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Abstract
The challenges of current software-intensive systems, large-scale information and 
computing systems environments, which are highly dynamic, heterogeneous, and 
unpredictable, have motivated the development of techniques that enhance these 
systems with autonomous behaviors. Even though different concerns about these 
systems have been deeply studied, their design is still considerably more challeng-
ing than traditional ones. Self-healing is one of the main features that characterize 
autonomic computing systems. Failure detection, recovery strategies, and reliability 
are of paramount importance to ensure continuous operation and correct function-
ing even in the presence of a given maximum amount of faulty components. Most 
existing research and implementations focus on architecture-specific solutions to 
introduce self-healing behaviors. This implies that users must tailor their software 
by taking into account architecture-specific fault tolerance features, which requires 
too much effort from developers and users. This paper proposes a distributed for-
mal model for the specification, verification, and analysis of self-healing behaviors 
in autonomous systems, from failure-detection to self-recovery. Such a high-level 
model allows users to specify and apply the desired type of failure detection and 
recovery without requiring any knowledge about its implementation. Our model 
allows not only formal verification of different properties but also performance eval-
uation. We provide the verification of qualitative properties using state-space explo-
ration tools, and quantitative properties are also validated through statistical model-
checking. All these properties are preserved in actual implementation by ensuring 
that the deployed code is consistent with the validated model.
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1 Introduction

Autonomous systems are programmable systems that include dynamic evolution-
ary systems. They exhibit adaptive and anticipatory behavior, and they process 
not only data but also knowledge [1, 2]. Most of these systems are required to be 
capable of evolution and required to evolve dynamically every time new compo-
nents are introduced and existing components are removed or fail. Autonomous 
systems include large-scale heterogeneous systems, embedded systems for auto-
motive applications, telecommunications, wireless ad hoc systems, etc. [3–5]. 
Moreover, autonomous systems are software-intensive systems that are becom-
ing increasingly complex and distributed. Such system complexity is rocketing 
beyond the ability to design, comprehend, and control as it approaches that of 
bio-systems. Indeed, in these systems, we do understand the behavior of compo-
nents in isolation. However, we don’t understand the global behavior of interac-
tion components, which results in an imminent need for what we call "design 
for autonomy." Recently, autonomy design has gained more attention, and much 
research has been focusing on developing software-intensive systems by assem-
bling autonomous and heterogeneous components capable of working together so 
as to ensure a set of objectives and quality goals in highly dynamic and unpredict-
able environments [6, 7]. Unfortunately, this leads to a highly complex design 
process that has to deal with unexpected events at run-time such as failure and 
attacks.

To deal with such highly dynamic and unpredictable environments, a desired 
functionality of autonomous systems is self-healing, which consists of detect-
ing and managing systematically and dynamically failures and faults that have 
occurred [8]. The handling of such faults could be either simple by giving control 
of the system to a user or complex by applying predefined recovery strategies. 
Autonomous systems usually fall into the latter case, where they should imple-
ment, without any external intervention, complex recovery strategies that aim to 
bring the system back into a safe state [9]. Self-healing in autonomous systems 
represents an area of research that gathers increasing research interest but is still 
not very well studied in terms of scope, architectural models, and validation tools. 
Research related to self-healing behaviors has its origin in both fault-tolerant and 
self-stabilizing systems research. Fault-tolerant systems are characterized by their 
ability to handle transient and permanent failures in order to return to a safe state 
[10]. Self-stabilizing systems are considered a non-fault-masking approach for 
fault-tolerant systems [11].

Traditionally, to address the risks due to the overall design complexity of self-
healing systems, researchers provide tools for test and simulation-based valida-
tion of execution scenarios [12]. Such tools are insufficient for guaranteeing at 
design time the requirements of applications and systems. To this end, a model-
based design process relying on formal modeling semantics can offer the pros-
pects for an exhaustive analysis of the application’s behavior and a simulation 
analysis grounded on statistical confidence. Indeed, a promising approach to stud-
ying self-healing behaviors in autonomous systems is model-based development. 
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Models can serve as a vehicle for communicating information between control 
engineers and computer scientists. They provide a basis for the validation of dif-
ferent requirements at a pre-implementation level and for the automatic genera-
tion of source code.

In this context, we propose a model-based approach to study self-healing behav-
iors in autonomous systems. Our approach is based on formal semantics for system 
description and uses formal tools for performance analysis and formal verification. 
Our model defines an intelligent self-healing distributed model, as it dynamically 
and at run-time detects failures and selects an appropriate recovery strategy. If there 
is more than one component that needs to be healed, our model allows us to define 
priority policies over fault components. Such dynamic involvement is particularly 
required in complex decision-making environments.

Our particular interest is in distributed self-healing control, in which central con-
trol of failure detection and recovery is not an option. Indeed, today’s autonomous 
systems have become highly distributed, necessitating the use of distributed control. 
Our main idea is to provide a high-level formal model in a completely distributed 
manner for the specification of self-healing systems, which allows us to formally 
verify different properties of such systems and to capture low-level details using sto-
chastic and probabilistic modeling.

The aim of this work is to automatically analyze, study, and derive self-healing 
behaviors based on building correct components from the design of a system with 
faults, a set of reliability, availability, and safety requirements it must satisfy, and 
the recovery strategies to be applied in case of faults. We describe how to automati-
cally define fault detection strategies by adapting a set of parameters in our pro-
posed model to design the recovery strategies appropriate with respect to the given 
requirements. Moreover, it is highly advantageous for designers to automatically 
derive a correct-by-construction implementation from a high-level model. That is 
why our approach allows us to automatically generate distributed code for the vali-
dated behaviors. Such model implementations can be deployed with the system 
under study.

This paper presents a reasonable solution to the key issue, i.e., how to generate 
efficient and reliable failure detection and self-recovery protocols to facilitate the 
preliminary design of autonomous systems. To address this issue, we define a rig-
orous model-based design flow as one that guarantees essential system properties 
based on a distributed high-level formal model. This model is detailed enough to 
verify and execute low-level scenarios at the level of detail required to check key 
properties, and at the same time, it remains as simple and cost-effective as pos-
sible by focusing on what is required for checking the properties of interest. For 
this purpose, we advocate a design flow based on a component-based framework 
called behavior-interaction-priority (BIP) [13] and its stochastic version called SBIP 
[14, 15]. Both frameworks are based on a language with formally defined seman-
tics for building executable models of mixed software and hardware systems. Such 
a combination allows us to handle both performance aspects and also functional 
behaviors such as timing constraints, which enables functional verification and per-
formance evaluation to be performed in a consistent manner. We aim for a formal 
design approach that allows us to model important features of self-healing systems 
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at a level of abstraction suitable for applying different verification and analysis tech-
niques, taking into consideration different low-level details in a probabilistic man-
ner due to their significant variability. The main contributions can be highlighted as 
follows:

• We provide a high-level formal model for the description of failure detection 
and self-recovery behaviors in autonomous systems. Our model supports hetero-
geneity and scalability. Indeed, in our model, different component types can be 
defined and the number of resources can be automatically increased.

• Our model is completely distributed as we associate with each component a local 
monitor, which allows us to detect the components’ failure occurrences. Then 
self-recovery strategies are performed through interactions between these moni-
tors. Interactions are ensured with respect to a well-defined algebra of connectors 
offered by the formal semantics of the component-based framework BIP that has 
proved suitable for modeling and analyzing distributed systems.

• Our model integrates non-functional aspects along with the functional system 
behavior. It is stochastic as its components’ behaviors are extended with stochas-
tic features such as probabilities and distributions. Adding stochastic aspects per-
mits model uncertainty in the design by including faults or execution platform 
assumptions. This allows us to additionally provide statistical model checking 
results for the system’s behavior under assumptions about its external stimuli.

• To evaluate the applicability of our approach, first we modeled two well-known 
recovery strategies, namely migration and replication. Then we conducted a 
series of experiments to formally evaluate these strategies with respect to a set of 
required properties. Second, we applied our approach to a real-life case study for 
a robot, namely, the DALA robot [16].

The remainder of this paper is structured as follows. Section 3 illustrates the neces-
sary background to understand the approach, in particular related to the semantics 
of the BIP framework. Section 2 motivates the paper by comparing it with related 
work. Section 4 describes the different components defining our proposed distrib-
uted model, and Sect.  5 details the different experimental results obtained with 
respect to the formal verification and performance analysis of different aspects of 
self-healing behaviors and requirements. We present in Sect.  6 a concrete appli-
cation of the approach to a real-life case study for a module of the DALA Robot. 
Finally, in Sect. 7, we conclude with a summary and the challenges ahead.

2  Related work

Mastering the complexity of autonomous systems requires a combined effort of 
foundational research and new engineering techniques that are based on mathemati-
cally well-founded theories and approaches [17]. Thus, new proposed methods have 
to support the whole system life cycle, including requirements, design, implemen-
tation, maintenance, reconfiguration, and adaptation. Designing these systems and 
their components is usually accomplished through ad hoc processes, simulation 
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[18], and extensive testing to ensure their correctness [19]. A fault tolerance and 
self-recovery analysis is provided in [8]. Their analysis is based on a set of test 
sequences and focuses only on the hardware-architecture level addressing only hard-
ware faults. However, in this work, we consider both hardware and software failure 
types. In [20], authors have proposed an approach based on testing models rather 
than operational systems, and thus raised the level of abstraction of testing from 
operational systems to models of their behaviors and properties. Their approach 
focuses on enabling software engineers to execute and validate a much larger num-
ber of test scenarios. It is based on the development of test strategies that select 
which scenarios should be executed on the deployed system depending on the level 
of risk they exhibit. Generally, these test methods fail to provide the desired confi-
dence level, mainly due to the limited possible test cases to be analyzed with respect 
to the real state space [12, 21]. In our approach, we use formal methods, which are 
more powerful and provide mathematical techniques to create reliable systems.

In the context of fault detector design, a lot of effort has been dedicated to the 
design of optimal schedulers, providing efficient ways by which to render systems 
highly reliable [22]. In [23], a formal offline approach is used for the synthesis of an 
optimal scheduler scheme for dynamically arriving preemptive aperiodic task sets 
on multiprocessor systems that can tolerate permanent processor faults. Similarly, in 
[24], authors propose a supervisory control-based fault-tolerant scheduler synthesis 
scheme for real-time tasks modeled as precedence-constrained task graphs, execut-
ing on multicores. In both approaches, formal techniques are used to automatically 
synthesize optimal control logic for the task-nodes based on a global model of the 
system. Such centralized approaches, however, may not scale well and thus may be 
time-consuming and memory-intensive for large systems.

Unlike these research approaches, our architecture is not limited to multiproces-
sor architectures and it supports heterogeneity of components. It can be applied to 
study a variety of possible architectures for autonomous systems, which are archi-
tectures that represent a lot of heterogeneity between their components and where 
the requirements can change often and unexpectedly. The model we propose in this 
work allows designers to instantiate components with different parameters, thus 
allowing us to define a heterogeneous architecture. Moreover, we also allow design-
ers to define hierarchical components that are not allowed in most of the existing 
offline synthesis approaches. In the existing research results related to fault detectors 
and containment approaches, [25, 26] proposed approaches are based on a central-
ized structure, which means that the information of all components is centralized in 
a node for processing and generating huge data volumes, which greatly increases the 
computational complexity. Such approaches propose methods that are unable to be 
widely used due to the limitation of communication bandwidth. In the same context 
of failure detection and containment, decentralized approaches have also been pro-
posed, like the results obtained in [27, 28].

Such research results solve the problem of complexity in the centralized struc-
ture, but it does not take the information of other components into consideration, 
which makes the capability of fault detection not satisfying enough. The distributed 
approach, however, has gained considerable attention these days because of its good 
performance in the above two aspects. In our approach, we address a distributed 
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structure of failure detection and containment as the process of failure detection 
and self-recovery is ensured through a rich interaction model between a set of local 
monitors associated with each component of the system.

Formal methods have been considerably applied for the analysis of self-adaptive 
systems [29]. Most of the existing approaches are modeling a high-level of function-
ality, such as the autonomous management, control, evaluation, and organization of 
the overall system [30–32]. However, self-healing is defined as a system making, 
dynamically and by itself, all the necessary recovery steps to restore its distributed 
behavior to a specified mode of operations [33]. In other words, self-healing formal 
models and approaches have to focus on recovery as an elaborate process. Other 
works address adaptation and reconfiguration of autonomous systems and self-heal-
ing behavior by proposing architecture-based approaches [34–36]. Most of these 
works have described approaches assuming adaptation that can be specified and ana-
lyzed only at the architectural level. This limits the study to structural properties 
with a lack of formal analysis of the whole behavior of the system. Some architec-
ture-based approaches to self-healing in autonomous systems use formal specifica-
tion only for the description of architecture constraints that have to be met, which 
makes these approaches limited to structural properties and thus not enough general 
to open possibilities for functional, non-functional, or any behavioral property vali-
dation. In [37], based on architectural styles, the authors have developed an architec-
ture-based approach to self-healing systems, which focuses more on detecting when 
to make a particular repair and choosing that repair. Their approach is based on a 
set of formally specified constraints over an architecture; a constraint violation is 
a reason for inducing a repair that is predefined in the system code. However, our 
approach does not require that the system make any assumptions about the types of 
repairs, and moreover, our model allows the designer to define any type of repair 
needed for the study. An architecture-based approach that handles behavioral aspects 
in addition to structural ones is proposed in [38]. They have defined SosADL, which 
is an ADL specially conceived for formally modeling the architecture of software-
intensive systems-of-systems from both structural and behavioral viewpoints. Their 
architecture allows users to verify properties using the UPPAAL model checker. 
The use of such model-checking makes their approach not applicable in the case of 
large-scale complex systems because of the state space explosion problem. In our 
approach, we use a formal-based framework offering compositional verification [39] 
tools, which allows addressing the state space explosion problem inherent to model-
checking timed systems with a large number of components.

In the context of existing model-based approaches to self-healing behaviors in 
autonomous systems, dynamic software architecture approaches have been intro-
duced as a high-level view of the structural organization of systems. Most of these 
models are application-based, as in [7], where a specific formal framework is pro-
posed for the verification of software-intensive space and aeronautical control appli-
cations, or in [40], where authors propose a performance analysis study specific to a 
Websphere Application Server.

In [41], authors address the formal verification of application-specific pro-
grams in designing and developing autonomous systems. Their approach is to 
automate the translation of programs, written in special purpose languages, into 
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the SMV model-checking language, perform model checking using standard algo-
rithms, and then translate counter-examples back into terms that are meaningful 
to the software developer. Although their approach applies formal techniques to 
high-level languages that are geared toward autonomous systems and develops 
translators that produce code automatically. Their work is only limited to two 
languages, which makes their method not applicable when it comes to any other 
programming language. In [42], authors have proposed a formal model based on 
typed graph grammars extended with graph constraints and where the analysis 
and verification are performed using the AGG tool. However, their model allows 
only static analysis, which is relatively limited in the context of highly dynamic 
systems like self-healing ones.

Regarding our contribution, these existing model-based and formal approaches 
are limited to particular applications and thus cannot be applied to different archi-
tectures, which consequently limits the set of studied aspects related to failure 
detection and self-recovery. In our contribution, however, we propose a generic 
architecture with a parameterized model that allows us to describe different appli-
cations by adapting a set of parameters to design the behavior of the studied 
application. Hence, our research aims to provide a generic model compared to 
existing formal approaches and a completely distributed architecture compared to 
existing fault detectors and containment approaches.

3  Preliminaries

Our approach relies on the use of the behavior, interaction, priority (BIP) com-
ponent framework [43] and its stochastic version (SBIP) [44]. BIP is a formal 
framework for building complex systems by coordinating the behavior of a set of 
atomic components. The behavior of each component is defined as a transition 
system extended with data and C/C++ functions. The coordination between com-
ponents is layered, wherein the first layer consists of the component interactions, 
and the second layer involves dynamic priorities between interactions, which pro-
vides rich inter-component interaction features [45]. BIP also provides different 
tools for property verification and, in particular, automatic and distributed code 
generation. An atomic component is essentially a timed automaton labeled with 
ports used for communication among different components.

Definition 1 (Atomic component) An atomic component B is defined by the tuple 
B = (L,P,C, T , tpc) where L is a finite set of locations, P is a finite set of ports, C 
is a set of clocks, and T ⊆ L × (P × G(C) × 2C) × L is a set of transitions labeled 
with a port, a timing constraint and a subset of clocks to be reset. tpc ∶ L ⟶ G(C) 
assigns to each location l ∈ L a time progress condition tpcl ∈ G(C) . G(C) is the 
set of timing constraints that are defined according to the following grammar: 
tc ∶= true ∣ false ∣ c ∼ k ∣ tc ∧ tc , with c ∈ C , k ∈ Z ≥ 0 and ∼∈ {≤,=,≥}.
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In practice, an atomic component can be extended with variables that are used 
to store local data. Moreover, each component transition can be associated with a 
Boolean condition specifying for which values of the local variables it is enabled, 
and an (internal) update function triggered along with transition execution which 
modifies the values of the variables.

A BIP model is built from a set of n atomic components:
{Bi = (Li,Pi,Ci, Ti, tpci)}i∈[1,n] , such that their respective sets of ports and 

clocks are pairwise disjoint.

Definition 2 (Interaction) An interaction between atomic components {Bi}
n
i=1

 is a 
subset of ports a ⊆ P , such that it contains at most one port of every component, that 
is, ∣ a ∩ Pi ∣≤ 1 for all i ∈ {1,… , n} . Since an interaction a uses at most one port of 
every component, we simply denote a = {pi}i∈I , where I ⊆ {1,… , n} and pi ∈ Pi 
for all i ∈ I . A component Bi is participating in a if i ∈ I.

Definition 3 (BIP Model) We denote by B = �(B1,… ,Bn) the BIP model 
obtained by applying a set of interactions � to the set of atomic compo-
nents {Bi = (Li,Pi,Ci, Ti, tpci)}

n
i=1

 . It is defined by the atomic component 
B = (L, � ,C, T� , tpc) , where L = L1 ×… × Ln , C = ∪n

i=1
Ci , tpc(l) =

⋀

i∈n tpcli . 
A transition � = (l, a, tc, r, l�) from l = (11,… , ln) to l� = (1�

1
,… , l�

n
) is in T� iff 

(1) a = {pi}i∈I ∈ � , (2) for all i ∉ I l�
i
= li and (3) and there exist transitions 

�i = (li, pi, tci, ri, l
�
i
) of Bi , i ∈ I , such that tc =

⋀

i∈I tci , r =
⋃

i∈I ri.

In BIP, interactions are structured by connectors. A connector is a macro nota-
tion for representing sets of related interactions in a compact manner. To specify 
the set of interactions of a connector, two types of synchronizations are defined:

• strong synchronization or rendez-vous, when the only interaction of a connec-
tor is the maximal one, i.e., it contains all the ports of the connector.

• weak synchronization or broadcast, when interactions are all those containing 
any port initiating the broadcast.

Definition 4 (Connector) A connector Ω is defined as a tuple (pΩ[x],PΩ, �Ω) where:

• pΩ[x] is a port called the exported port of Ω with x as associated variable. 
Such particular type of ports is used for building hierarchies of connectors.

• PΩ = {pi[xi]}
n
i=1 is the set of connected ports called the support set of Ω . xi is a 

variable associated with pi.
• �Ω is the set of feasible interactions of Ω . ∀a ∈ �Ω , where a = {pi}i∈I we define 

a tuple (Ga, Ua, Da) where,

– Ga is a guard of a, an arbitrary predicate Ga({xi}i∈I),
– Ua is an upward update function of a of the form, x ∶= Fu({xi}i∈I),
– Da is a downward update function of a of the form, ∪pi

{xi ∶= Fd
xi
(x)}.
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Figure 1 shows the composition of two BIP components from our model. On the 
right, the Device-Monitor observes the Device status. These components interact 
through the synchron ports run, finish, D_recover and signal using strict synchro-
nization with (rendezvous) connectors. The Device-Monitor observes the execu-
tion of a task and its completion in the device through, respectively, the connectors 
{D.run,DM.run} and {D.finish,DM.finish} and it checks the device status temporary 
through the connectors {signal, signal} and {D_recover, signal}.

The stochastic extension of BIP [14] allows us to specify stochastic aspects of 
individual components and to provide a purely stochastic semantics for the paral-
lel composition of components through interactions. Stochastic behavior at the level 
of atomic BIP components is obtained by using probabilistic variables. These are 
attached to probability distributions and are updated during transition firing, where 
they get random values accordingly. The semantics of transitions is thus fully sto-
chastic. In our model, some components are specified using BIP formalism and 
extended with probabilistic aspects, in particular for the description of failure types.

4  Model description

In this section, we provide a detailed description of our approach based on a 
formal, distributed, and highly parameterized model, using the BIP formal-
ism, which is a highly expressive, component-based framework with a rigor-
ous semantical basis. Our model has a layered-based architecture Fig.  2, where 
each layer defines a particular type of component. Indeed, the overall architec-
ture of our model is given as a network of BIP components interacting with each 
other using a rich interaction-model based on connectors. These connectors are 
memoryless links that allow one to define diverse interactions enriched with data 
exchange and priority rules [45]. In BIP, each component has a behavior and an 
interface. The behavior is a timed automaton and the interface is a set of ports 
allowing the corresponding component to communicate, interact and exchange 
data with the rest of the system (or with its environment). As we are address-
ing heterogeneous architectures, we define two abstract types of components, 

Fig. 1  Example behavior, interaction: device (left) and device monitor (right)
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namely Software-nodes and Devices. We believe that any type of component in 
real autonomous systems could be naturally an instance of one of those two types. 
That is why we define an attribute Type for each component, allowing us to define 
a heterogeneous architecture.

• Software-nodes: host software elements that will be executed. They execute 
a set of input tasks-Queues by dispatching each task to the corresponding 
resources (cores, servers, buses, computing units,...). The detailed behavior of 
the software-node component is given in Fig. 3.

• Devices: are defined as both infrastructure and applicative entities. They can 
easily be instantiated to model a core, a sensor, an actuator or any computing 
unit. Their behavior is defined as the execution of a unique or a set of par-
ticular tasks assigned by their corresponding Software-nodes. Indeed, Devices 
provide resources to Software-nodes, on which functions, tasks, data treat-
ment, or transfer could be performed. The behavior of a device is detailed in 
Fig. 3.

In our architecture, BIP connectors define some kind of logical binding, abstract-
ing the communication models that allow software nodes and devices to interact 
and exchange data. In this work, as we are intending distributed architectures with a 
particular interest in distributed control of self-healing behavior, failure detection as 
well as the recovery process have to be performed in a distributed way. To this end, 
we associate with each Software-node and to each Device a local monitor called, 
respectively, Node-Monitor and Device-Monitor components (see Fig. 2). Such com-
ponents monitor dynamically and at run-time their associated components in order 
to detect failures and then perform recovery. Failure detection can be done locally by 
monitors. However, the process of recovery needs communication between differ-
ent monitors. This is ensured by the use of BIP connectors (see Table 1). These BIP 
connectors allow multiparty interactions, exchange of data, and updating of these 
data according to provided functions called Update functions associated with each 
interaction.

Fig. 2  Overall architecture of the proposed model



18735

1 3

A distributed formal‑based model for self‑healing behaviors…

4.1  Failure detection model

Failures are classified into two categories, namely applicative and infrastructure fail-
ures. In this work, we are considering both types. Failures of applicative entities 
are modeled as failures that affect software-nodes. A software-node crashes when it 
does not execute any further operations. For instance, infrastructure failures affect 
devices, and they can arise due to a hardware failure or a power failure. Note that 
an applicative failure can arise due to the infrastructure failures of its resources. In 
autonomous systems, several approaches to failure detection have been proposed. 
For applicative failures, our model integrates the most used technique, namely the 
checkpointing [46] (ping messages, heartbeats). Using this technique, the Node-
Monitor component periodically checks the availability of the monitored compo-
nent, by sending a message. The component is declared to have failed by its monitor, 
within a given timeout. Such a timeout is defined as an invariant in the behavior of 
the Node-Monitor. To avoid false failure detection, our model integrates a technique 
that allows the monitor to define a number of attempts over which the component is 
declared as failed. Note that the timeout and the number of attempts are parameters 
of the monitor components, which makes it possible to choose their appropriate val-
ues with respect to the application under study (see Table 2). The detailed behavior 
of the Node-Monitor is given in Fig. 3.

For the monitoring of devices, which means the detection of infrastructure fail-
ures, messages observation technique is preferred. The monitor observes the func-
tional messages of the device. For example, if the latter communicates at regular 
intervals, there is no impact on the monitored device. A device failure is declared 

Table 1  Description of model’s connectors

Connector/interaction Description (update function)

{�ij}
j∈[1,M]

i∈[1,N]
 {loadNi

, runDij
, runDMij

}
j∈[1,M]

i∈[1,N]
Dispatches a task from the Node Ni to the device Dij and 

the task data to its monitor DMij observing this interac-
tion

{�ij}
j∈[1,M]

i∈[1,N]
 {getrelNi

, relDij
}
j∈[1,M]

i∈[1,N]
Informs the node about the task completion and update 

the under execution queue of tasks (QUnder)

{�ij}
j∈[1,M]

i∈[1,N]
 {T_recoverNi

,T_recoverDMij
}
j∈[1,M]

i∈[1,N]
Transfers preempted tasks to node Ni whenever the device 
DMij fails

{�i}
N
i=1

 {checkNi
, checkNMi

}N
i=1

Allows monitors to check and update their corresponding 
Nodes status

{�i}
N
i=1

 {N_recoverNi
, checkNMi

}N
i=1

Allows the monitor to detect the node recovery and 
update the Node status

{�ij}
i≠j

i,j=[1,N]
 {updateNMi

, updateNMj
}
i≠j

i,j=[1,N]
Implements the recovery strategies (Replication, Migra-

tion) by invoking a C++ function detailed in Fig. 4)

{�ij}
j∈[1,M]

i∈[1,N]
 {finishDij

, finishDMij
}
j∈[1,M]

i∈[1,N]
Allows the monitor DMij to observe the task completion

{�ij}
j∈[1,M]

i∈[1,N]
 {signalDij

, signalDMij
}
j∈[1,M]

i∈[1,N]
Allows the device-monitor to check the device status 

(failed or not)

{�ij}
j∈[1,M]

i∈[1,N]
 {D_recoverDij

, signalDMij
}
j∈[1,M]

i∈[1,N]
Allows the device-monitor to detect the recovery of the 

device
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when the monitor fails to observe a message at the required interval. The detailed 
behavior of the Device-Monitor components is given in Fig.  3. It is connected to 
the monitored device as well as to the Software-node to which the device provides 
services (data, computation...). The monitor observes functional messages of the 
devices, namely the load and finish transitions. When the device is in an idle state 
(with no executions to perform), it periodically sends a liveness signal to its monitor. 

Fig. 3  Software-nodes N
i
 , node-monitor NM

i
 , device D

i
 and device-monitor DM

i
 components
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In the case of failure detection, the corresponding Software-node will be informed 
through the set of connectors {�ij}

j∈[1,M]

i∈[1,N]
 (see Table 1).

4.2  Self‑recovery model

In self-healing behaviors, and after failure detection, a recovery process has to take 
place. Different recovery strategies have been proposed in the context of self-healing 
systems. The most commonly used techniques are replication (redundancy) strate-
gies [47] and task migration (reassignment) strategies. Our model integrates both 
strategies and allows for easy integration of newly proposed ones. The recovery 
strategy is implemented as an update function over the set of connectors {�ij}Ni=1≠j (see 
Table  1). Such connectors allow collecting data from all connected monitors and 
thus applying the needed recovery strategy through a C++ function detailed in 
Fig. 4. Indeed, the recover_function takes as input the queue of node data containing 
updated data for each node at a given time. Failed nodes are stored in a queue of 
node data. For each failed node, a queue of active nodes of the same type is defined. 
Then, the adequate recovery strategy is executed depending on the returned results 
of replication_test and migration_test functions. The replication_test function 
checks if there is at least one active node executing the same queue as the failed 
node. In that case, the failed node is recovered using a replication strategy. If the 
recovery using replication is not possible, the migration_test function checks if the 
migration strategy can be applied or not. If it returns false, then the failed node waits 
until it recovers, else the queue of tasks of the failed node will be equally distributed 
among active nodes.

In addition to recovery strategies implemented using monitors at the control level, 
low-level self-recovery can also be possible. Indeed, a device or a node can recover 
within a given time (self-repair). This is modeled in each component’s behavior 
using the transition recover, allowing them to return to the active state of both the 
Software-node and the Device (see Fig. 3).

In this work, we intend to model the real variability of different parameters and 
behaviors. For this purpose, in our model we combine the use of BIP and its statisti-
cal version, namely SBIP. Stochastic semantics are integrated into our model by adapt-
ing its deterministic semantics with probabilistic variables. This leads to behaviors that 
combine both stochastic and non-deterministic aspects, leading to a more expressive 
model. In particular, at the level of the failure or recovery transitions of the behaviors 
of nodes as well as devices, any probability or any probabilistic distribution could be 
defined. Indeed, stochastic interactions could be defined by tagging component ports 
with S-BIP specific annotations. In this context, and in our model, the set of ports 
{fail,N_recover,D_recover} are tagged by probability density functions and their 
parameters, which allows us to associate any distribution to specify different variants of 
failures or recovery behaviors (see Fig. 3).

This model is general enough to be applied to other failure detection and recovery 
strategies. The correctness of this model is proven using BIP tools, and the results are 
presented in the following section. In addition, results of the verification of different 
requirements and properties related to the strategies implemented are also presented.
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5  Performance analysis and formal verification

The second contribution of this article concerns formal verification and perfor-
mance analysis. Traditionally, performance models separated from the functional 
behavior of the system are built late, and then only simulation or analytic tech-
niques are used for analysis. We propose combining formal verification of func-
tional self-healing behaviors using BIP together with statistical guarantees pro-
vided by its statistical version. Combining both frameworks is highly motivated 
by the idea of encompassing functional and performance aspects at an appropri-
ate level of abstraction. All experiments have been run on an Intel Core i7 run-
ning at 2.40 GHz with a 64-bit Linux operating system and 16 GB of RAM.

5.1  Invariance and stochastic verification

Autonomous behaviors are prone to event scheduling delays. That is why Invari-
ance properties are very interesting when it comes to real-time systems in general. 
Indeed, such properties guarantee the respect of a set of timing constraints associ-
ated with system states. For our model, the following invariant requirements were 
formalized as qualitative properties that were checked using the RTD-Finder tool 
[39]: 

1. Inv1
i
= (xi < Qi) is defined in the state q1 of each Node-Monitor NMi . Such invari-

ant ensures that the status of the controlled Node Ni is checked at each period Qi 
and it is formally described using Temporal-Logic as follows: ∀i ∈ [1,N], AG 
( q1i ⟹ (xi ⩽ Qi) )

Table 2  Parameters and variables description

Parameters and variable Description

N,Mi,QND Number of nodes, Number of devices associated with a Node i, Queue of N 
Nodes (NodeData)

NodeDatai Structure containing: idNodei(id of the Node), MyQi(Queue of Tasks), idQueuei
(the id of MyQi ), activei(Node is active or not), typei(type of the Node), 
QUnderi(under execution tasks.) and Qtoaccepti(accepted tasks by migration)

Tout Interval of time given to a node to answer as alive before the number of 
chances is decreased

NbrC Number of chances given to a node to be declared as failed
Devicej Structure containing: idDevicej(id of the Device), activej(Device is active or 

not), Tj (Task under execution)
Q Interval of time given to a device to answer as alive before it is declared as 

failed
T_data Structure containing the following Task attributes: idtask(Task id), 

extime(execution Time) and execT(Under execution or not)
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2. Inv2
ij
= (xij ⩽ extimeij) is defined at the state runningij of the Device Di

j
 . The satis-

faction of this invariant guarantees that Di
j
 cannot stay in this state more than the 

execution time extime of the loaded task. This invariant is formally described as 
follows: ∀j ∈ [1,M], i ∈ [1,N] AG ( runningij ⟹ (xij ⩽ extimeij))

3. Inv3
ij
= (xij ≤ Toutij) is defined at the state q0ij (and q1ij ) of each Device-Monitor 

DMi
j
 to guarantee that the state of the controlled Device is checked at each period 

Tout . This invariant property is formally described using Temporal-Logic as fol-
lows ∀j ∈ [1,M], i ∈ [1,N] : AG(q0ij ⟹ (xij ⩽ Toutij) ) AG(q1ij ⟹ (xij ⩽ Toutij))

Fig. 4  Recovery strategy function
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Figure 5 gives the obtained results related to the verification of the set of pre-
defined invariants. Our model is parametric, with N (Nodes) and M (Devices). In 
particular, we measure in Fig. 5a, the verification time of these invariants when 
making the model more complex by increasing the number of components. We 
have considered different topologies up to a total number of 1200 components 
(Nodes, Devices, and Monitors). Such results give an idea of the overhead intro-
duced by our model, as well as the scalability of our approach model and its 
capability to model real architectures (see Fig. 5b). Once our model is formally 
verified for guaranteeing behavioral correctness properties (invariance), essential 
quantitative properties are also validated through statistical model checking of 
a stochastic BIP. Statistical model checking is a simulation-based analysis with 
statistical guarantees, i.e., finely controlled quality of results by various confi-
dence parameters. It was proposed as a means to cope with the scalability issues 
in numerical methods for the analysis of stochastic systems [14]. The SMC of our 
model is automated by the SMC-BIP tool that supports all types of MTL proper-
ties and accepts, as inputs, the property; our model in SBIP; and the confidence 
parameters � , � , and � . It provides a verdict in the form of the probability of 
the property’s holding true. In the experimentation performed in our model, we 
checked the following set of MTL properties:

• The ith Node-Monitor eventually declares its corresponding Node 
as failed, within a given time, after the Node effectively fails. 
P1(t) ≡ ♢[0,t]Monitori.failed ∨◻[0,t]!Node.Failed

• The ith Device-Monitor eventually declares its corresponding Device 
as failed, within a given time, after the Device effectively fails. 
P2(t) ≡ ♢[0,t]Monitori.failed ∨◻[0,t]!Device.Failed

• The ith Node will eventually recover after failure. 
P3(t) ≡ ♢[0,t]Nodei.Recover ∨◻[0,t]!Node.Failed

• The ith Device will eventually recover after failure. 
P4(t) ≡ ♢[0,t]Devicei.Recover ∨◻[0,t]!Device.Failed

Figure 6a–d summarizes the results obtained by applying the probability esti-
mation algorithm implemented in SBIP, with a confidence of 10−1 and a pre-
cision of 10−1 . We have applied the algorithm for each defined property for 
the interval [0,  t], with a value of t equal to 500ms. We investigated different 
topologies’ impacts (18, 30, 60, 90, and 120 components) on the probability of 

Fig. 5  Formal verification results
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the different properties. We can observe that the number of components of the 
system does not have an important impact on the probability of P1 and P2 as 
both properties are related to the behavior of each monitor with respect to each 
monitored component. However, this is not the case for the properties P3 and 
P4 because they depend on the recovery strategy, which may involve the rest 
of the system. Figure 6e illustrates the overall execution time taken by SBIP to 
estimate the probability for each property when increasing the total number of 
components.

5.2  Simulation analysis

More experiments and simulation analysis are also possible using the automatically 
generated code of our formal model. This generated code is proven to be seman-
tically equivalent to the initial model, which means that any properties already 
checked on the model still hold on its generated code. Indeed, using the executable 
code generated by the real-time BIP, real-time executions are run and different sets 
of experiments can be observed. We have derived a set of experiments to study the 
different self-healing strategies as well as their impact on the system behavior and 
performance when varying different parameters of our model.

Experiment 1 In this experiment, we aim to study the impact of both the per-
centage of failed nodes and the recover time on the number of accomplished tasks 
within a given period of time. Our study is based on the configuration detailed in 
Fig. 7 and focuses on self-repair systems. Remember that in our model, we allow 
the designer to define a period of time after which the failed component comes back 

Fig. 6  a Probability of P1 , b probability of P2 , c probability of P3 and d probability of P4 . e The overall 
execution time to compute probability for each property when increasing the number of components
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automatically to the active state, which we call the recover-time. Such a feature 
allows one to study different types of failures.

In the configuration of Fig. 7, we consider a system of 20 Nodes, 20 Node-Mon-
itors, 40 Devices and 40 Device-Monitors. Each Node has a queue of 500 tasks and 
is connected to two devices. Each node has a monitor that checks its status every 30 
ms. We propose to compute the number of accomplished tasks by the system within 
104 ms of real-time executions by varying the percentage of failed nodes, and the 
results are depicted in Fig. 8.

Experiment 2 In this experiment, we focus on the impact of the migration recov-
ery strategy on the performance of the system, based on the same configuration as 
in Experiment 1, to which we precisely give the type of each Node (Fig. 7). Note 
that our model supports heterogeneity as it allows the designer to define for each 
component a particular type. In the implementation of the migration strategy of 
the recover-function detailed in Fig. 4, the migration of tasks is only authorized for 
nodes of the same type. In Fig. 9, we compute the total number of accomplished 
tasks using the migration strategy while varying the recovery time and the percent-
age of failed nodes. Note that, in our model, when a node fails, its queue of tasks is 
migrated and distributed fairly between active nodes of the same type (see Fig. 10a, 
b).

Now, we aim to study the overhead introduced by the two recovery-strategies 
implemented using the external C + + functions, namely the replication process and 

Fig. 7  Configuration of experiments 1 and 2

Fig. 8  Total accomplished tasks within 104 ms with respect to the percentage of failed nodes and the 
recover-time in the self-repair strategy
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the migration process. In Table 3, we provide the total execution time of both func-
tions with respect to the total number of nodes and also the number of simultane-
ously failed nodes. Indeed, in our model, the recovery functions are implemented in 
the update connector ( {�ij}

i≠j

i,j=[1,N]
 ). This connector collects the set of all simultane-

ously failed nodes from all connected nodes, executes the implemented function, 
and returns the corresponding updated data for all nodes. This connector represents 
in our model a distributed and memoryless controller (as we have already proved in 
[48]). The recovery function is therefore executed to treat the set of detected failed 
nodes at the same time.

Experiment 3 In our model, each monitor checks dynamically and periodically 
(within a Q interval), the status of its associated node in order to detect failures and 
then to perform recovery. If a monitor’s associated node does not respond after a 
certain number of trials ( NbrC ), it declares it failed. In this experiment, we propose 
to compare the number of detected failures to the number of nodes that fail effec-
tively, by varying the recover-time, the check period, Q, and NbrC . To that end, we 
consider the configuration described in Table 4. We assume that all nodes can fail 
with respect to a random distribution.

In Fig.  11, we compute the number of detected and real failures with an NbrC 
equal to 3. In Fig. 12, we increase the number NbrC . All measures are taken for an 
interval of 104 ms of real-time executions. One can notice that the choice of value 
for both Q and NbrC has a direct impact on the efficiency of a node monitor. More 
experiments and simulation analysis are also possible using the automatically gener-
ated code of our formal model. Note that this generated code is proven to be seman-
tically equivalent to the initial model, which means that any properties already 
checked on the model still hold on its generated code.

Experiment 4 In this experimentation, we focus on a set of fault metrics that are 
strongly related to the safety validation of different autonomous systems applica-
tions. For example, in vehicle systems with an automotive safety integrity level, the 
effectiveness of implemented safety measures depends considerably on the values 
of these metrics [49]. One of the important metrics of the safety measure is the fault 
handling time interval (FHTI). If such a metric is greater than the fault tolerant time 
interval (FTTI), the safety measure must not be considered effective, and therefore, 
it cannot be taken into account for the safety validation. The FHTI contains the fault 
detection time interval (FDTI) and the fault reaction time interval (FRTI). The FDTI 
is the time taken by the system to detect the failure, and it corresponds in our system 
to the interval of time between the failure occurrence and the detection of the failure 
by the corresponding monitor. The FRTI corresponds in our model to the interval 
of time between the transitions fail and update of the node monitor. As given in 
Table  5, we have measured these failure metrics for different configurations with 
a total of 150 components. One can observe that these intervals can be influenced 
by different parameters of the model, such as the monitoring frequency NbrC or the 
monitoring period Q for the FDTI interval, and the number of simultaneously failed 
nodes for the FRTI interval.
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6  A case study: the DALA robot

In this section, we propose to apply our approach to a concrete autonomous system, 
namely the DALA Robot [16]. In particular, we focus on failure detection and recov-
ery in the navigation module at the functional level of the robot.

6.1  DALA robot architecture

In general, robotic architectures are organized into several levels, which correspond 
to various temporal requirements (e.g., TREX [16]) or various levels of abstraction 
of functionality, such as the LAAS architecture [50]. The functional level, of most 
complex systems and robotic architectures, includes all the basic, built-in action and 
perception capabilities. These processing functions and control loops (e.g., image 

Fig. 9  The number of accomplished tasks within 10,000 ms by varying the percentage of failed nodes 
and the recover-time using the migration strategy

Fig. 10  The number of accomplished tasks for each Node within 104 ms and 200 ms of recover-time 
using the migration strategy: a 20% of failed nodes b 40% of failed
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Fig. 11  Number of detected failures versus the number of concrete failures with Nbr
C
= 3

Fig. 12  Number of detected failures versus the number of concrete failures when varying Nbr
C

Table 5  Failure metrics measured for different configurations

(Nbr
C
),Q(ms)Config1 Config2 Config3 Config4 Config5 Config6 Config7

(1), 10−2 (1), 2 × 10−2 (1), 5 × 10−2 (2), 8 × 10−2 (2), 10−1 (1), 2 × 10−1 (2), 5 × 10−1

FDTI (ms) 0.0157 0.0258 0.0711 0.1901 0.2459 0.2812 1.2102
FRTI (ms) 0.0101 0.0121 0.0132 0.0102 0.0142 0.0136 0.0127
FHTI (ms) 0.0258 0.0379 0.0843 0.2003 0.2601 0.2948 1.2229

Table 4  Configurations for experiment 3

Node N1 N2 N3 N4 N5 N6 N7 N8 N9 N10

Recover-time 20 20 40 40 60 60 80 80 100 100
Monitor MN1 MN2 MN3 MN4 MN5 MN6 MN7 MN8 MN9 MN10

Q 5 20 20 10 30 10 40 10 20 20
NbrC 4 2 2 3 2 3 2 3 2 3

Node N11 N12 N13 N14 N15 N16 N17 N18 N19 N20

Recover-
time

120 120 140 140 160 160 180 180 200 200

Monitor MN11 MN12 MN13 MN14 MN15 MN16 MN17 MN18 MN19 MN20

Q 60 30 70 40 80 50 90 50 100 50
NbrC 2 3 2 4 2 4 2 4 2 5
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processing, obstacle avoidance, and motion control) are encapsulated into control-
lable, communicating modules (see Fig. 13).

At LAAS, they have used GenoM [50] to develop these modules. Each module 
in the functional level of the LAAS architecture is responsible for a particular func-
tionality of the robot. Complex modalities (such as navigation) are obtained by mak-
ing modules work together. This architecture is used on all robots at LAAS (e.g., 
DALA, an iRobot ATRV; HRP2; Rackham, an iRobot B21; Jido, etc.). In this study, 
we focus on the functional level of DALA, which mainly includes two navigation 
modes, namely flat terrain navigation mode and rough terrain navigation mode. Each 
GenoM module of the functional level of DALA is built as a set of a hierarchy of 
components, as illustrated in Fig. 14. Each Module is composed of a set of services, 
a set of execution tasks, and a set of Posters. Each Service is a compound compo-
nent which consists of a Service controller and Activity. Each Execution Task is a 
compound component which contains a Timer and a Scheduler Activity. In Fig. 14, 
we provide details about the mapping of each GenoM component to its correspond-
ing modeling specification in our architecture. Using this analogy, our approach can 
be applied to any module at the functional level of DALA.

In this work, we focus on modules of the flat terrain navigation mode and we 
propose to analyze the NDD module of this navigation mode. The NDD module is 
one of the modules ensuring the Flat terrain navigation of the DALA robot. After 
proper initialization, it periodically (every 100 ms) recovers the current position (in 
the RFLEX module) (pos) poster and the obstacles (in the Aspect module) (Obs) 
poster. It produces the poster (speed) which will be used by the RFLEX module, 
which manages the low level robot wheels controller in order to control the speed 

Fig. 13  DALA architecture
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of the robot. RFLEX also produces the current position of the robot based on odom-
etry. This position is used by the POM module to generate the current position of the 
robot (see Fig. 13).

6.2  The NDD modeling and verification

The architecture of the NDD module is given in Fig. 15. It consists of five services, 
namely SetParams, SetDataSource, SetSpeed, Stop, and GoTo. Each service can 
be invoked by the higher (decisional) level according to the tasks that need to be 
achieved. Services can be execution services, which initiate activities that take time 
to execute, or control services, which take negligible time to execute and are respon-
sible for setting and returning variable values. Three services, SetParams, SetData-
Source, and SetSpeed, correspond to initializations of the navigation algorithm. The 
services Stop and GoTo are responsible for launching and stopping the path com-
putation toward a given goal. Execution services are managed by execution tasks, 
which are responsible for launching and executing activities within the associated 
running services. Indeed, the NDD module contains five services and one execution 
task. Each service is modeled by composing the device and its monitor. The execu-
tion task is modeled by composing the node and its monitor. Figure 15 shows the 
obtained model of the NDD module with respect to the analogy given in Fig. 14.

Using the executable code of the NDD model generated by the real-time BIP, 
we have performed a set of experiments. In particular, we study the impact of the 
failure rate on the NDD module response time. In Figs. 16 and 17, we depict the 
results of several experiments related to the average response time of the NDD 
module for different failure rates. These failure rates are related to the failure of 
the SetParams service in Fig. 16 and also to the failure of the SetSpeed service 

Fig. 14  A mapping of GenoM modules to our model components
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Fig. 15  NDD componentization prior to our approach

Fig. 16  The impact of failure rate and recovery-time of the SetParams service on the response time of the 
NDD module

Fig. 17  The impact of failure rate and recovery-time of the SetSpeed service on the response time of the 
NDD module
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in Fig.  17. The same set of experiments investigates the effect of self-recovery 
period variation on the overall response time of the NDD module. Indeed, recov-
ery-time has an impact on the response time as well. Note that in the NDD mod-
ule, the control task wakes up periodically every 100 ms, which means that the 
overall response time does not have to exceed this period of time. In Figs.  16 
and  17, we highlight with red squares the cases where this timing constraint has 
been violated by one or more executions.

7  Conclusion

We presented a distributed and formal model for the specification, verification, and 
analysis of self-recovery behaviors in autonomous systems. Our approach is based 
on the combination of two frameworks to provide high level functional verifica-
tion results and low-level performance analysis based on a stochastic version of the 
proposed model. We have focused on a completely distributed architecture with an 
implementation of different well-known failure-detection as well as recovery strat-
egies. We have also applied our approach to a real-life case study corresponding 
to the navigation module of the DALA robot. As the key features of the overall 
approach, we highlight the following.

• Our model promotes a component-based design philosophy that allows for the 
detection component failures and supports the integration of recovery strategies.

• Our design flow is layered, which allows a separation between the application 
design and the lower-level system aspects, such as communication and computa-
tion.

• Both functional and non-functional system aspects are captured in our model, 
which enables a wide range of analysis using BIP and SBIP tools.

Possible research directions include the integration of strategies enabling failure 
prediction strategies. In such cases, failure is avoided by starting a recovery pro-
cess before the failure is even detected. Defining reconfigurable models is also a 
possible research direction where the recovery strategy could be adapted on the 
fly with respect to the system status.
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