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Abstract
Satisfying cloud customers’ requirements, i.e., respecting an agreed-on service level 
agreement (SLA), is not a trivial task in a multi-cloud context. This is mainly due 
to divergent SLA objectives among the involved cloud service providers and hence 
divergent reconfiguration strategies to enforce them. In this paper, we propose a hier-
archical representation of multi-cloud SLAs: sub-SLAs associated with a system’s 
components deployed on distinct cloud service providers and global-SLA associ-
ated with the whole system. We also enrich these SLA representations with state 
machines reflecting reconfiguration strategies defined by cloud customers. Then, 
we propose an autonomous multi-cloud resource orchestrator based on the MAPE-
K adaptation control loop to enforce them and to avoid SLA violations. Finally, in 
order to check the conformity of this enforcement with defined multi-cloud SLA, we 
propose an approach for multi-cloud SLA reporting inspired by conformance check-
ing techniques. An implementation of the approach is presented in the paper and 
illustrates the approach feasibility.

Keywords  SLA · Cloud resources · Multi-cloud · Autonomous computing · 
Reconfiguration strategy · State machine

1  Introduction

Cloud computing has become a mature technology and the de facto solution for 
companies to host their IT systems in the last ten years. According to the last big 
outages of multiple cloud-based systems, relying on a single cloud service provider 
can be problematic due to risks such as availability zones going down or network 
failures. A solution is to leverage the multi-cloud paradigm to distribute a system’s 
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components over multiple cloud service providers in order to mitigate these risks. 
Multi-cloud denotes the usage of resources from multiple and independent clouds 
by a customer (e.g., enterprise); contrary to a federated cloud where multiple cloud 
providers unify their resources to provide a common service to a customer. Cloud 
customers use multi-cloud for different reasons: (1) improving cost-effectiveness, 
(2) avoiding vendor lock-in, (3) ensuring backups to deal with disasters, and (4) 
consuming particular services that are not provided elsewhere. The Gartner Hype 
Cycle for Cloud Computing 2020 forecasts that multi-cloud will be a mature concept 
within the next 5 years [1]. Also, the RightScale State of the Cloud report shows 
that 92% of enterprises have a multi-cloud strategy in 2021 [2]. Furthermore, sev-
eral European collaborative research projects propose approaches for consuming 
multi-cloud services such as Melodic [3], Decide H2020 [4], Cyclone [5], MODA-
Clouds [6] and SeaCloud [7]. Many industry products aim to adopt the multi-cloud 
paradigm. These products are carried by cloud services providers such as Google 
cloud with Anthos1, Amazon Web Service with EKS/ECS Anywhere2 and Micro-
soft Azure with Arc3.

Despite this great interest in the multi-cloud paradigm, maintaining a certain level 
of service for a multi-cloud application is still a non-trivial issue. One solution is to 
formalize the required level of service needed as a service level agreement (SLA). In 
a multi-cloud context, this latter SLA is denoted as a multi-cloud SLA which allows 
representing requirements for a multi-cloud application. A few works have looked 
at the modeling of multi-cloud SLA, such as [6] or [8]. However, these representa-
tions do not consider the dynamicity and elasticity of such multi-cloud applications, 
which is a major characteristic of a cloud application [9]. Indeed, dynamicity can 
have an impact on the SLA and violate service level objectives, e.g., scaling-out a 
resource to comply with an availability objective can lead to the violation of a cost 
objective. Another, non-trivial activity due to the distributed nature of the multi-
cloud and the heterogeneity of service level objectives is SLA reporting. This activ-
ity, which consists of identifying what happened during the enforcement of the SLA, 
is also partially covered in the literature [10].

In order to solve these issues, we first model a multi-cloud SLA associated with 
a composite application as: (1) a global SLA that contains the requirements for a 
whole multi-cloud application, and (2) several sub-SLAs, one for each component 
of the application, that contains the component’s requirements. Then, to address the 
dynamicity issue, we propose a formalism based on the state-machine semantics to 
enrich the multi-cloud SLA. This state-machine formalism allows representing dif-
ferent user requirements and how providers can technically address these require-
ments. Hence, it allows representing the fine-grained service level objectives of a 
multi-cloud SLA. We denote the resulting multi-cloud SLA as an enriched multi-
cloud SLA.

1  https://​cloud.​google.​com/​anthos.
2  https://​aws.​amazon.​com/​eks/​eks-​anywh​ere/.
3  https://​azure.​micro​soft.​com/​en-​us/​servi​ces/​azure-​arc/.

https://cloud.google.com/anthos
https://aws.amazon.com/eks/eks-anywhere/
https://azure.microsoft.com/en-us/services/azure-arc/
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Next, to enforce an enriched multi-cloud SLA, we propose a multi-cloud 
resources orchestrator which is compliant with the state-machine formalism. This 
orchestrator follows an autonomous approach based on the MAPE-K (Monitor-Ana-
lyze-Plan-Execute over a shared Knowledge) adaptation control loop [11] to enforce 
the enriched multi-cloud SLA. MAPE-K is a widely used reference control model 
for autonomic and self-adaptive systems. This autonomous approach avoids SLA 
violations by reconfiguring the application if needed. For instance, when a scale-out 
leads to the violation of a cost requirement, our approach validates the reconfigura-
tion strategy upstream and notifies the cloud consumer of the inconsistency.

Finally, we propose a multi-cloud SLA reporting approach based on conformance 
checking techniques. Reporting of multi-cloud SLA is a complex task due to the dis-
tributed nature of the multi-cloud and the heterogeneity of service level objectives 
across multiple cloud service providers. However, multi-cloud SLA enforcement is a 
process that produces event logs during its execution. Therefore, we rely on process 
mining techniques, conformance checking in particular, to validate and adapt the 
multi-cloud SLA enforcement. Indeed, conformance checking is a set of techniques 
to analyze of business process, it relies on logs and process models to check if the 
actual execution, as recorded in the event log, conforms to the model and vice versa.

The remainder of this article is organized as follows. First, Sect. 2 introduces the 
multi-cloud service level agreement representation we consider in this work. Then, 
Sect. 3 discusses a motivating example. After that, Sect. 4 presents an overview of 
our approach. Next, Sect. 5 discusses related works. Then, Sects. 6 and 7 illustrate 
the enrichment of multi-cloud SLA with state machines and its enforcement with an 
autonomous orchestrator, respectively. Then, Sect. 8 presents the multi-cloud SLA 
reporting approach we propose in this work. Next, Sect. 9 describes an implementa-
tion and an experimentation of our approach. Finally, Sect. 10 concludes the paper 
with an outlook on future works.

2 � Cloud and multi‑cloud service level agreement

Cloud users establish a service level agreement (SLA) defining the required service 
quality provided by the cloud providers. An SLA defines a commitment between 
a customer and a service provider. This latter agreement is composed of a set of 
objectives defining an agreed-upon quality of service (QoS). The main phases of the 
SLA lifecycle are negotiation, deployment, monitoring, reporting and termination 
[12]. Particularly, in a cloud context, an SLA (Definition. 2) is mainly defined by 
four parts (1) parties, (2) service terms, (3) service level objectives, and (4) penal-
ties [13]. First, parties define stakeholders of the agreement. Second, service terms 
characterize the service covered by the agreement, e.g., virtual server and database. 
Third, service level objectives (SLO), as defined in Definition 1, present the agreed-
upon QoS terms. Finally, penalties define a form of compensation in case of the 
agreement’s violation. These latter SLOs of the application express non-functional 
requirements (NFR) such as availability, performance, cost, or security [12]. In this 
paper, we choose to describe these SLAs with the ISO-19086 standard [14, 15], to 
deal with the heterogeneity issue of SLA [16]. This latter standard support objective 
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description in multiple formats. ISO-19086 is already used in security SLA [17], for 
example in the public STAR (Security, Trust, and Assurance Registry) repository4.

Definition 1  (SLO) A service level objective (SLO) is a term made by a service 
provider for a specific service characteristic. It is defined as a 5-tuple (c, t, v, u, op) 
where: c denotes a specific measurable characteristics of the SLA (e.g., availability, 
response time, cost, or security); t defines c’s type, i.e., quantitative or qualitative; v 
defines c’s expected value; u represents c’s measurement unit; and op ∈ {< , >, ≥ , ≤ 
or =} defines the comparison operator of c.

Definition 2  (SLA) An SLA is a contract between one service provider and a cus-
tomer that defines their agreement terms. It is defined as a couple (n, O) where: n 
is a name identifying the SLA and O =< k, v > is a hash table representing a list of 
offered cloud services and their associated SLOs. The key k ∈ K identifies a cov-
ered service (e.g., service used by an application’s component). The associated value 
v ∈ V  is represented by a couple (csp, SLO ) where csp defines k’s provider and 
SLO defines the set of k’s associated SLOs as defined in Definition 1.

Multi-cloud refers to the usage of resources by a customer from multiple and 
independent clouds. A multi-cloud SLA is composed of two categories of SLA: a 
global-SLA and multiple sub-SLAs. As defined in Definition 3, a global-SLA repre-
sents the client’s requirements for a multi-cloud application. A sub-SLA describes 
the SLA of a multi-cloud application component with the same SLA format of Defi-
nition 2. The decomposition of the multi-cloud SLA allows representing finely the 
requirements of the entire multi-cloud application and their components.

Definition 3  (Global-SLA) A global-SLA is a contract between many service pro-
viders and a customer that defines their agreement terms for a multi-cloud applica-
tion. It is defined by a set of SLO as defined in Definition 1, associated with the 
multi-cloud application.

3 � Motivating example

To illustrate the motivation for this work, we consider a cloud application composed 
of three components: User Interface(UI), Authentication(Auth) and Storage(Stor). 
This application respects the principles of composite cloud applications design pat-
tern [18]. The cloud application’s components are provided by three cloud service 
providers: CSP1 , CSP2 , and CSP3 . A cloud architect is in charge of the deployment of 
the required cloud resources and has to respect predefined final users requirements 
for the multi-cloud application in terms of availability, response time, and cost. The 
user’s workload fluctuates. Therefore, in order to handle scheduled and unscheduled 

4  https://​cloud​secur​ityal​liance.​org/​star/.

https://cloudsecurityalliance.org/star/
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peaks of activities, the cloud architect defines three different reconfiguration strat-
egies associated with the applications’ components. These strategies are denoted 
as normal needs, high needs and low needs. A global-SLA, defined according to 
Definition  3, denotes the predefined final users’ requirements for a response time 
less than 5 ms, an availability greater than 99.7% and a cost per hour below 10$ . 
GlobalSLA is represented as < Gslo1,Gslo2,Gslo3 > where the different Gsloi are 
defined in Table 1.

For this example, we consider the User Interface sub-SLA (Definition 2) for the 
sake of simplicity. It defines three SLOs: (1) a response time lower than 4 ms, (2) 
a cost per hour below 2$ and (3) an availability rate at 99.9% . The UserInterface 
sub-SLA is represented as < UI, (CSP1, slo1, slo2, slo3) > where the different sloi are 
defined in Table 2.

The three reconfiguration strategies for UI are defined as follows: normalNeeds 
with 2 virtual machines, highNeeds with 4 virtual machines, lowNeeds with 1 vir-
tual machine, and final with 0 virtual machine. To implement such reconfiguration 
strategies and assess their compliance with the SLA of the multi-cloud application, 
there is a need for (1) representing the requirements of the multi-cloud application 
as a multi-cloud SLA expressing the agreement between the different involved par-
ties, (2) ensuring that the reconfiguration strategy associated to a sub-SLA respects 
global-SLA, and (3) reporting that the agreed-upon SLA corresponds to the pro-
vided service.

Indeed, these reconfiguration strategies are defined by a user, and thus are error-
prone, i.e., eventually does not comply with users requirements. These incorrect 
reconfiguration strategies can result from a wrong resource definition or an uncon-
sidered workload change of a multi-cloud application or one of its components. 
Such incorrect strategies can lead to an SLA violation which can have negative con-
sequences for a cloud service provider such as reputation damage or penalties. For 

Table 1   Service level objectives 
associated with Global

SLA

Service level objective Gslo
1

Gslo
2

Gslo
3

Characteristics Response time Availability Cost
Type Quantitative Quantitative Quantitative
Value 5 99.7 10
Unit ms % $/h
Operator ≤ ≥ ≤

Table 2   Service level objectives 
associated with UI’s Sub

SLA

Service level objective slo
1

slo
2

slo
3

Characteristics Response time Cost Availability
Type Quantitative Quantitative Quantitative
Value 4 2 99.9
Unit ms $/h %
Operator ≤ ≤ ≥
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avoiding such issues, the SLA-enforcement behavior (i.e., the behavior depicted by 
the reconfiguration strategy) of the application, and its underlying components, have 
to be considered in the SLA representation. After that, a method to enforce this lat-
ter SLA representation has to be defined. Finally, the enforcement has to be reported 
to verify if the SLA has been respected or not. In previous work, we proposed an 
approach that represents multi-cloud SLA [19]. In this paper, we propose to enforce 
multi-cloud SLA with an autonomous orchestrator based on MAPE-K. Then, we 
propose to ensure this latter enforcement using conformance checking techniques. 
An overview of our approach is depicted in the next section.

4 � Approach overview

In a multi-cloud context where resources are distributed over multiple cloud service 
providers, maintaining the objectives defined in a Global-SLA is not a trivial task. 
Moreover, multi-cloud SLA reporting needs a significant effort in terms of time 
when the architecture becomes complex. In this article, the objectives of our pro-
posed approach are to represent multi-cloud SLA, to avoid multi-cloud SLA viola-
tions and to analyze the enforcement of multi-cloud SLAs.

•	 To represent multi-cloud SLA, we rely on the model presented in Sect. 2. How-
ever, the latter representation needs to be enriched with reconfiguration strate-
gies to handle the dynamicity of the multi-cloud environment.

•	 To avoid SLA violations, we rely on an autonomic cloud orchestrator based on 
the MAPE-K loop [20] for the multi-cloud SLA enforcement.

•	 To analyze multi-cloud SLA enforcement, we rely on process mining techniques 
[21]. In particular, we rely on conformance checking techniques [22], used in the 

Fig. 1   Approach overview
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business process management community, in order to check if the actual execu-
tion of a business process conforms to its model.

As represented in Fig. 1, our approach is composed of three steps: (1) the rep-
resentation of SLA associated with multi-cloud applications, (2) the enforcement 
of multi-cloud SLA using an orchestrator based on the MAPE-K loop, and (3) 
the reporting of the multi-cloud SLA enforcement using a conformance checking 
technique.

In (1), the multi-cloud SLA representation is enriched with its reconfiguration 
strategy represented as a state machine. The enrichment of multi-cloud SLAs ena-
bles to manage the dynamicity of multi-cloud applications. A detailed description of 
this multi-cloud SLA representation is provided in Sect. 6.

In (2), this latter multi-cloud-SLA is enforced with an autonomous cloud 
resources orchestrator that interacts with the cloud resources of the multi-cloud 
application. The latter interactions consist of deploying, adapting, and collecting 
event logs from cloud resources from several providers. Our proposed orchestra-
tor relies on an autonomic approach that will add a self-adaption behavior to the 
resources according to the fluctuating workload of the users. Indeed, through this 
autonomic approach, we give the orchestrator the capability to extend an SLA’s state 
machine, i.e., representing its associated reconfiguration strategy, which represents 
the applications’ reconfiguration strategy, at run-time in order to adapt these strate-
gies if needed. A detailed description of this orchestrator’s architecture is provided 
in Sect. 7.

Finally, in (3), the third part of Fig. 1 illustrates our proposed multi-cloud SLA 
enforcement reporting approach. As stated before, we rely on a conformance check-
ing technique to analyze the SLA enforcement. As input for the conformance 
checking, we consider: (1) collected logs from our orchestrator, the cloud service 
provider, and the cloud resource, and (2) SLA enforcement model representing the 
entire SLA enforcement behavior to be reported. Conformance checking techniques 
will allow us to get statistics on the enforcement and to determine a rate of conform-
ance between the SLA enforcement model and collected logs. This latter technique 
will provide a detailed report on the SLA enforcement as output.

Compared to the related works and the literature (Sect. 5), the approach we pro-
posed handles the dynamicity and the SLA enforcement of a multi-cloud context. 
We also report the multi-cloud SLA by checking the conformance of the multi-cloud 
SLA enforcement with its representation. A detailed description of this multi-cloud 
SLA reporting technique is provided in Sect. 8.

5 � Related work

In line with the steps of our approach, we divide our literature review into three 
parts: multi-cloud SLA (Sect.  5.1), autonomic SLA enforcement in the cloud 
(Sect.  5.2), and SLA reporting with process conformance checking techniques 
(Sect. 5.3).
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5.1 � Multi‑cloud service level agreement

Cloud SLAs and SLAs, in general, have received considerable attention. How-
ever, little attention is given to the heterogeneity and dynamicity related issues 
faced while specifying these SLAs in a multi-cloud context [16]. The most used 
SLA specification language representation is WSLA [23] which was proposed in 
2003 by IBM for the specification of service level agreements for Web Services. 
Based on WSLA, various propositions of SLA specification languages have been 
made for the cloud context; SLA* [24], rSLA [25], and ySLA [26], for exam-
ple. However, they did not propose mechanisms to handle the cloud’s dynamic 
nature. Other propositions have been made to handle this dynamicity in cloud 
SLAs: SLAC [27] and CSLA [28]. Uriarte et al. proposed with SLAC, an SLA 
language where stakeholders can define at design-time multiple levels of ser-
vice. Kouki et al. consider, in CSLA, dynamicity in the SLOs with the concepts 
of fuzziness and confidence. Fuzziness defines acceptable margins for the SLO 
and confidence denotes a percentage of compliance of objectives.

Cloud SLA specification languages need to be adapted to meet the specif-
icities of the multi-cloud context. Son et  al. defined cloud SLA relationships 
(i.e., which stakeholder is responsible for what) in a multi-cloud environment 
based on different cloud resources consumption models [29]. They analyze dif-
ferent multi-cloud models such as : peer-to-peer cloud federations, centralized 
cloud federation or distributed cloud and describe the SLA relationship between 
consumers and cloud providers for each of them. Moreover, some works cover 
multi-cloud service composition based on SLA but assume that SLAs are homo-
geneous. Such as Farokhi et al. in [8] where they proposed a hierarchical SLA-
based service selection for multi-cloud environments. This approach, similar to 
our approach for multi-cloud SLA representation, uses multiple SLAs to repre-
sent the SLA associated with different cloud service providers in a multi-cloud 
environment. Multi-cloud SLA is also considered in some open-source and 
European projects which aim to orchestrate resources over multiple cloud ser-
vice providers. This is the case of the MODAClouds project, which proposed 
a model-driven approach for the design and the execution of applications on 
multiple clouds [6]. Ardagna et al. refers, in [6], to a two-level SLA system: a 
first level describing the SLA between customers and cloud providers and a sec-
ond level describing the QoS expected from the cloud provider. This latter SLA 
specification language is also used in the SeaClouds project [7]. In previous 
work [19], we introduced state-machine enriched multi-cloud. This latter repre-
sentation takes into account the dynamicity of multi-cloud components. We also 
proposed an approach to validate their compliance with the user requirements. 
However, the dynamicity of the entire multi-cloud application, the enforcement, 
and reporting of the multi-cloud SLA was not considered.

Compared to these works, we consider the representation and the dynamicity 
of multi-cloud SLA in its definition.
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5.2 � Autonomic SLA enforcement in the cloud

MAPE-K is a widely used autonomic architecture style in cloud SLAs manage-
ment approaches which has proved to be a powerful tool to build self-adaptive 
systems [12]. Indeed, as presented by Faniyi et Bahsoon in [12], there are four 
key motivations for using autonomic computing: (1) large size system, (2) het-
erogeneous context, (3) dynamic user workload fluctuation, and (4) uncertainty 
about the state of the environment.

Emeakaroha et al. proposed in [30] an autonomic approach, DeSVI, for moni-
toring and detecting SLA violations. This approach consists of two components: 
an automatic VM deployer responsible for resource allocation and LoM2HiS, 
responsible for monitoring the application execution and translating low-level 
metrics into high-level SLAs (e.g., availability). Mosallanejad et Atan [31] pre-
sent a model for hierarchical SLA specific to the cloud domain. In this model, 
each SLA can monitor its attributes and communicate with dependent SLA 
(which depend on them) in a different layer of cloud (IaaS/PaaS/SaaS). The 
approach allows independent management of SLA (autonomic SLA) by con-
sidering SLA as an active entity (i.e., an SLA is responsible for monitoring its 
objectives). However, this approach considers only SLA monitoring. Casalicchio 
et al. presented in [32] an autonomic QoS-aware service provisioning architecture 
based on the MAPE-K loop. This work proposes to compare four different solu-
tions designed for controlling the application based on the MAPE-K loop and 
how this is implemented with the functionalities of an IaaS provider. This design 
has been evaluated using features and services of the Amazon Elastic Compute 
Cloud (EC2) infrastructure. Ghobaei-Arani et  al. proposed in [33] a framework 
for autonomic resource provisioning based on the control MAPE-K loop. In 
their approach, they also use a reinforcement-learning based method as a deci-
sion-maker for the planning phase. However, this latter approach is limited to a 
sole IaaS provider and do not consider a multi-cloud context. Sfondrini et Motta 
[34] proposed to reduce the SLA violation rate and cover all SLA management 
activities in an SLA-aware Lean Information Service Architecture (LISA). This 
architecture includes an autonomic resource allocation engine that manages the 
analysis, plan, and execution phases. Monitoring and knowledge are managed 
by other modules. This resource allocation engine is alerted of SLA breaches 
by the monitoring system. Then, to reduce the impact on the business continuity 
analysis of the concerned entity is performed. This analysis results in a potential 
identification of the SLA violation root cause and proposes a solution. Kosińska 
et Zieliński proposed in [35] an Autonomic Management Framework for Cloud-
Native Applications (CN App), AMoCNA. The focus of this approach is on con-
tainerized applications. They proposed to implement the autonomic control-loop 
with a rule-engine to replace the analyze and plan function. So, their control-loop 
is called MRE-K for: Monitoring, Rule Engine, Execute and Knowledge. Rouf 
et  al. [36] proposed a framework called COTS based on the MAPE-K loop to 
manage multi-cloud platforms. The main objective of this paper is to explore the 
feasibility of developing an autonomic MAPE-K framework for multi-cloud plat-
forms by integrating existing services. Their framework architecture is composed 
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of three components: Cloud Monitor, State Rule Engine, and Workflow Engine. 
These three components can be compared to the MRE-K control loop proposed in 
AMoCNA [35].

The aim of these approaches is close to ours; however, our approach considers 
an abstract view of cloud resources and focus on multi-cloud-SLA enforcement. 
We present a comparison between autonomic SLA management approaches using 
a MAPE-K loop in Table  3 in the Enforcement part. For this table, we consider 
three comparative criteria, namely: Scope which defines the action context of the 
approach, Cloud Resources which defines the type of the resource considered in the 
approach and SLO which defines the kind of objectives considered.

5.3 � Service level agreement reporting

There is little attention given to SLA reporting [12] even though it is a significant 
need for real-world use cases. Ismail et al. defined in [37] a generic SLA manage-
ment framework. Then, proposed to model this latter SLA management framework 
using business process management notation in order to simplify SLA offerings. The 
major point of this approach is the mapping between WSLA [23] and BPM notation 

Table 3   Related works summary of autonomic SLA enforcement (Sect.  5.2) and SLA reporting using 
business process management (Sect.  5.3)

a https://​www.​ibm.​com/​us-​en/​marke​tplace/​cogni​tive-​autom​ation
b https://​cloud​ify.​co/

Paper Scope Cloud resources SLO

Enforcement
Emeakaroha et al. [30] Cloud VM Limited range
Casalicchio et al. [32] Cloud VM Limited range
G-A et al. [33] Cloud VM Limited range
AMoCNA [35] CN App Container Limited range
COTS [36] Multi-Cloud Any (IBM CAMa) Limited range
LISA [34] Multi-Cloud Any (Cloudifyb) WS-Agreement [23]
Our approach Multi-Cloud Any ( [49]) ISO-19086 [14, 15]

Paper Scope Employed techniques Process description

Reporting
Van Eck et al. [40] Generic Process discovery CSM
Sutrisnowati et al. [41] Big data Process discovery Not specified
Chesani et al. [42] Cloud Process monitoring Declare
Acampora et al. [44] Cloud Online process discovery Declare
Song et al. [45] Multi-Cloud Process discovery Scientific Workflow
Calcaterra et al. [46] Cloud Resource orchestration BPMN
Azumah et al. [48] Hybrid-Cloud Resource scheduling Declare
Our approach Multi-Cloud Conformance checking Petri-Net with Data

https://www.ibm.com/us-en/marketplace/cognitive-automation
https://cloudify.co/
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[38] which is a concrete implementation with a widely used SLA format. However, 
this approach only considers the SLA definition and do not validate SLA enforce-
ment. A first proposition using process mining techniques to report SLA has been 
made in [39]. This approach proposes the detection of bottlenecks in the process by 
a fine-grained analysis of the time perspective. However, in this latter approach, only 
control-flow and time perspectives are considered.

Some other works about cloud resources orchestration get inspired by business 
process management techniques. Van Eck et  al. introduced in [40] the concept of 
composite state machines (CSMs) to describe multiple related processes, depicted as 
perspective. They proposed an algorithm of process discovery and a method to sim-
plify the views for CSMs which can be quite complex. Sutrisnowati et al. presented 
in [41] a tool for performing process mining techniques over Hadoop Map-Reduce 
(Big Data framework5). The BAB framework aims to propose, like Prom, a tool 
that combines the Hadoop Map-Reduce algorithm with cloud and process mining. 
They implemented a process discovery algorithm in this context and the framework 
allowed being extended with other functionalities. However, it is limited to Hadoop 
Map-Reduce. Chesani et al. proposed in [42] to apply well-known process mining 
techniques, Mobucon EC [43], to monitor properties of a Map-Reduce execution. 
Then, this monitor is used to determine the health of the system and determine auto-
scaling action for nodes composing the Map-Reduce cluster. This paper presents 
encouraging results for the use of process mining techniques in the cloud context. 
However, this approach only considers the Map-Reduce application. Acampora et al. 
proposed in [44] a cloud controller that performs auto-scaling action over a cloud 
computing infrastructure. This cloud controller exploits information from business 
processes discovered from the logs. Processes are represented using Declare lan-
guage. Online process mining techniques are performed for extracting the required 
information from event logs. Song et  al. presented in [45] an approach consider-
ing the extraction of intra and inter-cloud scientific workflow from event logs using 
process mining techniques. This algorithm is proposed as a ProM plug-in to per-
form the process discovery of this scientific workflow. Calcaterra et al. proposed in 
[46] a fault-aware orchestrator of cloud resources using the business process mod-
eling notation language (BPMN) [47] for describing the scheme of service provi-
sion workflow. In this paper, they put a focus on the failures during the provisioning 
process. Azumah et al. proposed in [48] to use a process mining to schedule tasks in 
a hybrid cloud context complying with a set of given business constraints.

To the best of our knowledge, reporting of multi-cloud SLA using conformance 
checking techniques is not covered in the literature. We proposed to use these latter 
techniques to check the validity of SLA enforcement and get a detailed report which 
considers the entire multi-cloud SLA. We present a comparison between approaches 
using business process management techniques in a cloud context in Table  3 in 
the Reporting part. For this table, we consider three comparative criteria, namely: 
Scope which defines the action context of the approach, Employed Techniques which 

5  https://​hadoop.​apache.​org/.

https://hadoop.apache.org/
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defines the process mining techniques used in the approach and Process Description 
which defines the process description method employed.

6 � Multi‑cloud SLA representation

This section details the first step of our approach. In the following, we discuss how 
we enrich multi-cloud sub-/global-SLAs with state machines representing reconfig-
uration strategies in order to consider multi-cloud SLA violations.

6.1 � State machines for representing reconfiguration strategies

SLAs are static and do not consider the dynamicity of covered services which is, 
according to NIST [9], a key concept for cloud computing. This dynamicity is 
expressed through reconfiguration strategies defined by cloud consumers to man-
age the application’s dynamic behavior, such as activity peaks. In order to handle 
the dynamicity of service covered by an SLA, we propose to use state machines that 
represent reconfiguration strategies. State machine is chosen due to its widespread 
adoption, intuitiveness, and effectiveness. Please note that this intuitive method is 
commonly used when modeling dynamic systems behavior and can be formally 
validated.

A reconfiguration strategy is defined through one or multiple events which trigger 
one or several reconfiguration actions. These reconfiguration actions correspond to 
the actions required to reconfigure a service. An event (Definition 4) represents the 
occurrence of any change that results in triggering specific actions [49]. There are 
four types of triggering events: (1) temporal, (2) resource-related, (3) user action, 
and (4) composite. First, Temporal Events occurs on a specified date or after some 
time. Second, Resource Related Events happens once a resource metric meets a 
predefined reference value. Third, User Action Events appears on user demand. 
Finally, Composite Events are a specific type that is composed of multiple trigger-
ing events specified earlier.

Definition 4  (Event) A triggering event is represented as a 3-tuple (id, t, p) where: 
id is the triggering event’s identifier; t ∈ {temporal , resourceRelated, userDefined, 
composite} is the predicate’s type and p represents the predicate, i.e., the body, of 
the events according to the predefined predicate type.

Table 4   UI sub state-machines 
events

Id Type Predicate

Evt1 Resource-related cpuUsage, average, >, 85,% , 60 s
Evt2 Resource-related cpuUsage, average, <, 30,% , 60 s
Evt3 Resource-related cpuUsage, average, <, 30,% , 60 s
Evt4 Resource-related cpuUsage, average, >, 85,% , 60 s
Evt5 Temporal-event Everyday at 9:00 pm
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For instance, we consider events associated with our motivating example trigger-
ing the UI reconfiguration strategies presented in Sect. 3. According to Definition 4, 
these events will be represented as follows (Table 4):

A reconfiguration action (Definition 5) specifies how a resource should behave 
when specific triggering events occur to respect an SLA. We define six types of 
reconfiguration actions: Horizontal Scaling, Vertical Scaling, Migration, Appli-
cation Reconfiguration and Basic Action. These reconfiguration actions represent 
the elasticity mechanisms associated with cloud resources. Each of these action 
types requires a specific set of action attributes to be executed, e.g.,  resource-target 
or attribute-target [49].

Definition 5  (Reconfiguration Action) A reconfiguration action is defined as 3-tuple 
(id, t, AA) where : id identifies the reconfiguration action; t defines the type of the 
reconfiguration action and AA is a set of action attributes required to perform the 
action.

To illustrate reconfiguration actions representation, we refer again to our motivat-
ing example. We consider actions triggered by the events of the UI reconfiguration 
strategies presented in Table 4. These actions are represented in Table 5.

Thus, a reconfiguration strategy is a set of reconfiguration actions and associated 
events that we represent with the state-machine formalism. Indeed, a resource is 
characterized by states with reconfiguration actions to transit from a state to another. 
A state machine is defined through two main elements: state defined in Definition 6 
and transition defined in Definition 7.

Definition 6  (State) A state is represented as a 3-tuple (l, t, R) where : l is the state’s 
name or label;  t  ∈ {isInitial, isNormal, isFinal} is the state type and indicates 

Table 5   UI sub state-machine’s 
action

Id Type [Action attributes]

A1 HorizontalScaling [UI, scale-out, 1]
A2 HorizontalScaling [UI, scale-out, 2]
A3 HorizontalScaling [UI, scale-in, 1]
A4 HorizontalScaling [UI, scale-in, 2]
A5 HorizontalScaling [UI, scale-in, 4]

Table 6   UI sub state-machine’s 
states

Label Type Resources

id idResource CSP size nb

NormalNeeds isInitial UI VM1 CSP1 M 2
HighNeeds isNormal UI VM1 CSP1 M 4
LowNeeds isNormal UI VM1 CSP1 M 1
End isFinal UI VM1 CSP1 M 0
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whether s is a start state, an intermediate state, or an end state, respectively; and � is 
the set of cloud resources r composing an application’s components or a composite 
application characterizing the state.

For instance, we consider states of our motivating example UI reconfiguration 
strategies presented in Sect. 3 and represented in Table 6.

Definition 7  (Transition) A transition is represented as a 5-tuple (id, ss , st , E, A) 
where id is the transition’s identifier, �

�
 is the source state, �

�
 is the target state, � is 

the set of events (Definition. 4) that could trigger the transition, and � is the set of 
actions (Definition. 5) to be executed when certain triggering events happen.

For instance, we consider the state machine representing UI reconfiguration strat-
egies as mentioned in our motivation example (Sect.  3) is depicted in Fig.  2 and 
where its associated transitions are shown in Table 7.

6.2 � Global and sub SLA enrichment

As introduced in Sect.  2, we consider a multi-cloud SLA composed of: (i) one 
global-SLA that defines, as part of this agreement, the cloud customer’s require-
ments for the multi-cloud applications and (ii) one sub-SLA for each component 
of the multi-cloud application that denotes, as part of this agreement, its related 
requirements (i.e., vis-à-vis the relevant cloud service provider). To handle SLA 

Table 7   UI sub state-machine’s 
transitions

Id Source Target Events Actions

T1 NormalNeeds HighNeeds Evt1 A2
T2 HighNeeds Normal Evt2 A4
T3 NormalNeeds LowNeeds Evt3 A3
T4 LowNeeds Normal Evt4 A1
T5 NormalNeeds End Evt5 A4
T6 HighNeeds End Evt5 A5
T7 LowNeeds End Evt5 A3

Fig. 2   Graphical representation of UI Sub-SLA state machine
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dynamicity, we propose to enrich multi-cloud SLA representations with a state 
machine showing reconfiguration strategies associated with the multi-cloud applica-
tion and reflecting this dynamicity. We denote this latter SLA as an enriched SLA 
(Definition 8).

Definition 8  (Enriched SLA) An enriched SLA is an SLA enhanced with a state 
machine representing its associated reconfiguration strategy. It is defined as a 4-tuple 
(n, SLO , S, T) where: n is a name identifying the enriched SLA, SLO defines the 
set of SLOs (Definition 1), S is the set of states of the state machine, and T is the set 
of transitions of the state-machine.

For instance, consider the UI sub-SLA presented in our motivating 
example (Sect.  3). The associated enriched sub-SLA is expressed as fol-
lows:  <  UI, (CSP1, slo1, slo2, slo3), S, T   > where UI is the sub-SLA’s name, 
(CSP1, slo1, slo2, slo3) is the SLO’s related to UI sub-SLA, S is a set of four states 
shown in Tables 6 and 7 the set of transitions depicted in 7. In the same way, we 
enrich the global-SLA by defining a global reconfiguration strategy that manages, 
i.e., by triggering transitions if needed, all enriched sub-SLAs. Figure 3 illustrates 
the enriched global-SLA managing the sub state machines associated with our moti-
vating example (Sect. 3). For instance, if the global state machine transits to a state, 
then all the sub state machines will transit to the same state. To do so, we enrich 
states definition (Definition 6) with a new type of state : Global State. So in Fig. 3, 
the state Normal Needs of the global SLA is of type Normal and type global mean-
ing that when this state-machine transitions to Normal Needs all managed state 
machines, i.e., part of the sub-SLAs, will transit to Normal Needs too.

In this example, to simplify, we assume that the same reconfiguration strategy is 
used for all CSPs. But, in the case when the studied strategies are different between 
several components, we need to map the global states of the state machines to the 
states of the sub state machines.

However, these state machines are defined by a user who could forget cases or 
make errors in the state-machine definition. For instance, consider a high peak of 
needs when the actual state is on lowNeeds. The state machine will need to change 

Fig. 3   Global state machine manages sub state machines



13019

1 3

Conformance checking for autonomous multi‑cloud SLA management…

state to highNeeds but according to Table  7, there is no direct transition between 
those two states. This last issue is addressed in the next section by introducing the 
autonomous multi-cloud orchestrator that can adapt to these state machines if needed.

7 � Multi‑cloud SLA enforcement

In this section, we present the architecture of the proposed SLA-aware multi-cloud 
autonomic resources orchestrator. The orchestrator’s architecture is based on the 
MAPE-K loop and comes as part of the second step of our approach. In the follow-
ing, Sect. 7.1 introduces the concept of autonomic computing then Sect. 7.2 details the 
architecture of the autonomic orchestrator we propose to enforce multi-cloud SLAs.

7.1 � Autonomic computing

Autonomic computing helps to address complexity by using technology to manage 
technology [20]. The concept of autonomic is derived from human biology. The 
autonomic nervous system is responsible for managing vital functions without con-
scious effort. This is the same idea in autonomic computing; however, systems are 
managed according to policies defined by IT professionals.

These functions are represented as control loops that collect data from man-
aged elements and act accordingly. There are four control-loop function categories 
[20] which can be defined as: Self-configuring can dynamically adapt to changing 
environments, Self-healing can discover, diagnose, and react to disruptions, Self-
optimizing can monitor and tune resources automatically, and Self-protecting can 
anticipate, detect, identify, and protect against threats.

IBM proposed a control-loop architecture, usually denoted as MAPE-K loop, 
composed of four functions (Fig. 4) to implement an autonomic manager:

•	 Monitor collects, aggregates, filters, and reports data from managed elements 
through sensors associated with the managed elements,

•	 Analyze permits to correlate and model complex situations,
•	 Plan constructs the actions needed to achieve goals and objectives, and
•	 Execute executes the actions that control the managed elements through associ-

ated effectors.

All these functions are based on the knowledge module, which represents the 
shared data management for all components.

Fig. 4   MAPE-K Loop
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7.2 � Multi‑cloud autonomous orchestrator

To enforce the previously proposed multi-cloud SLA (Sect.  6), an SLA-aware 
orchestrator is needed. So based on the reference architecture for cloud resources 
orchestrator framework proposed in [10] and the MAPE-K loop in [20], we propose 
a multi-cloud SLA autonomous orchestrator whose architecture is depicted in Fig. 5. 
We rely on these two proposals to propose an autonomous approach for multi-cloud 
resources. The latter orchestrator is composed of four components: Monitoring, Pol-
icy Enforcement, Adaptation & Validation and deployment engine.

The loop begins with verification of multi-cloud SLA by the Adaptation & Vali-
dation component. Then, the Deployment engine deploys resources at their initial 
state, according to the verified multi-cloud SLA state machines. Next, the Monitor 
component monitors the SLOs defined in the multi-cloud SLA and stores collected 
logs in Knowledge. Finally, in case of transition triggered or SLOs about to be 
violated, Policy Enforcement notifies the Adaptation & Validation component to 
define a plan for (Re-)Deployment to execute the action(s) associated with the tran-
sition or avoid SLOs violation.

Each component is associated with a MAPE-K function and is presented in detail 
in the following.

•	 Adaptation and Validation This component is associated with the Plan func-
tion of the MAPE-K loop. The functions of this component are twofold: (1) to 
validate state-machine correctness (State Machine Validator module in Fig. 5) 
according to global-SLA requirements using our approach proposed in [19] and 
(2) to define a plan (Plan Definition module in Fig. 5) for the managed element 
configuration according to a notification sent by the policy enforcement compo-
nent (Notification Collector module in Fig. 5). A plan defines the actions to be 
performed by the deployment component to (re-)deploy a cloud resource. These 

Fig. 5   Autonomous Orchestrator Architecture
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latter actions are defined as in Definition 5. The definition of a re-deployment 
plan occurs when: (1) a transition triggered, the actions associated with this tran-
sition are executed and (2) no transitions are triggered but an SLO is about to 
be violated. In the second case, an objective analysis is performed and a new 
state and/or transition is(are) added to the state machine. The new state is created 
based on the resources impacted, its current state, and SLOs. This component 
stores in the Knowledge component validated state machines and updates them 
with new states and/or transitions.

•	 Deployment This component is associated with the Execute function of the 
MAPE-K loop. The functions of this component are to deploy and adapt 
resources according to (re-)deployment plans defined by the Adaptation & 
Validation(Plan Collector module in Fig. 5). It communicates with cloud ser-
vice providers through their proprietary APIs (Cloud API Connector module in 
Fig. 5) and can perform the following actions on resources [10](Plan Executor 
module in Fig. 5): Create, Start, Scale-up/down, Stop and Delete. These actions 
are generic and can be applied to any kind of resource. This component logs in 
the Knowledge component the trace of its performed actions.

•	 Monitoring This component is associated with the Monitor function of the 
MAPE-K loop. In this approach, we consider three sources of logs to enforce 
a multi-cloud SLA: (1) the orchestrator, (2) the cloud service providers, and (3) 
the cloud resources. These three sources of logs allow us to consider the entire 
SLA enforcement process. We denote as SLA enforcement process the flow of 
events composing the (re-)deployment of a resource: (1) the orchestrator requests 
a resource, (2) the cloud service provider deploys these resources, (3) the 
resources are started. It collects event logs (Log Collector module in Fig. 5), it 
filters events in the logs that are not necessary for the enforcement of multi-cloud 
SLAs (Log Filter module in Fig. 5) and transforms the log formats (Log Trans-
former module in Fig. 5), if they are heterogeneous, to uniform them. Then, the 
collected logs are stored in the Knowledge component.

•	 Policy Enforcement This component is associated with the Analyze function 
of the MAPE-K loop. It is used to trigger transitions in state machines. We use 
a rule engine to detect when an event (Definition. 4) occurs. Events are con-
verted into rules in the latter rule engine. These rules are used to check the logs 
and detect whether an event has occurred. Logs and rules are collected from the 
Knowledge component using, respectively, the Log Collector and Rules Collec-
tor modules. Then, the Adaptation & Validation component is notified to trigger 
a transition or to adapt the state machine to avoid an SLO violation.

•	 Knowledge Knowledge is a shared component between all the components of 
the orchestrator which aggregates all data used/generated by the orchestrator’s 
components. There are two categories of data, orchestration related, and moni-
toring related. Orchestrator related regroups all necessary data for orchestration 
such as the enriched multi-cloud SLA. Monitoring Related contains all collected 
logs from resources, cloud service providers, and the orchestrator itself. The 
orchestrator components interact with Knowledge via an API to request and store 
data.
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After deploying the multi-cloud application’s required resources, our approach veri-
fies that the execution has taken place according to the defined multi-cloud SLA and 
identifies potential violations. This is addressed as part of our approach’s third step 
is presented in the next section.

8 � Multi‑cloud SLA reporting

This section depicts how we leverage process mining to ensure SLA reporting. In 
process management, process mining techniques support the analysis of opera-
tional processes based on a process model and event logs generated by its execution 
[21]. As shown in our approach overview (Fig. 1), we consider a multi-cloud SLA 
enforcement model and collected logs as inputs for a process mining technique to 
ensure multi-cloud SLA reporting. In the following, we briefly introduce process 
mining and especially conformance checking techniques in Sect. 8.1 then we detail 
our process mining based multi-cloud SLA reporting approach in Sect. 8.2.

8.1 � Process mining

Process mining can be viewed as a link between data science and business process 
management. Process mining techniques aim to discover, monitor, and improve 
operational processes by extracting knowledge from event logs [21]. An event log 
stores data about the occurrence of activities that were recorded by information sys-
tems while supporting the execution of a process. There are four categories of pro-
cess mining techniques as depicted in Fig. 6:

•	 Process discovery techniques produce a process model from a given set of 
event logs.

Fig. 6   Process mining techniques categories (inspired from [38])
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•	 Performance mining techniques produce an enhanced process model from an 
input model and an event log. These techniques permit us to understand the 
process behavior and identify issues such as bottlenecks.

•	 Variant analysis techniques produce different diagnostics from two differ-
ent event logs. These techniques generally compare event logs containing all 
cases that end positively with event logs containing all cases that end nega-
tively.

•	 Conformance checking techniques produce different diagnostics between 
a process model and an event log to find commonalities and discrepancies. 
These techniques permit to compute conformance measures, i.e., find the 
level of conformance between process models and event logs, i.e., the execu-
tions of the models.

8.2 � Conformance checking for multi‑cloud SLA reporting

In this section, we present our proposed approach for multi-cloud SLA enforce-
ment reporting using conformance checking techniques. Our main objective 
is to analyze what happened during multi-cloud SLA enforcement and inves-
tigate its conformity to the agreed-on model. We rely on conformance check-
ing techniques to compare an SLA enforcement model and logs collected during 
this model enforcement. An overview of this approach is depicted in Fig. 7. As 
shown in Fig. 7, we retrieve these input data, i.e., the enriched multi-cloud SLA 
and the collected logs, from the knowledge component of the autonomous cloud 
resource orchestrator (Sect. 7). Then, we translate the enriched multi-cloud SLA 
into an SLA enforcement model represented as a Petri net with data (the Model 
Translator component, Fig. 7). This latter model translation is performed to take 
advantage of existing conformance checking techniques. We also transform the 
collected data into the standard XES format for event logs representation [50] 
(the Log Transformer component, Fig. 7). Finally, the conformance checker 
component takes the latter data as input to perform the compliance checking and 
generates a detailed report of the multi-cloud SLA enforcement. The following 
sections details these different components.

Fig. 7   Multi-Cloud SLA reporting approach overview
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8.2.1 � SLA enforcement model

A multi-cloud SLA enforcement model represents the flow of actions executed 
to enforce a multi-cloud SLA and is based on the enriched multi-cloud SLA. As 
it stands, the state machine is not the optimal format for leveraging existing con-
formance checking techniques. The usual format used by process mining techniques 
is Petri net [21]. So, we propose to translate state machines associated with multi-
cloud SLAs into Petri nets with data (Model translator component). A Petri net 
with data (Definition.9) allows formally representing the multi-cloud SLA enforce-
ment process. Specifically, we use Petri net with data, instead of traditional Petri 
nets, to represent the SLOs of a multi-cloud SLA in its data perspective, since Petri 
nets allow only representing the control-flow perspective of an enforcement process. 
This representation also allows us to use existing process mining techniques.

Definition 9  (Petri Net with data) A Petri Net with data DPN-net = 
(P, T, F, V, U, R, W, G) is composed of: a Petri net (P, T, F) where P is a set of 
places; T is a set of transitions; F is the set of flow relations describing the arcs 
between places and transitions; a set V of variables; a function U that defines the 
values admissible for each variable; a read function R that labels each transition with 
the set of variables that it must read; a write function W that labels each transition 
with the set of variables that it must write, and a guard function G that associates a 
guard with each transition.

We translate the state machine (SM) associated with the enriched multi-cloud 
SLA into a Petri Net with data (DPN-Net). This state machine is composed of states 
(Definition. 6) and transitions (Definition 7). This translation is based on the transla-
tion rules depicted in Table 8. As defined in this latter, a state in a SM is associated 
with a place in a DPN-net, a transition in a SM is associated with a transition in a 
DPN-net, the link between a place and a transition in a SM is represented by an arc 
in a DPN-net, transition event metrics in a SM correspond to variables in a DPN-net, 
e.g., CPU usage, and transition event predicates in a SM correspond to guards in 
DPN-net.

To illustrate this translation, we consider the UI sub-SLA state machine of our 
motivating example represented in Fig. 8a. We translate this latter state machine into 
a Petri net with data using our translation rules (Table 8). A graphical representation 

Table 8   Translation rules 
between SM and DPN-net 

State machine DPN-Net

State ( s ∈ S) Place ( p ∈ P)
Transition ( t ∈ T) Transition ( t ∈ T)
Transition source and destination ( t.t and t.s) Arc ( f ∈ F)
Transition event metric (t.E.p.m) Variable ( v ∈ V)
Transition event predicate (t.E.p) Guard ( g ∈ G)
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of the translated Petri net with data in Yasper6 is given in Fig. 8b and its representa-
tion according to the definition. 9 in Table 9.

8.2.2 � Collected event logs

In this section, we discuss the collected logs that are necessary to apply a conform-
ance checking technique and their format. These logs represent "what happened" 
during the enforcement of a multi-cloud SLA. It is necessary to define a standard 
format for event logs in our heterogeneous multi-cloud context. In a business pro-
cess management context, an event log contains events associated with cases of a 
business process model. Cases are associated with collections of events, i.e., traces. 
Each event describes an execution step in the business process case [51]. In our 
context, an event log contains events related to an instance of an SLA enforcement 
model (Sect. 8.2.1). We refer to these logs as collected logs which are retrieved from 
the knowledge component. To ensure the quality of these logs, we rely on the data 
quality definition proposed by Van der Aalst et al. in [21]. In this work, the man-
datory event attributes are defined that a log should contain as case, activity, and 
timestamp or position. Case is defined by a sequence of events, activity, aka task in 
a business process, that identifies the event, and timestamp or position ordering the 
events. In our approach, we define the log format as composed of:

•	 Timestamp specifying the event execution time,
•	 Source denoting the event originator: orchestrator, CSP, or Resource,
•	 States/Transition (S/T) denoting the state-machine’s state or transition associated 

to the event,

(a)

(b)

Fig. 8   UI sub-SLA

6  Yasper is a tool for Petri net representation, https://​www.​yasper.​org/.

https://www.yasper.org/
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•	 ResourceProvider denoting the name of the cloud service provider that provides 
the related resource,

•	 ResourceName is the resource name,
•	 EventType defines the action or event type as presented in Definitions 4, 5,
•	 Metric provides the event-related metric such as cpuusage, and
•	 Value corresponds to the metric value.

To illustrate the considered log format, we present an example of a fragment of a UI 
sub state machine associated collected logs. These logs represent the following execu-
tion of the state machine: transition T0 the resource VM1 is created (Timestamp: 
00 : 00 to 00 : 03), then the logs generated by the resource VM1 at the NormalNeeds 
(NN) state (Timestamp: 00  : 05 to 02  : 05), and finally the transition T1 triggered by 
the CPU exceeding 85%for a minute and a state transition to the HighNeeds (HN) state 
(Timestamp: 02 : 06 to 02 : 08). In addition, multiple events from different sources, e.g., 
Orchestrator(ORCH), CSP, resources(RES) can be related to the same state or transition 
[52], e.g., event with timestamp 00:00 and 00:03 related to transition T0 in Table 10.

8.2.3 � Multi‑cloud SLA enforcement conformance checking

In this section, we describe the conformance checking technique [53], that we use 
for multi-cloud SLA reporting. Conformance checking is a set of techniques that 
compare an existing process model with an event log of the same process [54]. Two 
families of conformance checking techniques exist: token replay and alignments. 
Token-Replay is a heuristic technique, which uses four counters (produced tokens, 
consumed tokens, missing tokens, and remaining tokens) to compute the fitness of 
a trace with a given model. Although this technique is easy to understand and can 
be implemented efficiently, since token-replay takes a local decision, it may lead to 
misleading results. Alignment is a technique, which performs an exhaustive search 
to find out the optimal alignment between an observed trace and a process model. 
Hence, it returns the closest model execution to the trace.

Table 10   A fragment of UI sub state-machine collected logs

Time- stamp Source S/T Resource provider Resource name Event type Metric Value

00:00 ORCH T0 AWS VM1 Create – –
00:03 CSP T0 AWS VM1 Create – –
00:05 RES NN AWS VM1 R-Usage cpu 15%
00:35 RES NN AWS VM1 R-Usage cpu 5%
01:05 RES NN AWS VM1 R-Usage cpu 95%
01:35 RES NN AWS VM1 R-Usage cpu 95%
02:05 RES NN AWS VM1 R-Usage cpu 95%
02:06 ORCH T1 AWS VM1 Scale-out – –
02:08 RES HN AWS VM1 R-Usage cpu 15%
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We consider alignment techniques in order to set up our conformance checking 
approach for multi-cloud SLA reporting. In our context, an alignment technique allows 
identifying an alignment between an SLA enforcement model and its associated col-
lected logs. In other words, the events in the event log need to be associated with model 
elements and vice versa. An alignment relates "moves" in collected logs to "moves" in 
an SLA enforcement model in order to define an alignment between them. This is not a 
straightforward task because the log can deviate from the model and not all events may 
have been modeled or recorded. These moves, denoted as Legal moves, represent pos-
sible alignment moves and are categorized as follows [51]: a move in log only, a move 
in model only, a move in both with incorrect variables, and a move in both with cor-
rect variables. Moves belonging to this last category are called synchronous and the 
others non-synchronous. An alignment is considered as complete when for each event 
in its log trace an alignment exists. Any non-synchronous move is considered a devia-
tion, i.e., when a move in the logs cannot be related to a move in the model. In order 
to define the severity of a deviation, a cost is associated with each legal move. This 
last cost is defined by the user in order to weigh the deviations. Since several complete 
alignments can exist, an optimal alignment is a complete alignment with minimal cost. 
An alignment cost is defined as the sum of the costs of all its moves.

In our work, we use an alignment technique to align collected logs stored in the 
knowledge component along with a multi-cloud SLA enforcement model. This allows 
us to evaluate the adequacy level between them and to identify SLA violations. We 
adopt the conformance checking technique proposed by de Leoni et van der Aalst in 
[55]. This technique consists of finding an optimal alignment considering a DPN-net 
and a set of logs as input. We present the pseudo-code of this alignment technique in 
Algorithm 1 and we refer readers to [55] for a detailed description.

This alignment technique is composed of 3 phases: (1) initially, build an alignment 
between the Petri Net and the log trace taking into consideration only the control-flow 
perspective (line 3 in Alg. 1). This alignment is performed using the A* algorithm as 
proposed in [56]. (2) Enrich the firings of transitions with the write operations defined 
in the DPN-net (lines 4–5). The search for suitable write operations is formulated as the 
solution of an integer linear programming problem. And, (3) compute the fitness value 
considering the data perspective (lines 6–7). The latter fitness value is computed (Eq. 1) 
as the comparison of the cost of the current alignment to the cost of the worst possible 
alignment, i.e., all non-synchronous moves, thus determining its adequacy level.

(1)f itnessValue = 1 −
AlignCost

WorstAlignCost
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The output of this alignment and its associated fitness value constitute the detailed 
report of multi-cloud SLA enforcement as depicted in Fig. 8b. This report is provided to 
a cloud consumer to eventually enhance its multi-cloud SLA. This data could also be 
stored in the knowledge component to autonomously enhance the SLA enforcement 
model by the orchestrator, but this use case is out of the scope of this work.

An example of alignment between the SLA enforcement model associated with 
the UI sub state machine (Fig. 8b) and the sample collected logs of Table 10 is repre-
sented in Table 11. As stated before, in addition to the control flow perspective [phase 
(1)], this alignment considers the data perspective by checking the correctness of read-
ing and write operations on variables [phase (2)], e.g., the cpu_Usage read operation 
between braces {} in moves 3 and 6 (Table 11). For instance, in this example, the four 
first moves are synchronous while the fifth move is an enforcement model move only 
since no associate move in the log was identified (represented by >>).

After building this alignment, the fitness value is computed (phase (2)) using the fol-
lowing cost function(�):

The built alignment (Table. 11) contains 5 synchronous moves and 1 model only 
move. The cost of this latter alignment is as follows: AlignCost = 5 × 1 + 1 × 5 . 

� =

⎧
⎪
⎨
⎪
⎩

1, if synchronous move with correct variables

2, if synchronous move with incorrect variables

5, if log or process move only

Table 11   Alignment excerpt with collected logs and SLA enforcement model

Move position 1 2 3 4 5 6

Collected logs T0 T0 NN {CpuU = 95%} T1 >> HN {CpuU = 5%}
SLA enforcement model T0 T0 NN {CpuU = 95%} T1 T1 HN {CpuU = 5%}
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This alignment is composed of six moves, so the worst possible alignment is six log/
model moves only: WorstAlignCost = 6 × 5 = 30 . Hence, the fitness value is com-
puted as follows:

9 � Implementation and experiments

In the following, we discuss the implementation of the three steps of our approach: 
multi-cloud SLA representation, multi-cloud SLA Enforcement, and multi-cloud 
SLA reporting. In the last section, we experiment our approach with a use case. The 
source code of the developed prototypes is available online at https://​frama​git.​org/​
Jerem​yMech​ouche/​multi-​cloud-​orche​strat​or.

9.1 � Multi‑cloud SLA representation

We model our enriched multi-cloud SLA model based on the common cloud SLA 
buildings blocks defined in ISO-19086 [14, 15] using the eclipse modeling frame-
work (EMF)7. EMF permits to (1) formally define the multi-cloud SLA semantics, 
(2) validate an SLA accordingly, and (3) translate other SLA models into our format.

According to our model, a multi-cloud SLA is composed of one global-SLA and 
at least one sub-SLA. An SLA is composed of covered services which describes 
the agreed-on cloud service described with the cloud resource description model 
(cRDM) proposed by our team [49]. Each covered service in this model is asso-
ciated with a set of Service Objectives (Definition. 1) expressing the service level 
objectives of the SLA. Our model associates also a state machine (Sect. 6) describ-
ing the multi-cloud application dynamicity to a multi-cloud SLA. Our EMF-based 
prototype allows defining multi-cloud SLAs, using the YAML syntax. The reason 
behind the choice of YAML consists of readability, ease of use compared with 
other syntaxes such as XML, and its wide use in the cloud domain [26]. A detailed 
description of our model, its graphical representation, and the source code of our 
prototype are at https://​frama​git.​org/​Jerem​yMech​ouche/​multi-​cloud-​orche​strat​or.

9.2 � Multi‑cloud SLA enforcement

We developed a prototype of an autonomous orchestrator according to the archi-
tecture proposed in Sect.  7, following the micro-services paradigm and supported 
by docker containers [57]. Figure  9 illustrates the autonomous cloud resources 
orchestrator prototype. Its main components are: monitoring, knowledge, policy 

f itnessValue = 1 −
AlignCost

WorstAlignCost
= 1 −

10

30
= 0.777

7  https://​www.​eclip​se.​org/​model​ing/​emf.

https://framagit.org/JeremyMechouche/multi-cloud-orchestrator
https://framagit.org/JeremyMechouche/multi-cloud-orchestrator
https://framagit.org/JeremyMechouche/multi-cloud-orchestrator
https://www.eclipse.org/modeling/emf
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enforcement, adaptation & validation and deployment. We implemented the dif-
ferent components of our orchestrator in python8 and we used docker9 to deploy 
them. The intra-components communication is ensured through the RabbitMQ10 
message-queue. We have used a dedicated RabbitMQ server hosted in a dedicated 
docker container. The orchestrator deploys simulated resources as services using 
docker swarm, the cluster orchestrator of docker. The above solution permits simu-
lating cloud resources and all their lifecycle management operations (e.g., create, 
scale, and delete), and hence allows reproducing the interaction between the orches-
trator and cloud resources. The micro-service-based architecture of our prototype 
allows easily extending it to consider deployment with public CSPs.

Monitoring and Knowledge We implemented the monitoring component in 
python. We used the elastic stack11 (ELK) tools to store data consisting of the 
following modules: (1) elasticsearch a search engine which can contain all 
logs event from our three sources (i.e., orchestrator, cloud service provider, and 
resources) and support the knowledge component, (2) logstash permits to convert 
logs into the required format for the third step of our approach (i.e., conform-
ance checking), and (3) beats a series of data shippers compatible with many data 
sources. The elasticsearch module implements the knowledge component of our 
autonomous architecture. The Logstash and beats modules are associated with 
the monitoring component. The latter component interacts with the knowledge 
component through an elastic python library, provided by the elastic development 
team, in order to retrieve and process data. Then, the data is filtered according to 
its source and sent to the policy enforcement component.
Policy Enforcement The policy enforcement component is based on CLIPS 12, a 
tool for building expert systems. This tool has been adapted into a python library 

Fig. 9   Autonomous cloud resources orchestrator prototype

11  https://​www.​elast​ic.​co/​en/​elast​ic-​stack/.
12  http://​www.​clips​rules.​net/.

8  https://​www.​python.​org/.
9  https://​www.​docker.​com/.
10  https://​www.​rabbi​tmq.​com/.

https://www.elastic.co/en/elastic-stack/
http://www.clipsrules.net/
https://www.python.org/
https://www.docker.com/
https://www.rabbitmq.com/
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CLIPSPy13 that brings the capabilities of CLIPS within the Python ecosystem. 
There are two element categories in CLIPS and expert systems in general: facts 
and rules. In our context, a fact is a monitoring log and a rule is an event trig-
gering a transition. We have defined a template of fact for representing a log as 
depicted in Fig. 10a. A log is composed of the different elements as described 
in Sect.8.2.2. We also defined a template of rules for representing an event as 
depicted in Fig. 10b. An event is composed as defined in the Definition 4. Then, 
we use these templates to instantiate events composing the state machine and the 
collected logs. Finally, CLIPS validate if the rules are triggered by the log and if 
so, notify the other components of the prototype.
Adaptation and validation The adaptation & validation component purpose is 
twofold: (1) validate the verification of state machine represented in SLAs at 
design time and (2) propose at run-time reconfiguration for resources near to vio-
late its SLA by triggering a transition, defining new states, or new transitions. 
These functionalities are implemented in python. The first functionality is imple-
mented following the proposed algorithm in our previous work [19]. The second 
functionality consists of performing a validation of the service level objectives 
compared to the actual state of running resources. This component defined plan 
for the deployment component to enforce according to the information provided 
by the policy enforcement component. This latter plan is stored on the elastic-
search module.
Deployment and Docker Swarm The deployment component interacts directly 
with service providers. The input for this component is the multi-cloud SLA and 
the plan defined by Adaptation & validation component. These two input data are 
stored in the elasticsearch component as orchestrator-related data. In this imple-
mentation, the deployment component interacts with docker swarm14 acting as a 
resource provider. In swarm terminology, a service is a composition of contain-

(a) Fact template of log (b) Rule template of event

Fig. 10   CLIPS templates

13  https://​github.​com/​noxda​fox/​clips​py.
14  https://​docs.​docker.​com/​engine/​swarm/.

https://github.com/noxdafox/clipspy
https://docs.docker.com/engine/swarm/
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ers that can be scaled. It provides all capabilities of a cloud resource we need to 
test our approach. However, the implementation has been intended to be modular 
and can interact with API of major cloud service providers such as Google Cloud 
Platform15 or Amazon Web Services16.

9.3 � SLA reporting with conformance checking

The final step of our approach is performed using a conformance checking tech-
nique. We implement a prototype according to our approach presented in Fig.  7. 
Usually, process mining is performed with Prom [58] the de-facto open-source 
software for process mining, but in our case, we need an automatic interaction. In 
this aim, we use a python library, pm4py [59], for leveraging conformance check-
ing techniques. As described in Sect.  8, we perform (1) a model translation from 
the state machine representing multi-cloud SLA dynamicity into a DPN-net, (2) a 
transformation of the collected logs into the XES format and (3) an alignment using 
these data to generate a multi-cloud SLA enforcement report. We used the DPN-net 
model, implemented in the pm4py library, for the translation of our state-machine 
format (Model translator component in Fig. 7). We implemented this translation as 
described in Sect. 8.2.1. Then, we transformed the logs into the XES format using 
a function defined in the pm4py library. Finally, we have made the alignment using 
the algorithm defined in this same library and in line with our proposed approach 
(Sect 8.2.3). Figure 11 depicts the result of conformance checking execution using 
our prototype. For the sake of simplicity, we considered for this example an SLA 
enforcement model with three states (Start, NN, and End) and define a simple log 
with missing states to generate deviations. The output of this execution is composed 
of: the alignment (framed in red in Fig. 11), the alignment cost (framed in green), 
and the fitness value (framed in blue). In this alignment, we observe three model 
moves only.

9.4 � Experiments

In this section, we are experimenting with our approach for multi-cloud SLA 
enforcement reporting with a multi-cloud application as a use case. The testbed for 

Fig. 11   Execution of conformance checking algorithm

15  https://​cloud.​google.​com/.
16  https://​aws.​amazon.​com/​fr/.

https://cloud.google.com/
https://aws.amazon.com/fr/
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these experiments consists of three docker swarm services that represent the multi-
cloud application described in our motivating example (Sect  3). The first service 
represents the User Interface component (UI) deployed as a nginx17 container. 
Nginx is a widely-used open source web server application. The second service rep-
resents the Authentication component (Auth) deployed as a keycloak18 container. 
Keycloak is an open-source identity and access management solution. The last ser-
vice represents the Storage component (Stor) deployed as a TiKV19 container. TiKV 
is an open-source, distributed, and transactional key-value database. Our experimen-
tation is composed of three steps: (1) representing the multi-cloud SLA following 
the previously defined multi-cloud application, (2) enforcing the multi-cloud SLA 
and stressing the application, and finally (3) reporting its enforcement to check the 
conformance with the representation.

Multi-Cloud SLA Representation To verify the capacity of our approach for 
representing multi-cloud SLA, we first represent the covered services and state 
machines of the multi-cloud application use case. To do so, we represent the 
multi-cloud SLA in YAML using our EMF-based SLA representation prototype 
(Sect. 9.1). Figure 12 illustrates an excerpt of the multi-cloud SLA. This excerpt 
presents the resources composing the User Interface component, which is docker 

Fig. 12   User Interface resource 
description

Fig. 13   lowNeeds and nor-
malNeeds states of the state 
machine

17  https://​www.​nginx.​com/.
18  https://​www.​keycl​oak.​org/.
19  https://​tikv.​org/.

https://www.nginx.com/
https://www.keycloak.org/
https://tikv.org/
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containers using Nginx image and listening on port 80 and 443. We consider 
a state machine with four states: lowNeeds, normalNeeds, highNeeds and end. 
This latter state machine represents the dynamicity required to handle the peak 
of activities of the application. An excerpt of this state machine is represented in 
Fig. 13.
Multi-Cloud SLA Enforcement For this second step, we validate the enforcement 
capability of our approach and that the transition between states is well exe-
cuted. To do so, we enforce the state machine represented previously using our 
autonomous orchestrator prototype. The prototype takes as input the multi-cloud 
SLA. Then, this latter prototype validates the state machine in the adaptation & 
validation component. Next, the plan for deploying the initial state of our state 
machine is sent to the deployment component. We validate that the initial state, 
lowNeeds, is deployed as depicted in Fig. 14. We can observe that each service is 
composed of one container(replicas). The monitoring component now monitors 
the deployed resources and sends any logs received to the policy enforcement 
component. In order to validate the performance of the state machine, we need to 
stress the multi-cloud application. We use the apache ab tool20 which will gen-
erate HTTP requests to the User Interface component. The policy enforcement 
component will detect the increase in CPU usage and trigger a transition from 
the lowNeeds state to the normalNeeds state and scale-out resources. The policy 
enforcement component triggers the transition as shown in Fig. 15a. The latter 

Fig. 14   Low needs state

(a) Policy Enforcement (b) Deployment

Fig. 15   Cycle of a transition detection

Fig. 16   Normal needs state

20  https://​httpd.​apache.​org/​docs/2.​4/​progr​ams/​ab.​html.

https://httpd.apache.org/docs/2.4/programs/ab.html
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component then notifies the others that this transition has been triggered. Upon 
receiving this notification, the deployment component deploys the new resources 
required for the normalNeeds state, as shown in Fig. 15b. Once the deployment is 
complete, each service is scaled-out to two containers, as depicted in Fig. 16. At 
the end of the SLA validity period, a transition is triggered to the final state and 
all resources are de-provisioned.
Multi-Cloud SLA Reporting Finally, when the enforcement is complete, we 
report the multi-cloud SLA using the conformance checker component (Fig. 7) 
in order to validate the enforcement. Inputs for the conformance checker are 
an SLA enforcement model and collected logs. We implement an algorithm for 
translating our state machine format into a data Petri Net. The state machine is 
retrieved from the orchestrator-related data of the knowledge component. Fig-
ure 17 presents the model produced by our algorithm. This latter model shows the 
places, transitions and arcs composing the Data Petri Net. The collected logs are 
retrieved from the Monitoring related data of the knowledge component. These 
are merged and then converted into XES format. Finally, the conformance check-
ing is performed between the SLA enforcement model and the collected logs, as 
described in Sect. 9.3. Figure 18 depicts the result of the conformance check of 
this experiment.

10 � Conclusion

Maintaining the service level of a multi-cloud application is not a trivial task due 
to the dynamicity and heterogeneity of a multi-cloud context. In this article, we 
presented an approach considering two challenges for managing and adapting the 
multi-cloud SLA: considering and managing dynamicity in the representation of 
multi-cloud application requirements, and reporting what happened during SLA 
enforcement to identify violations and act accordingly. We propose (1) a hierarchical 
representation of multi-cloud SLAs: sub-SLAs associated with a system’s compo-
nents deployed on distinct cloud service providers and global-SLA associated with 
the whole system. We also enrich these SLA representations with state machines 
reflecting reconfiguration strategies defined by cloud customers. Then, we propose 

Fig. 17   Output of the data Petri Net translator

Fig. 18   Conformance checking results of experiment
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(2) an autonomous multi-cloud resource orchestrator based on the MAPE-K adapta-
tion control loop to enforce them and to avoid SLA violations. Finally, in order to 
check the conformity of this enforcement with defined multi-cloud SLA, we propose 
(3) an approach for multi-cloud SLA reporting leveraging conformance checking 
techniques. As a proof of concept, we implemented and experimented our approach 
to validate its feasibility. The prototypes have been implemented using Docker and 
Docker swarm. However, this article is limited to a declarative approach of resources 
and does not consider the scheduling of resources. We also do not consider the inter-
connection between resources across different cloud service providers. In terms of 
the short-term perspective for this work, we plan to adjust our implemented proto-
types to use real cloud service providers instead of simulated resources. Later, we 
also plan to optimize the interactions of global on sub state machine. Next, we aim 
to consider online conformance checking techniques. Indeed, such techniques allow 
validating, and adapting if necessary, in real-time multi-cloud SLA enforcement. 
We also would like to consider other process mining techniques in order to enhance 
multi-cloud SLAs based on the conformance checking technique’s output.
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