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Abstract
The problem of localization on a geo-referenced satellite map given a query ground view image is useful yet remains
challenging due to the drastic change in viewpoint. To this end, in this paper we work on the extension of our earlier work
on the Cross-View Matching Network (CVM-Net) (Hu et al. in IEEE conference on computer vision and pattern recognition
(CVPR), 2018) for the ground-to-aerial image matching task since the traditional image descriptors fail due to the drastic
viewpoint change. In particular, we show more extensive experimental results and analyses of the network architecture on
our CVM-Net. Furthermore, we propose a Markov localization framework that enforces the temporal consistency between
image frames to enhance the geo-localization results in the case where a video stream of ground view images is available.
Experimental results show that our proposed Markov localization framework can continuously localize the vehicle within a
small error on our Singapore dataset.

Keywords Geo-localization · Markov localization · Cross-view localization · Convolutional Neural Network · NetVLAD

1 Introduction

Image-based geo-localization has drawn a lot of attention
over the past years in the computer vision community due to
its potential applications in autonomous driving (McManus
et al. 2014) and augmented reality (Middelberg et al. 2014).
Traditional image-based geo-localization is normally done
in the context where both the query and geo-tagged ref-
erence images in the database are taken from the ground
view (Hays and Efros 2008; Zamir and Shah 2014; Sattler
et al. 2016; Vo et al. 2017). One of the major drawbacks of
such approaches is that the database images, which are com-
monly obtained fromcrowd-sourcing, e.g. geo-tagged photos
from Flickr etc, usually do not have a comprehensive cover-
age of the area. This is because the photo collections aremost
likely to be biased towards famous touristy areas. Conse-
quently, ground-to-ground geo-localization approaches tend
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to fail in locations where reference images are not available.
In contrast, aerial imagery taken from devices with bird’s
eye view, e.g. satellites and drones, densely covers the Earth.
As a result, matching ground view photos to aerial imagery
gradually becomes an increasingly popular geo-localization
approach (Bansal et al. 2012; Lin et al. 2013; Shan et al.
2014; Lin et al. 2015; Workman and Jacobs 2015; Work-
man et al. 2015; Vo and Hays 2016; Stumm et al. 2016; Zhai
et al. 2017; Tian et al. 2017). However, cross-view match-
ing still remains challenging because of the drastic change in
viewpoint between ground and aerial images. This causes
cross-view matching with traditional handcrafted features
like SIFT (Lowe 2004) and SURF (Bay et al. 2006) fail.

With the recent success of deep learning in many com-
puter vision tasks, most of the existing works on cross-view
imagematching (Workman and Jacobs 2015;Workman et al.
2015; Vo and Hays 2016; Zhai et al. 2017) adopt the Convo-
lutional Neural Network (CNN) to learn representations for
matching between ground and aerial images. To compensate
for the large viewpoint difference, Vo and Hays (2016) use
an additional network branch to estimate the orientation and
utilize multiple possible orientations of the aerial images to
find the best angle for matching across the two views. This
approach causes significant overhead in both training and
testing. In contrast, our work avoids the overhead by mak-
ing use of the global VLAD descriptor that was shown to
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Fig. 1 An illustration of the image based ground-to-aerial geo-localization problem, and our proposed framework

be invariant against large viewpoint and scene changes in
the place recognition task (Jegou et al. 2010). Specifically,
we add the NetVLAD layer (Arandjelovic et al. 2016) on
top of a CNN to extract descriptors that are invariant against
large viewpoint changes. Figure 1 shows an illustration of
our approach. The key idea is that NetVLAD aggregates the
local features obtained from the CNN to form global repre-
sentations that are independent of the locations of the local
features. We refer to our proposed network as the CVM-Net,
i.e. Cross-View Matching Network.

Furthermore, we propose a Markov localization frame-
work, i.e. particle filtering (Thrun 2002), to achieve global
geo-localization of a vehicle running on the road, where a
video stream of the ground view images is available. Using
the learned representations of ground and satellite images
from our CVM-Net, the descriptor distance of a ground view
image to all the positions on the satellite map can be com-
puted. The measurement probability for one ground view
image of the Markov localization framework is the prob-
ability distribution on the satellite map, which is obtained
from the descriptor distances. We use the visual odometry
computed from consecutive ground images as the basis of
the state transition probability distribution in the Markov
localization framework. We demonstrate our image-based
geo-localization framework on a vehicle equipped with cam-

eras mounted in four orthogonal directions—front, left, rear
and right. Experimental results show that our framework is
able to localize the vehicle in near real-timewith small errors.

Contributions This paper is an extension to our earlier
work on the CVM-Net (Hu et al. 2018) with two additional
contributions: (1) We show extensive experimental results
and analyses of our CVM-Net for image-based cross-view
geo-localization. Specifically, we compare the performances
of our CVM-Net by replacing the local feature extraction
layer with several recent convolutional architectures (Chollet
2017;Huang et al. 2017;He et al. 2016).We showexperimen-
tally that the VGG architecture (Simonyan and Zisserman
2014) is better than other more recent convolutional neural
networks on the cross-view image matching task. (2) Addi-
tionally, we propose a Markov localization framework that
enforces temporal consistency between image frames from
a video stream of ground view images to enhance the geo-
localization results of a vehicle moving on the road. To our
best knowledge, our proposed method is the first to achieve
near real-time geo-localization of a moving vehicle using
only images in a large outdoor area.
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2 RelatedWork

Most of the existing works on estimating the geographical
location of a query ground image used the imagematching or
image retrieval techniques. These works can be categorized
based on the type of features, i.e. hand-crafted and learn-
able features. There are several existing works that used the
Markov localization framework to utilize the temporal infor-
mation of ground view images to achieve higher localization
accuracy.

Hand-crafted features In the early stage, traditional features
that were commonly used in the computer vision community
were utilized to do the cross-view image matching (Noda
et al. 2010; Bansal et al. 2011; Senlet et al. 2011; Senlet and
Elgammal 2012; Lin et al. 2013; Viswanathan et al. 2014).
However, due to the huge difference in viewpoint, the aerial
image and ground view image of the same location appeared
to be very different. This caused direct matching with tradi-
tional local features to fail. Hence, a number of approaches
warped the ground image to the top-down view to improve
feature matching (Noda et al. 2010; Senlet et al. 2011;
Viswanathan et al. 2014). In cases where building facades
are visible from oblique aerial images, geo-localization
can be achieved with facade patch-matching (Bansal et al.
2011).

Learnable features As deep learning approaches are proven
to be extremely successful in image/video classification and
recognition tasks, many efforts were taken to introduce deep
learning into the domain of cross-view image matching and
retrieval. Workman and Jacobs (2015) conducted experi-
ments on the AlexNet (Krizhevsky et al. 2012) model trained
on ImageNet (Deng et al. 2009) andPlaces (Zhou et al. 2014).
They showed that deep features for common image clas-
sification significantly outperformed hand-crafted features.
Later on,Workman et al. (2015) further improved the match-
ing accuracy by training the convolutional neural network
on aerial branch. Vo and Hays (2016) conducted thorough
experiments on existing classification and retrieval networks,
including binary classification network, Siamese network
and Triplet network. With the novel soft-margin Triplet loss
and exhausting mini-batch training strategy, they achieved
a significant improvement on the retrieval accuracy. On the
other hand, Zhai et al. (2017) proposed a weakly supervised
training network to obtain the semantic layout of satellite
images. These layouts were used as image descriptors to do
retrieval from database.

The most important part of image retrieval is to find a
good descriptor of an image which is discriminative and
fast for comparison. Sivic and Zisserman (2003) proposed
the Bag-of-Visual-Word descriptors to aggregate a set of
local features into a histogram of visual words, i.e. the

global descriptor. They showed that the descriptor is par-
tially viewpoint and occlusion invariant, and outperformed
local feature matching. Nister and Stewenius (2006) cre-
ated a tree structure vocabulary to support more visual
words. Jegou et al. (2010) proposed the VLAD descrip-
tor. Instead of a histogram, they aggregated the residuals
of the local features to cluster centroids. Based on that
work, Arandjelovic et al. (2016) proposed a learnable
layer of VLAD, i.e. NetVLAD, that could be embedded
into the deep network for end-to-end training. In their
extended paper (Arandjelovic et al. 2017), they illustrated
that NetVLAD was better than multiple fully connected
layers, max pooling and VLAD. Due to the superior per-
formance of NetVLAD, we adopt the NetVLAD layer in our
proposed network.

Markov localization In many real world applications, e.g.
autonomous driving, the ground view images are a stream
of video where any image frame is related to its neighbor-
ing frames. The Markov localization framework is used in
previous works to exploit the temporal relation of the image
frames for the cross-view localization task (Senlet et al. 2011;
Kim and Walter 2017). Senlet et al. (2011) used the visual
odometry results to compute the state transition probabil-
ity. However, since their measurement probability relies on
the matching of the lane marks, it can only be applied on
the streets with clear lane marks. Kim and Walter (2017)
used the wheel odometry from the vehicle to compute the
state transition probability. They used a deep Siamese net-
work with VGG layers followed by max-pooling to compute
the measurement probability. Inspired by these two existing
works, we propose aMarkov localization framework that can
perform vehicle tracking on the geo-referenced satellite map
in near real-time and large scale areas with visual odometry
as the state transition probability and our CVM-Net as the
measurement probability.

Image retrieval loss Ourwork is also related tometric learn-
ing via deep networks. The most widely used loss function
in image retrieval task is the max-margin Triplet loss that
enforces the distances of positive pairs to be less than the dis-
tances of negative pairs. The work in Hermans et al. (2017)
concluded that this margin value has to be carefully selected.
To overcome this issue, Vo and Hays (2016) proposed a soft-
margin triplet losswhichwas proven to be effective (Hermans
et al. 2017). Since the triplet loss has no constraint on irrel-
evant pairs, it will cause the inter-class variation to be small
when decreasing the intra-class variation during training. To
alleviate this problem, the quadruplet (Chen et al. 2017) and
angular (Wang et al. 2017) losses were proposed to further
improve the training of triplet network and the performance
of image retrieval.
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3 Overview

In this paper, we propose a Markov Localization frame-
work, i.e. particle filtering, using a video stream of ground
view images to determine the current location of the moving
vehicle in a geo-referenced satellite map. The most challeng-
ing part in the framework is to compute the measurement
probability from the ground view query image and the satel-
lite imagery. In Sect. 4, we first introduce our cross-view
matching network (CVM-Net) and a novel training loss (Hu
et al. 2018). Our CVM-Net extracts the global descriptors
of ground view and satellite images. The descriptor dis-
tance indicates the similarity of the ground and satellite
images. The measurement probability is computed based on
the descriptors extracted from our proposed CVM-Net. In
Sect. 5, we introduce theMarkov Localization framework for
localizing the vehicle moving on the road. The experiments
and results are shown in Sect. 6, which demonstrate that our
proposed Markov Localization framework can localize the
vehicle and our proposed deep network is the state-of-the-art
architecture for ground-to-aerial cross-view matching.

4 Cross-ViewMatching Network

Similar to the existing works on image-based ground-to-
aerial geo-localization (Workman et al. 2015; Vo and Hays
2016; Zhai et al. 2017), our goal of the proposed network is to
find the closest match of a query ground image from a given
database of geo-tagged satellite images, i.e. cross-view image
retrieval. To this end, we propose the CVM-Net (Hu et al.
2018). This section is an extension of our publication (Hu
et al. 2018).

4.1 Network Overview

To learn the joint relationship between satellite and ground
images, we adopt the Siamese-like architecture that has been
shown to be very successful in image matching and retrieval
tasks. In particular, our framework contains two network
branches of the same architecture. Each branch consists of
two parts: local feature extraction and global descriptor gen-
eration. In the first part, CNNs are used to extract the local
features. See Sect. 4.2 for the details. In the second part,
we encode the local features into a global descriptor that is
invariant across large viewpoint changes. Towards this goal,
we adopt theVLADdescriptor by embeddingNetVLAD lay-
ers on top of each CNN branch. See Sect. 4.3 for the details.

4.2 Local Feature Extraction

We use a fully convolutional network (FCN) f L to extract
local feature vectors of an image. For a satellite image Is ,

the set of local features is given by Us = f L(Is;ΘL
s ),

where ΘL
s is the parameters of the FCN of the satellite

branch. For a ground image Ig , the set of local features
Ug = f L(Ig;ΘL

g ), where ΘL
g is the parameters of the

FCN of the ground view branch. In this work, we compare
the results of our network using the convolutional part of
AlexNet (Krizhevsky et al. 2012), VGG (Simonyan and Zis-
serman 2014), ResNet (He et al. 2016), DenseNet (Huang
et al. 2017) and Xception (Chollet 2017) as f L . Details of
the implementation and comparison are shown in Sect. 6.

4.3 Global Descriptor Generation

We feed the set of local feature vectors obtained from the
FCN into a NetVLAD layer to get the global descriptor.
NetVLAD (Arandjelovic et al. 2016) is a trainable deep net-
work version of VLAD (Jegou et al. 2010), which aggregates
the residuals of the local feature vectors to their respec-
tive cluster centroid to generate a global descriptor. The
centroids and distance metrics are trainable parameters in
NetVLAD. In this paper, we try two strategies, i.e. CVM-
Net-I and CVM-Net-II, to aggregate local feature vectors
from the satellite and ground images into their respective
global descriptors that are in a common space for similarity
comparison.

CVM-Net-I: Two independentNetVLADs As shown in Fig. 2,
we use a separate NetVLAD layer for each branch to gener-
ate the respective global descriptors of a satellite and ground
image. The global descriptor of an image can be formulated
as vi = f G(Ui ;ΘG

i ), where i ∈ {s, g} represents the satel-
lite or ground branch. There are two groups of parameters in
ΘG

i —(1) K cluster centroids Ci = {ci,1, . . . , ci,K }, and (2)
a distance metric Wi,k for each cluster. The number of clus-
ters in both NetVLADs are set to be same. Each NetVLAD
layer produces a VLAD vector, i.e. global descriptor, for
the respective views vs and vg that are in the same space,
which can then be used for direct similarity comparison.
More details are given in the next paragraph. To keep com-
putational complexity low, we reduce the dimension of the
VLAD vectors before feeding them into the loss function for
end-to-end training, or using them for similarity comparison.

In addition to the discriminative power, the twoNetVLAD
layers with the same number of clusters that are trained
together in a Siamese-like architecture, are able to output
two VLAD vectors that are in a common space. Given a set
of local feature vectorsU = {u1, . . . , uN } (we drop the index
i in Ui for brevity), the kth element of the VLAD vector V
is given by

V (k) =
N∑

j=1

āk(u j )(u j − ck), (1)
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Fig. 2 Overview of our proposed CVM-Nets. CVM-Net-I: The deep
network with two aligned (no weight-shared) NetVLADs which are
used to pool the local features fromdifferent views into a common space.

CVM-Net-II: The deep network with two weight-shared NetVLADs
that transform the local features into a common space before aggregat-
ing to obtain the global descriptors

Fig. 3 An illustration of howNetVLAD achieves cross-viewmatching.
(Top): satellite view, (Bottom): ground view. In each view, there are a
set of local features (colorful squares) and their associated centroids
(hexagons and circles). After training, each centroid of satellite view is
associated with the unique centroid of ground view (dotted lines). The
residuals (red lines) are independent to their own views and comparable
to the other view because they are only relative to the centroids. Thus,
the global descriptors, i.e. aggregated residuals, of two views are in the
common space (Color figure online)

where āk(u j ) is the soft-assignment weight determined by
the distance metric parameters and input local feature vec-
tors. Refer to Arandjelovic et al. (2016) for more details of
āk(u j ). As shown in Eq. 1, the descriptor vector of each
centroid is the summation of residuals to the centroid. The
residuals to the centroids of two views are in a new com-
mon space, independent to the domain of two centroids.
Therefore, they can be regarded as in a common “residual”
space with respect to the pair of centroids in two views. The
comparison of satellite and ground view descriptors is the
centroid-wise comparison. It makes the VLAD descriptors
of two views comparable. Figure 3 shows an illustration of
this concept.

The complete model of our CVM-Net-I is shown in Fig. 2.
The global descriptor of the satellite image is given by
vs = f G( f L(Is;ΘL

s );ΘG
s ) and ground image is given

by vg = f G( f L(Ig;ΘL
g );ΘG

g ). The two branches have
identical structures with different parameters. Finally, the
dimensions of the global descriptors from the two views are
reduced by a fully connected layer.

CVM-Net-II: NetVLADs with shared weights Instead of
having two independent networks of similar structure in
CVM-Net-I, we propose a second network—CVM-Net-II
with some shared weights across the Siamese architecture.
Figure 2 shows the architecture of our CVM-Net-II. Specif-
ically, the CNN layers for extracting local features Us and
Ug remain the same. These local features are then passed
through two fully connected layers—the first layer with inde-
pendent weights Θ

T1
s and Θ

T1
g , and the second layer with

shared weights ΘT2 . The features U ′
s and U ′

g after the two
fully connected layers are given by

u′
s, j = f T (us, j ;ΘT1

s ,ΘT2), (2a)

u′
g, j = f T (ug, j ;ΘT1

g ,ΘT2). (2b)

where us, j ∈ Us , ug, j ∈ Ug and u′
s, j ∈ U ′

s , u
′
g, j ∈ U ′

g .
Finally, the transformed local features are fed into the

NetVLAD layers with shared weights ΘG . The global
descriptors of the satellite and ground images are given by

vs = f G(U ′
s;ΘG), (3a)

vg = f G(U ′
g;ΘG). (3b)

The complete model of our CVM-Net-II is illustrated in
Fig. 2. We adopted weight sharing in our CVM-Net-II net-
work because weight sharing has been proven to improve
metric learning in many of the Siamese network architec-
tures, e.g. Chopra et al. (2005), Schroff et al. (2015), Han
et al. (2015), Zagoruyko andKomodakis (2015) andOh Song
et al. (2016).
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4.4 Weighted Soft-Margin Ranking Loss

The triplet loss is often used as the objective function to train
deep networks for image matching and retrieval tasks. The
goal of the triplet loss is to learn a network that brings positive
examples closer to a chosen anchor point than the negative
examples. The simplest triplet loss is the max-margin triplet
loss:Lmax = max(0,m+dpos −dneg), where dpos and dneg
are the distances of all the positive and negative examples to
the chosen anchor. m is the margin and it has been shown
in Hermans et al. (2017) that m has to be carefully selected
for best results. A soft-margin triplet loss was proposed in
to avoid the need to determine the margin in the triplet loss:
Lso f t = ln(1 + ed ), where d = dpos − dneg . We use the
soft-margin triplet loss to train our CVM-Nets, but noted
that this loss resulted in slow convergence. To improve the
convergence rate,wepropose aweighted soft-margin ranking
loss which scales d in Lso f t by a coefficient α:

Lweighted = ln(1 + eαd). (4)

Our weighted soft-margin ranking loss becomes the soft-
margin triplet loss when α = 1. We made the observation
through experiments that the rate of convergence and results
improve as we increase α. The gradient of the loss increases
with α, which might cause the network to improve the
weights faster so as to reduce the larger errors.

Our proposed loss can also be embedded into other loss
functions with the triplet loss component. The quadruplet
loss (Chen et al. 2017) is the improved version of the triplet
loss which also tries to force the irrelevant negative pairs
further away from the positive pairs. The quadruplet loss is
given by

Lquad = max(0,m1 + dpos − dneg)

+ max(0,m2 + dpos − d∗
neg), (5)

where m1 and m2 are the margins and d∗
neg is distance of

another example that is outside of the chosen set of positive,
negative and anchor examples. We note that the margins are
no longer needed with our weighted soft-margin component.
Our weighted quadruplet loss is given by

Lquad,weighted = ln(1 + eα(dpos−dneg))

+ ln(1 + eα(dpos−d∗
neg)). (6)

5 Image-Based Cross-View Geo-Localization

Our proposed CVM-Net described in the previous section
provides an effective way to retrieve satellite images from
the database given a query ground view image. In this

section, we introduce how to use our CVM-Net for geo-
localization. Despite the effectiveness of our CVM-Net for
cross-view matching, our network ignores the temporal con-
sistency of the ground view images from a video stream in
autonomous driving. Hence, we propose the Markov Local-
ization framework to enforce temporal consistency between
image frames to improve the performance of the cross-
view geo-localization. More specifically, in this section, we
propose theMarkov Localization framework, i.e. particle fil-
tering (Thrun et al. 2001), that recurses over the prediction
and update steps, where temporal consistency is enforced
via the fusion of visual odometry and cross-view matching
results of our CVM-Net from a video stream.

5.1 Geo-Localization Framework

The objective of Markov Localization that make use of the
particle filtering algorithm is to find the belief distribution,
i.e. the posterior probability of the current vehicle pose xt
given all the past measurements z1:t and control actions ut :

bel(xt ) = p(xt |z1:t ,ut ). (7)

In the particle filter, the belief distribution bel(xt ) is repre-
sented by a finite sample set of particles denoted by:

ξt = {χ [1]
t , χ

[2]
t , · · · , χ

[M]
t }, (8)

where χ
[m]
t = [x[m]

t , w
[m]
t ]T denotes the mth particle. x[m]

t
is a random variable that represents the hypothesized state
of the mth particle, and w

[m]
t is a non-negative value called

the importance factor, which determines the weight of each
particle.

Algorithm 1 Image-based cross-view geo-localization
1: procedure Localization(It , It−1, ξt−1)
2: p(zt |x[m]

t , θ) ← Satellite_Localization(It )
3: p(xt |ut , x[m]

t−1) ← VO_Localization(It , It−1)

4: ξt ← PF(ξt−1, p(xt |ut , x[m]
t−1), p(zt |x[m]

t , θ))
5: poset ← average(ξt )
6: return poset

Algorithm 1 shows the framework of our proposed image-
based cross-view geo-localization. The inputs to the frame-
work of each time-stamp is the current ground view image
It , last ground view image It−1 and the most recent parti-
cles ξt−1. The framework first computes the measurement
probability (denoted as Satellite_Localization) and the state
transition probability (denoted as VO_Localization). The
new particles are computed through the particle filter algo-
rithm (denoted as PF). The current pose poset is the average
result of all new particles. See Sects. 5.2, 5.3, and 5.4 for the
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details of Satellite_Localization, VO_Localization and PF,
respectively.

5.2 Ground-to-Satellite Geo-Localization

Weperform image-basedground-to-satellite geo-localization
with respect to a geo-referenced satellite map with our
cross-view image retrieval CVM-Nets. The satellite map
is discretized into a database of image patches centered
on every P pixels of the map. A smaller interval P gives
better localization accuracy with the trade-off of a higher
search complexity due to the larger database. To balance
the localization accuracy and the computation speed, we
choose P = 10 in our experiment. All satellite images in
the database are fed into the satellite branch of our CVM-
Net and the descriptors are stored. To query a ground view
image, the descriptor is first computed by the ground branch
of the CVM-Net. Next, the Euclidean distance dg-si of the
global descriptor to the global descriptor of the every satel-
lite image Isi is calculated. We define the probability of the
query image at a location l i in the satellite map as

pl i = e−dg-si
∑

i e
−dg-si

, (9)

where the probability of the query image location is smaller
for a larger descriptor distance. In the particle filter algorithm,
the sensormeasurement probability distribution p(zt |x[m]

t , θ)

is obtained from the location probability pl i . θ represents the
given satellite map that the vehicle is working in. For a hypo-
thetical state x[m]

t−1 = [x, y, θ ]T , we find the 4 nearest location
{l i1 , l i2 , l i3 , l i4} to the state location [x, y]T . The probability
p(zt |x[m]

t , θ) is obtained by bilinear interpolation from these
4 nearest grid corners:

p(zt |x[m]
t , θ) =

4∑

j=1

pl i j . (10)

5.3 Visual Odometry

We use the visual odometry technique to estimate the rela-
tive camera motion from two consecutive key frame images.
The relative pose computed from the visual odometry is very
accurate for a relatively short range. In this work, we use the
visual odometry algorithm proposed by Liu et al. (2018). It
is the latest and state-of-the-art visual odometry algorithm.
In contrast to previous methods, Liu et al. use a multi-camera
system to improve the robustness of visual odometry. There
are two parts in their proposed visual odometry pipeline:
tracker and local mapper. The tracker estimates the vehicle
pose using the motion predictor and the direct image align-
ment to the latest key frame. The local mapper estimates the

3D point cloud from the stereo cameras and refines the cam-
era pose and the 3D point cloud to minimize the long-term
pose drift.

In the particle filter algorithm, the random variable x[m]
t is

sampled from the motion model p(xt |ut , x[m]
t−1). We compute

the state transition probability distribution p(xt |ut , x[m]
t−1)

based on the result of visual odometry. The inputs are the
current control data ut and a hypothetical state x[m]

t−1 of the
vehicle at t−1. The control actions ut are the relative motion
information provided by the visual odometry readings of the
vehicle and is given by ut = [δtrans, δrot ], where δtrans is
the translated distance and δrot is the rotated angle when the
vehicle advances from pose x[m]

t−1 to x[m]
t in the time interval

(t − 1, t].
The control actions ut provided by the visual odometry

readings are corrupted by noise, which we assume to be
Gaussian noise. The “true” value of the translation δ̂trans and
rotation δ̂rot are obtained from δtrans and δrot by subtract-
ing Gaussian noise with zero mean and standard deviation
denoted by σtrans and σrot for translation and rotation respec-
tively. The current pose x[m]

t = [x, y, θ ]T of the vehicle is
computed from its previous pose x[m]

t−1 and the “true” trans-

lation δ̂trans and “true” rotation θ̂rot :

x = x [m]
t−1 + δ̂trans cos(θ

[m]
t−1 + θ̂rot ), (11)

y = y[m]
t−1 + δ̂trans sin(θ

[m]
t−1 + θ̂rot ), (12)

θ = θ
[m]
t−1 + θ̂rot . (13)

5.4 Particle Filter

Algorithm 2 Particle filter

1: procedure PF(ξt−1, p(xt |ut , x [m]
t−1), p(zt |x [m]

t , θ))
2: ξ t ← ∅
3: ξt ← ∅
4: for m = 1 to M do
5: sample x[m]

t ∼ p(xt |ut , x[m]
t−1)

6: w
[m]
t ← p(zt |x[m]

t , θ)

7: χ
[m]
t ← [x[m]

t w
[m]
t ]T

8: ξt ← resample(ξ t )
9: return ξt

Algorithm 2 shows the pseudo code for the particle fil-
ter algorithm. The inputs to the algorithm are the previous
particle set ξt−1, the state transition probability distribu-
tion p(xt |ut , x[m]

t−1) and the sensor measurement probability

distribution p(zt |x[m]
t , θ). The particle filter algorithm first

generates a temporary particle set ξ t that represents the pre-
dicted belief distribution bel(xt ) in the prediction step. It is
then followed by the update step that transforms the predicted
belief distribution bel(xt ) into the posterior belief distribu-
tion bel(xt ). In detail:
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Prediction Line 5 of the algorithm generates the hypotheti-
cal state x[m]

t by sampling from the state transition probability
distribution p(xt |ut , x[m]

t−1). The state transition probability

p(xt |ut , x[m]
t−1) is obtained from the visual odometry motion

model. The set of particles obtained after M iterations is the
discrete representation of the predicted belief bel(xt ).

Update The update step of the particle filter algorithm con-
sists of two steps: importance factor and resampling. The
importance factor w

[m]
t for the mth particle at time t is com-

puted in Line 6 of the algorithm. Importance factors are used
to incorporate the measurement zt into the particle set and
the importance factor of themth particle is given by the mea-
surement probability p(zt |x[m]

t , θ). It should be noted that
the particles with hypothetical states closer to the posterior
belief distribution bel(xt ) have a higher importance factor.

The resampling step in Line 8 of the algorithm is an
important part of the particle filter algorithm. Resampling
draws with replacement M particles from the temporary set
ξ t . The probability of drawing each particle is given by its
importance weight. This means that the particles with higher
importance weight will have a higher chance of appear-
ing in ξt . Consequently, the particles will be approximately
distributed according to the posterior belief distribution
bel(xt ) = η p(zt |xt ) bel(xt ) after the resampling step. The
η is a normalization factor.

6 Experiments and Results

6.1 Dataset and Platform

We evaluate our proposed deep networks: CVM-Net-I and
CVM-Net-II on two existing datasets—CVUSA (Zhai et al.
2017) and (Vo and Hays 2016). The CVUSA dataset con-
tains 35,532 image pairs for training and 8884 image pairs
for testing. All ground images are panoramas. Vo and Hays’
dataset consists of around onemillion image pairs from 9 dif-
ferent cities. All ground images are cropped from panoramic
images to a fixed size. We use all image pairs from 8 of the
9 cities to train the networks and use the image pairs from
the 9th city, i.e. Denver city, for evaluation. Figure 4 shows
some examples of the two datasets.

Our experimental platform for the Markov Localization
is a vehicle with 12 fisheye near-infared (NIR) cameras
mounted on the top. We use 4 of them which head 4 direc-
tions (front, rear, left and right) to form the panoramas. Each
camera has a 180-degree field of view. The images from 4
cameras are unwrapped to a cylinder to form a panoramic
image. Figure 5 shows our vehicle and Fig. 6 shows an exam-
ple of images captured from its cameras. It is equipped with
GNSS/INS to provide the ground-truth poses.

Vo and Hays

CVUSA

Fig. 4 Sample images from theVo andHays (2016), and CVUSA (Zhai
et al. 2017)

Front 
camera

Back 
camera

Right 
camera

Left 
camera

Fig. 5 Our experimental vehicle (top) and the cameras used in the
experiments (bottom)

6.2 CVM-Net Implementation and Training

We use the VGG16 (Simonyan and Zisserman 2014) archi-
tecture with 13 convolutional layers to extract local features,
and a NetVLAD with 64 clusters to generate the global
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Panorama

Left camera Front camera Right camera Rear camera

Fig. 6 A set of sample images captured from our vehicle. The panorama at the top is obtained by stitching the 4 images at the bottom

descriptors.We useVGG16 (Simonyan andZisserman 2014)
as the local feature extraction network is because it is well-
studied and known as one of the best network for local
features. The comparisons of other convolutional architec-
tures are provided later. We set α = 10 for both the weighted
triplet and weighted quadruplet losses. We use the squared
Euclidean distance in our loss functions. The parameters
in VGG16 are initialized with a pre-trained model on Ima-
geNet (Deng et al. 2009). All the parameters in NetVLAD
and fully connected layers are randomly initialized.

We implement our CVM-Nets using Tensorflow (Abadi
et al. 2016) and train using the Adam optimizer (Kingma and
Ba 2014) with the learning rate of 10−5 and dropout (= 0.9)
for all fully connected layers. The training is divided into
two stages. In the first stage, we adopt the exhaustive mini-
batch strategy (Vo and Hays 2016) to maximize the number
of triplets within a batch. We feed pairs of corresponding
satellite and ground images into our Siamese-like architec-
ture. We have a total of M ×2(M −1) triplets for M positive
pairs of ground-to-satellite images. This is because for each
ground or satellite image in M positive pairs, there are M−1
corresponding negative pairs from all the other images, i.e.
2(M − 1) for both the ground and satellite images in a posi-
tive pair. Once the loss stops decreasing, we start the second
stage with in-batch hard negative mining. For each positive
pair, we choose the negative pair with smallest distance in
current batch.

6.3 Results of Image Retrieval

Evaluation metrics We follow Vo and Hays (2016), and
Workman et al. (2015) in using the recall accuracy at top
1% as the evaluation metric for our networks. For a query

ground view image, we retrieve the top 1% closest satellite
images with respect to the global descriptor distance. It is
regarded as correct if the corresponding satellite image is
inside the retrieved set.

Comparison to existing approaches We compare our pro-
posed CVM-Nets to three existingworks (Vo andHays 2016;
Workman et al. 2015; Zhai et al. 2017) on the two datasets
provided by Vo and Hays (2016) and Zhai et al. (2017).
We used the implementations given in the authors’ web-
pages. Furthermore, we take the Siamese network with both
AlexNet (Krizhevsky et al. 2012) and VGG (Simonyan and
Zisserman 2014) as the baseline in our comparisons, since
these networks are widely used in image retrieval tasks.
The AlexNet is used in Vo and Hays (2016). We use our
weighted soft-margin ranking loss in our CVM-Nets. The
soft-margin triplet loss is used on the network from Vo and
Hays (2016), as suggested by the authors in the paper. We
also apply the soft-margin triplet loss on the two baseline
Siamese networks—AlexNet andVGG since the soft-margin
triplet loss produces the state-of-the-art results in Vo and
Hays (2016). The Euclidean loss is used on the network pro-
posed byWorkman et al. (2015) since their network is trained
on only positive pairs.

Table 1 shows the top 1% recall accuracy results of our
CVM-Nets compared to all the other approaches on the two
datasets—which we called “Cropped” (Vo and Hays 2016)
and “Panorama” (Zhai et al. 2017) in the table for brevity.
It can be seen that both our proposed networks—CVM-
Net-I and CVM-Net-II significantly outperform all the other
approaches. This suggests that NetVLAD used in both our
CVM-Nets is capable of learning much more discriminative
features compared to the CNN and/or fully connected layers
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Table 1 Comparison of top 1%
recall on our CVM-Nets with
other existing approaches and
two baselines, i.e. Siamese
network with AlexNet and VGG

Recall @top 1%

Cropped (Vo and Hays 2016) (%) Panorama (Zhai et al. 2017) (%)

Siamese (AlexNet) 1.1 4.7

Siamese (VGG) 1.3 9.9

Workman et al. (2015) 15.4 34.3

Vo and Hays (2016) 59.9 63.7

Zhai et al. (2017) – 43.2

CVM-Net-I 67.9 96.3

CVM-Net-II 66.6 87.2

Fig. 7 Comparison of our CVM-Nets and other existing
approaches (Zhai et al. 2017; Vo and Hays 2016; Workman et al.
2015): all models are trained on CVUSA (Zhai et al. 2017)

architectures utilized by the other approaches. Furthermore,
it can be seen that CVM-Net-I outperforms CVM-Net-II in
both datasets. This result suggests that although weight shar-
ing based Siamese networks performed well in traditional
image retrieval tasks, e.g. face identification, it is not neces-
sarily good for our network on cross-view image retrieval. It
is also not surprising that all networks perform better on the
panorama images since these images contain more informa-
tion from the wide field-of-views.

We show the recall accuracy from top 1 to top 80
(top 0.9%) of our CVM-Nets with all the other approaches on
CVUSA dataset (Zhai et al. 2017) in Fig. 7. It illustrates that
our proposed networks outperform all the other approaches.
In Fig. 8, we show some retrieval examples on two bench-
mark datasets (Vo and Hays 2016; Zhai et al. 2017).

Local feature extraction architectures We evaluate our
CVM-Net-I with different convolutional neural network for
local feature extractions. Four commonly used neural net-
work are compared: VGG (Simonyan and Zisserman 2014),
ResNet (He et al. 2016), Densenet (Huang et al. 2017), Xcep-
tion (Chollet 2017). Specifically, the convolutional parts of

Table 2 Performance of different convolutional architectures on the
CVUSA dataset (Zhai et al. 2017)

VGG ResNet DenseNet Xception

96.3% 88.0% 89.0% 93.2%

The network is CVM-Net-I

VGG-16, ResNet-50, DenseNet-121 (k = 32) and Xception
are used to extract local features of images. A 1 × 1 con-
volutional layer is added at the top to reduce the dimension
of local feature vector to 512. All parameters are initialized
with a pre-trained model on ImageNet (Deng et al. 2009).
The comparison results on the CVUSA dataset (Zhai et al.
2017) are shown in Table 2. As can be seen from the table,
the differences across different convolutional architectures
on the top 1% recall accuracy are marginal. It is interesting to
note that VGG outperforms other architectures although they
were shown to perform better in the classification tasks (He
et al. 2016; Huang et al. 2017; Chollet 2017).

Adding distractor images We add 15,643 distractor satellite
images in Singapore to our original test database which has
8884 satellite images inUSA. Figure 9 shows the top-K recall
accuracy curve.The result is from themodel trainedonCVM-
Net-I on the CVUSA (Zhai et al. 2017) dataset. There is only
a marginal difference between the results with and without
distractor images. This demonstrates the robustness of our
proposed networks.

6.4 Discussions of CVM-Net

Local feature extraction In Tables 2 and 3, we compare
several variations on our proposed architecture. The deeper
CNNs, i.e. VGG, ResNet, DenseNet and Xception signifi-
cantly outperforms the shallower CNN, i.e. AlexNet. This
result is not surprising because a deeper network is able
to extract richer local features. However, an overly deep
network does not necessarily generate better result. We
observe a drop in the performances of the deeper networks—
ResNet and DenseNet compared to the relatively shallower

123



International Journal of Computer Vision (2020) 128:1205–1219 1215

sya
H

dna
o

V

Ground query Top matches (top 1 – top 8 from left to right)

Ground query Top matches (top 1 – top 5 from left to right)

AS
U

V
C

Fig. 8 Image retrieval examples on Vo and Hays dataset (Vo and Hays 2016) and CVUSA dataset (Zhai et al. 2017). The satellite image bordered
by red square is the groundtruth

Table 3 Performance of different architectures and losses on the
CVUSAdataset (Zhai et al. 2017):AlexNet (Krizhevsky et al. 2012) and
VGG16 (Simonyan and Zisserman 2014) are used as the local feature
extraction network

Triplet (%) Quadruplet (%)

CVM-Net-I (AlexNet) 65.4 73.7

CVM-Net-I (VGG16) 96.3 89.9

CVM-Net-II (AlexNet) 63.0 83.9

CVM-Net-II (VGG16) 87.2 88.7

networks—VGG and Xception. This result suggests that a
very deep convolutional network is not suitable for local fea-
ture extraction in the cross-view matching task despite its
strong performances in the classification tasks. We reckon
that this is because very deep networks extract high level
features which is good for classification tasks, but might not
be necessarily beneficial to our cross-viewmatching task due
to the drastic change in viewpoint, where there is no similar-
ity between the high level features across the different views.

CVM-Net-I versus CVM-Net-II It can be seen fromTable 3 that
CVM-Net-I outperforms CVM-Net-II on both the VGG16
and AlexNet implementations for local features extraction,
and on both the triplet and quadruplet losses. This further
reinforces our claim in the previous paragraph that shared
weights implemented onCVM-Net-II is not necessarily good
for our cross-view image-based retrieval task. We conjec-
ture that CVM-Net-I outperforms CVM-Net-II because the
aligned NetVLAD layers (i.e. two NetVLAD layers without
weight sharing) have a higher capacity, i.e. more flexibility
in having more weight parameters, in learning the features
for cross-view matching. In contrast, CVM-Net-II uses one
shared fully connected layer on the input images that has
limited capacity to transform local features from different
domains into a common domain. The comparison result
from our experiment suggests that explicit use of the aligned
NetVLADs is better than the naive use of fully connected
layers on the cross-viewmatching task. Nonetheless, we pro-
pose both CVM-Net-I and CVM-Net-II in this paper. This
is because we only conduct experiments on the cross-view
image matching task, and we do not rule out the possibil-
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Fig. 9 Top-K recall accuracy on the evaluation dataset with andwithout
distractor images. The model is trained on CVM-Net-I on CVUSA
dataset (Zhai et al. 2017)

Fig. 10 Performance of our weighted soft-margin triplet loss with dif-
ferent parameters. lr is short for learning rate. It takes about 1h to train
each epoch (Color figure online)

ity that CVM-Net-II may outperform CVM-Net-I on other
cross-domain matching tasks.

Rotation and scale invariant Our proposed network can
achieve rotation and scale invariant to some extent due to
two reasons. First, the NetVLAD layer aggregates local fea-
tures to a global descriptor regardless of the order in the local
features. Hence, the rotation of the local feature maps from
the rotated input image does not influence the global features.
Second, we do training data augmentation.More specifically,
we randomly rotate, crop and resize satellite images to make
the network more robust on the change in rotation and scale.

Ranking loss The triplet loss has been widely used in image
retrieval for a long time,while the quadruplet loss (Chen et al.
2017) was introduced recently to further improve the triplet
loss.We train our CVM-Nets implementedwithAlexNet and
VGG16 for local feature extraction on both the triplet and
quadruplet losses for comparison. As can be seen from the
results in Table 3, quadruplet loss outperforms triplet loss
significantly on both our CVM-Nets with AlexNet. How-
ever, only minor differences in performances of the triplet
and quadruplet losses can be observed for our CVM-Nets
with VGG16. These results suggest that quadruplet loss has
a much larger impact on shallower networks, i.e. AlexNet
for feature extraction. We also train our CVM-Net-I and II
on CVUSA dataset (Zhai et al. 2017) on the contrastive loss
that was used in many earlier works. The top 1% recall accu-
racy is 87.8% and 79.8% respectively. It is not as good as the
results from the triplet loss or the quadruplet loss as shown
in Table 3.

Weighted soft-margin We also compare the performance
of our CVM-Nets on different α values in our weighted
soft-margin triplet loss Lweighted in Eq. 4. Specifically, we
conduct experiments on α = 10 with learning rate 10−5,
α = 1 (soft-margin triplet loss) with learning rate 10−5. In
addition, we also tested on α = 1 with learning rate 10−4

to compare the convergence speed with our weighted loss.
The accuracies from the respective parameters with respect
to the number of epochs are illustrated in Fig. 10. As can
be seen, our loss function makes the network converges to
higher accuracies in a shorter amount of time. We choose
α = 10 in our experiments since the larger value of α does
not make much different.

6.5 Image-Based Geo-Localization

We choose the CVM-Net-I with weighted soft-margin triplet
loss for the image-based geo-localization experiment. This is
because experiment results from the previous section show
that it gives the best performance for the ground-to-satellite
image retrieval task.

Without particle filter We perform image-based geo-
localization with respect to a geo-referenced satellite map
with our cross-view image retrieval CVM-Net. Our geo-
referenced satellite map covers a region of 10 × 5km of
the South-East Asian country—Singapore. We collect the
ground panoramic images of Singapore from Google Street-
view. We choose to test our CVM-Net on Singapore to show
that our CVM-Net trained on the North American based
CVUSA datasets generalize well on a drastically different
area. We tessellate the satellite map into grids at 5m inter-
vals. Each image patch is 512 × 512 pixels and the latitude
and longitude coordinates of the pixel center give the loca-
tion of the image patch. We use our CVM-Net-I trained on
the CVUSA dataset to extract global descriptors from our
Singapore dataset. We visualize the heatmap of the similar-
ity scores on the reference satellite map of two examples
in Fig. 11. We apply the exponential function to improve the
contrast of the similarity scores. It can be seen that our CVM-
Net-I is able to recover the ground truth locations for both
examples in Fig. 11. It is interesting to see that our street-
view based query image generally return higher similarity
scores on areas that correspond to the roads on the satellite
map.

We conduct a metric evaluation on geo-localization. A
query is regarded as correctly localized if the distance to the
ground truth location is less than the threshold. We show
the recall accuracy with respect to the distance threshold in
Fig. 12. The accuracy on a 100m threshold is 67.1%. The
average localization error is 676.7m. As can be seen from the
metric evaluation result, there is a large room for improve-
ment in the ground-to-aerial geo-localization task despite our
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Ground query
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Localization heatmapSatellite map
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Fig. 11 Large-scale geo-localization examples on our dataset

Fig. 12 The retrieval accuracy on distance error threshold without par-
ticle filtering

state-of-art retrieval performance. The localization accuracy
of CVM-Net is not enough for the real-world applications.
Our proposed Markov localization framework reduces the
localization error and is evaluated on a real-world applica-
tion.

With particle filter Weperform the real-world experiment in
two areas of Singapore—One North and South Buona Vista.
We collect a small amount of data from our vehicle and use
them to fine-tune the network trained on the CVUSA (Zhai
et al. 2017) dataset. To accelerate the localization on the vehi-
cle, the satellite map is discretized into a database of images.
The descriptors of all images are pre-computed through our
CVM-Net-I and stored offline. During the experiment, only
ground view images need to be fed into the network. The
initial pose of the vehicle is given from the GNSS/INS
system.

Figure 13 shows the results of our image-based cross-view
geo-localization framework executed live on the vehicle.
The average error is shown in Table 4. The position error
is the Euclidean distance between the estimated position
[xest , yest ] and the ground-truth position [xgt , ygt ]:

errorpos =
√

(xest − ggt )2 + (yest − ygt )2. (14)

The heading error is the difference between the estimated
heading and the ground-truth heading. We use the atan2
function to compute the angle difference to prevent the wrap-
around problem:

errorθ = atan2(vest , vgt ). (15)

vest is the heading unit vector of the estimated heading θest
and vgt is the heading unit vector of the ground-truth head-
ing θgt . The total length of trajectory in One North is about
5km and the length of trajectory in South Bouna Vista is
about 3km. From the results, it can be seen that our pro-
posed framework can localize the vehicle along a long path
within a small error in both the urban area and the rural area.
The localization frequency is around 0.5–1Hz.

123



1218 International Journal of Computer Vision (2020) 128:1205–1219

Fig. 13 The localization results on One North and South Buona Vista. The red dots are ground-truth location and the green dots are the location
estimated by our proposed framework. One North is an urban environment while South Buona Vista is a rural environment (Color figure online)

Table 4 Average localization accuracy

Position (m) Heading (◦)

One North 16.39 0.25

South Bouna Vista 20.33 0.56

7 Conclusion

In this paper, we introduce two cross-view matching
networks—CVM-Net-I and CVM-Net-II, which are able to
match ground view images with satellite images in order
to achieve cross-view image localization. We introduce the
weighted soft-margin ranking loss and show that it notably
accelerates training speed and improves the performance of
our networks. Furthermore, we propose a Markov Localiza-
tion framework that fuses the satellite localization and visual
odometry to localize the vehicle. We demonstrate that our
proposed CVM-Nets significantly outperforms state-of-the-
art approaches with experiments on large datasets. We show
that our proposed framework can continuously localize the
vehicle within a small error.
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