
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:19097–19113
https://doi.org/10.1007/s11227-022-04607-z

1 3

HPC enables efficient 3D membrane segmentation 
in electron tomography

J. J. Moreno1   · E. M. Garzón1 · J. J. Fernández2,4 · A. Martínez‑Sánchez3,4

Accepted: 15 May 2022 / Published online: 17 June 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2022

Abstract
Electron Tomography (ET) is a powerful three-dimensional (3D) imaging technique 
used in structural biology and biomedicine to allow the visualization of the interior 
of cells at close-to-molecular resolution. Interpretation of the 3D volumes in ET is 
usually challenging due to the complexity of the cellular environment, noise condi-
tions and other factors. Automated segmentation methods focused on membranes 
of the cells and organelles greatly facilitate visualization and interpretation of the 
3D volumes. However, they are typically computationally expensive and spend sig-
nificant processing time on standard computers. In this work, we introduce efficient 
implementations of one of the methods most commonly used in the ET field for 
membrane segmentation. They were developed by using High Performance Com-
puting (HPC) techniques to make the most of modern CPU-based and GPU-based 
computing platforms. A thorough evaluation of the performance on state-of-the-art 
machines was carried out. The HPC implementations succeed in achieving remark-
able speedups, which are around 100× on GPUs, and making it possible to process 
large 3D volumes in the order of seconds or a few minutes.

Keywords  Electron tomography · Membrane segmentation · Tensor voting · 
Steerable filters · High performance computing · GPU computing

 *	 J. J. Moreno 
	 juanjomoreno@ual.es

 *	 A. Martínez‑Sánchez 
	 martinezsantonio@uniovi.es

1	 Informatics Dept., University of Almería, ceiA3, Ctra. Sacramento s/n, Almería 04120, 
Andalucia, Spain

2	 Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research 
Council (CSIC), Oviedo, Spain

3	 Computer Science Dept., University of Oviedo, Oviedo, Spain
4	 Health Research Institute of Asturias (ISPA), Oviedo, Spain

http://orcid.org/0000-0002-2194-2318
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04607-z&domain=pdf


19098	 J. J. Moreno et al.

1 3

1  Introduction

Electron Tomography (ET) has emerged as a powerful technique in structural biology 
and biomedicine for three-dimensional (3D) visualization of the subcellular architec-
ture at the nanometer scale [1]; furthermore, Cryo-ET faithfully preserves structures 
beyond nanometer scale by rapid freezing the sample. This technique relies on the same 
principles as Computed Tomography (CT) usually employed in Medicine [2]. In ET, a 
series of electron microscopy images is acquired from a specimen at different orienta-
tions around a single axis. These images are then combined by means of tomographic 
reconstruction methods to yield the 3D volume, which is then visualized and analyzed 
[3].

One essential stage for the interpretation of the reconstructed 3D volume is the seg-
mentation into its constitutive structural components. However, such segmentation 
proves to be challenging because of a number of factors such as the molecular crowd-
ing often found in the cellular environment, artefacts inherent to the ET technique and 
the low signal-to-noise ratio (SNR) [3]. Thus, segmentation is still a major bottleneck 
in ET.

Therefore, there is compelling need for automated segmentation methods that facili-
tate the interpretation of the overwhelming structural information available in the 3D 
volumes in ET [3–5]. There have been numerous attempts to develop segmentation 
methods in the ET field (e.g. based on template matching, watershed) [3, 6, 7]. How-
ever, none has produced results of general applicability, and thus, manual segmenta-
tion is still a common choice. Recently, deep-learning techniques have emerged with 
promising prospects [8–11]. Nevertheless, they are characterized by enormous com-
putational demands, the need for availability of enough training data and some expert 
knowledge is still required to make the most of them. This fact is limiting their practical 
applicability across the community of biologists in the ET field.

Membranes constitute the natural boundaries of cells and the organelles therein, so 
they turn out to be an ideal target for segmentation [12–15]. A few years ago, we devel-
oped a robust method for membrane segmentation [14] that is being very successfully 
used in ET [16, 17] and provides a basis for further quantitative analysis of membra-
nous structures [5, 18–20]. The method provides useful solutions even under very low 
SNR scenarios. Nonetheless, it may be slow when dealing with huge 3D volumes, as 
typically obtained in ET.

In this work, we have used High Performance Computing (HPC) techniques to 
develop efficient implementations of the membrane segmentation method with the 
aim to take full advantage of the resources available in modern multi-core processors 
and GPUs and provide solutions in reasonable time. Both types of platforms are repre-
sentative examples of HPC machines that are currently available in structural biology 
laboratories.



19099

1 3

HPC enables efficient 3D membrane segmentation in electron…

2 � Membrane segmentation with steerable tensor voting

2.1 � Membrane segmentation and tensor voting

Our robust method for membrane segmentation relies on a Gaussian model for mem-
brane profile and a local structure detector based on the Hessian tensor that finds 
potential membrane-like features [14]. To reduce the noise and ensure the Gaussian 
profile of membranes, the original tomogram is subjected to Gaussian filtering using 
a standard deviation according to the thickness of the membrane to detect [12]. The 
local detector is then applied to the Gaussian-filtered tomogram.

One key aspect for the efficiency of the local structure detector is that the method 
is to be applied to two-dimensional (2D) planes of the 3D volumes. This is sup-
ported by the fact that membranes in 3D volumes appear as curves in 2D planes 
[12]. This greatly simplifies the complexity with respect to a pure 3D implemen-
tation of the whole procedure, in particular the tensor voting algorithm that is 
described below [14].

Therefore, for a given 2D plane, the Hessian tensor is constructed from the sec-
ond order derivatives and can act as a local curve detector from its eigenvalues ( �1 
and �2 , with |�1| ≥ |�2| ≥ 0 ), and the corresponding eigenvectors ( ⃗v1 and v⃗2):

where t
xx

=
�2L

�x2
 , t

yy
=

�2L

�y2
 and t

xy
=

�2L

�x�y
 are the second order derivatives with respect 

to the axes x and y of the 2D plane, and L denotes the 2D plane from the Gaussian-
filtered tomogram.

The first eigenvector v⃗1 , that is, the one whose eigenvalue exhibits the largest 
value in absolute value |�

1
| , points to the direction of the maximum variation. In a 

point belonging to a 2D curve, this direction is the normal to the curve. Accordingly, 
the second eigenvector v⃗2 points to the tangent of the curve. Consequently, a local 
detector can be derived from the eigenvectors and eigenvalues of the Hessian tensor 
[14].

Therefore, voxels belonging to a local curve have |𝜆
1
| >> |𝜆

2
| , with v⃗1 in the 

direction perpendicular to the curve, and the term |�
1
− �

2
| represents the curve sali-

ency (i.e. the likelihood of a voxel to belong to a curve). The orientation of v⃗1 with 
respect to the X axis is given by arccos (v⃗1 ⋅ êx) . As a consequence, a tensor field is 
obtained where all voxels are described by their saliency and orientation:

This information, S
in
(�) and �

in
(�) , represents the input tensor field that will be fed 

to the following stage.
Unfortunately, the performance of local detectors is limited because they are sus-

ceptible to artefacts and noise, thereby producing gaps or false positives. Therefore, 

(1)� =

[
txx txy
txy tyy

]
=

[
v⃗
1
v⃗
2

][ 𝜆
1

0

0 𝜆
2

][
v⃗
1
v⃗
2

]T

(2)S
in
(�) = S(�(�)) = |�1 − �2|

(3)𝛼
in
(�) = 𝛼(�(�)) = arccos (v⃗1 ⋅ êx)



19100	 J. J. Moreno et al.

1 3

procedures that provide robustness to the local detection are needed. For that pur-
pose, we use the Tensor Voting algorithm [14, 21].

Tensor Voting (TV) allows anisotropic propagation of the local structural infor-
mation derived from Hessian-tensor [14, 21] and encoded by S

in
(�) and �

in
(�) . In 

this process, the local structure at each voxel is refined according to the information 
received from neighbour voxels. As a result, voxels belonging to the same mem-
brane will finally end up with coherent structural information, thereby strengthening 
the underlying global structure. The resulting 3D map represents how well every 
point in the tomogram fits a membrane model. Figure 1 illustrates the TV algorithm. 
Figure 2 shows application of the whole procedure to an experimental 3D volume.

2.2 � Steerable tensor voting

Tensor voting is a computationally demanding procedure. The standard implementa-
tion consists of pre-computing and storing the voting field [21] (Fig. 1(B)). Transla-
tion and rotation of the voting field throughout the image space is needed for casting 
votes, which is done by interpolation (Fig. 1(C)). There exists, however, a more effi-
cient implementation that takes advantage of the theory of steerable filters [23]. A 
steerable filter is a filter that can be oriented in an arbitrary direction just by a linear 
combination of a finite number of predefined rotations of the filter (so-called basis 
functions or filters) [24]. If the number of basis filters is sufficiently small, this turns 
out to be a very efficient strategy for arbitrary oriented filtering of images.

The following steerable expression for the TV algorithm was derived to yield the 
final, refined saliency S

out
(�) representing the likelihood of a voxel to belong to a 

curve. The derivation details can be found elsewhere [14, 23]:

where km are the linear coefficients:

and Vm(�) are the basis filters given by:

where �m has constant values: {1, 4, 6, 4, 1} for m = 0… 4 , respectively. �v denotes 
the length scale of the analysis, which determines the effective neighbourhood size 
(expressed in voxels).

As a result, the TV algorithm is reduced to just five convolutions followed by a 
linear combination. Moreover, computation of these convolutions in Fourier space 
speeds up the calculation significantly [23].

(4)S
out
(�) =

||||||

4∑

m=0

km(�in(�))(Sin(�) ∗ Vm(�))

||||||

(5)km(�) = e−2i(m−1)�

(6)Vm(�) = �m e
−

x2+y2

2�2v

�
x + iy

√
x2 + y2

�2m

, for � = (x, y) ≠ (0, 0)



19101

1 3

HPC enables efficient 3D membrane segmentation in electron…

Therefore, the robust method for membrane segmentation based on steerable TV 
consists in two steps. First, local curve descriptors are calculated, which encode sali-
ency and orientation of the local curve for each point. This is followed by an effi-
cient TV algorithm that propagates the local information among neighbours so that 
membrane information from points belonging to the same underlying feature are 
strengthening each other. This process is applied to the 2D planes of the 3D tomo-
grams along the three major axes: first, along the Z axis (i.e. XY planes), then along 

Fig. 1   Tensor Voting in 2D. A Model for vote casting. Votes include information about saliency and ori-
entation. The voter at the origin � is shown with its normal in green. The voxel � is the receiver. The 
dashed arc represents the osculating circle passing through � and � , which is the most likely smooth 
path between the two points. The vote cast from � to � is shown in red. Note that it turns out to be a 
transformed version of the normal at � (in green) following the smooth path connecting � and � . B 2D 
voting field, which is the collection of the votes cast by a voter located at the origin and has unit saliency 
and orientation along the x-axis. The centre of the field is placed at the origin, and the normal runs along 
the Y axis. The ∞-shape encompasses the votes with most significant saliency. C Tensor voting mecha-
nism. For each voxel, the voting field is placed at its position, with the orientation of its normal. Then, 
the votes (red dotted arrows) are cast to all voxels in the neighbourhood. The procedure is repeated for 
all voxels in the plane, as sketched here for two voxels (left and right panels). At the end of the voting 
process, voxels belonging to a perceptual feature (e.g. the solid black curve here) will have been strength-
ened each other, hence enhancing the feature. The other voxels will have received divergent information, 
which will smear them out



19102	 J. J. Moreno et al.

1 3

the Y axis (XZ planes), finally along X axis (YZ planes). The final output saliency 
for each voxel is taken as the average of the three curve saliency values available 
[14].

3 � HPC Implementations

3.1 � Membrane segmentation with steerable tensor voting in fourier space

The method for 3D membrane segmentation comprises three rounds of 2D curve 
segmentation by using the 2D steerable TV algorithm. In each round, the volume 
is swept across one of the three major axes (X, Y or Z) and the individual Np 2D 
planes, with coordinates denoted by (x, y), are then processed. This 2D TV algo-
rithm consists of the linear combination of five convolutions, as given by Equa-
tion 4. These convolutions are performed in Fourier space, which can be mathemati-
cally expressed as:

where F  and F−1 denote direct and inverse Fourier transforms (FT), respectively. 
This expression clearly shows that ten direct FTs and one inverse FT are required to 
process a single 2D plane. It is important to note that the basis filters Vm(�) (Equa-
tion 6) do not depend on the actual density values present in the 2D planes. Instead, 

(7)S
out
(�) =

||||||
F

−1

{
4∑

m=0

F
{
km(�in(�))Sin(�)

}
⋅ F

{
Vm(�)

}
}||||||

Fig. 2   Application of membrane segmentation based on Hessian-tensor local detector and Tensor Voting 
on an experimental ET volume containing HIV-1 virions [22]. From left to right: a slice of the original 
volume, result from the Gaussian filtering operation and the resulting membrane detection (saliency). 
Right-most panel: 3D visualization of the segmented membranes, obtained by a simple thresholding 
operation on the saliency followed by extraction of connected components. The open membranes at the 
top/bottom of the volumes are features inherent to the ET technique



19103

1 3

HPC enables efficient 3D membrane segmentation in electron…

the computation of the basis filters only depend on the coordinates (x, y). As a con-
sequence, the five basis filters Vm(�) , with m = 0… 4 and their FT can be precom-
puted and re-used for all 2D planes along an axis. This reduces the computation 
involved for a 2D plane to five direct FTs and one inverse FT, together with the com-
putation of the saliency S

in
(�) , orientation �

in
(�) and linear coefficients km(�in(�)) , 

with m = 0… 4 . In order to use the most optimized library for FT calculations, we 
used the FFTW [25] compiled to use vector instructions currently available in cur-
rent CPU processors, and the CUDA CuFFT library optimized for NVIDIA GPUs.

3.2 � Multithreaded CPU implementation

Modern computers are equipped with multi-core processors [26]. The use of mul-
tithreading techniques turns out to be important in ET as they make it possible to 
fully exploit the computational capabilities of state-of-the-art computers and reduce 
the typically long processing time of the image processing procedures in this field. 
These techniques have been paramount to accelerate tomographic reconstruction 
and denoising methods, among others [4, 27–31].

To make the most of the power of modern multi-core computers, we have devel-
oped a multithreaded implementation of the steerable TV algorithm using POSIX 
Threads (PThreads) [32]. The Np 2D planes of the volume along an axis are distrib-
uted across the multiple threads so that they can be processed in parallel. Within 
each thread, its subset of 2D planes is processed sequentially, one after the other, 
by running the steerable TV algorithm in Fourier space, as described above. The 
processing involved in a single plane thus consists of the computation of the Hes-
sian tensor, from which the local saliency and orientation are obtained, followed by 
the five convolutions performed in Fourier space. Note that the basis filters Vm(�) 
and their FTs are computed only once, and they are shared by all threads. Figure 3 
sketches this multithreaded implementation. Note that each 2D plane has to be 
extracted from the input volume before its processing and, once processed, the result 
has to be inserted into the output volume.

3.3 � GPU implementation

Most HPC platforms and modern servers include GPUs to accelerate specific proce-
dures (kernels) which fit with the SIMT programming model. CUDA (Compute Uni-
fied Device Architecture) is a well-known parallel interface developed by NVIDIA 
to program such devices. In the CUDA programming model, the CPU performs a 
succession of kernels invocations to accelerate the corresponding computation on 
GPU. The input/output data of the GPU kernels is communicated between the CPU 
and the ‘global’ GPU memories. Successive generations of NVIDIA GPUs have 
increased resources and features supported by their hardware (Compute Capability). 
For example, asynchronous concurrent kernels/streams executions are supported on 
GPUs with Compute Capability 3.5 and higher.

The parallel steerable TV of 3D volume in every spatial dimension (X, Y and 
Z) can be organised by 2D planes without synchronisation points. To get a high 



19104	 J. J. Moreno et al.

1 3

acceleration on GPUs the first step is to extract every 2D plane to store it on the 
GPU memory. This way, the memory accesses to process the extracted plane on 
GPU are almost fully coalescent, therefore the corresponding computation is very 
efficient. When it finishes, the resulting segmented plane is inserted into the 3D 
data structure.

Two GPU implementations have been developed according to two different 
communications schemes:

In the GPU version named CuTV-Planes, the CPU-GPU communication 
is organised by planes. A set of Nt CPU threads are created to process a sub-
set of planes with the same distribution of planes as the multithreaded imple-
mentation. Every CPU-thread extracts one plane from the volume data, creates 
a GPU-Stream and sends the plane to the GPU memory. Then, the sequence of 
GPU kernels is executed to process the plane stored on the GPU memory with the 
steerable TV. When it finishes, the CPU receives a processed plane and inserts 
it into the segmented volume. This procedure is completed for all planes in the 
subset assigned to every CPU-thread/GPU-Stream. This way, the computation 
of every plane is accelerated on GPU and the planes of different streams are 

Fig. 3   Multithreaded implementation of the steerable Tensor Voting algorithm. The volume is swept 
across the direction of one of the major axes (X, Y or Z). Let us denote Np the number of planes in that 
direction, with local coordinates (x, y) within each plane. The 2D planes are distributed across the multi-
ple Nt threads running in parallel. The basis filters can be computed only once and their Fourier compo-
nents are shared by all threads. The processing of each individual 2D plane consists of the computation 
of the Hessian tensor, from which the local saliency and orientation are obtained. This is followed by the 
five convolutions computed in Fourier space, as described in the main text. This multithreaded imple-
mentation is run three times: first, by sweeping the 2D planes in the direction of the Z axis of the volume, 
then in the Y direction and finally X



19105

1 3

HPC enables efficient 3D membrane segmentation in electron…

concurrently processed on GPU, as shown in Fig. 4. Therefore, to allow the con-
current processing, it is necessary to store Nt planes on GPU memory, whose con-
tent is updated as computing advances by GPU-CPU communications. Therefore, 
the GPU memory requirements of CuTV-Planes linearly depends on the number 
of GPU-Streams activated ( Nt ) and it can be easily adapted to the available mem-
ory of different GPUs using this parameter.

The second GPU version, named CuTV-Volume, creates only one CPU-thread. It 
starts with the communication of the whole volume to the GPU memory. Then, the 
GPU extracts planes from the volume as it is swept across the axes. Memory coa-
lescing during these operations is maintained. The X axis (YZ planes) is the most 
challenging, as adjacent voxels are stored far apart in memory. Coalesced memory 
access is maintained by performing plane operations in batches of 32 planes (the 
CUDA warp size) and using block shared memory. Next, a sequence of kernels is 
launched to process the stages of the steerable TV for each plane. Therefore, the 
computation for all planes in the volume is asynchronously processed in parallel 

Fig. 4   CuTV-Planes, a GPU implementation of the steerable TV algorithm. The volume is swept across 
the direction of one of the major axes (X, Y or Z). Let us denote Np the number of planes in that direc-
tion, with local coordinates (x, y) within each plane. CuTV-Planes communicates the input/output vol-
ume between GPU-CPU by planes. Nt CPU threads are spawned, each of them extracts one plane of the 
volume, sends it to GPU and controls one GPU stream. Nt GPU streams concurrently launch the process-
ing of Nt planes on GPU. Each stream sends the output plane to the CPU



19106	 J. J. Moreno et al.

1 3

on GPU. As every plane is segmented, it is inserted into the GPU data structure to 
store the volume. When the GPU concludes, the processed volume is communicated 
from GPU to CPU memory. Figure  5 represents this process. CuTV-Volume can 
efficiently accelerate the computation on GPU. However, as counterpart, it is neces-
sary to store the whole volume twice on the GPU memory. This could be a serious 
drawback when the memory requirements to store the volume are higher than the 
available GPU memory.

4 � Results

4.1 � Datasets

The HPC implementations of the TV-based membrane segmentation method were 
evaluated using datasets from the public databases Electron Microscopy Data 
Resource (EMD, http://​emdat​areso​urce.​org) [33] and Electron Microscopy Public 
Image Archive (EMPIAR, http://​www.​ebi.​ac.​uk/​empiar) [34].

Fig. 5   CuTV-Volume is the second GPU implementation of the steerable Tensor Voting algorithm. The 
whole volume is transferred between CPU-GPU with only two communications. The GPU extracts, pro-
cesses and inserts the results in the device memory. CuTV-Volume processes asynchronously all planes 
in the volume, in the same way as CUTV-Planes

http://emdataresource.org
http://www.ebi.ac.uk/empiar


19107

1 3

HPC enables efficient 3D membrane segmentation in electron…

Two datasets, denoted by EMD-3977 and EMPIAR-10442, with representative 
sizes of the current structural studies from different modalities of ET were used. 
They were obtained from Chlamydomonas reinhardtii [35] and Arabidopsis thali-
ana [36], which are model organisms in biological studies. The 3D volumes had 
sizes of 928 × 928 × 464 and 2596 × 1731 × 717 voxels (around 1.5 GB and 12 GB 
size using single precision floating point numbers), respectively. Figure 6 illustrates 
the result of the membrane segmentation method applied to the dataset EMD-3977.

4.2 � Evaluation platforms

To evaluate the performance of the multicore and GPU implementations, two repre-
sentative HPC platforms have been selected. The first platform contains two AMD 

Fig. 6   Application of membrane segmentation based on Hessian-tensor local detector and Tensor Vot-
ing to dataset EMD-3977. A slice of the original volume A, result from the Gaussian filtering operation 
B, the resulting membrane detection -saliency- C, and 3D visualization of the segmented membranes by 
a simple thresholding operation on the saliency D. Note that the contrast in this tomogram (black fore-
ground over a lighter background, see panels A and B) is the opposite as that in Fig. 2



19108	 J. J. Moreno et al.

1 3

EPYC 7642 processors from the microarchitecture Zen 2 (launched in 2019) for a 
total of 96 CPU cores, 512 GB of DDR4 RAM at 3200 MHz and one NVIDIA Tesla 
V100 (32 GB) of the microarchitecture Volta (launched in 2017). This platform is 
a good example of the compute nodes used in modern HPC clusters. The second 
platform contains two Intel Xeon E5-2620v3 from the microarchitecture Haswell 
(launched in 2013) for a total of 12 CPU cores, 64 GB of DDR3 RAM at 1866 MHz 
and one NVIDIA Kepler K80 (12 GB) of the microarchitecture Kepler (launched 
in 2012). Although this platform is slightly outdated by HPC standards, it performs 
akin to current high-end desktop computers. Therefore, it is a good benchmark for 
the real-world performance of our implementations.

4.3 � Experimental evaluation

The HPC implementations have been applied to the two test datasets on the comput-
ing platforms. The global runtime and, if applicable, the CPU-GPU communication 
times have been measured under different configurations and the speedup has been 
computed. The results are shown in Tables 1 and 2 for the datasets EMD-3977 and 
EMPIAR-10442, respectively.

The multithreaded version yields monotonically increasing speedup factors as 
a function of the number of threads, with a remarkable maximum value approach-
ing 45× in the AMD platform. The tables also show that the speedup moves away 
from the ideal linear behaviour, particularly for high number of threads, espe-
cially beyond 16 cores on the AMD platform. The Intel platform shows similar 
speedup values, but limited up to 12 threads (maximum number of cores). Interest-
ingly, it is not observed a significant influence of the volume size on the accelera-
tion obtained on these multi-core platforms. Thus, the processing of both datasets 
brings similar speedup factors in general, though with some decrease in the case of 
EMPIAR-10442 on the AMD platform.

The GPU implementations achieve outstanding acceleration factors that, overall, 
outperform the multi-core implementation using the largest amounts of threads. This 
is particularly striking in the case of the Tesla V100 GPU. Tables 1 and 2 demon-
strate that the CuTV-Volume version is faster than CuTV-Planes, reaching speed-
ups higher than 100× for both test cases on Tesla V100. Although plane extraction 
on CPU is significantly slower than on GPU, CuTV-Planes keeps the pace better 
than expected, as it leverages both the CPU and GPU computing power and overlaps 
memory transfers and computation, taking advantage of the multiple copy and ker-
nel engines available on current GPUs.

Also noteworthy is that the superiority of CuTV-Volume comes at the expense of 
significant memory consumption, which may turn out to be a limiting factor for its 
applicability. This is the case for the largest dataset (EMPIAR-10442), where appli-
cation of the CuTV-Volume version to run on the Tesla K80 GPU was not possible.

The dataset EMD-3977 is representative of the sizes most widely used now in the 
ET field for segmentation. Table 1 indicates that multithreading reduces the process-
ing time to less than a minute beyond 8 cores. This is an important result because it 
suggests that current datasets can be processed efficiently in standard desktop/laptop 



19109

1 3

HPC enables efficient 3D membrane segmentation in electron…

Ta
bl

e 
1  

R
un

tim
es

, C
PU

-G
PU

 c
om

m
un

ic
at

io
n 

tim
es

 a
nd

 s
pe

ed
up

s 
ac

hi
ev

ed
 b

y 
th

e 
H

PC
 im

pl
em

en
ta

tio
ns

 w
ith

 th
e 

da
ta

se
t E

M
D

-3
97

7.
 C

uT
V

-P
la

ne
s 

de
pl

oy
ed

 1
2 

ho
st 

th
re

ad
s o

n 
Te

sl
a 

V
10

0 
an

d 
4 

ho
st 

th
re

ad
s o

n 
Te

sl
a 

K
80

. D
as

he
s r

ep
re

se
nt

 u
ns

ui
ta

bl
e 

co
nfi

gu
ra

tio
ns

Th
re

ad
s

2
×

 E
PY

C
 7

64
2 

(9
6 

c.
)

2
×

 X
eo

n 
E5

-2
62

0v
3 

(1
2 

c.
)

Ru
n.

 (s
)

A
cc

el
.

Ru
n.

 (s
)

A
cc

el
.

1
28

5.
08

1.
00

38
0.

36
1.

00
2

14
6.

97
1.

94
19

6.
65

1.
93

4
74

.3
3

3.
84

10
4.

24
3.

65
8

37
.8

7
7.

53
61

.1
1

6.
22

12
25

.8
2

11
.0

4
44

.6
0

8.
53

16
19

.9
9

14
.2

6
−

−
32

11
.1

7
25

.5
2

−
−

64
7.

58
37

.6
1

−
−

96
6.

47
44

.0
6

−
−

St
ra

te
gy

N
V

ID
IA

 T
es

la
 V

10
0

N
V

ID
IA

 T
es

la
 K

80

Ru
n.

 (s
)

C
om

m
s. 

(s
)

A
cc

el
.

Ru
n.

 (s
)

C
om

m
s. 

(s
)

A
cc

el
.

C
uT

V-
Pl

an
es

3.
30

0.
37

86
.3

9
9.

83
3.

24
38

.6
9

C
uT

V-
Vo

l-
um

e
2.

75
0.

29
10

3.
67

9.
18

0.
32

41
.4

3



19110	 J. J. Moreno et al.

1 3

Ta
bl

e 
2  

R
un

tim
es

, C
PU

-G
PU

 c
om

m
un

ic
at

io
n 

tim
es

 a
nd

 sp
ee

du
ps

 a
ch

ie
ve

d 
by

 th
e 

H
PC

 im
pl

em
en

ta
tio

ns
 w

ith
 th

e 
da

ta
se

t E
M

PI
A

R-
10

44
2.

 C
uT

V-
Pl

an
es

 d
ep

lo
ye

d 
12

 h
os

t 
th

re
ad

s o
n 

Te
sl

a 
V

10
0 

an
d 

4 
ho

st 
th

re
ad

s o
n 

Te
sl

a 
K

80
. D

as
he

s r
ep

re
se

nt
 u

ns
ui

ta
bl

e 
co

nfi
gu

ra
tio

ns

Th
re

ad
s

2
×

 E
PY

C
 7

64
2 

(9
6 

c.
)

2
×

 X
eo

n 
E5

-2
62

0v
3 

(1
2 

c.
)

Ru
n.

 (s
)

A
cc

el
.

Ru
n.

 (s
)

A
cc

el
.

1
31

36
.6

0
1.

00
49

16
.5

9
1.

00
2

18
12

.8
5

1.
73

25
92

.0
0

1.
90

4
97

0.
96

3.
23

13
41

.0
0

3.
67

8
53

0.
45

5.
91

79
4.

02
6.

19
12

35
9.

31
8.

73
59

0.
76

8.
32

16
28

2.
04

11
.1

2
−

−
32

15
3.

46
20

.4
4

−
−

64
88

.2
2

35
.5

5
−

−
96

69
.9

4
44

.8
5

−
−

St
ra

te
gy

N
V

ID
IA

 T
es

la
 V

10
0

N
V

ID
IA

 T
es

la
 K

80

Ru
n.

 (s
)

C
om

m
s. 

(s
)

A
cc

el
.

Ru
n.

 (s
)

C
om

m
s. 

(s
)

A
cc

el
.

C
uT

V-
Pl

an
es

25
.8

0
4.

36
12

1.
57

90
.6

4
36

.3
3

54
.2

4
C

uT
V-

Vo
l-

um
e

23
.9

0
2.

31
13

1.
24

−
−

−



19111

1 3

HPC enables efficient 3D membrane segmentation in electron…

computers. Moreover, the use of GPU computing allows further reduction of the 
processing time to just seconds.

The dataset EMPIAR-10442 can be considered as an example of the sizes that 
are expected in the short term, owing to the increasing resolution demands. Table 2 
demonstrates that these 3D volumes can be processed in a matter of 5-10 minutes 
in standard computers equipped with 4-8 CPU cores. These large volumes are espe-
cially well suited for exploitation of GPUs, as corroborated by the exceptional accel-
eration factors obtained in both GPUs tested. Therefore, depending upon the GPU 
architecture, there is potential to process these volumes even in less than a minute.

5 � Conclusions

We have presented and evaluated efficient implementations of a membrane seg-
mentation method for their application to large 3D volumes in structural studies by 
electron tomography. The implementations rely on the steerable Tensor Voting algo-
rithm performed in Fourier space as well as the use of HPC techniques to exploit 
CPUs and GPUs. First, multithreading techniques have been used to make the most 
of the state-of-the-art CPU-based multicore processors. Second, we have further 
elaborated the implementation to exploit the fine-grained parallelism levels in the 
advanced GPU architectures, and we have developed two GPU versions with differ-
ent memory demands. All HPC implementations faithfully proceed as the original 
sequential version and reproduce the same segmentation results.

Outstanding acceleration rates, even reaching 45-100× , have been obtained on 
powerful platforms equipped with substantial number of CPU cores or on modern 
GPUs. Remarkably, our results demonstrate that our implementations allow seg-
mentation of membranes present in 3D volumes of representative size in a matter 
of seconds or a few minutes, even with standard computers equipped with relatively 
modest number of CPU cores (4-8).

The GPU implementations that we have presented are particularly interesting. 
Both versions have demonstrated capabilities to achieve high acceleration factors. 
The one that maintains the whole volume in the GPU memory shows an excep-
tional performance, with speedup values around 100× , but its application may be 
restricted to high-end GPUs. The GPU version working on a plane-basis obtains 
lower speedup values, with the advantage that the memory demands are limited to 
those required for processing a relatively small subset of planes. This memory con-
sumption ensures its practical applicability in a wide range of GPUs, even modest 
ones. The availability of the two GPU versions makes our program versatile in the 
sense that, depending on the memory demands and the GPU platform, the proper 
version is selected.

The speed of our implementations paves the way for running the method on 
standard desktop/laptop computers, which are the machines usually available in 
most laboratories of life sciences. Moreover, this implementation will facilitate the 
processing of the huge 3D volumes (e.g. 4096x4096x2048 or larger) that will shortly 
be required by the increasing resolution needs in the electron tomography field. Our 
future plans include to exploit other parallelism levels of the algorithm and explore 



19112	 J. J. Moreno et al.

1 3

hybrid implementations that jointly take advantage of CPU and GPUs available in 
the computing platforms.

Acknowledgements  This work has been supported by the projects  and contracts: RTI2018-095993-B-
I00, SAF2017-84565-R,  PID2021-123278OB,  PID2021-123424OB,  TED2021-132020B (funded by 
MCIN/AEI/10.13039/501100011033/FEDER “A way to make Europe”); UAL18-TIC-A020020-B and 
P18-RT-1193 (both funded by Junta de Andalucía and FEDER);  PAPI-21-GR-2011-0048 (funded by 
the University of Oviedo) and FUO-200-21 (funded by Thermo Fisher Scientific); and a FPU fellowship 
(FPU16/05946 funded by MCIN/AEI/10.13039/501100011033/ “El FSE invierte en tu futuro”) awarded 
to J.J. Moreno.

References

	 1.	 Turk M, Baumeister W (2020) The promise and the challenges of cryo-electron tomography. Fed-
eration Eur Biochem Soc (FEBS) Lett 594:3243–3261

	 2.	 Herman GT (2009) Image reconstruction from projections: the fundamentals of computerized 
tomography, 2nd edn. Springer, London

	 3.	 Fernandez JJ (2012) Computational methods for electron tomography. Micron 43:1010–1030
	 4.	 Moreno JJ et al (2018) Tomoeed: Fast edge-enhancing denoising of tomographic volumes. Bioinfor-

matics 34:3776–3778
	 5.	 Martinez-Sanchez A et  al (2020) Template-free detection and classification of membrane-bound 

complexes in cryo-electron tomograms. Nat Method 17:209–216
	 6.	 Tasel SF et al (2016) A validated active contour method driven by parabolic arc model for detection 

and segmentation of mitochondria. J Struct Biol 194:253–271
	 7.	 Luengo I et  al (2017) SuRVoS: Super-region volume segmentation workbench. J Struct Biol 

198:43–53
	 8.	 Chen M et al (2017) Convolutional neural networks for automated annotation of cellular cryo-elec-

tron tomograms. Nat Methods 14:983–985
	 9.	 Li R et al (2019) Automatic localization and identification of mitochondria in cellular electron cryo-

tomography using faster-RCNN. BMC Bioinformatics 20(Suppl 3):132
	10.	 Fischer CA et al (2020) MitoSegNet: Easy-to-use deep learning segmentation for analyzing mito-

chondrial morphology. iScience 23(10):101601
	11.	 Moebel E et al (2021) Deep learning improves macromolecule identification in 3D cellular cryo-

electron tomograms. Nat Methods 18:1386–1394
	12.	 Martinez-Sanchez A et  al (2011) A differential structure approach to membrane segmentation in 

electron tomography. J Struct Biol 175:372–383
	13.	 Martinez-Sanchez A et al (2013) A ridge-based framework for segmentation of 3D electron micros-

copy datasets. J Struct Biol 181:61–70
	14.	 Martinez-Sanchez A et al (2014) Robust membrane detection based on tensor voting for electron 

tomography. J Struct Biol 186:49–61
	15.	 Page C, Hanein D, Volkmann N (2015) Accurate membrane tracing in three-dimensional recon-

structions from electron cryotomography data. Ultramicroscopy 155:20–26
	16.	 Fernandez-Fernandez MR et al (2017) 3D electron tomography of brain tissue unveils distinct Golgi 

structures that sequester cytoplasmic contents in neurons. J Cell Sci 130:83–89
	17.	 Chaikeeratisak V et al (2019) Viral capsid trafficking along treadmilling tubulin filaments in bacte-

ria. Cell 177(7):1771–1780
	18.	 Bäuerlein FJB et  al (2017) In  situ architecture and cellular interactions of polyq inclusions. Cell 

171(1):179–187
	19.	 Guo, Q.,. et al (2018) In situ structure of neuronal C9orf72 Poly-GA aggregates reveals proteasome 

recruitment. Cell 172(4):696–705
	20.	 Salfer M et  al (2020) Reliable estimation of membrane curvature for cryo-electron tomography. 

PLoS Comput Biol 16:1007962
	21.	 Medioni G, Lee MS, Tang CK (2000) A Computational Framework for Segmentation and Group-

ing. Elsevier



19113

1 3

HPC enables efficient 3D membrane segmentation in electron…

	22.	 Briggs JA et  al (2006) The mechanism of hiv-1 core assembly: insights from three-dimensional 
reconstructions of authentic virions. Structure 14:15–20

	23.	 Franken E et al (2006) An efficient method for tensor voting using steerable filters. Lect Notes Com-
put Sci 3954:228–240

	24.	 Freeman WT, Adelson EH (1991) The design and use of steerable filters. IEEE Trans Pattern Anal 
Mach Intell 13:891–906

	25.	 Frigo M, Johnson SG (2005) The design and implementation of fftw3. Proc IEEE 93:216–231
	26.	 Hennessy JL, Patterson DA (2019) Computer Architecture. A Quantitative Approach, 6th edn. Mor-

gan Kauffman Publishers, Elsevier, Cambridge, MA, USA
	27.	 Fernandez JJ (2008) High performance computing in structural determination by electron cryomi-

croscopy. J Struct Biol 164:1–6
	28.	 Tabik S et al (2007) High performance noise reduction for biomedical multidimensional data. Digit 

Signal Proc 17(4):724–736
	29.	 Fernandez JJ, Martinez JA (2010) Three-dimensional feature-preserving noise reduction for real-

time electron tomography. Digital Signal Proc 20:1162–1172
	30.	 Agulleiro JI, Fernandez JJ (2011) Fast tomographic reconstruction on multicore computers. Bioin-

formatics 27(4):582–583
	31.	 Agulleiro JI, Fernández JJ (2012) Evaluation of multicore-optimized implementation for tomo-

graphic reconstruction. PLoS ONE 7:48261
	32.	 Butenhof DR (1997) Programming with POSIX Threads. Addison-Wesley Professional, Boston, 

MA, USA
	33.	 Lawson CL et  al (2016) EMDataBank unified data resource for 3DEM. Nucleic Acids Res 

44:396–403
	34.	 Iudin A et  al (2016) EMPIAR: A public archive for raw electron microscopy image data. Nat 

Method 13:387–388
	35.	 Bykov YS et al (2017) The structure of the copi coat determined within the cell. Elife 6:32493
	36.	 Yan D et al (2019) Sphingolipid biosynthesis modulates plasmodesmal ultrastructure and phloem 

unloading. Nature Plants 5:604–615

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.


	HPC enables efficient 3D membrane segmentation in electron tomography
	Abstract
	1 Introduction
	2 Membrane segmentation with steerable tensor voting
	2.1 Membrane segmentation and tensor voting
	2.2 Steerable tensor voting

	3 HPC Implementations
	3.1 Membrane segmentation with steerable tensor voting in fourier space
	3.2 Multithreaded CPU implementation
	3.3 GPU implementation

	4 Results
	4.1 Datasets
	4.2 Evaluation platforms
	4.3 Experimental evaluation

	5 Conclusions
	Acknowledgements 
	References




