
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:13004–13039
https://doi.org/10.1007/s11227-022-04363-0

1 3

Conformance checking for autonomous multi‑cloud SLA
management and adaptation

Jeremy Mechouche1,2  · Roua Touihri1,2 · Mohamed Sellami2 · Walid Gaaloul2

Accepted: 7 February 2022 / Published online: 14 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
Satisfying cloud customers’ requirements, i.e., respecting an agreed-on service level
agreement (SLA), is not a trivial task in a multi-cloud context. This is mainly due
to divergent SLA objectives among the involved cloud service providers and hence
divergent reconfiguration strategies to enforce them. In this paper, we propose a hier-
archical representation of multi-cloud SLAs: sub-SLAs associated with a system’s
components deployed on distinct cloud service providers and global-SLA associ-
ated with the whole system. We also enrich these SLA representations with state
machines reflecting reconfiguration strategies defined by cloud customers. Then,
we propose an autonomous multi-cloud resource orchestrator based on the MAPE-
K adaptation control loop to enforce them and to avoid SLA violations. Finally, in
order to check the conformity of this enforcement with defined multi-cloud SLA, we
propose an approach for multi-cloud SLA reporting inspired by conformance check-
ing techniques. An implementation of the approach is presented in the paper and
illustrates the approach feasibility.

Keywords  SLA · Cloud resources · Multi-cloud · Autonomous computing ·
Reconfiguration strategy · State machine

1  Introduction

Cloud computing has become a mature technology and the de facto solution for
companies to host their IT systems in the last ten years. According to the last big
outages of multiple cloud-based systems, relying on a single cloud service provider
can be problematic due to risks such as availability zones going down or network
failures. A solution is to leverage the multi-cloud paradigm to distribute a system’s

 *	 Jeremy Mechouche
	 jeremy.mechouche@devoteam.com

1	 Devoteam, R&D, Massy, France
2	 Samovar, Telecom SudParis, Institut Polytechnique de Paris, Palaiseau, France

http://orcid.org/0000-0002-1070-1906
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04363-0&domain=pdf

13005

1 3

Conformance checking for autonomous multi‑cloud SLA management…

components over multiple cloud service providers in order to mitigate these risks.
Multi-cloud denotes the usage of resources from multiple and independent clouds
by a customer (e.g., enterprise); contrary to a federated cloud where multiple cloud
providers unify their resources to provide a common service to a customer. Cloud
customers use multi-cloud for different reasons: (1) improving cost-effectiveness,
(2) avoiding vendor lock-in, (3) ensuring backups to deal with disasters, and (4)
consuming particular services that are not provided elsewhere. The Gartner Hype
Cycle for Cloud Computing 2020 forecasts that multi-cloud will be a mature concept
within the next 5 years [1]. Also, the RightScale State of the Cloud report shows
that 92% of enterprises have a multi-cloud strategy in 2021 [2]. Furthermore, sev-
eral European collaborative research projects propose approaches for consuming
multi-cloud services such as Melodic [3], Decide H2020 [4], Cyclone [5], MODA-
Clouds [6] and SeaCloud [7]. Many industry products aim to adopt the multi-cloud
paradigm. These products are carried by cloud services providers such as Google
cloud with Anthos1, Amazon Web Service with EKS/ECS Anywhere2 and Micro-
soft Azure with Arc3.

Despite this great interest in the multi-cloud paradigm, maintaining a certain level
of service for a multi-cloud application is still a non-trivial issue. One solution is to
formalize the required level of service needed as a service level agreement (SLA). In
a multi-cloud context, this latter SLA is denoted as a multi-cloud SLA which allows
representing requirements for a multi-cloud application. A few works have looked
at the modeling of multi-cloud SLA, such as [6] or [8]. However, these representa-
tions do not consider the dynamicity and elasticity of such multi-cloud applications,
which is a major characteristic of a cloud application [9]. Indeed, dynamicity can
have an impact on the SLA and violate service level objectives, e.g., scaling-out a
resource to comply with an availability objective can lead to the violation of a cost
objective. Another, non-trivial activity due to the distributed nature of the multi-
cloud and the heterogeneity of service level objectives is SLA reporting. This activ-
ity, which consists of identifying what happened during the enforcement of the SLA,
is also partially covered in the literature [10].

In order to solve these issues, we first model a multi-cloud SLA associated with
a composite application as: (1) a global SLA that contains the requirements for a
whole multi-cloud application, and (2) several sub-SLAs, one for each component
of the application, that contains the component’s requirements. Then, to address the
dynamicity issue, we propose a formalism based on the state-machine semantics to
enrich the multi-cloud SLA. This state-machine formalism allows representing dif-
ferent user requirements and how providers can technically address these require-
ments. Hence, it allows representing the fine-grained service level objectives of a
multi-cloud SLA. We denote the resulting multi-cloud SLA as an enriched multi-
cloud SLA.

1  https://​cloud.​google.​com/​anthos.
2  https://​aws.​amazon.​com/​eks/​eks-​anywh​ere/.
3  https://​azure.​micro​soft.​com/​en-​us/​servi​ces/​azure-​arc/.

https://cloud.google.com/anthos
https://aws.amazon.com/eks/eks-anywhere/
https://azure.microsoft.com/en-us/services/azure-arc/

13006	 J. Mechouche et al.

1 3

Next, to enforce an enriched multi-cloud SLA, we propose a multi-cloud
resources orchestrator which is compliant with the state-machine formalism. This
orchestrator follows an autonomous approach based on the MAPE-K (Monitor-Ana-
lyze-Plan-Execute over a shared Knowledge) adaptation control loop [11] to enforce
the enriched multi-cloud SLA. MAPE-K is a widely used reference control model
for autonomic and self-adaptive systems. This autonomous approach avoids SLA
violations by reconfiguring the application if needed. For instance, when a scale-out
leads to the violation of a cost requirement, our approach validates the reconfigura-
tion strategy upstream and notifies the cloud consumer of the inconsistency.

Finally, we propose a multi-cloud SLA reporting approach based on conformance
checking techniques. Reporting of multi-cloud SLA is a complex task due to the dis-
tributed nature of the multi-cloud and the heterogeneity of service level objectives
across multiple cloud service providers. However, multi-cloud SLA enforcement is a
process that produces event logs during its execution. Therefore, we rely on process
mining techniques, conformance checking in particular, to validate and adapt the
multi-cloud SLA enforcement. Indeed, conformance checking is a set of techniques
to analyze of business process, it relies on logs and process models to check if the
actual execution, as recorded in the event log, conforms to the model and vice versa.

The remainder of this article is organized as follows. First, Sect. 2 introduces the
multi-cloud service level agreement representation we consider in this work. Then,
Sect. 3 discusses a motivating example. After that, Sect. 4 presents an overview of
our approach. Next, Sect. 5 discusses related works. Then, Sects. 6 and 7 illustrate
the enrichment of multi-cloud SLA with state machines and its enforcement with an
autonomous orchestrator, respectively. Then, Sect. 8 presents the multi-cloud SLA
reporting approach we propose in this work. Next, Sect. 9 describes an implementa-
tion and an experimentation of our approach. Finally, Sect. 10 concludes the paper
with an outlook on future works.

2 � Cloud and multi‑cloud service level agreement

Cloud users establish a service level agreement (SLA) defining the required service
quality provided by the cloud providers. An SLA defines a commitment between
a customer and a service provider. This latter agreement is composed of a set of
objectives defining an agreed-upon quality of service (QoS). The main phases of the
SLA lifecycle are negotiation, deployment, monitoring, reporting and termination
[12]. Particularly, in a cloud context, an SLA (Definition. 2) is mainly defined by
four parts (1) parties, (2) service terms, (3) service level objectives, and (4) penal-
ties [13]. First, parties define stakeholders of the agreement. Second, service terms
characterize the service covered by the agreement, e.g., virtual server and database.
Third, service level objectives (SLO), as defined in Definition 1, present the agreed-
upon QoS terms. Finally, penalties define a form of compensation in case of the
agreement’s violation. These latter SLOs of the application express non-functional
requirements (NFR) such as availability, performance, cost, or security [12]. In this
paper, we choose to describe these SLAs with the ISO-19086 standard [14, 15], to
deal with the heterogeneity issue of SLA [16]. This latter standard support objective

13007

1 3

Conformance checking for autonomous multi‑cloud SLA management…

description in multiple formats. ISO-19086 is already used in security SLA [17], for
example in the public STAR (Security, Trust, and Assurance Registry) repository4.

Definition 1  (SLO) A service level objective (SLO) is a term made by a service
provider for a specific service characteristic. It is defined as a 5-tuple (c, t, v, u, op)
where: c denotes a specific measurable characteristics of the SLA (e.g., availability,
response time, cost, or security); t defines c’s type, i.e., quantitative or qualitative; v
defines c’s expected value; u represents c’s measurement unit; and op ∈ {< , >, ≥ , ≤
or =} defines the comparison operator of c.

Definition 2  (SLA) An SLA is a contract between one service provider and a cus-
tomer that defines their agreement terms. It is defined as a couple (n, O) where: n
is a name identifying the SLA and O =< k, v > is a hash table representing a list of
offered cloud services and their associated SLOs. The key k ∈ K identifies a cov-
ered service (e.g., service used by an application’s component). The associated value
v ∈ V is represented by a couple (csp, SLO ) where csp defines k’s provider and
SLO defines the set of k’s associated SLOs as defined in Definition 1.

Multi-cloud refers to the usage of resources by a customer from multiple and
independent clouds. A multi-cloud SLA is composed of two categories of SLA: a
global-SLA and multiple sub-SLAs. As defined in Definition 3, a global-SLA repre-
sents the client’s requirements for a multi-cloud application. A sub-SLA describes
the SLA of a multi-cloud application component with the same SLA format of Defi-
nition 2. The decomposition of the multi-cloud SLA allows representing finely the
requirements of the entire multi-cloud application and their components.

Definition 3  (Global-SLA) A global-SLA is a contract between many service pro-
viders and a customer that defines their agreement terms for a multi-cloud applica-
tion. It is defined by a set of SLO as defined in Definition 1, associated with the
multi-cloud application.

3 � Motivating example

To illustrate the motivation for this work, we consider a cloud application composed
of three components: User Interface(UI), Authentication(Auth) and Storage(Stor).
This application respects the principles of composite cloud applications design pat-
tern [18]. The cloud application’s components are provided by three cloud service
providers: CSP1 , CSP2 , and CSP3 . A cloud architect is in charge of the deployment of
the required cloud resources and has to respect predefined final users requirements
for the multi-cloud application in terms of availability, response time, and cost. The
user’s workload fluctuates. Therefore, in order to handle scheduled and unscheduled

4  https://​cloud​secur​ityal​liance.​org/​star/.

https://cloudsecurityalliance.org/star/

13008	 J. Mechouche et al.

1 3

peaks of activities, the cloud architect defines three different reconfiguration strat-
egies associated with the applications’ components. These strategies are denoted
as normal needs, high needs and low needs. A global-SLA, defined according to
Definition 3, denotes the predefined final users’ requirements for a response time
less than 5 ms, an availability greater than 99.7% and a cost per hour below 10$ .
GlobalSLA is represented as < Gslo1,Gslo2,Gslo3 > where the different Gsloi are
defined in Table 1.

For this example, we consider the User Interface sub-SLA (Definition 2) for the
sake of simplicity. It defines three SLOs: (1) a response time lower than 4 ms, (2)
a cost per hour below 2$ and (3) an availability rate at 99.9% . The UserInterface
sub-SLA is represented as < UI, (CSP1, slo1, slo2, slo3) > where the different sloi are
defined in Table 2.

The three reconfiguration strategies for UI are defined as follows: normalNeeds
with 2 virtual machines, highNeeds with 4 virtual machines, lowNeeds with 1 vir-
tual machine, and final with 0 virtual machine. To implement such reconfiguration
strategies and assess their compliance with the SLA of the multi-cloud application,
there is a need for (1) representing the requirements of the multi-cloud application
as a multi-cloud SLA expressing the agreement between the different involved par-
ties, (2) ensuring that the reconfiguration strategy associated to a sub-SLA respects
global-SLA, and (3) reporting that the agreed-upon SLA corresponds to the pro-
vided service.

Indeed, these reconfiguration strategies are defined by a user, and thus are error-
prone, i.e., eventually does not comply with users requirements. These incorrect
reconfiguration strategies can result from a wrong resource definition or an uncon-
sidered workload change of a multi-cloud application or one of its components.
Such incorrect strategies can lead to an SLA violation which can have negative con-
sequences for a cloud service provider such as reputation damage or penalties. For

Table 1   Service level objectives
associated with Global

SLA

Service level objective Gslo
1

Gslo
2

Gslo
3

Characteristics Response time Availability Cost
Type Quantitative Quantitative Quantitative
Value 5 99.7 10
Unit ms % $/h
Operator ≤ ≥ ≤

Table 2   Service level objectives
associated with UI’s Sub

SLA

Service level objective slo
1

slo
2

slo
3

Characteristics Response time Cost Availability
Type Quantitative Quantitative Quantitative
Value 4 2 99.9
Unit ms $/h %
Operator ≤ ≤ ≥

13009

1 3

Conformance checking for autonomous multi‑cloud SLA management…

avoiding such issues, the SLA-enforcement behavior (i.e., the behavior depicted by
the reconfiguration strategy) of the application, and its underlying components, have
to be considered in the SLA representation. After that, a method to enforce this lat-
ter SLA representation has to be defined. Finally, the enforcement has to be reported
to verify if the SLA has been respected or not. In previous work, we proposed an
approach that represents multi-cloud SLA [19]. In this paper, we propose to enforce
multi-cloud SLA with an autonomous orchestrator based on MAPE-K. Then, we
propose to ensure this latter enforcement using conformance checking techniques.
An overview of our approach is depicted in the next section.

4 � Approach overview

In a multi-cloud context where resources are distributed over multiple cloud service
providers, maintaining the objectives defined in a Global-SLA is not a trivial task.
Moreover, multi-cloud SLA reporting needs a significant effort in terms of time
when the architecture becomes complex. In this article, the objectives of our pro-
posed approach are to represent multi-cloud SLA, to avoid multi-cloud SLA viola-
tions and to analyze the enforcement of multi-cloud SLAs.

•	 To represent multi-cloud SLA, we rely on the model presented in Sect. 2. How-
ever, the latter representation needs to be enriched with reconfiguration strate-
gies to handle the dynamicity of the multi-cloud environment.

•	 To avoid SLA violations, we rely on an autonomic cloud orchestrator based on
the MAPE-K loop [20] for the multi-cloud SLA enforcement.

•	 To analyze multi-cloud SLA enforcement, we rely on process mining techniques
[21]. In particular, we rely on conformance checking techniques [22], used in the

Fig. 1   Approach overview

13010	 J. Mechouche et al.

1 3

business process management community, in order to check if the actual execu-
tion of a business process conforms to its model.

As represented in Fig. 1, our approach is composed of three steps: (1) the rep-
resentation of SLA associated with multi-cloud applications, (2) the enforcement
of multi-cloud SLA using an orchestrator based on the MAPE-K loop, and (3)
the reporting of the multi-cloud SLA enforcement using a conformance checking
technique.

In (1), the multi-cloud SLA representation is enriched with its reconfiguration
strategy represented as a state machine. The enrichment of multi-cloud SLAs ena-
bles to manage the dynamicity of multi-cloud applications. A detailed description of
this multi-cloud SLA representation is provided in Sect. 6.

In (2), this latter multi-cloud-SLA is enforced with an autonomous cloud
resources orchestrator that interacts with the cloud resources of the multi-cloud
application. The latter interactions consist of deploying, adapting, and collecting
event logs from cloud resources from several providers. Our proposed orchestra-
tor relies on an autonomic approach that will add a self-adaption behavior to the
resources according to the fluctuating workload of the users. Indeed, through this
autonomic approach, we give the orchestrator the capability to extend an SLA’s state
machine, i.e., representing its associated reconfiguration strategy, which represents
the applications’ reconfiguration strategy, at run-time in order to adapt these strate-
gies if needed. A detailed description of this orchestrator’s architecture is provided
in Sect. 7.

Finally, in (3), the third part of Fig. 1 illustrates our proposed multi-cloud SLA
enforcement reporting approach. As stated before, we rely on a conformance check-
ing technique to analyze the SLA enforcement. As input for the conformance
checking, we consider: (1) collected logs from our orchestrator, the cloud service
provider, and the cloud resource, and (2) SLA enforcement model representing the
entire SLA enforcement behavior to be reported. Conformance checking techniques
will allow us to get statistics on the enforcement and to determine a rate of conform-
ance between the SLA enforcement model and collected logs. This latter technique
will provide a detailed report on the SLA enforcement as output.

Compared to the related works and the literature (Sect. 5), the approach we pro-
posed handles the dynamicity and the SLA enforcement of a multi-cloud context.
We also report the multi-cloud SLA by checking the conformance of the multi-cloud
SLA enforcement with its representation. A detailed description of this multi-cloud
SLA reporting technique is provided in Sect. 8.

5 � Related work

In line with the steps of our approach, we divide our literature review into three
parts: multi-cloud SLA (Sect. 5.1), autonomic SLA enforcement in the cloud
(Sect. 5.2), and SLA reporting with process conformance checking techniques
(Sect. 5.3).

13011

1 3

Conformance checking for autonomous multi‑cloud SLA management…

5.1 � Multi‑cloud service level agreement

Cloud SLAs and SLAs, in general, have received considerable attention. How-
ever, little attention is given to the heterogeneity and dynamicity related issues
faced while specifying these SLAs in a multi-cloud context [16]. The most used
SLA specification language representation is WSLA [23] which was proposed in
2003 by IBM for the specification of service level agreements for Web Services.
Based on WSLA, various propositions of SLA specification languages have been
made for the cloud context; SLA* [24], rSLA [25], and ySLA [26], for exam-
ple. However, they did not propose mechanisms to handle the cloud’s dynamic
nature. Other propositions have been made to handle this dynamicity in cloud
SLAs: SLAC [27] and CSLA [28]. Uriarte et al. proposed with SLAC, an SLA
language where stakeholders can define at design-time multiple levels of ser-
vice. Kouki et al. consider, in CSLA, dynamicity in the SLOs with the concepts
of fuzziness and confidence. Fuzziness defines acceptable margins for the SLO
and confidence denotes a percentage of compliance of objectives.

Cloud SLA specification languages need to be adapted to meet the specif-
icities of the multi-cloud context. Son et al. defined cloud SLA relationships
(i.e., which stakeholder is responsible for what) in a multi-cloud environment
based on different cloud resources consumption models [29]. They analyze dif-
ferent multi-cloud models such as : peer-to-peer cloud federations, centralized
cloud federation or distributed cloud and describe the SLA relationship between
consumers and cloud providers for each of them. Moreover, some works cover
multi-cloud service composition based on SLA but assume that SLAs are homo-
geneous. Such as Farokhi et al. in [8] where they proposed a hierarchical SLA-
based service selection for multi-cloud environments. This approach, similar to
our approach for multi-cloud SLA representation, uses multiple SLAs to repre-
sent the SLA associated with different cloud service providers in a multi-cloud
environment. Multi-cloud SLA is also considered in some open-source and
European projects which aim to orchestrate resources over multiple cloud ser-
vice providers. This is the case of the MODAClouds project, which proposed
a model-driven approach for the design and the execution of applications on
multiple clouds [6]. Ardagna et al. refers, in [6], to a two-level SLA system: a
first level describing the SLA between customers and cloud providers and a sec-
ond level describing the QoS expected from the cloud provider. This latter SLA
specification language is also used in the SeaClouds project [7]. In previous
work [19], we introduced state-machine enriched multi-cloud. This latter repre-
sentation takes into account the dynamicity of multi-cloud components. We also
proposed an approach to validate their compliance with the user requirements.
However, the dynamicity of the entire multi-cloud application, the enforcement,
and reporting of the multi-cloud SLA was not considered.

Compared to these works, we consider the representation and the dynamicity
of multi-cloud SLA in its definition.

13012	 J. Mechouche et al.

1 3

5.2 � Autonomic SLA enforcement in the cloud

MAPE-K is a widely used autonomic architecture style in cloud SLAs manage-
ment approaches which has proved to be a powerful tool to build self-adaptive
systems [12]. Indeed, as presented by Faniyi et Bahsoon in [12], there are four
key motivations for using autonomic computing: (1) large size system, (2) het-
erogeneous context, (3) dynamic user workload fluctuation, and (4) uncertainty
about the state of the environment.

Emeakaroha et al. proposed in [30] an autonomic approach, DeSVI, for moni-
toring and detecting SLA violations. This approach consists of two components:
an automatic VM deployer responsible for resource allocation and LoM2HiS,
responsible for monitoring the application execution and translating low-level
metrics into high-level SLAs (e.g., availability). Mosallanejad et Atan [31] pre-
sent a model for hierarchical SLA specific to the cloud domain. In this model,
each SLA can monitor its attributes and communicate with dependent SLA
(which depend on them) in a different layer of cloud (IaaS/PaaS/SaaS). The
approach allows independent management of SLA (autonomic SLA) by con-
sidering SLA as an active entity (i.e., an SLA is responsible for monitoring its
objectives). However, this approach considers only SLA monitoring. Casalicchio
et al. presented in [32] an autonomic QoS-aware service provisioning architecture
based on the MAPE-K loop. This work proposes to compare four different solu-
tions designed for controlling the application based on the MAPE-K loop and
how this is implemented with the functionalities of an IaaS provider. This design
has been evaluated using features and services of the Amazon Elastic Compute
Cloud (EC2) infrastructure. Ghobaei-Arani et al. proposed in [33] a framework
for autonomic resource provisioning based on the control MAPE-K loop. In
their approach, they also use a reinforcement-learning based method as a deci-
sion-maker for the planning phase. However, this latter approach is limited to a
sole IaaS provider and do not consider a multi-cloud context. Sfondrini et Motta
[34] proposed to reduce the SLA violation rate and cover all SLA management
activities in an SLA-aware Lean Information Service Architecture (LISA). This
architecture includes an autonomic resource allocation engine that manages the
analysis, plan, and execution phases. Monitoring and knowledge are managed
by other modules. This resource allocation engine is alerted of SLA breaches
by the monitoring system. Then, to reduce the impact on the business continuity
analysis of the concerned entity is performed. This analysis results in a potential
identification of the SLA violation root cause and proposes a solution. Kosińska
et Zieliński proposed in [35] an Autonomic Management Framework for Cloud-
Native Applications (CN App), AMoCNA. The focus of this approach is on con-
tainerized applications. They proposed to implement the autonomic control-loop
with a rule-engine to replace the analyze and plan function. So, their control-loop
is called MRE-K for: Monitoring, Rule Engine, Execute and Knowledge. Rouf
et al. [36] proposed a framework called COTS based on the MAPE-K loop to
manage multi-cloud platforms. The main objective of this paper is to explore the
feasibility of developing an autonomic MAPE-K framework for multi-cloud plat-
forms by integrating existing services. Their framework architecture is composed

13013

1 3

Conformance checking for autonomous multi‑cloud SLA management…

of three components: Cloud Monitor, State Rule Engine, and Workflow Engine.
These three components can be compared to the MRE-K control loop proposed in
AMoCNA [35].

The aim of these approaches is close to ours; however, our approach considers
an abstract view of cloud resources and focus on multi-cloud-SLA enforcement.
We present a comparison between autonomic SLA management approaches using
a MAPE-K loop in Table 3 in the Enforcement part. For this table, we consider
three comparative criteria, namely: Scope which defines the action context of the
approach, Cloud Resources which defines the type of the resource considered in the
approach and SLO which defines the kind of objectives considered.

5.3 � Service level agreement reporting

There is little attention given to SLA reporting [12] even though it is a significant
need for real-world use cases. Ismail et al. defined in [37] a generic SLA manage-
ment framework. Then, proposed to model this latter SLA management framework
using business process management notation in order to simplify SLA offerings. The
major point of this approach is the mapping between WSLA [23] and BPM notation

Table 3   Related works summary of autonomic SLA enforcement (Sect. 5.2) and SLA reporting using
business process management (Sect. 5.3)

a https://​www.​ibm.​com/​us-​en/​marke​tplace/​cogni​tive-​autom​ation
b https://​cloud​ify.​co/

Paper Scope Cloud resources SLO

Enforcement
Emeakaroha et al. [30] Cloud VM Limited range
Casalicchio et al. [32] Cloud VM Limited range
G-A et al. [33] Cloud VM Limited range
AMoCNA [35] CN App Container Limited range
COTS [36] Multi-Cloud Any (IBM CAMa) Limited range
LISA [34] Multi-Cloud Any (Cloudifyb) WS-Agreement [23]
Our approach Multi-Cloud Any ([49]) ISO-19086 [14, 15]

Paper Scope Employed techniques Process description

Reporting
Van Eck et al. [40] Generic Process discovery CSM
Sutrisnowati et al. [41] Big data Process discovery Not specified
Chesani et al. [42] Cloud Process monitoring Declare
Acampora et al. [44] Cloud Online process discovery Declare
Song et al. [45] Multi-Cloud Process discovery Scientific Workflow
Calcaterra et al. [46] Cloud Resource orchestration BPMN
Azumah et al. [48] Hybrid-Cloud Resource scheduling Declare
Our approach Multi-Cloud Conformance checking Petri-Net with Data

https://www.ibm.com/us-en/marketplace/cognitive-automation
https://cloudify.co/

13014	 J. Mechouche et al.

1 3

[38] which is a concrete implementation with a widely used SLA format. However,
this approach only considers the SLA definition and do not validate SLA enforce-
ment. A first proposition using process mining techniques to report SLA has been
made in [39]. This approach proposes the detection of bottlenecks in the process by
a fine-grained analysis of the time perspective. However, in this latter approach, only
control-flow and time perspectives are considered.

Some other works about cloud resources orchestration get inspired by business
process management techniques. Van Eck et al. introduced in [40] the concept of
composite state machines (CSMs) to describe multiple related processes, depicted as
perspective. They proposed an algorithm of process discovery and a method to sim-
plify the views for CSMs which can be quite complex. Sutrisnowati et al. presented
in [41] a tool for performing process mining techniques over Hadoop Map-Reduce
(Big Data framework5). The BAB framework aims to propose, like Prom, a tool
that combines the Hadoop Map-Reduce algorithm with cloud and process mining.
They implemented a process discovery algorithm in this context and the framework
allowed being extended with other functionalities. However, it is limited to Hadoop
Map-Reduce. Chesani et al. proposed in [42] to apply well-known process mining
techniques, Mobucon EC [43], to monitor properties of a Map-Reduce execution.
Then, this monitor is used to determine the health of the system and determine auto-
scaling action for nodes composing the Map-Reduce cluster. This paper presents
encouraging results for the use of process mining techniques in the cloud context.
However, this approach only considers the Map-Reduce application. Acampora et al.
proposed in [44] a cloud controller that performs auto-scaling action over a cloud
computing infrastructure. This cloud controller exploits information from business
processes discovered from the logs. Processes are represented using Declare lan-
guage. Online process mining techniques are performed for extracting the required
information from event logs. Song et al. presented in [45] an approach consider-
ing the extraction of intra and inter-cloud scientific workflow from event logs using
process mining techniques. This algorithm is proposed as a ProM plug-in to per-
form the process discovery of this scientific workflow. Calcaterra et al. proposed in
[46] a fault-aware orchestrator of cloud resources using the business process mod-
eling notation language (BPMN) [47] for describing the scheme of service provi-
sion workflow. In this paper, they put a focus on the failures during the provisioning
process. Azumah et al. proposed in [48] to use a process mining to schedule tasks in
a hybrid cloud context complying with a set of given business constraints.

To the best of our knowledge, reporting of multi-cloud SLA using conformance
checking techniques is not covered in the literature. We proposed to use these latter
techniques to check the validity of SLA enforcement and get a detailed report which
considers the entire multi-cloud SLA. We present a comparison between approaches
using business process management techniques in a cloud context in Table 3 in
the Reporting part. For this table, we consider three comparative criteria, namely:
Scope which defines the action context of the approach, Employed Techniques which

5  https://​hadoop.​apache.​org/.

https://hadoop.apache.org/

13015

1 3

Conformance checking for autonomous multi‑cloud SLA management…

defines the process mining techniques used in the approach and Process Description
which defines the process description method employed.

6 � Multi‑cloud SLA representation

This section details the first step of our approach. In the following, we discuss how
we enrich multi-cloud sub-/global-SLAs with state machines representing reconfig-
uration strategies in order to consider multi-cloud SLA violations.

6.1 � State machines for representing reconfiguration strategies

SLAs are static and do not consider the dynamicity of covered services which is,
according to NIST [9], a key concept for cloud computing. This dynamicity is
expressed through reconfiguration strategies defined by cloud consumers to man-
age the application’s dynamic behavior, such as activity peaks. In order to handle
the dynamicity of service covered by an SLA, we propose to use state machines that
represent reconfiguration strategies. State machine is chosen due to its widespread
adoption, intuitiveness, and effectiveness. Please note that this intuitive method is
commonly used when modeling dynamic systems behavior and can be formally
validated.

A reconfiguration strategy is defined through one or multiple events which trigger
one or several reconfiguration actions. These reconfiguration actions correspond to
the actions required to reconfigure a service. An event (Definition 4) represents the
occurrence of any change that results in triggering specific actions [49]. There are
four types of triggering events: (1) temporal, (2) resource-related, (3) user action,
and (4) composite. First, Temporal Events occurs on a specified date or after some
time. Second, Resource Related Events happens once a resource metric meets a
predefined reference value. Third, User Action Events appears on user demand.
Finally, Composite Events are a specific type that is composed of multiple trigger-
ing events specified earlier.

Definition 4  (Event) A triggering event is represented as a 3-tuple (id, t, p) where:
id is the triggering event’s identifier; t ∈ {temporal , resourceRelated, userDefined,
composite} is the predicate’s type and p represents the predicate, i.e., the body, of
the events according to the predefined predicate type.

Table 4   UI sub state-machines
events

Id Type Predicate

Evt1 Resource-related cpuUsage, average, >, 85,% , 60 s
Evt2 Resource-related cpuUsage, average, <, 30,% , 60 s
Evt3 Resource-related cpuUsage, average, <, 30,% , 60 s
Evt4 Resource-related cpuUsage, average, >, 85,% , 60 s
Evt5 Temporal-event Everyday at 9:00 pm

13016	 J. Mechouche et al.

1 3

For instance, we consider events associated with our motivating example trigger-
ing the UI reconfiguration strategies presented in Sect. 3. According to Definition 4,
these events will be represented as follows (Table 4):

A reconfiguration action (Definition 5) specifies how a resource should behave
when specific triggering events occur to respect an SLA. We define six types of
reconfiguration actions: Horizontal Scaling, Vertical Scaling, Migration, Appli-
cation Reconfiguration and Basic Action. These reconfiguration actions represent
the elasticity mechanisms associated with cloud resources. Each of these action
types requires a specific set of action attributes to be executed, e.g., resource-target
or attribute-target [49].

Definition 5  (Reconfiguration Action) A reconfiguration action is defined as 3-tuple
(id, t, AA) where : id identifies the reconfiguration action; t defines the type of the
reconfiguration action and AA is a set of action attributes required to perform the
action.

To illustrate reconfiguration actions representation, we refer again to our motivat-
ing example. We consider actions triggered by the events of the UI reconfiguration
strategies presented in Table 4. These actions are represented in Table 5.

Thus, a reconfiguration strategy is a set of reconfiguration actions and associated
events that we represent with the state-machine formalism. Indeed, a resource is
characterized by states with reconfiguration actions to transit from a state to another.
A state machine is defined through two main elements: state defined in Definition 6
and transition defined in Definition 7.

Definition 6  (State) A state is represented as a 3-tuple (l, t, R) where : l is the state’s
name or label; t ∈ {isInitial, isNormal, isFinal} is the state type and indicates

Table 5   UI sub state-machine’s
action

Id Type [Action attributes]

A1 HorizontalScaling [UI, scale-out, 1]
A2 HorizontalScaling [UI, scale-out, 2]
A3 HorizontalScaling [UI, scale-in, 1]
A4 HorizontalScaling [UI, scale-in, 2]
A5 HorizontalScaling [UI, scale-in, 4]

Table 6   UI sub state-machine’s
states

Label Type Resources

id idResource CSP size nb

NormalNeeds isInitial UI VM1 CSP1 M 2
HighNeeds isNormal UI VM1 CSP1 M 4
LowNeeds isNormal UI VM1 CSP1 M 1
End isFinal UI VM1 CSP1 M 0

13017

1 3

Conformance checking for autonomous multi‑cloud SLA management…

whether s is a start state, an intermediate state, or an end state, respectively; and � is
the set of cloud resources r composing an application’s components or a composite
application characterizing the state.

For instance, we consider states of our motivating example UI reconfiguration
strategies presented in Sect. 3 and represented in Table 6.

Definition 7  (Transition) A transition is represented as a 5-tuple (id, ss , st , E, A)
where id is the transition’s identifier, �

�
 is the source state, �

�
 is the target state, � is

the set of events (Definition. 4) that could trigger the transition, and � is the set of
actions (Definition. 5) to be executed when certain triggering events happen.

For instance, we consider the state machine representing UI reconfiguration strat-
egies as mentioned in our motivation example (Sect. 3) is depicted in Fig. 2 and
where its associated transitions are shown in Table 7.

6.2 � Global and sub SLA enrichment

As introduced in Sect. 2, we consider a multi-cloud SLA composed of: (i) one
global-SLA that defines, as part of this agreement, the cloud customer’s require-
ments for the multi-cloud applications and (ii) one sub-SLA for each component
of the multi-cloud application that denotes, as part of this agreement, its related
requirements (i.e., vis-à-vis the relevant cloud service provider). To handle SLA

Table 7   UI sub state-machine’s
transitions

Id Source Target Events Actions

T1 NormalNeeds HighNeeds Evt1 A2
T2 HighNeeds Normal Evt2 A4
T3 NormalNeeds LowNeeds Evt3 A3
T4 LowNeeds Normal Evt4 A1
T5 NormalNeeds End Evt5 A4
T6 HighNeeds End Evt5 A5
T7 LowNeeds End Evt5 A3

Fig. 2   Graphical representation of UI Sub-SLA state machine

13018	 J. Mechouche et al.

1 3

dynamicity, we propose to enrich multi-cloud SLA representations with a state
machine showing reconfiguration strategies associated with the multi-cloud applica-
tion and reflecting this dynamicity. We denote this latter SLA as an enriched SLA
(Definition 8).

Definition 8  (Enriched SLA) An enriched SLA is an SLA enhanced with a state
machine representing its associated reconfiguration strategy. It is defined as a 4-tuple
(n, SLO , S, T) where: n is a name identifying the enriched SLA, SLO defines the
set of SLOs (Definition 1), S is the set of states of the state machine, and T is the set
of transitions of the state-machine.

For instance, consider the UI sub-SLA presented in our motivating
example (Sect. 3). The associated enriched sub-SLA is expressed as fol-
lows: < UI, (CSP1, slo1, slo2, slo3), S, T > where UI is the sub-SLA’s name,
(CSP1, slo1, slo2, slo3) is the SLO’s related to UI sub-SLA, S is a set of four states
shown in Tables 6 and 7 the set of transitions depicted in 7. In the same way, we
enrich the global-SLA by defining a global reconfiguration strategy that manages,
i.e., by triggering transitions if needed, all enriched sub-SLAs. Figure 3 illustrates
the enriched global-SLA managing the sub state machines associated with our moti-
vating example (Sect. 3). For instance, if the global state machine transits to a state,
then all the sub state machines will transit to the same state. To do so, we enrich
states definition (Definition 6) with a new type of state : Global State. So in Fig. 3,
the state Normal Needs of the global SLA is of type Normal and type global mean-
ing that when this state-machine transitions to Normal Needs all managed state
machines, i.e., part of the sub-SLAs, will transit to Normal Needs too.

In this example, to simplify, we assume that the same reconfiguration strategy is
used for all CSPs. But, in the case when the studied strategies are different between
several components, we need to map the global states of the state machines to the
states of the sub state machines.

However, these state machines are defined by a user who could forget cases or
make errors in the state-machine definition. For instance, consider a high peak of
needs when the actual state is on lowNeeds. The state machine will need to change

Fig. 3   Global state machine manages sub state machines

13019

1 3

Conformance checking for autonomous multi‑cloud SLA management…

state to highNeeds but according to Table 7, there is no direct transition between
those two states. This last issue is addressed in the next section by introducing the
autonomous multi-cloud orchestrator that can adapt to these state machines if needed.

7 � Multi‑cloud SLA enforcement

In this section, we present the architecture of the proposed SLA-aware multi-cloud
autonomic resources orchestrator. The orchestrator’s architecture is based on the
MAPE-K loop and comes as part of the second step of our approach. In the follow-
ing, Sect. 7.1 introduces the concept of autonomic computing then Sect. 7.2 details the
architecture of the autonomic orchestrator we propose to enforce multi-cloud SLAs.

7.1 � Autonomic computing

Autonomic computing helps to address complexity by using technology to manage
technology [20]. The concept of autonomic is derived from human biology. The
autonomic nervous system is responsible for managing vital functions without con-
scious effort. This is the same idea in autonomic computing; however, systems are
managed according to policies defined by IT professionals.

These functions are represented as control loops that collect data from man-
aged elements and act accordingly. There are four control-loop function categories
[20] which can be defined as: Self-configuring can dynamically adapt to changing
environments, Self-healing can discover, diagnose, and react to disruptions, Self-
optimizing can monitor and tune resources automatically, and Self-protecting can
anticipate, detect, identify, and protect against threats.

IBM proposed a control-loop architecture, usually denoted as MAPE-K loop,
composed of four functions (Fig. 4) to implement an autonomic manager:

•	 Monitor collects, aggregates, filters, and reports data from managed elements
through sensors associated with the managed elements,

•	 Analyze permits to correlate and model complex situations,
•	 Plan constructs the actions needed to achieve goals and objectives, and
•	 Execute executes the actions that control the managed elements through associ-

ated effectors.

All these functions are based on the knowledge module, which represents the
shared data management for all components.

Fig. 4   MAPE-K Loop

13020	 J. Mechouche et al.

1 3

7.2 � Multi‑cloud autonomous orchestrator

To enforce the previously proposed multi-cloud SLA (Sect. 6), an SLA-aware
orchestrator is needed. So based on the reference architecture for cloud resources
orchestrator framework proposed in [10] and the MAPE-K loop in [20], we propose
a multi-cloud SLA autonomous orchestrator whose architecture is depicted in Fig. 5.
We rely on these two proposals to propose an autonomous approach for multi-cloud
resources. The latter orchestrator is composed of four components: Monitoring, Pol-
icy Enforcement, Adaptation & Validation and deployment engine.

The loop begins with verification of multi-cloud SLA by the Adaptation & Vali-
dation component. Then, the Deployment engine deploys resources at their initial
state, according to the verified multi-cloud SLA state machines. Next, the Monitor
component monitors the SLOs defined in the multi-cloud SLA and stores collected
logs in Knowledge. Finally, in case of transition triggered or SLOs about to be
violated, Policy Enforcement notifies the Adaptation & Validation component to
define a plan for (Re-)Deployment to execute the action(s) associated with the tran-
sition or avoid SLOs violation.

Each component is associated with a MAPE-K function and is presented in detail
in the following.

•	 Adaptation and Validation This component is associated with the Plan func-
tion of the MAPE-K loop. The functions of this component are twofold: (1) to
validate state-machine correctness (State Machine Validator module in Fig. 5)
according to global-SLA requirements using our approach proposed in [19] and
(2) to define a plan (Plan Definition module in Fig. 5) for the managed element
configuration according to a notification sent by the policy enforcement compo-
nent (Notification Collector module in Fig. 5). A plan defines the actions to be
performed by the deployment component to (re-)deploy a cloud resource. These

Fig. 5   Autonomous Orchestrator Architecture

13021

1 3

Conformance checking for autonomous multi‑cloud SLA management…

latter actions are defined as in Definition 5. The definition of a re-deployment
plan occurs when: (1) a transition triggered, the actions associated with this tran-
sition are executed and (2) no transitions are triggered but an SLO is about to
be violated. In the second case, an objective analysis is performed and a new
state and/or transition is(are) added to the state machine. The new state is created
based on the resources impacted, its current state, and SLOs. This component
stores in the Knowledge component validated state machines and updates them
with new states and/or transitions.

•	 Deployment This component is associated with the Execute function of the
MAPE-K loop. The functions of this component are to deploy and adapt
resources according to (re-)deployment plans defined by the Adaptation &
Validation(Plan Collector module in Fig. 5). It communicates with cloud ser-
vice providers through their proprietary APIs (Cloud API Connector module in
Fig. 5) and can perform the following actions on resources [10](Plan Executor
module in Fig. 5): Create, Start, Scale-up/down, Stop and Delete. These actions
are generic and can be applied to any kind of resource. This component logs in
the Knowledge component the trace of its performed actions.

•	 Monitoring This component is associated with the Monitor function of the
MAPE-K loop. In this approach, we consider three sources of logs to enforce
a multi-cloud SLA: (1) the orchestrator, (2) the cloud service providers, and (3)
the cloud resources. These three sources of logs allow us to consider the entire
SLA enforcement process. We denote as SLA enforcement process the flow of
events composing the (re-)deployment of a resource: (1) the orchestrator requests
a resource, (2) the cloud service provider deploys these resources, (3) the
resources are started. It collects event logs (Log Collector module in Fig. 5), it
filters events in the logs that are not necessary for the enforcement of multi-cloud
SLAs (Log Filter module in Fig. 5) and transforms the log formats (Log Trans-
former module in Fig. 5), if they are heterogeneous, to uniform them. Then, the
collected logs are stored in the Knowledge component.

•	 Policy Enforcement This component is associated with the Analyze function
of the MAPE-K loop. It is used to trigger transitions in state machines. We use
a rule engine to detect when an event (Definition. 4) occurs. Events are con-
verted into rules in the latter rule engine. These rules are used to check the logs
and detect whether an event has occurred. Logs and rules are collected from the
Knowledge component using, respectively, the Log Collector and Rules Collec-
tor modules. Then, the Adaptation & Validation component is notified to trigger
a transition or to adapt the state machine to avoid an SLO violation.

•	 Knowledge Knowledge is a shared component between all the components of
the orchestrator which aggregates all data used/generated by the orchestrator’s
components. There are two categories of data, orchestration related, and moni-
toring related. Orchestrator related regroups all necessary data for orchestration
such as the enriched multi-cloud SLA. Monitoring Related contains all collected
logs from resources, cloud service providers, and the orchestrator itself. The
orchestrator components interact with Knowledge via an API to request and store
data.

13022	 J. Mechouche et al.

1 3

After deploying the multi-cloud application’s required resources, our approach veri-
fies that the execution has taken place according to the defined multi-cloud SLA and
identifies potential violations. This is addressed as part of our approach’s third step
is presented in the next section.

8 � Multi‑cloud SLA reporting

This section depicts how we leverage process mining to ensure SLA reporting. In
process management, process mining techniques support the analysis of opera-
tional processes based on a process model and event logs generated by its execution
[21]. As shown in our approach overview (Fig. 1), we consider a multi-cloud SLA
enforcement model and collected logs as inputs for a process mining technique to
ensure multi-cloud SLA reporting. In the following, we briefly introduce process
mining and especially conformance checking techniques in Sect. 8.1 then we detail
our process mining based multi-cloud SLA reporting approach in Sect. 8.2.

8.1 � Process mining

Process mining can be viewed as a link between data science and business process
management. Process mining techniques aim to discover, monitor, and improve
operational processes by extracting knowledge from event logs [21]. An event log
stores data about the occurrence of activities that were recorded by information sys-
tems while supporting the execution of a process. There are four categories of pro-
cess mining techniques as depicted in Fig. 6:

•	 Process discovery techniques produce a process model from a given set of
event logs.

Fig. 6   Process mining techniques categories (inspired from [38])

13023

1 3

Conformance checking for autonomous multi‑cloud SLA management…

•	 Performance mining techniques produce an enhanced process model from an
input model and an event log. These techniques permit us to understand the
process behavior and identify issues such as bottlenecks.

•	 Variant analysis techniques produce different diagnostics from two differ-
ent event logs. These techniques generally compare event logs containing all
cases that end positively with event logs containing all cases that end nega-
tively.

•	 Conformance checking techniques produce different diagnostics between
a process model and an event log to find commonalities and discrepancies.
These techniques permit to compute conformance measures, i.e., find the
level of conformance between process models and event logs, i.e., the execu-
tions of the models.

8.2 � Conformance checking for multi‑cloud SLA reporting

In this section, we present our proposed approach for multi-cloud SLA enforce-
ment reporting using conformance checking techniques. Our main objective
is to analyze what happened during multi-cloud SLA enforcement and inves-
tigate its conformity to the agreed-on model. We rely on conformance check-
ing techniques to compare an SLA enforcement model and logs collected during
this model enforcement. An overview of this approach is depicted in Fig. 7. As
shown in Fig. 7, we retrieve these input data, i.e., the enriched multi-cloud SLA
and the collected logs, from the knowledge component of the autonomous cloud
resource orchestrator (Sect. 7). Then, we translate the enriched multi-cloud SLA
into an SLA enforcement model represented as a Petri net with data (the Model
Translator component, Fig. 7). This latter model translation is performed to take
advantage of existing conformance checking techniques. We also transform the
collected data into the standard XES format for event logs representation [50]
(the Log Transformer component, Fig. 7). Finally, the conformance checker
component takes the latter data as input to perform the compliance checking and
generates a detailed report of the multi-cloud SLA enforcement. The following
sections details these different components.

Fig. 7   Multi-Cloud SLA reporting approach overview

13024	 J. Mechouche et al.

1 3

8.2.1 � SLA enforcement model

A multi-cloud SLA enforcement model represents the flow of actions executed
to enforce a multi-cloud SLA and is based on the enriched multi-cloud SLA. As
it stands, the state machine is not the optimal format for leveraging existing con-
formance checking techniques. The usual format used by process mining techniques
is Petri net [21]. So, we propose to translate state machines associated with multi-
cloud SLAs into Petri nets with data (Model translator component). A Petri net
with data (Definition.9) allows formally representing the multi-cloud SLA enforce-
ment process. Specifically, we use Petri net with data, instead of traditional Petri
nets, to represent the SLOs of a multi-cloud SLA in its data perspective, since Petri
nets allow only representing the control-flow perspective of an enforcement process.
This representation also allows us to use existing process mining techniques.

Definition 9  (Petri Net with data) A Petri Net with data DPN-net =
(P, T, F, V, U, R, W, G) is composed of: a Petri net (P, T, F) where P is a set of
places; T is a set of transitions; F is the set of flow relations describing the arcs
between places and transitions; a set V of variables; a function U that defines the
values admissible for each variable; a read function R that labels each transition with
the set of variables that it must read; a write function W that labels each transition
with the set of variables that it must write, and a guard function G that associates a
guard with each transition.

We translate the state machine (SM) associated with the enriched multi-cloud
SLA into a Petri Net with data (DPN-Net). This state machine is composed of states
(Definition. 6) and transitions (Definition 7). This translation is based on the transla-
tion rules depicted in Table 8. As defined in this latter, a state in a SM is associated
with a place in a DPN-net, a transition in a SM is associated with a transition in a
DPN-net, the link between a place and a transition in a SM is represented by an arc
in a DPN-net, transition event metrics in a SM correspond to variables in a DPN-net,
e.g., CPU usage, and transition event predicates in a SM correspond to guards in
DPN-net.

To illustrate this translation, we consider the UI sub-SLA state machine of our
motivating example represented in Fig. 8a. We translate this latter state machine into
a Petri net with data using our translation rules (Table 8). A graphical representation

Table 8   Translation rules
between SM and DPN-net 

State machine DPN-Net

State ( s ∈ S) Place ( p ∈ P)
Transition ( t ∈ T) Transition ( t ∈ T)
Transition source and destination ( t.t and t.s) Arc ( f ∈ F)
Transition event metric (t.E.p.m) Variable ( v ∈ V)
Transition event predicate (t.E.p) Guard ( g ∈ G)

13025

1 3

Conformance checking for autonomous multi‑cloud SLA management…

of the translated Petri net with data in Yasper6 is given in Fig. 8b and its representa-
tion according to the definition. 9 in Table 9.

8.2.2 � Collected event logs

In this section, we discuss the collected logs that are necessary to apply a conform-
ance checking technique and their format. These logs represent "what happened"
during the enforcement of a multi-cloud SLA. It is necessary to define a standard
format for event logs in our heterogeneous multi-cloud context. In a business pro-
cess management context, an event log contains events associated with cases of a
business process model. Cases are associated with collections of events, i.e., traces.
Each event describes an execution step in the business process case [51]. In our
context, an event log contains events related to an instance of an SLA enforcement
model (Sect. 8.2.1). We refer to these logs as collected logs which are retrieved from
the knowledge component. To ensure the quality of these logs, we rely on the data
quality definition proposed by Van der Aalst et al. in [21]. In this work, the man-
datory event attributes are defined that a log should contain as case, activity, and
timestamp or position. Case is defined by a sequence of events, activity, aka task in
a business process, that identifies the event, and timestamp or position ordering the
events. In our approach, we define the log format as composed of:

•	 Timestamp specifying the event execution time,
•	 Source denoting the event originator: orchestrator, CSP, or Resource,
•	 States/Transition (S/T) denoting the state-machine’s state or transition associated

to the event,

(a)

(b)

Fig. 8   UI sub-SLA

6  Yasper is a tool for Petri net representation, https://​www.​yasper.​org/.

https://www.yasper.org/

13026	 J. Mechouche et al.

1 3

Ta
bl

e 
9  

U
I s

ub
-S

LA
 P

et
ri

ne
t w

ith
 d

at
a

de
fin

iti
on

Tr
an

si
tio

n(
t)

Sr
c(

p)
D

es
t(p

)
G

ua
rd

s(
g)

(a
) D

efi
ni

tio
n

T0
St

ar
t

N
N

–
T1

N
N

H
N

cp
uu

sa
ge

 >
8
5
%

T2
H

N
N

N
cp

uu
sa

ge
 <

3
0
%

T3
N

N
LN

cp
uu

sa
ge

 <
3
0
%

T4
LN

N
N

cp
uu

sa
ge

 >
8
5
%

T5
N

N
En

d
tim

es
ta

m
p
=
=
9
∶
0
0
 p

m
T6

H
N

En
d

tim
es

ta
m

p
=
=
9
∶
0
0
 p

m
T7

LN
En

d
tim

es
ta

m
p
=
=
9
∶
0
0
 p

m

 V
ar

ia
bl

e(
v)

Ty
pe

(b
) V

ar
ia

bl
es

cp
uu

sa
ge

In
te

ge
r

tim
es

ta
m

p
Ti

m
e

fo
rm

at

13027

1 3

Conformance checking for autonomous multi‑cloud SLA management…

•	 ResourceProvider denoting the name of the cloud service provider that provides
the related resource,

•	 ResourceName is the resource name,
•	 EventType defines the action or event type as presented in Definitions 4, 5,
•	 Metric provides the event-related metric such as cpuusage, and
•	 Value corresponds to the metric value.

To illustrate the considered log format, we present an example of a fragment of a UI
sub state machine associated collected logs. These logs represent the following execu-
tion of the state machine: transition T0 the resource VM1 is created (Timestamp:
00 : 00 to 00 : 03), then the logs generated by the resource VM1 at the NormalNeeds
(NN) state (Timestamp: 00 : 05 to 02 : 05), and finally the transition T1 triggered by
the CPU exceeding 85%for a minute and a state transition to the HighNeeds (HN) state
(Timestamp: 02 : 06 to 02 : 08). In addition, multiple events from different sources, e.g.,
Orchestrator(ORCH), CSP, resources(RES) can be related to the same state or transition
[52], e.g., event with timestamp 00:00 and 00:03 related to transition T0 in Table 10.

8.2.3 � Multi‑cloud SLA enforcement conformance checking

In this section, we describe the conformance checking technique [53], that we use
for multi-cloud SLA reporting. Conformance checking is a set of techniques that
compare an existing process model with an event log of the same process [54]. Two
families of conformance checking techniques exist: token replay and alignments.
Token-Replay is a heuristic technique, which uses four counters (produced tokens,
consumed tokens, missing tokens, and remaining tokens) to compute the fitness of
a trace with a given model. Although this technique is easy to understand and can
be implemented efficiently, since token-replay takes a local decision, it may lead to
misleading results. Alignment is a technique, which performs an exhaustive search
to find out the optimal alignment between an observed trace and a process model.
Hence, it returns the closest model execution to the trace.

Table 10   A fragment of UI sub state-machine collected logs

Time- stamp Source S/T Resource provider Resource name Event type Metric Value

00:00 ORCH T0 AWS VM1 Create – –
00:03 CSP T0 AWS VM1 Create – –
00:05 RES NN AWS VM1 R-Usage cpu 15%
00:35 RES NN AWS VM1 R-Usage cpu 5%
01:05 RES NN AWS VM1 R-Usage cpu 95%
01:35 RES NN AWS VM1 R-Usage cpu 95%
02:05 RES NN AWS VM1 R-Usage cpu 95%
02:06 ORCH T1 AWS VM1 Scale-out – –
02:08 RES HN AWS VM1 R-Usage cpu 15%

13028	 J. Mechouche et al.

1 3

We consider alignment techniques in order to set up our conformance checking
approach for multi-cloud SLA reporting. In our context, an alignment technique allows
identifying an alignment between an SLA enforcement model and its associated col-
lected logs. In other words, the events in the event log need to be associated with model
elements and vice versa. An alignment relates "moves" in collected logs to "moves" in
an SLA enforcement model in order to define an alignment between them. This is not a
straightforward task because the log can deviate from the model and not all events may
have been modeled or recorded. These moves, denoted as Legal moves, represent pos-
sible alignment moves and are categorized as follows [51]: a move in log only, a move
in model only, a move in both with incorrect variables, and a move in both with cor-
rect variables. Moves belonging to this last category are called synchronous and the
others non-synchronous. An alignment is considered as complete when for each event
in its log trace an alignment exists. Any non-synchronous move is considered a devia-
tion, i.e., when a move in the logs cannot be related to a move in the model. In order
to define the severity of a deviation, a cost is associated with each legal move. This
last cost is defined by the user in order to weigh the deviations. Since several complete
alignments can exist, an optimal alignment is a complete alignment with minimal cost.
An alignment cost is defined as the sum of the costs of all its moves.

In our work, we use an alignment technique to align collected logs stored in the
knowledge component along with a multi-cloud SLA enforcement model. This allows
us to evaluate the adequacy level between them and to identify SLA violations. We
adopt the conformance checking technique proposed by de Leoni et van der Aalst in
[55]. This technique consists of finding an optimal alignment considering a DPN-net
and a set of logs as input. We present the pseudo-code of this alignment technique in
Algorithm 1 and we refer readers to [55] for a detailed description.

This alignment technique is composed of 3 phases: (1) initially, build an alignment
between the Petri Net and the log trace taking into consideration only the control-flow
perspective (line 3 in Alg. 1). This alignment is performed using the A* algorithm as
proposed in [56]. (2) Enrich the firings of transitions with the write operations defined
in the DPN-net (lines 4–5). The search for suitable write operations is formulated as the
solution of an integer linear programming problem. And, (3) compute the fitness value
considering the data perspective (lines 6–7). The latter fitness value is computed (Eq. 1)
as the comparison of the cost of the current alignment to the cost of the worst possible
alignment, i.e., all non-synchronous moves, thus determining its adequacy level.

(1)f itnessValue = 1 −
AlignCost

WorstAlignCost

13029

1 3

Conformance checking for autonomous multi‑cloud SLA management…

The output of this alignment and its associated fitness value constitute the detailed
report of multi-cloud SLA enforcement as depicted in Fig. 8b. This report is provided to
a cloud consumer to eventually enhance its multi-cloud SLA. This data could also be
stored in the knowledge component to autonomously enhance the SLA enforcement
model by the orchestrator, but this use case is out of the scope of this work.

An example of alignment between the SLA enforcement model associated with
the UI sub state machine (Fig. 8b) and the sample collected logs of Table 10 is repre-
sented in Table 11. As stated before, in addition to the control flow perspective [phase
(1)], this alignment considers the data perspective by checking the correctness of read-
ing and write operations on variables [phase (2)], e.g., the cpu_Usage read operation
between braces {} in moves 3 and 6 (Table 11). For instance, in this example, the four
first moves are synchronous while the fifth move is an enforcement model move only
since no associate move in the log was identified (represented by >>).

After building this alignment, the fitness value is computed (phase (2)) using the fol-
lowing cost function(�):

The built alignment (Table. 11) contains 5 synchronous moves and 1 model only
move. The cost of this latter alignment is as follows: AlignCost = 5 × 1 + 1 × 5 .

� =

⎧
⎪
⎨
⎪
⎩

1, if synchronous move with correct variables

2, if synchronous move with incorrect variables

5, if log or process move only

Table 11   Alignment excerpt with collected logs and SLA enforcement model

Move position 1 2 3 4 5 6

Collected logs T0 T0 NN {CpuU = 95%} T1 >> HN {CpuU = 5%}
SLA enforcement model T0 T0 NN {CpuU = 95%} T1 T1 HN {CpuU = 5%}

13030	 J. Mechouche et al.

1 3

This alignment is composed of six moves, so the worst possible alignment is six log/
model moves only: WorstAlignCost = 6 × 5 = 30 . Hence, the fitness value is com-
puted as follows:

9 � Implementation and experiments

In the following, we discuss the implementation of the three steps of our approach:
multi-cloud SLA representation, multi-cloud SLA Enforcement, and multi-cloud
SLA reporting. In the last section, we experiment our approach with a use case. The
source code of the developed prototypes is available online at https://​frama​git.​org/​
Jerem​yMech​ouche/​multi-​cloud-​orche​strat​or.

9.1 � Multi‑cloud SLA representation

We model our enriched multi-cloud SLA model based on the common cloud SLA
buildings blocks defined in ISO-19086 [14, 15] using the eclipse modeling frame-
work (EMF)7. EMF permits to (1) formally define the multi-cloud SLA semantics,
(2) validate an SLA accordingly, and (3) translate other SLA models into our format.

According to our model, a multi-cloud SLA is composed of one global-SLA and
at least one sub-SLA. An SLA is composed of covered services which describes
the agreed-on cloud service described with the cloud resource description model
(cRDM) proposed by our team [49]. Each covered service in this model is asso-
ciated with a set of Service Objectives (Definition. 1) expressing the service level
objectives of the SLA. Our model associates also a state machine (Sect. 6) describ-
ing the multi-cloud application dynamicity to a multi-cloud SLA. Our EMF-based
prototype allows defining multi-cloud SLAs, using the YAML syntax. The reason
behind the choice of YAML consists of readability, ease of use compared with
other syntaxes such as XML, and its wide use in the cloud domain [26]. A detailed
description of our model, its graphical representation, and the source code of our
prototype are at https://​frama​git.​org/​Jerem​yMech​ouche/​multi-​cloud-​orche​strat​or.

9.2 � Multi‑cloud SLA enforcement

We developed a prototype of an autonomous orchestrator according to the archi-
tecture proposed in Sect. 7, following the micro-services paradigm and supported
by docker containers [57]. Figure 9 illustrates the autonomous cloud resources
orchestrator prototype. Its main components are: monitoring, knowledge, policy

f itnessValue = 1 −
AlignCost

WorstAlignCost
= 1 −

10

30
= 0.777

7  https://​www.​eclip​se.​org/​model​ing/​emf.

https://framagit.org/JeremyMechouche/multi-cloud-orchestrator
https://framagit.org/JeremyMechouche/multi-cloud-orchestrator
https://framagit.org/JeremyMechouche/multi-cloud-orchestrator
https://www.eclipse.org/modeling/emf

13031

1 3

Conformance checking for autonomous multi‑cloud SLA management…

enforcement, adaptation & validation and deployment. We implemented the dif-
ferent components of our orchestrator in python8 and we used docker9 to deploy
them. The intra-components communication is ensured through the RabbitMQ10
message-queue. We have used a dedicated RabbitMQ server hosted in a dedicated
docker container. The orchestrator deploys simulated resources as services using
docker swarm, the cluster orchestrator of docker. The above solution permits simu-
lating cloud resources and all their lifecycle management operations (e.g., create,
scale, and delete), and hence allows reproducing the interaction between the orches-
trator and cloud resources. The micro-service-based architecture of our prototype
allows easily extending it to consider deployment with public CSPs.

Monitoring and Knowledge We implemented the monitoring component in
python. We used the elastic stack11 (ELK) tools to store data consisting of the
following modules: (1) elasticsearch a search engine which can contain all
logs event from our three sources (i.e., orchestrator, cloud service provider, and
resources) and support the knowledge component, (2) logstash permits to convert
logs into the required format for the third step of our approach (i.e., conform-
ance checking), and (3) beats a series of data shippers compatible with many data
sources. The elasticsearch module implements the knowledge component of our
autonomous architecture. The Logstash and beats modules are associated with
the monitoring component. The latter component interacts with the knowledge
component through an elastic python library, provided by the elastic development
team, in order to retrieve and process data. Then, the data is filtered according to
its source and sent to the policy enforcement component.
Policy Enforcement The policy enforcement component is based on CLIPS 12, a
tool for building expert systems. This tool has been adapted into a python library

Fig. 9   Autonomous cloud resources orchestrator prototype

11  https://​www.​elast​ic.​co/​en/​elast​ic-​stack/.
12  http://​www.​clips​rules.​net/.

8  https://​www.​python.​org/.
9  https://​www.​docker.​com/.
10  https://​www.​rabbi​tmq.​com/.

https://www.elastic.co/en/elastic-stack/
http://www.clipsrules.net/
https://www.python.org/
https://www.docker.com/
https://www.rabbitmq.com/

13032	 J. Mechouche et al.

1 3

CLIPSPy13 that brings the capabilities of CLIPS within the Python ecosystem.
There are two element categories in CLIPS and expert systems in general: facts
and rules. In our context, a fact is a monitoring log and a rule is an event trig-
gering a transition. We have defined a template of fact for representing a log as
depicted in Fig. 10a. A log is composed of the different elements as described
in Sect.8.2.2. We also defined a template of rules for representing an event as
depicted in Fig. 10b. An event is composed as defined in the Definition 4. Then,
we use these templates to instantiate events composing the state machine and the
collected logs. Finally, CLIPS validate if the rules are triggered by the log and if
so, notify the other components of the prototype.
Adaptation and validation The adaptation & validation component purpose is
twofold: (1) validate the verification of state machine represented in SLAs at
design time and (2) propose at run-time reconfiguration for resources near to vio-
late its SLA by triggering a transition, defining new states, or new transitions.
These functionalities are implemented in python. The first functionality is imple-
mented following the proposed algorithm in our previous work [19]. The second
functionality consists of performing a validation of the service level objectives
compared to the actual state of running resources. This component defined plan
for the deployment component to enforce according to the information provided
by the policy enforcement component. This latter plan is stored on the elastic-
search module.
Deployment and Docker Swarm The deployment component interacts directly
with service providers. The input for this component is the multi-cloud SLA and
the plan defined by Adaptation & validation component. These two input data are
stored in the elasticsearch component as orchestrator-related data. In this imple-
mentation, the deployment component interacts with docker swarm14 acting as a
resource provider. In swarm terminology, a service is a composition of contain-

(a) Fact template of log (b) Rule template of event

Fig. 10   CLIPS templates

13  https://​github.​com/​noxda​fox/​clips​py.
14  https://​docs.​docker.​com/​engine/​swarm/.

https://github.com/noxdafox/clipspy
https://docs.docker.com/engine/swarm/

13033

1 3

Conformance checking for autonomous multi‑cloud SLA management…

ers that can be scaled. It provides all capabilities of a cloud resource we need to
test our approach. However, the implementation has been intended to be modular
and can interact with API of major cloud service providers such as Google Cloud
Platform15 or Amazon Web Services16.

9.3 � SLA reporting with conformance checking

The final step of our approach is performed using a conformance checking tech-
nique. We implement a prototype according to our approach presented in Fig. 7.
Usually, process mining is performed with Prom [58] the de-facto open-source
software for process mining, but in our case, we need an automatic interaction. In
this aim, we use a python library, pm4py [59], for leveraging conformance check-
ing techniques. As described in Sect. 8, we perform (1) a model translation from
the state machine representing multi-cloud SLA dynamicity into a DPN-net, (2) a
transformation of the collected logs into the XES format and (3) an alignment using
these data to generate a multi-cloud SLA enforcement report. We used the DPN-net
model, implemented in the pm4py library, for the translation of our state-machine
format (Model translator component in Fig. 7). We implemented this translation as
described in Sect. 8.2.1. Then, we transformed the logs into the XES format using
a function defined in the pm4py library. Finally, we have made the alignment using
the algorithm defined in this same library and in line with our proposed approach
(Sect 8.2.3). Figure 11 depicts the result of conformance checking execution using
our prototype. For the sake of simplicity, we considered for this example an SLA
enforcement model with three states (Start, NN, and End) and define a simple log
with missing states to generate deviations. The output of this execution is composed
of: the alignment (framed in red in Fig. 11), the alignment cost (framed in green),
and the fitness value (framed in blue). In this alignment, we observe three model
moves only.

9.4 � Experiments

In this section, we are experimenting with our approach for multi-cloud SLA
enforcement reporting with a multi-cloud application as a use case. The testbed for

Fig. 11   Execution of conformance checking algorithm

15  https://​cloud.​google.​com/.
16  https://​aws.​amazon.​com/​fr/.

https://cloud.google.com/
https://aws.amazon.com/fr/

13034	 J. Mechouche et al.

1 3

these experiments consists of three docker swarm services that represent the multi-
cloud application described in our motivating example (Sect 3). The first service
represents the User Interface component (UI) deployed as a nginx17 container.
Nginx is a widely-used open source web server application. The second service rep-
resents the Authentication component (Auth) deployed as a keycloak18 container.
Keycloak is an open-source identity and access management solution. The last ser-
vice represents the Storage component (Stor) deployed as a TiKV19 container. TiKV
is an open-source, distributed, and transactional key-value database. Our experimen-
tation is composed of three steps: (1) representing the multi-cloud SLA following
the previously defined multi-cloud application, (2) enforcing the multi-cloud SLA
and stressing the application, and finally (3) reporting its enforcement to check the
conformance with the representation.

Multi-Cloud SLA Representation To verify the capacity of our approach for
representing multi-cloud SLA, we first represent the covered services and state
machines of the multi-cloud application use case. To do so, we represent the
multi-cloud SLA in YAML using our EMF-based SLA representation prototype
(Sect. 9.1). Figure 12 illustrates an excerpt of the multi-cloud SLA. This excerpt
presents the resources composing the User Interface component, which is docker

Fig. 12   User Interface resource
description

Fig. 13   lowNeeds and nor-
malNeeds states of the state
machine

17  https://​www.​nginx.​com/.
18  https://​www.​keycl​oak.​org/.
19  https://​tikv.​org/.

https://www.nginx.com/
https://www.keycloak.org/
https://tikv.org/

13035

1 3

Conformance checking for autonomous multi‑cloud SLA management…

containers using Nginx image and listening on port 80 and 443. We consider
a state machine with four states: lowNeeds, normalNeeds, highNeeds and end.
This latter state machine represents the dynamicity required to handle the peak
of activities of the application. An excerpt of this state machine is represented in
Fig. 13.
Multi-Cloud SLA Enforcement For this second step, we validate the enforcement
capability of our approach and that the transition between states is well exe-
cuted. To do so, we enforce the state machine represented previously using our
autonomous orchestrator prototype. The prototype takes as input the multi-cloud
SLA. Then, this latter prototype validates the state machine in the adaptation &
validation component. Next, the plan for deploying the initial state of our state
machine is sent to the deployment component. We validate that the initial state,
lowNeeds, is deployed as depicted in Fig. 14. We can observe that each service is
composed of one container(replicas). The monitoring component now monitors
the deployed resources and sends any logs received to the policy enforcement
component. In order to validate the performance of the state machine, we need to
stress the multi-cloud application. We use the apache ab tool20 which will gen-
erate HTTP requests to the User Interface component. The policy enforcement
component will detect the increase in CPU usage and trigger a transition from
the lowNeeds state to the normalNeeds state and scale-out resources. The policy
enforcement component triggers the transition as shown in Fig. 15a. The latter

Fig. 14   Low needs state

(a) Policy Enforcement (b) Deployment

Fig. 15   Cycle of a transition detection

Fig. 16   Normal needs state

20  https://​httpd.​apache.​org/​docs/2.​4/​progr​ams/​ab.​html.

https://httpd.apache.org/docs/2.4/programs/ab.html

13036	 J. Mechouche et al.

1 3

component then notifies the others that this transition has been triggered. Upon
receiving this notification, the deployment component deploys the new resources
required for the normalNeeds state, as shown in Fig. 15b. Once the deployment is
complete, each service is scaled-out to two containers, as depicted in Fig. 16. At
the end of the SLA validity period, a transition is triggered to the final state and
all resources are de-provisioned.
Multi-Cloud SLA Reporting Finally, when the enforcement is complete, we
report the multi-cloud SLA using the conformance checker component (Fig. 7)
in order to validate the enforcement. Inputs for the conformance checker are
an SLA enforcement model and collected logs. We implement an algorithm for
translating our state machine format into a data Petri Net. The state machine is
retrieved from the orchestrator-related data of the knowledge component. Fig-
ure 17 presents the model produced by our algorithm. This latter model shows the
places, transitions and arcs composing the Data Petri Net. The collected logs are
retrieved from the Monitoring related data of the knowledge component. These
are merged and then converted into XES format. Finally, the conformance check-
ing is performed between the SLA enforcement model and the collected logs, as
described in Sect. 9.3. Figure 18 depicts the result of the conformance check of
this experiment.

10 � Conclusion

Maintaining the service level of a multi-cloud application is not a trivial task due
to the dynamicity and heterogeneity of a multi-cloud context. In this article, we
presented an approach considering two challenges for managing and adapting the
multi-cloud SLA: considering and managing dynamicity in the representation of
multi-cloud application requirements, and reporting what happened during SLA
enforcement to identify violations and act accordingly. We propose (1) a hierarchical
representation of multi-cloud SLAs: sub-SLAs associated with a system’s compo-
nents deployed on distinct cloud service providers and global-SLA associated with
the whole system. We also enrich these SLA representations with state machines
reflecting reconfiguration strategies defined by cloud customers. Then, we propose

Fig. 17   Output of the data Petri Net translator

Fig. 18   Conformance checking results of experiment

13037

1 3

Conformance checking for autonomous multi‑cloud SLA management…

(2) an autonomous multi-cloud resource orchestrator based on the MAPE-K adapta-
tion control loop to enforce them and to avoid SLA violations. Finally, in order to
check the conformity of this enforcement with defined multi-cloud SLA, we propose
(3) an approach for multi-cloud SLA reporting leveraging conformance checking
techniques. As a proof of concept, we implemented and experimented our approach
to validate its feasibility. The prototypes have been implemented using Docker and
Docker swarm. However, this article is limited to a declarative approach of resources
and does not consider the scheduling of resources. We also do not consider the inter-
connection between resources across different cloud service providers. In terms of
the short-term perspective for this work, we plan to adjust our implemented proto-
types to use real cloud service providers instead of simulated resources. Later, we
also plan to optimize the interactions of global on sub state machine. Next, we aim
to consider online conformance checking techniques. Indeed, such techniques allow
validating, and adapting if necessary, in real-time multi-cloud SLA enforcement.
We also would like to consider other process mining techniques in order to enhance
multi-cloud SLAs based on the conformance checking technique’s output.

References

	 1.	 Comparing multicloud management and governance approaches. https://​www.​gartn​er.​com/​en/​
docum​ents/​39036​83/​compa​ring-​multi​cloud-​manag​ement-​and-​gover​nance-​appro​ache. Accessed:
2021-03-26

	 2.	 State of the cloud report from flexera
	 3.	 MELODIC: multi-cloud management platform (2020). https://​h2020.​melod​ic.​cloud/
	 4.	 DECIDE: multicloud application towards the digital single market (2020). https://​decide-​h2020.​eu/
	 5.	 Cyclone (2020). https://​www.​cyclo​ne-​proje​ct.​eu//
	 6.	 Ardagna D et al. (2012) MODAClouds: a model-driven approach for the design and execution of

applications on multiple Clouds. In: 2012 4th International Workshop on Modeling in Software
Engineering (MISE) . https://​ieeex​plore.​ieee.​org/​docum​ent/​62260​14/

	 7.	 Brogi A et al (2015) Adaptive management of applications across multiple clouds: the SeaClouds
approach. CLEI Electron J 18:2

	 8.	 Farokhi S, Jrad F, Brandic I, Streit A (2014) Hierarchical SLA-based service selection for multi-
cloud environments. In: Proceedings of the 4th International Conference on Cloud Computing and
Services Science

	 9.	 Mell PM, Grance T (2011) SP 800–145. The NIST definition of cloud computing. Tech, Rep, NIST,
Gaithersburg, MD, USA

	10.	 Tomarchio O, Calcaterra D, Di Modica G (2020) Cloud resource orchestration in the multi-cloud
landscape: a systematic review of existing frameworks. J Cloud Comput 9:1–24

	11.	 Horn PJ (2001) Autonomic Computing: IBM’s Perspective on the State of Information Technology.
Tech, Rep, IBM

	12.	 Faniyi F, Bahsoon R (2015) A systematic review of service level management in the cloud. ACM
Comput Surv 48(3):1–27

	13.	 Maarouf A, Marzouk A, Haqiq A (2015) A review of SLA specification languages in the cloud
computing. SITA 1–6

	14.	 ISO (2016) Information technology: Cloud computing-Service level agreement (SLA) framework -
Part 1: Overview and concepts. Standard, International Organization for Standardization

	15.	 ISO (2018) Information technology: Cloud computing-Service level agreement (SLA) framework -
Part 2: Metric model. Standard, International Organization for Standardization

	16.	 Ramalingam C, Mohan P (2021) Addressing semantics standards for cloud portability and interop-
erability in multi cloud environment. Symmetry 13(2):317

https://www.gartner.com/en/documents/3903683/comparing-multicloud-management-and-governance-approache
https://www.gartner.com/en/documents/3903683/comparing-multicloud-management-and-governance-approache
https://h2020.melodic.cloud/
https://decide-h2020.eu/
https://www.cyclone-project.eu//
https://ieeexplore.ieee.org/document/6226014/

13038	 J. Mechouche et al.

1 3

	17.	 Taha A, Manzoor S, Suri N (2017) SLA-based service selection for multi-cloud environments. In:
2017 IEEE International Conference on Edge Computing (EDGE). 65–72

	18.	 Fehling C, Leymann F, Retter R, Schupeck W, Arbitter P (2014) Cloud computing patterns: funda-
mentals to design, build, and manage cloud applications. Springer, Berlin

	19.	 Mechouche J, Touihri R, Sellami M, Gaaloul, W (2021) Towards higher-level description of SLA-
aware reconfiguration strategies based on state-machine. ICEBE to appear

	20.	 Sinreich D (2006) An architectural blueprint for autonomic computing. Tech. Rep, IBM
	21.	 Van der Aalst WMP (2016) Process mining: data science in action, 2nd edn. Springer, Berlin
	22.	 Mannhardt F, De Leoni M, Reijers HA, Van Der Aalst WM (2016) Balanced multi-perspective

checking of process conformance. Computing 98(4):407–437
	23.	 Keller A, Ludwig H (2003) The WSLA framework: specifying and monitoring service level agree-

ments for web services. J Netw Syst Manag 11:57
	24.	 Kearney KT, Torelli F, Kotsokalis C (2010) SLA*: An abstract syntax for Service Level Agree-

ments. In: 2010 11th IEEE/ACM International Conference on Grid Computing. 217–224
	25.	 Ludwig H et al (2015) rSLA: monitoring SLAs in dynamic service environments. In: International

Conference on Service-oriented Computing. 139–153
	26.	 Engel R, Rajamoni S, Chen B, Ludwig H, Keller A (2018) ysla: reusable and configurable SLAs

for large-scale SLA management. In: 2018 IEEE 4th International Conference on Collaboration and
Internet Computing (CIC). 317–325

	27.	 Uriarte RB, Tiezzi F, De Nicola R (2014) Slac: a formal service-level-agreement language for cloud
computing. In: 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing.
419–426

	28.	 Kouki Y, Ledoux T et al (2012) CSLA: a Language for Improving Cloud SLA Management.
CLOSER. https://​doi.​org/​10.​5220/​00039​56405​860591

	29.	 Son S, Choi HH, Oh BT, Kim SW, Kim, BS (2017) Cloud SLA relationships in multi-cloud envi-
ronment: models and practices. In: Proceedings of the 8th International Conference on Computer
Modeling and Simulation

	30.	 Emeakaroha VC et al (2012) Towards autonomic detection of SLA violations in Cloud infrastruc-
tures. Fut Gener Comput Syst 28(7):1017–1029

	31.	 Mosallanejad A, Atan R (2013) HA-SLA: a hierarchical autonomic SLA model for SLA monitoring
in cloud computing. J Softw Eng Appl 6(3B):114

	32.	 Casalicchio E, Silvestri L (2013) Mechanisms for SLA provisioning in cloud-based service provid-
ers. Comput Netw 57(3):795–810

	33.	 Ghobaei-Arani M, Jabbehdari S, Pourmina MA (2018) An autonomic resource provision-
ing approach for service-based cloud applications: a hybrid approach. Futur Gener Comput Syst
78:191–210

	34.	 Sfondrini N, Motta G (2021) LISA: a lean information service architecture for SLA management in
multi-cloud environments. Int J Grid Util Comput 12(2):149–158

	35.	 Kosińska J, Zieliński K (2020) Autonomic management framework for cloud-native applications. J
Grid Comput 18(4):779–796

	36.	 Rouf Y, Mukherjee J, Litoiu M, Wigglesworth J, Mateescu R (2021) A framework for develop-
ing devops operation automation in clouds using components-off-the-shelf. In: Proceedings of the
ACM/SPEC International Conference on Performance Engineering. 265–276

	37.	 Ismail B, Khalid M, Muty N, Ong H (2014) SLA object and SLA process modelling using wsla and
bpm notations towards defining a generic SLA Orchestrator framework. In: The Seventh Interna-
tional Conference on Dependability

	38.	 Dumas M, Rosa ML, Mendling J, Reijers HA (2018) Fundamentals of business process manage-
ment, 2nd edn. Springer, Berlin

	39.	 Mager C (2014) Analysis of service level agreements using process mining techniques. FHWS Sci J
1:49

	40.	 van Eck ML, Sidorova N, van der Aalst WM (2016) Discovering and exploring state-based mod-
els for multi-perspective processes. In: International Conference on Business Process Management.
142–157

	41.	 Sutrisnowati RA et al (2015) BAB Framework: process mining on cloud. Proc Comput Sci
72:453–460

	42.	 Chesani F, Ciampolini A, Loreti D, Mello P (2016) Map reduce autoscaling over the cloud with pro-
cess mining monitoring. In: International Conference on Cloud Computing and Services Science.
109–130

https://doi.org/10.5220/0003956405860591

13039

1 3

Conformance checking for autonomous multi‑cloud SLA management…

	43.	 Montali M, Maggi FM, Chesani F, Mello P, Aalst WMVD (2014) Monitoring business constraints
with the event calculus. ACM Trans Intell Syst Technol 5(1):1–30

	44.	 Acampora G, Bernardi ML, Cimitile M, Tortora G, Vitiello A (2017) A fuzzy-based autoscaling
approach for process centered cloud systems. In: 2017 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE). 1–8

	45.	 Song W et al (2017) Scientific workflow mining in clouds. IEEE Trans Parallel Distrib Syst
28(10):2979–2992

	46.	 Calcaterra D, Cartelli V, Di Modica G, Tomarchio O (2018) Exploiting BPMN features to design a
fault-aware TOSCA Orchestrator. CLOSER. 533–540

	47.	 OMG (2013) Business Process Model and Notation (BPMN), Version 2.0.2. Tech. Rep., Object
Management Group. http://​www.​omg.​org/​spec/​BPMN/2.​0.2

	48.	 Azumah KK, Sørensen LT, Montella R, Kosta S (2021) Process mining-constrained scheduling in
the hybrid cloud. Concurr Comput Pract Exp 33(4):e6025

	49.	 Hayet B, Achraf M, Walid G, Boualem B (2020) Toward higher-level abstractions based on state
machine for cloud resources elasticity. Inform Syst 90:101450

	50.	 Verbeek H, Buijs JC, Van Dongen BF, Van Der Aalst WM (2010) Xes, xesame, and prom 6. In:
International Conference on Advanced Information Systems Engineering. 60–75

	51.	 De Leoni M, van der Aalst WM (2013) Data-aware process mining: discovering decisions in pro-
cesses using alignments. In: Proceedings of the 28th Annual ACM Symposium on Applied Comput-
ing. 1451–1461

	52.	 Mannhardt F, De Leoni M, Reijers HA, Van Der Aalst WM, Toussaint PJ (2016) From low-level
events to activities-a pattern-based approach. In: International Conference on Business Process
Management. 125–141

	53.	 Dunzer S, Stierle M, Matzner M, Baier S (2019) Conformance checking: a state-of-the-art literature
review. In: Proceedings of the 11th International Conference on Subject-oriented Business Process
Management. 1–10

	54.	 Van der Aalst W, Adriansyah A, van Dongen B (2012) Replaying history on process models for
conformance checking and performance analysis. Wiley Interdiscip Rev Data Min Knowl Discov
2(2):182–192

	55.	 De Leoni M, Van Der Aalst WM (2013) Aligning event logs and process models for multi-perspec-
tive conformance checking: an approach based on integer linear programming. In: Business Process
Management. 113–129

	56.	 Adriansyah A, van Dongen BF, van der Aalst WM (2011) Conformance checking using cost-based
fitness analysis. In: 2011 IEEE 15th International Enterprise Distributed Object Computing Confer-
ence. 55–64

	57.	 Jaramillo D, Nguyen DV, Smart R (2016) Leveraging microservices architecture by using Docker
technology. SoutheastCon 2016:1–5

	58.	 Van Dongen BF, de Medeiros AKA, Verbeek H, Weijters A & van Der Aalst WM (2005) The ProM
framework: a new era in process mining tool support. In: International Conference on Application
and Theory of Petri nets. pp 444–454

	59.	 Berti A, van Zelst SJ, van der Aalst W (2019) Process mining for python (PM4Py): bridging the gap
between process-and data science. arXiv preprint arXiv:​1905.​06169

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://www.omg.org/spec/BPMN/2.0.2
http://arxiv.org/abs/1905.06169

	Conformance checking for autonomous multi-cloud SLA management and adaptation
	Abstract
	1 Introduction
	2 Cloud and multi-cloud service level agreement
	3 Motivating example
	4 Approach overview
	5 Related work
	5.1 Multi-cloud service level agreement
	5.2 Autonomic SLA enforcement in the cloud
	5.3 Service level agreement reporting

	6 Multi-cloud SLA representation
	6.1 State machines for representing reconfiguration strategies
	6.2 Global and sub SLA enrichment

	7 Multi-cloud SLA enforcement
	7.1 Autonomic computing
	7.2 Multi-cloud autonomous orchestrator

	8 Multi-cloud SLA reporting
	8.1 Process mining
	8.2 Conformance checking for multi-cloud SLA reporting
	8.2.1 SLA enforcement model
	8.2.2 Collected event logs
	8.2.3 Multi-cloud SLA enforcement conformance checking

	9 Implementation and experiments
	9.1 Multi-cloud SLA representation
	9.2 Multi-cloud SLA enforcement
	9.3 SLA reporting with conformance checking
	9.4 Experiments

	10 Conclusion
	References

