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Abstract
Early-stage fault detection has become an indispensable part of modern industry to 
prevent potential hazards or sudden hindrances to the production process. With the 
advent of deep learning (DL) applications in several fields, DL models have been 
used to classify faults in specific environments. Uniform texture extraction has 
been performed using transformed-signal processing techniques and deep transfer 
learning (DTL) architectures in a few studies. Traditional signal processing tech-
niques encounter difficulties in extracting distinct fault features due to the nonlinear 
and non-stationary nature of the time-series fault data. In this paper, a hybrid DTL 
architecture comprising a deep convolutional neural network and long short-term 
memory layers for extracting both temporal and spatial features enhanced by Hilbert 
transform 2D images is presented. Three standard audio sound fault datasets com-
prising the malfunctioning industrial machine investigation and inspection dataset, 
toy anomaly detection in machine operating sounds dataset, and machinery failure 
prevention technology bearing vibration fault dataset with various loads and noisy 
environments were utilized in the experimental evaluation. The proposed model 
with an input size of 32 × 32 achieved an average F1 score of 0.998 on the tested 
datasets. The implementation of transfer learning using the three benchmark data-
sets resulted in the highest accuracy of the proposed model and over fivefold reduc-
tion in the training epochs. In addition, the proposed model outperformed the state-
of-art models in accuracy in various environments.
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1  Introduction

In Industry 4.0 environments, the automation of industrial equipment supervision 
is required to maintain the desired level of performance. Through fault diagnosis, 
the current status of the equipment can be determined and abnormal conditions 
can be identified. Slow, inaccurate, or ineffective fault diagnosis may degrade the 
performance of the entire system and cause unexpected losses. Although real-
time diagnosis models can allow abnormal conditions (faults) in equipment to be 
identified in the early stages, automatic fault diagnosis is always a challenging 
task because of the types of equipment used in industrial environments [1].

In general, various Internet of Things sensors, such as acoustic emission, 
vibration, current, voltage, thermal, and pressure sensors, can be used to monitor 
equipment. All the sensor data are one-dimensional time-series signals in which 
information is represented through the signal amplitude, phase, and frequency (as 
depicted in Fig.  2 in Sect.  2.1). These data are used to identify the type, size, 
and location of the fault. There are three basic steps in fault diagnosis models 
based on sensor data. Step 1 comprises data collection from the equipment, step 
2 involves the application of signal processing techniques to extract features from 
the sensor data, and step 3 is the use of classifiers in the final stage [2].

Various researchers have studied transformed-signal processing methods for 
extracting uniform texture information from fault signals under various condi-
tions. In [3], the discrete orthonormal Stockwell transform was applied to extract 
identical 2D patterns for each fault signal. Its high computation cost is infeasible 
for most applications while the time–frequency space partitioning leads to sym-
metry loss. In [4], bi-spectrum-based higher-order analysis was utilized to extract 
distinct signal patterns under inconsistent working conditions. Although the tra-
ditional bisector representation permits the phase information to be included 
and eliminates Gaussian noise, the results are unstable because of the randomly 
changing phase components of the signals. 2D acoustic spectral imaging [5] and 
local binary pattern (LBP) [6] techniques were applied for extracting uniform pat-
terns from signals. The limitation of LBP is that identical LBP codes are gen-
erated for various structural patterns. Short-time Fourier transform (STFT) [7] 
and a Gabor filter with singular value decomposition (SVD) [8] were applied to 
acoustic emission signals for extracting the uniform texture patterns of the sig-
nals. However, the STFT and Gabor filter took too long to complete.

These state-of-the-art machine learning methods have certain drawbacks. For 
example, the development of a feature extractor requires domain expertise and 
skill in signal processing techniques, and the extraction function does not follow 
the same protocol in every application.

Deep learning (DL) models are used in fault diagnosis, where complex 
deep features are extracted from the raw data using several hidden layers with-
out human intervention. Xia et  al. [9] proposed a convolutional neural network 
(CNN) architecture for fault detection and evaluated its performance on the Case 
Western Reverse University (CWRU) bearing dataset and a gearbox dataset. In 
[10], deep neural network, deep belief network, and CNN were utilized for fault 
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diagnosis and prognosis. The CNN did not encode the position and orientation of 
the objects and was invariant with respect to the input data. In [11], a novel fault 
diagnosis framework based on an end-to-end LSTM model was proposed to learn 
the features directly from multivariate time-series data and capture the long-term 
dependencies through the recurrent behavior and gates mechanisms of the LSTM. 
The RNN and LSTM were difficult to train because they required memory-band-
width-bound computation in which the LSTM required four linear MLP layers 
per cell. Peng et  al. proposed a model using 1D CNN and 1D residual blocks. 
The model was experimentally shown to work well despite the presence of strong 
noise and variable loads [12].

The preceding studies demonstrate that DL models can perform automated deep 
feature extraction from the raw fault data. However, the models have some limita-
tions such as the increase in the number of parameters with the increasing number 
of layers and the computational burden of training large networks with huge parame-
ters from scratch requires a massive amount of label data. The performance of these 
DL models is also affected by parameter optimization and hyperparameter tuning.

To overcome the limitations of DL models, transfer learning (TL) was incorpo-
rated into DL models so that knowledge from one problem can be used to solve 
a related different problem [4, 13–20]. For example, pre-trained ImageNet weights 
have been used to initialize the parameters in deep networks for classifying indus-
trial faults instead of random initialization. Although the deep transfer learning 
(DTL) model parameters are initialized using pre-trained weights, a large training 
target dataset is still required for parameter optimization in complex architectures to 
improve their accuracy. Optimizing the parameter initialization is a vital considera-
tion in ensuring the accuracy of DL-based fault diagnosis.

1.1 � Literature review

TL models have recently been applied in machine fault diagnosis. In [13], a new 
temporal CNN with a depth of 51 convolutional layers was applied, with ResNet-50 
trained using ImageNet as a feature extractor. Wen et al. used the VGG-19 architec-
ture in [14] and Inception V3 and TrAdaBoost as feature extractors in [15]. Grover 
et  al. [4] utilized bi-spectrum contour maps of the vibration signals in four pre-
trained networks comprising Alexnet, VGG-19, GoogleNet, and Resnet-50. These 
architectures are limited by their large number of layers and high computational 
complexity. In addition, since TrAdaBoost depends on only a single source, its 
learning effects degrade when the source and target domains are weakly correlated.

Transfer component analysis (TCA) [16] and weighted transfer component analy-
sis (WTCA) [17] have been used for fault diagnosis in rolling bearings under vari-
able operating conditions. The large number of super-parameters in TCA/WTCA led 
to difficulties during model training.

In [18], a sparse auto-encoder with three layers was used to scrutinize the raw 
data and extract features. The maximum mean discrepancy was applied as the dis-
crepancy penalty to be minimized between the source and target data. In [19], a 
VGG16 pre-trained network was used to extract the lower-level features and label 
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wavelet transform images. Fan et al. [20] implemented TL in a CNN by generating 
texture images using empirical mode decomposition with the pseudo-Wigner–Ville 
distribution. The state-of-art DTL models used pre-trained ImageNet weights for 
implementing TL. Although there are 1000 object classes in the ImageNet data-
set, the classes are indirectly related to the target fault domain. In addition, the pre-
trained DTL architectures consist of significantly more layers and trainable param-
eters than conventional DL architectures.

1.2 � Contributions

Motivated by the earlier work, Peng et  al. [12], in this study, a texture-based 2D 
hybrid deep-CNN–LSTM architecture was investigated because deep LSTM layers 
with a deep CNN architecture can learn the features of fault signals adaptively. Simi-
lar to the approach in Hasan et al. [21], in this study, DL was implemented by split-
ting the datasets into two subsets comprising the source and target task datasets for 
various environments. The source task-dataset is used for training and validating the 
model to save the weights of the deep architecture and then the target task dataset is 
used for testing the classification accuracy using the weights of the source task data-
set. Unlike state-of-the-art TL models, pre-trained weights were not used to initial-
ize the architectures in this study.

The contributions of this study are summarized as follows:

•	 First, we explain how Hilbert transform images based on analytical signals dem-
onstrate invariant image patterns for fault signals using the benchmark fault 
datasets. In addition, Hilbert transform analytical imaging is compared with 
state-of-art methods comprising discrete wavelet transform (DWT), fast Fourier 
transform (FFT), and gammatone spectrogram-based texture approaches.

•	 Second, a 2D DTL-based CNN–LSTM hybrid architecture for fault classifica-
tion is presented. The proposed architecture is compared with conventional deep 
architectures such as the DCNN and deep LSTM. In our hybrid architecture, the 
additional LSTM blocks and DCNN can adaptively learn fault features more 
accurately and the complexity of the hybrid architecture is significantly lower 
than those of the state-of-art architectures used in TL models. For example, the 
ratio of trainable parameters in VGG16 to that in the proposed architecture is 
12.65:1.

•	 Finally, the effectiveness of the proposed hybrid TL model is evaluated in various 
environments with different noise, loads, and machines using audio records of 
machine anomalies in three public benchmark datasets of different sizes compris-
ing the malfunctioning industrial machine investigation and inspection (MFPT) 
dataset for bearing vibration signals and the malfunctioning industrial machine 
investigation and inspection (MIMII) and toy anomaly detection in machine 
operating sounds (ToyADAMOS) datasets. The proposed hybrid architecture 
with TL demonstrated better performance for the vibration and audio fault data-
sets by achieving higher F1 scores with approximately five times less epochs.
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1.3 � Outline

The rest of the paper is organized as follows. In Sect. 2, the detailed architecture of 
the proposed hybrid DTL architecture is presented. The experimental results are dis-
cussed in Sect. 3. The paper is concluded in Sect. 4.

2 � Proposed fault diagnosis methodology

The detailed steps in the proposed model are shown in Fig. 1. The model consists 
of three major blocks comprising dataset preparation with various loads, signal-
to-noise ratios (SNRs), and revolutions per minute (RPMs); Hilbert transform 2D 
image generation; and a deep CNN–LSTM hybrid architecture as a classifier. In 
addition, to reduce the computational complexity, TL was implemented in the pro-
posed model by dividing the datasets into the source and target task datasets. A brief 
description of each model block is presented in the following subsections.

2.1 � Test rig and data descriptions

Three standard public fault datasets comprising the MFPT vibration fault dataset 
and the MIMII and ToyADAMOS machine audio fault datasets were used to evalu-
ate the proposed model. The MFPT dataset was collected from a NICE bearing with 
0.235 roller diameter, 1.245 pitch diameter, eight elements, and 0° contact angle 
[22]. There are two environments in the MFPT dataset corresponding to loads of 
50–150 lbs and 200–300 lbs and two classes of faults comprising inner and outer 
race signals, as summarized in Table 1. There are 429 samples with a sample size of 
1024 for each type of signal in each environment.

MIMII is an industrial sound dataset in which sounds corresponding to different 
anomalies comprising contamination, leakage, unbalanced rotation, and rail damage 
were collected with background noise from four machines comprising a fan, pump, 

Fig. 1   Step-by-step representation of the proposed model
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valve, and slide rail in an actual factory [23]. Eight-channel microphone arrays with 
a sampling rate of 16 kHz placed 45° apart from one another were used in the col-
lection rig. Among the eight microphones, the sound from the microphone nearest 
to each machine was used for the machine in the dataset. For example, the sound 
from the microphone at 180° was used for the fan, that from the microphone at 270° 
for the slide rail, that from the microphone at 0° for the valve, and that from the 
microphone at 90° for the pump. To construct the dataset for validating the model, 
the.wav audio files were converted into.mat files, and each.mat file was resized to 
a length of 1024. Three environments with SNRs of − 6 dB, 0 dB, and + 6 dB are 
included in the MIMII dataset, as summarized in Table 2. There are eight classes 
of faults in the MIMII dataset comprising the normal and abnormal conditions for 
the fan, pump, slider, and valve. The dataset contains 400 signals for the normal fan, 
pump, slider, valve, and abnormal fan, and 143, 356, and 119 signals for the abnor-
mal pump, slider, and valve, respectively.

ToyADAMOS is a machine operating sound dataset that was collected from four 
microphones at a sampling rate of 48,000 Hz [24]. There are two types of sounds com-
prising normal and anomalous sounds for three different toy machines comprising a toy 
car (machine-condition inspection), toy conveyor (fixed), and toy train (moving). The 
dataset contains sounds for three different environments denoted as case1, case2, and 
case3. Each case contains a total of 72,000 individual samples, which includes normal 
and anomalous sounds from the toy car, toy conveyor, and toy train, as summarized 
in Table 3. The anomalous sounds were collected by damaging the machine compo-
nents or adding additional objects. The three cases in the toy car data were generated by 
changing the motor and bearing, those in the toy conveyor cases were generated with 
three different sizes of machines, and those in the toy train cases were generated with 

Table 1   Details of various load 
environments in MFPT dataset

Environment Load Sample size 
(1024)

Inner Outer

Environment 1/2 50–150/200–300 429 429

Table 2   Details of environments with various SNRs in MIMII dataset

Environment Normal Abnormal

SNR (DB) Fan Pump Slider Valve Fan Pump Slider Valve

Environment 1/2/3 − 6/0/6 400 400 400 400 400 143 356 119

Table 3   Details of various environments in ToyADAMOS dataset

Environment Toy car Toy conveyer Toy train

Normal Anomalous Normal Anomalous Normal Anomalous

Case 1/2/3 12,375 12,375 11,250 11,250 12,375 12,375
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different types and scales of toy trains. Some sample signals from the MFPT, MIMII, 
and ToyADAMOS datasets are shown in Fig. 2.

2.2 � Hilbert transform 2D grayscale image generations

In this study, the Hilbert transform is used to generate 2D images from the original 
bearing fault signals. It is an effective method for performing spectrum analysis on 
time-domain signals. It operates on real-time time-domain signals without the need to 
perform transformations into the space or frequency domains, unlike the Fourier and 
wavelet transforms. Since the Hilbert transform is a complex operator, performing the 
Hilbert transform on the time-domain signal y(t) produces an analytical signal y(t) , 
which has a real and imaginary part.

The Hilbert transform of a signal y(t) can be written as

(1)y(t)
HT

→ y(t) = yRe(t) + j.yIm(t)

Fig. 2   Sample signals from the MFPT, MIMII, and ToyADAMOS datasets
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wherey(t) is an analytic signal and yIm(t) represents the Hilbert transform of the sig-
nal yRe(t) . The amplitude A(t) of the time signal y(t) is given by

This technique was used to extract the detailed phase shift between the real and 
imaginary components in an earlier study [25]. The spectrum amplitude was used to 
detect the existence of faults in electric machines. Since the spectrum amplitude of 
the analytic signal is obtained from its real and imaginary components, the ampli-
tude of the analytical signal is used to extract the uniform texture pattern of the fault 
signals in this study.

The generation of the 2D grayscale images from the original fault signals by 
applying the Hilbert transform is briefly described here. Since the analytical sig-
nal is complex, three different types of signals comprising the real and imaginary 
parts and the absolute values may be extracted from a time-series signal, as shown 
in Fig. 3a.

Among the three parts of the analytical signal, we consider only the conversion 
of its amplitude (i.e., absolute value, as depicted in Fig. 3b) to a 2D grayscale image 
following the approach in [8]. The 1D signal with a length of 1024 was subdivided 
into blocks with a length of 32 to generate a 32 × 32 2D grayscale image. Sample 
texture images generated from the analytical inner and outer fault signals are pre-
sented in Fig. 4. The images demonstrate a uniform texture pattern for each type of 
signal. A 2D deep CNN–LSTM model was utilized to classify the faults represented 
as uniform 2D grayscale images, as discussed in the following subsection.

2.3 � 2D Deep CNN–LSTM hybrid architecture for fault recognition

The architecture was constructed using the Keras sequential API. The signals were 
reshaped for image generation using the NumPy library. These images represent dif-
ferent signals belonging to the various classes and the image size was input into 
the Keras model. The input data were connected with the first layer of the entire 
neuron list, and the entire pixel list of all the images was forwarded to the first layer. 
The input shape was initially declared to avoid a merger between several images. 
To reduce the computation time, the input shape was set to 32 × 32. Since process-
ing each image using a separate convolution block leads to several problems such 
as a long training time, the extraction of different features from additional images, 
and frame-to-frame changes in the characteristics of the time-series data, a series of 
time-distributed layers were utilized so that similar transformations could be per-
formed across the list of the input images. Although the input shape information 
comprising the height, weight, and number of channels is usually used in the convo-
lutional layer, the number of images that are inserted in each turn should be speci-
fied for the time distribution conv2D. Therefore, the input shape was set to (1, 32, 
32, 1), where the first 1 indicates that one image goes through the subsequent layer 
in each turn.

(2)A(t) =

√

yRe
2
(t) + yIm

2
(t).
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The number of channels was set to one because the input images were gray-
scale ones. The input shape did not need to be further declared for the subsequent 
layers because the Keras library could guess the perfect shape for connecting with 
other layers. The kernel size was set to 5 × 5 at the beginning and to 3 × 3 subse-
quently. The number of filters in the first layer was set to 32 because the lower 
layers extract features from the smaller parts of the images and increased to 64 in 
the subsequent layers to detect the high-level features. The ReLu activation func-
tion was added to every time-distributed conv2D layer to introduce nonlinearity 
to the system. A 2 × 2 pooling layer (MaxPool2D) was added after each of the 
conv2D layers to down-samples the filter size and select the largest value from 
the two neighboring pixels. A dropout layer with a dropout rate of 25% was added 
after each max pooling layer to drop a quarter of the neurons randomly to avoid 
overfitting. The DCNN contains three more conv2D layers with a filter size of 64. 
Further, the current output was flattened and then transformed into a 1D vector 
for input to the LSTM. After the time-distributed layers, the images were pro-
cessed frame by frame in a chronological manner by using two LSTM layers with 

Fig. 3   Texture image generation from sample vibration fault signals. a Real and imaginary parts and 
absolute values of Hilbert transform signals for three sample fault signals, b amplitude of signal compo-
nents in (a), and c texture patterns generated from signals in (b)
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64 units or LSTM cells. The sigmoid activation function was used in the LSTM 
to form a smooth curve varying from 0 to 1. The return sequences were set to true 
in response to the output of every node to avoid generating only a single output 
at the final node. Two dense layers associated with 64 neurons and the ReLu acti-
vation function were added followed by a 30% dropout layer. The output size of 
the dense layer varied depending on the dataset. For example, since the MIMII 
dataset has eight classes, the sigmoid activation function was used to derive the 
probability of the eight neurons corresponding to these particular eight classes. 
A similar approach was applied for the MPFT and ToyADAMOS datasets, for 
which the dense layer output size was set to 2 and 6, respectively. The sigmoid 
activation function was used in the dense layer and the RMS prop was used as an 
optimizer with a learning rate of 0.0001. The categorical cross-entropy was used 
as a loss function to detect the classes in the model. In the experimental evalua-
tion, all the simulations for the three datasets were run for 100 epochs. The model 
architecture and the detailed layer information are presented in Fig. 5.

To implement TL in the proposed model, the weights of the training dataset 
were saved and utilized later for testing the fault dataset. It is expected that the 
domain-specific pre-trained weights can have a significant positive impact on the 
accuracy of the test dataset.

Fig. 4   Sample reconstructed 32 × 32 texture images: a inner and b outer race signals
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3 � Experimental results analysis

For the experimental evaluation, we used the F1 score to numerically analyze the 
performance of the proposed fault diagnosis model. The F1 score is derived from 
the precision (how consistent the results are over repeated measurements) and recall 
statistical parameters, as shown in Eqs. 3–5:

For consistency, the same hyperparameters such as the learning rate, batch size, 
and epochs were used in all the experiments to evaluate the performance of each 
model in a similar environment.

3.1 � Performance evaluation of proposed model

In the CNN–LSTM architecture, the front-end CNN layers and the LSTM layers 
(the details of the layers were presented in Sect. 2.3) function as feature extrac-
tors. In a previous study [11], the LSTM model was used as a stand-alone model 

(3)Precision =
True Positive

True Positive + False Positive

(4)Recall =
True Positive

Original PositiveNumber of Data

(5)F1 Score = 2 ×
Precision × Recall

Precision + Recall

Fig. 5   Architecture of proposed hybrid model for detecting fault signals starting with image resizing fol-
lowed by four time-distributed conv2D layers and LSTM layers with 64 units
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for inputting the raw data signals, and the model was trained with only sequential 
information. In the proposed architecture, the temporal depth and extracted fea-
tures from the Hilbert transform 2D images are extracted by the deep CNN layers 
and fed to the LSTM layers. The results for Experiments 1, 2, and 3 performed 
using the MFPT, MIMII, and ToyADAMOS datasets, respectively, are discussed 
below.

3.1.1 � Experiment 1: MFPT dataset

The MFPT dataset is smaller than the sub-datasets generated from the MIMII and 
ToyADAMOS datasets. However, this dataset has more variance because the sig-
nal loads varied from 50 to 300 lbs. Nonetheless, the hybrid architecture general-
ized better compared to conventional architectures and performed impressively 
when it was combined with the Hilbert transform 2D images. By utilizing the 
added information, it achieved an F1 score of 1 at only 20 epochs for both envi-
ronments (Environment 1 for 50–150 lbs and Environment 2 for 200–300 lbs) 
and maintained the score throughout the remainder of the training. This indicates 
that the model was able to learn very quickly without overfitting, which would 
have resulted in spikes in the training and validation curves at every epoch. Fig-
ure 6 shows that the training and validation loss curves converged smoothly after 
less than 20 epochs and maintained a net-zero loss. All the batches achieved very 
good results and maintained zero validation loss in both environments.

There are only two classes comprising inner and outer race faults in the two 
environments. 20% of the data was used for testing in the experimental evalu-
ation. For both environments, the proposed model successfully classified both 
classes accurately (as shown in Fig.  7) based on the amplitudes of the analyti-
cal signal images. The good performance of the proposed model across a varied 
range of loads reflects its broad applicability.

Fig. 6   Training and validation loss of the proposed model for Environment 1 (50–150 lbs) and Environ-
ment 2 (200–300 lbs) of MFPT dataset
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3.1.2 � Experiment 2: MIMII dataset

Compare to the vibration dataset used in Experiment 1, the MIMII dataset is more 
complex. Various actual industrial noisy environments were captured in the col-
lected audio signals. The MIMII dataset contains a total of 7854 sample signals 
across three environments with noise levels of − 6 dB, 0 dB, and + 6 dB. There are 
eight classes of data, which are denoted as 0 for fan (normal), 1 for fan (abnormal), 2 
for pump (normal), 3 for pump (abnormal), 4 for slider (normal), 5 for slider (abnor-
mal), 6 for valve (normal), and 7 for valve (abnormal) in the confusion matrix. The 
dataset was split in an 80:20 ratio for training and validation and run for 100 epochs 
for all cases and the losses are shown in Fig. 8. Figure 8 shows that for the − 6 dB 
noisy case, the hybrid model took a longer time to converge compared to the 0 dB 
and + 6 dB noisy cases. However, after the sixtieth epoch, it stabilized and reached 
its optimal state with a maximum F1 accuracy of 99.6% on the test dataset. The sig-
nals with + 6 dB converged faster with less performance variance.

Similar to Experiment 1, the proposed model correctly detected the eight types 
of faults in the three environments except for only a very few signals. The model 
accurately detected the normal and abnormal of fan, pump, and slider audio signals 
in most cases except only one signal in 0 dB and + 6 dB. However, four valve normal 
signals in the − 6  dB case were not detected successfully. The detailed confusion 

Fig. 7   Confusion matrices of 
proposed model for different 
environments in the MFPT 
dataset

Fig. 8   Training and validation loss curves of proposed model for different noisy environments in MIMII 
dataset
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matrices of the proposed model for the MIMII audio machine dataset are shown in 
Fig. 9.

3.1.3 � Experiment 3: ToyADAMOS dataset

In this experiment, a complex and larger dataset, i.e., ToyADAMOS, was used to 
evaluate the performance of the proposed model. There are six classes of data com-
prising the ToyCar_normal, ToyCar_anomalous, ToyConveyer_normal, ToyCon-
veyer_anomalous, ToyTrain_normal, and ToyTrain_anomalous classes and a total 
of 72,000 samples in the three cases in the dataset. These classes are, respectively, 
denoted as 1–6 in the confusion matrices in Fig. 10. Similar to Experiments 1 and 2, 
the dataset was split in an 80:20 ratio for training and testing. The simulations were 
run for 100 epochs for all the cases. The model accurately detected all kinds of fault 
signals in all the three cases, as shown in Fig. 10. In all the cases, the model took 
a few epochs to converge similarly to the other datasets presented in Experiments 

Fig. 9   Confusion matrices of proposed model for MIMII dataset for SNRs of a − 6  dB, b 0  dB, and 
c + 6 dB

Fig. 10   Confusion matrices of proposed model for different environments in ToyADAMOS dataset
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1 and 2. As shown in Fig.  11, the model stabilized after the twentieth epoch and 
reached its optimal state on the test dataset.

3.2 � Comparison with other state‑of‑the‑art models

A detailed comparison of the proposed hybrid architecture with three state-of-art 
transformed-signal techniques based on conventional CNN and LSTM DL models 
using the MFPT, MIMII, and ToyADAMOS datasets is presented in this section.

Table 4 shows a performance comparison of the Hilbert transform-based texture 
extraction method with methods based on DWT, FFT, and the gammatone spec-
trogram on the MIMII dataset. The FFT-based method exhibited the worst perfor-
mance, while the Hilbert transform-based method outperformed the other models. 
The overall performance of DWT depends on the selected kernel function and has 
poor directionality is shift-invariant and does not contain phase information. We 
utilized the db4 kernel function for the evaluation. In contrast, similar to the Hil-
bert transform, the transformed signal after FFT also contains magnitude and phase 
information. However, the domain conversion results in high latency as the data is 
not processed in the same order as the input data. The application of several filter 
banks in the gammatone spectrogram leads to higher computational complexity than 
the other transform techniques. For all three environments in the MIMII dataset, the 
Hilbert transform-based texture feature extraction achieved better F1 scores than the 
average F1 scores of 0.94, 0.88, 0.90, and 0.99 for the DWT, FFT, and gammatone 
spectrogram-based transform methods, respectively.

The hybrid model has fewer higher trainable parameters than the stand-alone 
DCNN, LSTM, and state-of-art TL architectures. More specifically, the DCNN, 
LSTMs, and DCNN–LSTM architectures have 328,102, 62,406, and 1,168,294 
trainable parameters, respectively, while the VGG16 architecture has 14,779,974 
parameters, which is more than 10 times that of the hybrid architecture.

The experimental results in Table  5 show that all the architectures success-
fully detected the fault signals in the MFPT dataset under various load conditions. 
Although all the models detected the fault signals accurately, the train and validation 
loss curves of the proposed architecture were smoother and converged earlier than 
those of the other state-of-art models. In contrast, for the MIMII and ToyADAMOS 
datasets, the deep LSTM model exhibited lower training accuracy than its validation 

Fig. 11   Training and validation loss curves of proposed model dataset for different environment cases in 
ToyADAMOS dataset
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and testing accuracies because it could not extract deeper features as a stand-alone 
model. The LSTM model failed to learn and predict several cases that the DCNN 
and proposed architecture managed to successfully. The proposed model outper-
formed the other models under the different environments of the three datasets by 
achieving higher accuracy and smoother training and validation curves than those of 
the state-of-art models.

The results demonstrate that the proposed model is efficient not only for a particu-
lar dataset but also for the different environments in the three datasets—the MFPT 
dataset covers loads with large variances, the MIMII dataset contains both negative-
scale and positive-scale noisy cases, and ToyADAMOS contains data from differ-
ent machines with various specifications. This demonstrates an important aspect of 
the model performance under different conditions that may be present in real-life 
situations. It can thus be concluded that the proposed model classifies faults effi-
ciently and makes accurate predictions in the given environments with varying data 
complexities.

3.3 � Implementation of transfer learning in proposed model

The environment for rotatory machine fault detection can vary because of envi-
ronmental variations and the physical characteristics of the machines. This study 
is therefore limited to environment-specific conditions. To reduce the gap between 
the different environments, TL was implemented by interconnecting the various 
environments.

To reduce the training time, several researchers have recently used ImageNet 
pre-trained weights to test for fault signals, as discussed in Sect. 1.1. In this study, 
the trained weights obtained using a source fault dataset were saved and used for 
training/testing the target datasets with a completely different set of conditions. 
For example, we trained the model using case 1 of the ToyADAMOS dataset. 
The model took more than 50 epochs to converge. The weights were then saved, 
the model was retrained using case 2, and the previous weights were updated 
according to the new environment samples. The model took only approximately 

Table 4   F1 scores of DWT, FFT, and Hilbert transform analytical signal-based texture extraction with 
deep CNN–LSTM model for MIMII dataset

Environment DWT with 
hybrid 
CNN–LSTM

FFT with 
hybrid 
CNN–
LSTM

Gammatone 
spectrogram with 
hybrid CNN–
LSTM

Hilbert transform (absolute part) 
analytical signal with hybrid 
CNN–LSTM

Environment 1 
(− 6 dB)

0.920 0.820 0.918 0.996

Environment 2 
(0 dB)

0.999 0.91 0.812 1.00

Environment 3 
(+ 6 dB)

0.89 0.92 0.994 1.00

Average 0.936 0.883 0.908 0.999
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10 epochs to converge this time because it has already learned features from the 
previous training. The model required even fewer epochs to converge in case 3, 
as shown in Fig. 12. Similarly, for MFPT, we trained the model using the data for 
50–150 lbs loads. Although we ran the model for 100 epochs, the best model was 
obtained after the twentieth epoch. The best weights were then utilized for train-
ing using the data for 200–300 lbs loads. This time, the model took only seven 
epochs to converge with the trained weights. Since the MFPT dataset has less 
variance and more differentiable features between its two classes, it converged 
more quickly compared to the other two datasets.

The same approach was applied for the MIMII dataset, as presented in Table 6. 
The model was pre-trained with − 6 dB noisy data and subsequently trained with 
the two remaining sets of environmental data (0 dB and + 6 dB noisy). The exper-
imental results show that as the noise increased, the model took less time to con-
verge and better models were achieved. After implementing TL on the proposed 
model, it took less than 20 epochs of the faulty signals in all datasets to be clas-
sified accurately instead of the 100 epochs required without implementing TL. 
Since TL-based hybrid DL significantly reduces the training time, it is highly 
suitable for real-time industrial fault diagnosis in various environments.

4 � Conclusion

This paper presented an industrial fault diagnosis model with Hilbert transform and a 
2D deep CNN–LSTM architecture. The model was used to classify faults in different 
environments with loads ranging from 0 to 300 lbs and noises from − 6 dB to + 6 dB. 
Two environments were included in the MFPT dataset and three environments each 

Table 5   Accuracies of deep CNN, deep LSTM, and proposed model for MFPT, MIMII, and ToyADA-
MOS datasets

Dataset Environments Deep CNN Deep LSTM Hybrid 
DCNN-
LSTM

MFPT Load 50–150 1.00 1.00 1.00
Load 200–300 1.00 1.00 1.00
Average 1.00 1.00 1.00

MIMII  − 6 dB 0.98 0.99 0.996
0 dB 0.99 0.998 1.00
 + 6 dB 1.00 0.97 1.00
Average 0.99 0.986 0.998

ToyADAMOS Case1 0.979 0.991 0.997
Case2 0.972 0.994 0.998
Case3 0.995 0.982 1.00
Average 0.982 0.989 0.998
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in the MIMII and ToyADAMOS datasets. The Hilbert transform analytical signal-
based texture extraction method was compared with the state-of-the-art DWT, FFT, 
and gammatone spectrogram-based methods. The Hilbert transform-based 2D image 
generation outperformed the state-of-the-art transform methods because it extracted 
more efficient features. The F1 score was used as a performance metric to evalu-
ate the performance of the proposed and state-of-the-art models. The state-of-the-
art models did not perform consistently well as the motor load and noise increased. 
In contrast, the proposed model exhibited consistent performance in all environ-
ments with varying loads, RPMs, and noise levels. The proposed model also had 
12 times less trainable parameters than state-of-art TL models. Implementing TL 
with domain-specific fault datasets reduced the average training time over five times. 
This reduced the time required compared with training for every machine-specific 
environment from scratch. It is therefore expected that the proposed model can play 
a significant role in real-time industrial fault diagnosis in environments with various 
loads, RPMs, and noise levels.

Fig. 12   Training and validation loss curves for proposed model under different environments in the Toy-
ADAMOS dataset: a case 1 as source task and case 2 as target task; b case 1 as source task and case 3 as 
target task

Table 6   Computational complexity with several epochs of the proposed model with and without TL

Proposed hybrid (HT, Deep 
CNN–LSTM) (Epochs)

Proposed hybrid model with trans-
fer learning

Epochs F1 score

MFPT dataset (training with 50–150 
lbs load)

20 (F1 score 1.00) 7 For 200–300 lbs load, 1.00

MIMII dataset training with − 6 dB 
SNR dataset

100 (F1 score 0.996) 20 For 0 dB SNR, 1.00
20 For + 6 dB SNR, 1.00

ToyADAMOS dataset training with 
-case1 dataset

100 (F1 score 0.997), case1 10 For case 2, 0.998
7 For case3, 1.000
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The performance of the proposed hybrid DTL model was evaluated under various 
environments in a single machine. In future work, incremental learning techniques 
can be evaluated with more complex fault datasets from different machines.
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