556

Stueckler, J., Waldvogel, B., Schulz, H., & Behnke, S. (2014). Dense
real-time mapping of object-class semantics from RGB-D video.
Journal of Real-Time Image Processing (JRTIP), 10, 599–609

Su, H., Jampani, V., Deqing, S. S., Maji, E., Yang, M. H., Kautz, J.,
et al. (2018). SPLATNet: Sparse lattice networks for point cloud
processing. In Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR).

Sun, L., Yan, Z., Zaganidis, A., Zhao, C., & Duckett, T. (2018).
Recurrent-OctoMap: Learning state-based map refinement for
long-term semantic mapping with 3D-lidar data. IEEE Robotics
and Automation Letters, 3(4), 3749–3756.

Tatarchenko, M., Park, J., Koltun, V., & Zhou, Q. Y. (2018). Tan-
gent convolutions for dense prediction in 3D. In Proceedings of
the IEEE conference on computer vision and pattern recognition
(CVPR) (pp. 3887–3896).

Tateno, K., Tombari, F., Laina, I., & Navab, N. (2017). CNN-SLAM:
Real-time dense monocular SLAM with learned depth prediction.
arXiv preprint arXiv:1704.03489.

Thürrner, G., & Wüthrich, C. A. (1998). Computing vertex normals
from polygonal facets. Journal of Graphics Tools, 3(1), 43–46.

Tulsiani, S., Zhou, T., Efros, A. A., & Malik, J. (2017). Multi-view
supervision for single-view reconstruction via differentiable ray
consistency. In Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR).

Valentin, J. P., Sengupta, S., Warrell, J., Shahrokni, A., & Torr, P. H.
(2013). Mesh based semantic modelling for indoor and outdoor
scenes. In Proceedings of the IEEE conference on computer vision
and pattern recognition (CVPR) (pp. 2067–2074).

Vezhnevets, A., Buhmann, J. M., & Ferrari, V. (2012). Active learning
for semantic segmentation with expected change. In Proceedings
of the IEEE conference on computer vision and pattern recognition
(CVPR) (pp. 3162–3169).

Vineet, V., Miksik, O., Lidegaard, M., Nießner, M., Golodetz, S.,
Prisacariu, V. A., Kähler, O., Murray, D. W., Izadi, S., Pérez, P.,
et al. (2015). Incremental dense semantic stereo fusion for large-
scale semantic scene reconstruction. In Proceedings of the IEEE
international conference on robotics and automation (ICRA) (pp.
75–82).

Whelan, T., Leutenegger, S., Salas-Moreno, R., Glocker, B., &Davison,
A. (2015). ElasticFusion: Dense SLAM without a pose graph. In
Proceedings of robotics: science and systems.

Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated
residual transformations for deep neural networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition
(CVPR) (pp. 5987–5995).

Yang, L., Zhang, Y., Chen, J., Zhang, S., & Chen, D. Z. (2017). Sugges-
tive annotation: A deep active learning framework for biomedical
image segmentation. In international conference onmedical image
computing and computer-assisted intervention (pp. 399–407).

Zaganidis, A., Sun, L., Duckett, T., & Cielniak, G. (2018). Integrating
deep semantic segmentation into 3D point cloud registration. IEEE
Robotics and Automation Letters, 3(4), 2942–2949.

Zollhöfer, M., Stotko, P., Görlitz, A., Theobalt, C., Nießner, M., Klein,
R., & Kolb, A. (2018). State of the art on 3D reconstruction with
RGB-D cameras. In Computer graphics forum (pp. 625–652).

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1810.09726
http://arxiv.org/abs/1803.02784
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1704.03489

	Semi-supervised Semantic Mapping Through Label Propagation with Semantic Texture Meshes
	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	4 Notation
	5 Method
	5.1 Depth Preprocessing
	5.2 Mesh Generation
	5.3 Semantic Integration
	5.4 Color Integration
	5.5 Sparse Semantic Volume
	5.6 Label Propagation

	6 Implementation
	7 Experiments
	7.1 NYUv2 Dataset
	7.2 Courtyard Dataset
	7.3 Accuracy Evaluation
	7.4 Registration Robustness
	7.5 Runtime Performance
	7.6 Memory Consumption
	7.7 Texture Resolution and Semantic Accuracy
	7.8 Distance Weighting and Semantic Accuracy

	8 Limitations
	9 Conclusion
	Acknowledgements
	References




