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Abstract
There are many studies adopting artificial intelligence (AI) to develop core technolo-
gies for the future army but they are still at the level of basic research. It is expected 
that military power will be negatively affected by aging and declining population. 
In addition, as more than 500,000 agents will be dispatched to monitor combat 
scenes, the data sensed by each agent should be managed simultaneously recognize 
and evaluate the situation on the battlefield in real time. Despite increased complex-
ity in the battlefield, current command system entirely rely on the experience and 
expertise of individual commanders, which severely restricts defense capabilities. 
Therefore, AI based military staff needs to be developed to identify potential threats 
that commanders are likely to miss, to develop smart command systems, and to pro-
vide data-driven rationale for commander’s decisions. In this paper, we propose a 
deep AI military staff to support commander decision-making. Our proposed model 
is composed of four key parts: multi-agent based manned-unmanned collaboration 
architecture (MACA), robust tactical map fusion technology in poor environments 
(RTMF), hypergraph based representation learning (HRL) and space-time multi 
layer model for battlefields recognition (STBR). We design an architecture and gen-
erate dataset for training the core network. Simulation results are provided to dem-
onstrate the performance of Deep AI military staff.
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1 Introduction

In the battlefield environments where global navigation satellite system (GNSS) 
is not applicable, combatants encounter many buildings and obstacles that are not 
recognized beforehand. To obtain spatial information, many sensors with diverse 
capabilities are used by agents, but the data suffers from quality degradation due 
to irregular and dynamic motions of combatants. Even worse, more than 500,000 
agents will be dispatched in the near future, so the data sensed by each agent 
should be managed simultaneously to recognize the battle situation in real time 
manner. In such complex battlefield environments, it is necessary to develop 
manned/unmanned collaboration system for commander’s decision making. In 
this paper, we propose a deep AI military staff for manned/unmanned agent col-
laboration system. The proposed deep AI military staff can create spatial map 
from visual and location information between agents and target location. Also, 
it can analyze threat in operation areas and alleviate cognitive burden of com-
manders by data-driven autonomous decision. To recognize global situation of 
the entire combat scenes, we adopt multitask scheduling with re-planning, which 
verifies whether mission of each agent is successful under the cyclic operation 
structure.

The proposed deep AI military staff is composed of four key parts: multi-agent 
based manned-unmanned collaboration architecture (MACA), robust tactical map 
fusion technology in poor environments (RTMF), hypergraph based representa-
tion learning (HRL) and space-time multi layer model for battlefields recognition 
(STBR). To develop each part of our proposed deep AI military staff, we design 
an architecture and generate a dataset for training the core network. Simulation 
results are provided to demonstrate the performance of Deep AI military staff.

2  Background

The intelligent command control system is a key power system that supports the 
commander’s decision-making and overall management. It improves the joint 
chiefs of staff system, army Corps-level system, and Army division-level sys-
tem by supporting timely and appropriate decision-making from various surveil-
lance and reconnaissance assets. In 2018, the U.S. Army introduced an Integrated 
Visual Augmentation System (IVAS) system to enhance soldiers’ awareness and 
signed a contract with Microsoft to supply HoloLens 2 [1]. IVAS aims to provide 
augmented reality with various information (environmental information, opera-
tional overview, surrounding terrain and building structures) necessary for sol-
diers to train and perform their duties, and through the AI chipset that recognizes 
soldiers’ eyes, hands and voices by 2023.

DARPA is already developing military situational awareness technologies to 
support decision-making. Collection and Monitoring via Planning for Active 
Situational Scenarios (COMPASS) and Active Interpretation of Disparate 
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Alternatives (AIDA) are the most representative decision support programs. 
COMPASS [2] utilizes state-of-the-art AI technology to support the command-
er’s judgment in consideration of complex and multilayered battlefield situations. 
In addition, DARPA [3] simultaneously analyzes unstructured data entered from 
various multimedia sources through the AIDA project, a decision support pro-
gram using multimodal data, generating various hypotheses about events, situa-
tions, and so on to support the commander’s decision making.

3  Related works

3.1  Panoptic segmentation

Panoptic Segmentation [4] is an approach that produces both instance segmentation 
and semantic segmentation simultaneously. However, instance segmentation is much 
harder than object detection or semantic segmentation since it should capture more pre-
cise and detailed structure of the instances. In case of panoptic segmentation, which 
provides semantic segmentation for background as well as a object detection and seg-
mentation masks for each instance, it become more difficult. A naïve approach [4] for 
panoptic segmentation is to predict instance segmentation and semantic segmentation 
results separately and merge those outputs into one final panoptic segmentation result. 
Recently, most approaches use a single shared Feature Pyramid Network (FPN) [5] 
as a backbone for feature extraction, and then add two branches on the feature extrac-
tor to produce final panoptic segmentation outputs [6–9]. There are two categories for 
instance segmentation (or detection) modules in panoptic segmentation networks; one 
is a two-stage approach [7–9] which is motivated by Mask-RCNN [10], and the other is 
a single-stage approach [6, 11], motivated by SSD [12] or YOLO [13]. In our method, 
we choose single-stage approach to achieve real-time speed.

3.2  Image completion

Image completion, also known as image inpainting, is one of the traditional tasks in a 
computer vision society. It is a task of reconstructing missing regions in an image based 
on the overall scene. Most early approaches focus on finding similar contents from 
other parts or background in the image, and copy them to fill gaps [14, 15]. However, 
these approaches fail to recover large holes since they cannot capture global context of 
whole scenes, and also they cannot reconstruct content not present in the background 
image. Recently, learning based methods [16–18] are proposed to solve this problem. 
These method generate contents based on semantic information from a large dataset.

3.3  Multi‑modal data and graph neural network

In the future battlefield environment where multiple manned/unmanned agents such 
as warrior platforms, drones, and robots are expected to sense diverse kinds of data, 
it is critical to process these multi-modal data (e.g., visual, voice, language, graph, 
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etc.) for the commander’s global battlefield environment awareness. However, many 
challenges have been observed because of difficulties on dealing with heterogeneous 
data in a consistent way. Even worse, the needs to classify agents that have observed 
the same local situations is growing for global battlefield situation awareness, but 
this is not easy because tremendous time-series data are generated by agents.

Recently, multi-modal data has been processed in a consistent way by forming 
and analyzing graphs and their components (i.e., nodes and their relations). Gen-
erally, it is tricky to infer information from graphs, but recent advances in graph 
neural networks (GNNs) enables many tasks on graphs, such as unlabeled node clas-
sification, edge prediction and graph classification. To fully utilize graph structure 
in node classification, [19] and [20] propose a random walk that generates list of 
nodes with similar characteristics, then learn the feature vectors of nodes and edges. 
[21] adopts a metapath to enforce random work to follow the predefined path, which 
outperforms the pure random walk approaches. Also, multi-head attention mecha-
nism used in natural language process is leveraged in graph [22]. As for graph clas-
sification, [23] proposes hierarchical graph representation that sequentially coarsens 
graph upto a predefined size, then learns the feature vector of entire graph. Based on 
Weisfeiler-Lehman (WL) algorithm, [24] classifies the graph in a consistent order 
by sorting graph nodes with the extracted information.

4  System design and major contributions

Our proposed deep AI military staff is composed of four parts; MACA, RTMF, HRL 
and STBR as shown in Fig. 1. MACA is the entire architecture including RTMF, 
HRL, and STBR. RTMF includes the ability to create battlefield scenarios, analyze 
information collected by individual agents, and generate data necessary for learning. 
HBR includes the ability to select agents that share the same situation/environment 
by analyzing the similarity between graphs generated by individual agents and to 
discriminate and confuse the similarity between nodes in the distributed graph to 
create a global graph. STBR includes a technology that predicts the battlefield situ-
ation/environment in real time by analyzing the correlation of complex knowledge 
distributed in time and space using a fusion knowledge graph generated by HRL. We 
first focus on RTMF and HRL and provide their major contributions. Then, details 
of each part of deep AI military staff are illustrated in Sects. 5-8.

4.1  Enemy detection and hidden enemy visualization

Computer vision is the basis of many real-life applications. In order to deal with 
variety applications in the real-world, numerous computer vision algorithms, such as 
image classification [25, 26], visual tracking [27], object detection [28] and seman-
tic segmentation [29], have been developed. Thanks to recent great advance in deep 
learning, computer vision algorithms have shown rapid improvements in the past 
decade.
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Those computer vision algorithms are also applied to support visual cogni-
tion of soldiers in battlefields. In recent Integrated Visual Augmentation System 
(IVAS) project, Microsoft’s HoloLens2 is used to support displaying important 
information in battlefields, since it is crucial to understand surrounding scenes 
for survival of soldiers. However, scene understanding becomes more challenging 
due to complex, drastic changes in battlefield environments, and target object rec-
ognition failures increase. Moreover, since most of enemies hide their bodies by 
cover and concealment as shown in Fig. 2, it is much hard to detect them in bat-
tle. Such frequent encounters with concealed enemies can lead to increased level 
of fear and tension and drop in the overall moral of the troops.

In Sect.  6, we propose a new method that exposes hidden enemies in com-
plex scenes using panoptic segmentation and image completion methods to over-
come these problems. An overall framework of our proposed RTMF is shown in 
Fig. 3. First, to detect enemies in complex scenes, we design a real-time panoptic 
segmentation network which runs 33fps on 550x550 resolution without severe 
performance drops. The feature pyramid network (FPN) [5] is shared for both 
instance and semantic segmentation to encode shared representation for each 
work. We also adopt a similar network architecture to YOLACT [30] which is a 
well-known real-time instance segmentation network, and extend it to panoptic 
segmentation. Second, to visualize hidden enemies, we utilize Pluralistic Image 
Completion network (PICNet) [31] to reconstruct occluded body parts.

The main contributions of RTMF in Sec. 6 are listed as follows:

Fig. 1  The architecture of MACA 
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• We propose a novel framework to reveal and visualize enemies hidden by cover 
and concealment.

• We implement a real-time panoptic segmentation net-work based on YOLACT 
to detect enemies and capture characteristics in battlefield scenes.

• We introduce a segmentation-guided image completion method to recover 
occluded parts of target objects.

• We demonstrate that our segmentation network achieves comparable perfor-
mance to the state-of-the-art methods and our image completion network is able 
to recover hidden enemies successfully.

4.2  Hypergraph for similarity analysis

Many studies on GNNs provide successful results on their tasks, but traditional 
graph structured data still lacks in terms of data representation; since an edge can 
only connect at most two nodes, it cannot fully represent a real word with many 
tangled nodes. To tackle these problems, the concept of hypergraph is introduced, 
where a hypergraph is composed of hypernodes and hyperedges. Specifically, a 
hypernode represents an entity in a hypergraph and a hyperedge denotes a set of 
correlated hypernodes without any restriction on their numbers and types. By 

Fig. 2  Invisible enemies due to cover and concealment

Fig. 3  The overall framework of robust tactical map fusion technology in poor environments (RTMF). A 
discriminator in the image completion network is only used during training
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constructing a hypergraph, two or more hypernodes with different features can be 
related one another, allowing us to extract the useful relationship information. Simi-
lar to GNNs, deep learning architectures are used in hypergraph for classification 
[32–34], where the embedding vector of hypernodes is learned by hyperedge con-
volution operation [32], by processing tuple of multi-modal data [33] and by apply-
ing multi-head attention mechanism [34]. However, most of these studies focus on 
hypernode classification, but do not utilize hypergraph to analyze interrelationship 
between distributed graphs. Since a lot of agents in battlefield environments meas-
ure multi-modal data that can be transformed into graph, it is critical to process dis-
tributed graphs by integrating all geographically similar information for global situ-
ation awareness.

In Sect. 7, we propose a HRL to learn the embedding vector of distributed local 
graphs. Based on the fact that multi-modal data sensed by agents can be transformed 
into graph, our objective is to classify agents that have observed the same local situ-
ations by treating each agent as a local graph and training a hypergraph-based deep 
learning model. After training the embedding vector of agents, we can provide adja-
cency matrix that shows interrelationship between agents.

The main contributions of HRL in Sect. 7 are as follows.

• Based on local graph from each agent, we construct a hypergraph to integrate 
multiple graphs and then, utilize a hypergraph random walk to obtain a bunch of 
training dataset for agent embedding vector.

• Under the predefined probabilistic rules, the proposed hypergraph random walk 
makes random movement from one hypernode to another, which means inter-
graph (i.e. graph-to-graph) movements. Note that the conventional random walk 
in [19–21] makes an intra-graph movement from one node to another in the 
graph.

• Because of unlabeled situation information, we train the agent embedding vector 
in an unsupervised manner to make the embedding vectors of neighboring agents 
similar. As a result of similarity analysis, we can provide adjacency matrix of 
agents, which can be used along with any GNNs to construct global graphs and 
perform graph convolution for the commander’s battlefield situation awareness.

5  MACA: Multi agent‑based manned‑unmanned collaboration 
architecture

Figure 4 shows the overall architecture of the proposed system for enhancing aware-
ness of combatants in a building or an underground bunker. The collaborative agent 
generates a collaboration plan according to a mission, requests neighboring collabo-
rative agents to search for knowledge/devices available for collaboration and review 
the availability of the knowledge/devices, generates an optimal collaboration combi-
nation on the basis of a response to the request to transmit a collaboration request, 
and upon receiving the collaboration request, performs the mission through mutual 
distributed knowledge collaboration. Such a collaborative agent may provide infor-
mation about systems, battlefields, resources, and tactics through a determination 
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intelligence processing unit, such as complicated situation recognition, coordinative 
simultaneous localization and mapping (C-SLAM), and a self-negotiator.

Meanwhile, in order to support a commander in command decision, the collabo-
rative agent combines the collected 5 pieces of information to be subjected to artifi-
cial intelligence (AI) deep learning-based global situation recognition and CSLAM 
technology to provide the commander with command decision information merged 
with unit spatial maps through the autonomous driving robot linked with the smart 
helmet worn by the commander.

To this end, referring to Fig.  4, the collaborative agent includes a multi-modal 
object data analysis unit, an inter-collaborative agent collaboration and negotiation 
unit, and an autonomous collaboration determination and global situation recogni-
tion unit so that the collaborative agent serves as a supervisor of the overall system.

In addition, the inter-collaborative agent collaboration and negotiation unit 
searches a knowledge map through a resource management and situation infer-
ence unit to determine whether a mission model that is mapped to a goal state cor-
responding to the situation and environment data is present, checks integrity and 
safety of multiple tasks in the mission, and transmits a multi-task sequence for plan-
ning an action plan for the individual tasks to an optimal action planning unit so that 
the tasks are analyzed and an optimum combination of devices and knowledge to 
perform the tasks is constructed.

On the other hand, the optimal action planning unit performs refinement/divi-
sion/allocation on action-task sequences to deliver relevant tasks to the collaborative 
agents located in a distributed collaboration space on the basis of a generated opti-
mum negotiation result through a knowledge/device search and connection protocol 
of a hyper-intelligence network formed through the autonomous driving robots so as 
to deliver the relevant tasks to wearers of the respective smart helmets.

Fig. 4  The proposed multi-agent based manned-unmanned collaboration architecture (MACA)
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In addition, the autonomous collaboration determination and global situation rec-
ognition unit verifies whether an answer for the goal state is satisfactory through 
global situation recognition monitoring using a delivered multitask planning 
sequence using a collaborative determination/inference model and, when the answer 
is unsatisfactory, requests the inter-collaborative agent collaboration and negotiation 
unit to perform mission re-planning to have a cyclic operation structure.

6  RTMF: Robust tactical map fusion technology

This section describes the details of our proposed frame-work to visualize hidden 
enemies using panoptic segmentation and Segmentation-guided image comple-
tion methods. We first detect enemies by panoptic segmentation, and then using 
those segmentation results as occlusion masks for the image completion network to 
recover and visualize hidden parts of an enemy.

6.1  Real‑time panoptic segmentation

We design a real-time panoptic segmentation network based on YOLACT [30], 
which is a well-known single-stage instance segmentation network, to detect ene-
mies. Our panoptic segmentation network consists of three sub-networks: feature 
pyramid network (FPN), instance segmentation network, and a semantic segmenta-
tion network. The final panoptic segmentation outputs are generated by combining 
two outputs of instance and semantic segmentation networks, as shown in Fig.  5. 
Our single-stage network has the advantage of a high speed compared to the multi-
stage network that uses the Region Proposal Network (RPN) separately. In general, 
there are two types of classes for panoptic segmentation; one is a Things class and 
the other is a Stuff class. Our instance segmentation network only produces results 
for a Things class, and the semantic segmentation network performs for all classes.

Fig. 5  Overall architecture of the proposed panoptic segmentation network. Our network consists of 
three sub-networks: feature pyramid network (FPN), instance segmentation network and semantic seg-
mentation network. Final panoptic segmentation outputs are generated by merging two outputs of each 
segmentation network
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6.1.1  Instance segmentation network

We adopt a YOLACT [30] architecture for out instance segmentation network. Most 
single-stage instance segmentation methods motivated by SSD and YOLO are fast 
but show worse performance than two-stage ones. To increase performance while 
keep real-time speed, YOLACT divides an instance segmentation problem into two 
parallel tasks. One (ProtoNet) is generating a set of prototype masks on images, and 
the other (Prediction head) is predicting a set of coefficient to compute linear combi-
nation with prototype per instance. Two separate networks for these tasks share the 
FPN [5], and we denote k-level features on FPN by Fk heads for simplicity. Object 
masks for the anchor boxes of each cell are generated by multiplying the prototype 
activation by the mask coefficient of the prediction head. Then, the final object mask 
is obtained by binarization through crop and threshold operations to obtain the final 
instance segmentation results.

Our loss function for training the instance segmentation network consists of three 
different losses; a bounding box regression loss, a classification loss, and a mask 
coefficient loss, as follows:

where Lboxreg is a smooth-L1 loss to regress offsets for box coordinates of anchors, 
Lboxcls is a softmax cross-entropy loss, and Lmask is a pixel-level binary cross-entropy 
loss between a linear combination of prototype masks and a ground-truth mask for 
each bounding box. Note that, these losses for the instance segmentation network 
are only computed for Things classes. For more details of the instance segmentation 
network, please refer to YOLACT [30].

6.1.2  Semantic segmentation network

To produce segmentation masks for Stuff classes, we combine a semantic segmenta-
tion branch into the panoptic segmentation network. Our semantic segmentation net-
work is also attached to FPN and uses feature maps from F2 to F6 heads. To reduce 
model complexity, the semantic segmentation network employ the shared head used 
in the prediction head of the instance segmentation network. Thus, the shared head 
also used to encode semantic features for each features head. This leads to achieving 
real-time panoptic segmentation by avoiding heavy computation for semantic seg-
mentation. Those features are upsampled and concatenated into one single feature 
map and feed to one last convolution layer to produce the final semantic segmenta-
tion output masks. The detailed structure of our semantic segmentation network is 
shown in Fig. 6.

To train the semantic segmentation network, we use a cross-entropy loss with 
pixel-level hard-negative mining [35] where pixels with large losses have more pen-
alty. In our experiments, we penalize on pixels of which losses are larger than 30% 
percentile of all predictions. Then, the final loss for training the proposed network is 
as follows:

(1)Linst = Lboxreg + Lboxcls + Lmask ,
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where Lsem is a pixel-level cross-entropy loss between a segmentation segmentation 
prediction and a ground-truth segmentation mask generated by panoptic segmenta-
tion masks, and � is a constant and is set to 3 in our experiments.

6.2  Segmentation‑guided image completion

In order to visualize hidden enemies, we use an image completion network based 
on conditional variational auto-encoder with generative adversarial network (cVAE-
GAN) which is referred to as pluralistic image completion network (PICNet) [31]. 
Using the result of the proposed panoptic segmentation as an input mask, enables 
robust restoration against extreme occlusion. First, we find hidden enemies and their 
occluded parts using the panoptic segmentation net-work. Predicted panoptic seg-
mentation masks on occluded parts are regarded as a mask to be recovered. This 
image completion network consists of a generator network that removes the hidden 
area and a discriminator that determines the image generated by the generator and 
the original image, as shown in Fig. 7. After learning, only the generator is used to 
restore the occluded region.Please refer to PICNet [31] for further details.

7  HRL: Hypergraph based agent representation learning

In this section, we propose how to deal with multi-modal data in a consistent way, 
then construct a hypergraph for inter-graph similarity analysis. By learning the 
embedding vector of agent (i.e., local graph), we can obtain adjacency matrix of 
agents that is the key element in GNNs to perform graph convolution for the com-
mander’s battlefield situation awareness.

(2)Ltot = Linst + � ⋅ Lsem,

Fig. 6  Detailed architecture of the proposed semantic segmentation network
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7.1  Overall procedures

Figure  8 represents system architecture of our proposed hypergraph based rep-
resentation learning (HRL). Based on multi-modal data sensed by agents, HRL 
first converts them into graphs. Then, a hypergraph is constructed to integrate 
multiple graphs, and training data are made by hypergraph random walk. To train 
an embedding vector of agents, we minimize triplet loss, where anchors, positive 
samples and negative samples are selected from hypergraph induced information. 
After training the embedding vector of agents, adjacency matrix is made to repre-
sent interrelationship between agents, which can be used in later part of Deep AI 
Military Staff for the commander’s battle field situation awareness. Details of our 
HRL are illustrated in the following subsections.

Fig. 7  Overall system of the image completion network based on PICNet [31]. Occluded masks are gen-
erated by panoptic segmentation outputs

Fig. 8  System architecture for our hypergraph based representation learning (HRL)
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7.2  Graph from multi‑modal data

In this subsection, we illustrate how to convert multi-modal data into knowledge 
graphs. A graph is a structure of nodes and edges, where nodes with similar proper-
ties are connected by edge to represent their relational information, and a feature 
vector is assigned to each node to indicate its characteristics. We first describe how 
to extract graph components from multi-modal data. Then, we explain the needs for 
a database for node feature vectors, and construct a knowledge graph.

7.2.1  Graph components

From multi-modal data, we can extract entities and attributes that can be recon-
structed as contextual phrases. For example, in combat scenes, some snipers with 
brown hair aim their guns at the enemy while other soldiers with bombs hide behind 
large trees. Based on an object detection algorithms [13, 28, 37], objects (such as 
snipers, soldiers, bomb, enemy and trees) can be detected in images and interpreted 
as nodes in a graph. In addition, visual grounding techniques can be applied to 
find attributes of each object (e.g., brown hair and large) and relationship between 
objects, where the former and the latter denote the attributes and edges in graph, 
respectively. This is an simple example of how to convert image to graph, but other 
types of raw data (sounds, texts, etc) can also be transformed into graph without any 
difficulties.

7.2.2  Database

Although nodes, attributes and edges can be obtained directly from raw data, more 
efforts are required to obtain node feature vector (NFV) because it can be used in 
any other graphs to indicate unique characteristics of nodes. To this end, we con-
struct database that saves all the entities with their feature vectors. Based on con-
textual phrases that can be obtained from real world (e.g., combat movies, combat 
games, or combat histories), we create vocabulary of entities and their feature vec-
tors, where word embedding modules [38] is used to obtain the feature vector of 
entities (see Fig. 9 for more information). Then, the trained feature vectors of enti-
ties are used as a basis to create NFVs.

7.2.3  Knowledge graph

Now we are ready to construct knowledge graph from multi-modal data. Compared 
to conventional graphs that has nodes, attributes along with adjacency matrix among 
nodes, we construct knowledge graph with nodes and NFVs, where NFVs are 
trained to contain information about relations and attributes. Note that in battlefield 
scenario where multiple distributed graphs need to be considered simultaneously, 
adjacency matrix of a single graph only carries local structure information and is 
not meaningful for the entire distributed graphs. So, we train node-relation vector to 
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utilize adjacency matrix implicitly. Also, we train node-attribute vector to represent 
correlated nodes and attributes, which can treat nodes with and without attributes in 
a consistent way.

Based on feature vector of entities in database, we train node-relation and node-
attribute vectors using [21], and concatenate them to create NFV with fixed size.

7.3  Hypergraph random walk

In this subsections, we construct a hypergraph to integrate distributed graphs and 
apply hypergraph random walk to obtain training data for agent embedding vector.

7.3.1  Hypergraph

A hypergraph is composed of hypernodes and hyperedges, where a hypernode 
means an agent, and each node in distributed graphs makes a hyperedge. For 
example, when each of N agents has a graph with M nodes, a hypergraph is com-
posed of N hypernodes and N ×M hyperedges. Each hyperedge is interpreted 
as a set of correlated hypernodes and can be defined through similarity analysis 

Fig. 9  Graph components and the feature vector of entities. The image and contextual phrases are from 
visual genome dataset [36]. Many contextual phrases can be made from a single image, and each phrase 
has entities with attributes, which correspond to the nodes in graph. The feature vectors of entities are 
trained using word embedding modules and can be used to create NFVs
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between nodes in distributed graphs. Specifically, by regarding each node as a 
basis, NFVs from previous subsections are used to sort all nodes by similarity. 
Then, a threshold or a predetermined number can be used to select the nodes 
such that agents (i.e., hypernodes) corresponding to the selected nodes would be 
included in a hyperedge (see an example of hypergraph in Fig. 10).

Once a hypergraph is obtained, a hypergraph incidence matrix can be defined, 
where a row denotes a hypernode (i.e., an agent) and a column denotes a hyper-
edge (see the middle part of Fig. 8). The element of hypergraph incidence matrix 
can be defined as binary, where one is assigned when a hypernode is included 
in a hyperedge, and zero is assigned otherwise. From the hypergraph incidence 
matrix, we can extract relationship information among hypernodes. Figure  11 
represents an example of hypergraph induced information for the given hyper-
graph incidence matrix in Fig. 8. It is observed from Fig. 11 that a single hyper-
dedge relates multiple hypernodes. Also, for each hyperedge, hypernodes can 
be divided into two sets; one for related hypernodes and others for unrelated 
hypernodes.

Fig. 10  Example of hypergraph

Fig. 11  Example of hypergraph induced information
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7.3.2  List of hyperedges

Based on hypergraph induced information, hypergraph random walk can be used 
to obtain training data for agent embedding vector. Since all nodes in distributed 
graphs have their own information, it is critical to visit all the nodes to carry all 
information about graphs. Based on that each hyperedge can be defined on each 
node, our proposed hypergraph random walk defines inter-graphs movement by 
performing permutation of all hyperedges. Note that one permutation makes the 
list of hyperedges, and several independent trials of permutations provide a bunch 
of training data. A batch size for training a network is defined by considering all 
or part of the hyperedge list.

7.4  Training agent embedding vector for adjacency matrix

In this subsection, we train a network to obtain agent embedding vectors, then 
construct an adjacency matrix that shows relationship information between 
agents.

7.4.1  Loss function

The objective of training agent embedding vector is to classify agents that have 
observed the same local situations. We adopt triplet loss in training because mini-
mization of this loss makes embedding vectors of two samples (i.e., anchor and 
positive sample) similar, while those of anchor and negative samples are trained 
to be dissimilar.

Let � be the set of all hypernodes (i.e., agents), and �P and �N denote posi-
tive and negative samples of hypernodes, respectively. When hypernode i ∈ � is 
used as anchor, triplet loss can be expressed as

 where Xi is embedding vector of hypernode i ∈ � , f is a vector operator for simi-
larity analysis and � is a Relu function. Note that �P and �N are updated as anchor 
changes, and hypergraph induced information (in Fig.  11) can be used to define 
hypernode pairs of anchor, positive and negative samples. For example, for hyper-
edge 1 in Figs.  10 and 11, hypernode (i.e., agent) that has graph with node 1 is 
used as anchor, and related hypernodes (i.e., hypernodes 2 and 4) and unrelated 
hypernodes (i.e., hypernodes 1, 3, 5) are used as positive and negative samples, 
respectively.

7.4.2  Adjacency matrix of agents

Once embedding vectors of agents are obtained, we can utilize them to construct 
adjacency matrix, where each row and column represents the agent. Since each 

(3)L(Xi) =
∑

p∈�
P

log �

(
f (Xi,Xp)

)
−
∑

n∈�
N

log �

(
f (Xi,Xn)

)
,
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agent corresponds to graph, adjacency matrix of agents can be used to construct 
global graph from multiple local graphs.

It is worth noting that adjacency matrix only represents relation between dis-
tributed graphs, so it seems that there is no information about which parts of 
adjacent graphs (i.e., nodes) are connected. However, since hypergraph induced 
information provides relational information in node level, we can merge multiple 
local graphs without difficulties.

8  STBR: Space‑time multilayer model for battlefields recognition

8.1  Battlefield object model

Figure 12 is a common-based ontological design for distributed agents mounted 
on situational cognitive systems and individual combatant equipment to identify 
and share situations in the battlefield environment with the various objects pre-
sent in the battlefield environment.

The battlefield situation is represented by the spatial interaction of various 
objects present in the battlefield environment, which requires the representation 
of each object as a correlated vector in order to learn/recognize effectively based 
on a deep neural network model. In this paper, for the development of a situation-
aware system, we express a formal world model based on the spatial and time-
space relationship between the various objects and objects that make up the bat-
tlefield environment as shown in Fig. 13.

Fig. 12  Battlefield situation ontology (BSO)
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8.2  Collaborative knowledge based battlefield situation awareness

Existing situational awareness systems use prebuilt situational knowledge-based sym-
bolic reasoning, making it very difficult to infer situational knowledge building or unex-
pected situations in complex, time-space dynamic environments such as battlefields. in 
this paper, we present a new technique to continuously learn time-space changes for 
various situations through mechanical learning based on environmental awareness 
information collected from the battlefield.

Engagement is a very important situation to be aware of in a battlefield environ-
ment, and in order to accurately recognize the situation, it is necessary to recognize 
light sources such as sparks or explosions from firearms (guns, heavy weapons, etc.). 
Figure 14 illustrates a machine learning-based process that can recognize a field situa-
tion by recognizing the light source in real time based on the texture characteristics of 
various light sources that can occur in the field.

9  Experiment results

In this section, we evaluate our panoptic segmentation on the public benchmark, and 
compare our performance to the state-of-the-art methods. Also we show image com-
pletion results on the our private dataset constructed using the Battlefield4.

Fig. 13  World model for situation recognition



6058 C.-E. Lee et al.

1 3

9.1  Real‑time panoptic segmentation in RTMF

9.1.1  Implementation details

We train our model using 3 GPUs with ImageNet pretrained ResNet-50-FPN as 
our feature backbone, where the batch size is set to 1 per each GPU, and a input 
image size of 1440 × 720, We freeze BatchNorm layers in the backbone and add 
GroupNorm [39] layers after backbone. We use Adam Solver [40] for 400k itera-
tions with initial learning rate of 103 and weight decay of 104. Learning rate is 
decreasing by a factor of 0.1 at 28 and 36k.

9.1.2  Datasets

We evaluate our method on the Cityscapes panoptic segmentation benchmarks 
[41]. The Cityscapes dataset consists of street scenes with a total of 19 classes, 
where 8 classes for things which have instance-level labels as well as semantic 
class labels, and 11 classes for stuff which only have semantic labels. Following 
the standard protocol, we use 2975 image for training and 500 images for testing 
with a resolution of 1024 × 2048 for evaluation. Note that we only used fine-
grained labels for training. For data augmentation, color jiterring, random crop, 
random scaling, random flipping are applied. We also test on the Battlefield4 
dataset which is constructed by images captured from the Battlefield4 game.

Fig. 14  The machine learning-based process for situation recognition
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9.1.3  Evaluation metrics

To evaluate the performance for panoptic segmentation, we use the Panoptic Quality 
(PQ) metric [4] which is computed by multiplication of two sub-factors, SQ (Seg-
mentation Quality) and RQ (Recognition Quality), as follows:

where p and g denotes predicted and ground-truth segmentation masks, respectively. 
|TP|, |FP| and |FN| denote the number of true positive, false positive and false neg-
ative, respectively. p is regarded as positive detection when the intersection-over-
union (IoU) of p and g is greater than 0.5. We also measure instance segmentation 
accuracy by averaging over APr [42].

9.1.4  Results

We report PQ, SQ and RQ of the propose network for all, things and stuff classes 
in Table 1. We also compare the performances of our method to the state-of-the-art 
panoptic segmentation methods in Table 2. For fair comparison, we only report the 
results using ResNet-50 or ResNet-50-FPN backbones. Although our method does 
not outperform UPSNet [9], our model is the fastest method among the state-of-the-
art methods, while the performance of our method achieves the second-best perfor-
mance. In comparison with FPSNet [6] which shows similar speed to our method, 

(4)
PQ =

∑
(p,q)∈TP

IoU(p, q)

�TP�
×

|TP|

|TP| + 0.5 × |FP| + 0.5 × |FN|

= SQ × RQ =

∑
(p,q)∈TP

IoU(p, q)

�TP| + 0.5 × |FP| + 0.5 × |FN�
,

Table 1  Quantitative results on 
the cityscapes validation set

PQ SQ RQ

All 58.0 79.4 71.4
Things 53.4 78.7 67.5
Stuff 61.3 79.9 74.3

Table 2  Comparison with the 
state-of-the-art methods on the 
cityscapes validation set

PQ PQth PQst AP Speed (ms)

Ours 58.0 53.4 61.3 35.0 110
UPSNET [9] 59.3 54.6 62.7 33.0 202
AUNet [8] 56.4 52.7 59.0 33.6 −
FPSNet [6] 55.1 48.3 60.1 − 114
DeeperLab [43] 56.3 52.7 59.0 − 462
PanopticFPN [4] 57.7 51.6 62.2 − 378
SSAP [11] 56.6 49.2 − 31.5 260
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the performance of the proposed network gains almost 3 points in terms of a PQ 
metric. In Tables  3 and 4, we show the quantitative results for Things and Stuff 
classes, respectively.

We demonstrate qualitative results on the Cityscapes dataset and the Battlefield4 
dataset in Figs. 15 and 16, respectively. As shown in Fig. 15, our panoptic segmenta-
tion network successfully segments small and thin structures such as traffic light or 
traffic sign. Also even with low-quality lighting conditions, our method shows good 
performance on detecting and segmenting objects in simulated battlefields.

9.2  Occluded enemy reconstruction in RTMF

9.2.1  Implementation details and datasets

We train the image completion network using the Battlefield4 dataset which is con-
structed by the screenshots of the Battlefield4 game. This dataset consists of 1300 
images of various poses and situation of soldiers. All images are resized to 256x256 
and uses random free-form masks for training. Image completion network is trained 
on a single GPU with a batch size of 20.

9.2.2  Results

In Fig.  17, reconstruction results using the image completion network are illus-
trated, where gray regions in the masked images show examples of irregular masks 
used for training. Even in the case of extreme occlusion, where only a small part of 
the helmet is visible, the proposed method successes in reconstructing the missing 
parts well. We also test our method using panoptic segmentation results and show in 
Fig. 18.

9.3  Agent similarity analysis in HRL

9.3.1  Implementation details and datasets

We adopt visual genome dataset [36] to assign a graph to each agent. To be specific, 
using the contextual phrases for the single image, at least one phrase is allocated to 
each agent, some of which has more than two phrase. Then, entities, attributes and 
edges are extracted from each phrase, which form a graph. Note that even in single 
image, many distributed graphs can be made because of multiple tangled entities.

Table 3  Quantitative results for 
things classes on the cityscapes 
validation set

Person Rider Car Truck Bus Train m/cycle Bicycle

PQ 46.2 49.6 65.9 50.0 69.9 59.1 41.5 44.7
SQ 73.6 71.5 84.2 85.9 87.6 82.7 72.4 71.3
RQ 62.7 69.4 78.3 58.3 79.8 71.4 57.3 62.7
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Fig. 15  Qualitative results on the Cityscapes dataset

Fig. 16  Qualitative results on the Battlefield4 dataset. Left: input image; Right: panoptic segmentation 
and detection results
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9.3.2  Results

Tables 5 and 6 represent the pairs of agents sorted by cosine similarity of trained 
agent embedding vector. We considered 26 agents and assigned a graph with more 
than two nodes to each agent. The number of connected nodes between graphs can 
be a basis that represents similarity level between agents. So, we can interpret that 
adjacent graphs shares many nodes. It is observed from Tables  5 and 6 that the 
trained agent embedding vector has high cosine similarity for adjacent graph and 
low for dissimilar graphs. By setting a threshold value and classifying the agents, we 
can create an adjacency matrix of agents (see Fig. 19).

Note that the adjacency matrix in Fig. 19 has relation information between mul-
tiple distributed data from each agent, and can be used in our proposed space-time 
multilayer model for battlefields recognition (STBR) to predict situation labels of 
the merged graph.

Fig. 17  Reconstruction results on the Battlefield4 dataset
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Fig. 18  Qualitative results for reconstructing invisible parts on the Battlefield4 dataset

Table 5  The pairs of Agents 
whose trained embedding 
vectors has cosine similarity 
greater than 0.15

Pairs of agents Cosine similarity Number of 
connected 
nodes

Agent12 Agent25 0.9547 4
Agent3 Agent26 0.8825 3
Agent17 Agent18 0.7345 3
Agent9 Agent24 0.5296 3
Agent19 Agent22 0.3921 3
Agent2 Agent15 0.2076 0
Agent16 Agent21 0.2048 3
Agent15 Agent22 0.1989 3
Agent14 Agent22 0.1797 3
Agent14 Agent15 0.1571 3

Table 6  The pairs of Agents 
whose trained embedding 
vectors has cosine similarity less 
than -0.3

Pairs of agents Cosine similarity Number of 
connected 
nodes

Agent15 Agent24 − 0.4137 1
Agent5 Agent16 − 0.3717 0
Agent8 Agent12 − 0.3478 0
Agent8 Agent25 − 0.3450 0
Agent4 Agent23 − 0.3183 0
Agent13 Agent18 − 0.3117 0
Agent13 Agent19 − 0.3080 0
Agent8 Agent18 − 0.3036 0
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9.4  Battle filed awareness in STBR

9.4.1  Implementation details and datasets

Through the battlefield simulation game (Battlefield 4), object learning data was col-
lected to build a YOLOV3-based battlefield situation simulation object learning net-
work. The object was recognized based on the battlefield data from a specific Time 
Step collected from four allies(agents). We integrated the recognized object infor-
mation from the screen acquired from our combatants and the location information 
of our combatants recognized from the map screen to input the deep learning model 
for situational reasons. The learning data consisted of a total of 250,000 frames of 

Fig. 19  Adjacency matrix of agents. We set 0.1 as threshold of cosine similarity and adjacent agents are 
indicated in black in the matrix
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image data in three battlefield situations (Secure, Vigilant, Engagement), and a total 
of 1,000,000 frames of image data by using each of the four Agent PCs for one Time 
Step. We classify data into three battlefield situation; a vigilant situation when ene-
mies, tanks, and helicopters were recognized around the allies, an engagement situ-
ation when bombs and explosions were recognized, and a safety situation otherwise.

9.4.2  Results

We measure the average accuracy of situation recognition using servers with the 
NVIDIA RTX2080. In our simulation, it is observed that average accuracy is 87.248 
% for 10,000 frames with 20.45 frame per second (FPS).

10  Conclusion

In this study, we have proposed a Deep AI military staff for supporting commander 
decision-making by enhancing awareness of combatants. We classify data into three 
battlefield situation; a vigilant situation when enemies, tanks, and helicopters were 
recognized around the allies, an engagement situation when bombs and explosions 
were recognized, and a safety situation otherwise. The proposed model provides 
collaborative intelligence-based real-time battlefield situation recognition technolo-
gies, which is expected to be applicable to actual battlefield environments or combat 
training simulator. In addition, our proposed models can be used as key technologies 
not only in the defense area but also in the 4th industrial revolution such as self-
driving cars, intelligent robots, smart factory, intelligent security/crime prevention 
and IoT services.
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