
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:12224–12241
https://doi.org/10.1007/s11227-022-04354-1

1 3

Using a Multi‑GPU node to accelerate the training 
of Pix2Pix neural networks

M. Lupión1  · J. F. Sanjuan1 · P. M. Ortigosa1

Accepted: 3 February 2022 / Published online: 28 February 2022 
© The Author(s) 2022

Abstract
Generative adversarial networks are gaining importance in problems such as image 
conversion, cross-domain translation and fast styling. However, the training of these 
networks remains unclear because it often results in unexpected behavior caused by 
non-convergence, model collapse or overly long training, causing the training task to 
have to be supervised by the user and vary with each dataset. To increase the speed 
of training in Pix2Pix (image-to-image translation) networks, this work incorporates 
multi-GPU training using mixed precision, along with optimizations in the GPU 
image input process. In addition, in order to make the training unsupervised and to 
terminate it when the best transformations are performed, an early stopping method 
using the peak signal noise ratio (PSNR) metric is proposed.

Keywords Generative adversarial networks · Pix2Pix · Multi-GPU · Mixed 
precision · Early stopping

1 Introduction

Currently, smart homes are gaining popularity especially due to the benefits they 
bring to the elderly, dependent or people with some kind of disease [1]. The aim 
is to create a smart environment in which the user can be monitored so that he or 
she can live independently or as safely as possible [2]. Previously, binary sensors 

Juan F. Sanjuan and P. M. Ortigosa have contributed equally to this study.

 * M. Lupión 
 marcoslupion@ual.es

 J. F. Sanjuan 
 jsanjuan@ual.es

 P. M. Ortigosa 
 ortigosa@ual.es

1 Group of Supercomputation-Algorithms, Department of Informatics, ceiA3, University 
of Almería, Carr. Sacramento, s/n, La Cañada, 04120 Almería, Andalucía, Spain

http://orcid.org/0000-0001-7697-8062
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04354-1&domain=pdf


12225

1 3

Using a Multi‑GPU node to accelerate the training of Pix2Pix…

were used due to their low invasiveness [3], in addition to some multimodal sen-
sors such as smartwatches and location sensors [4]. However, to increase the level 
of monitoring of such users, cameras are incorporated in the visible spectrum, 
which thanks to algorithms and machine and deep learning techniques [5], allow 
us to delimit with enough certainty the activity that the user is performing and 
therefore to detect emergency situations such as falls [6]. The use of these types 
of cameras can be compromised in terms of privacy, so the use of thermal cam-
eras [7] has been proposed as an alternative. These thermal cameras allow us to 
obtain thermal images both at night and during the day, so that by using deep 
learning techniques, applications such as person recognition and identification, 
fall detection and activity recognition, can be developed.

Generative adversarial networks (GANs) [8] are a type of neural network in 
which two models are trained together on a zero-sum problem. In them, a net-
work (generator) generates images from noise in order to fool the discriminator 
(another network), which has to determine if the received image is real or pro-
duced by the generator. Within these neural networks are conditional generative 
adversarial networks (cGANs) [9] (see Fig. 1), whose difference is that the user 
provides an input to the system and the outcome of this system is dependent on 
that input. These neural networks have been used in image super-resolution tasks 
[10], photograph inpainting [11], video prediction [12] and text-to-image trans-
lation [13]. Another application within this type of neural network is domain-
to-domain translation [14]. Specifically, in Pix2Pix [15], starting from paired 
images, an image is allowed to translate from one domain to another.

Thus, Pix2Pix has been used in other tasks such as [16] to transform images 
from the thermal domain provided by thermal cameras embedded in smart 
homes, to the visible domain, with the goal of obtaining visible images and that 
such images can be processed in smart environments to recognize activities, falls 
or identify people. Nevertheless, the training of such neural networks in the Pix-
2Pix solution is quite computationally expensive [17] as it involves the parallel 

Fig. 1  GANs classification



12226 M. Lupión et al.

1 3

training of two neural networks. Moreover, the user must decide based on his 
experience, when to stop training, so such training is supervised and subject to 
perceptual errors by the user.

In this work we try to improve the training of Pix2Pix, making the following 
contributions.

• A new early stopping method which calculates peak signal noise ratio (PSNR) 
on validation images is developed, letting the training be unsupervised, different 
from original paper.

• The impact of the batch size in training is studied as a bigger batch size lets the 
neural networks training accelerate.

• Incorporate mixed precision in the training, taking advantage of the Tensor 
Cores of NVIDIA Volta architectures. Speedup when using mixed precision is 
calculated in order to check the improvements carried out by this type of compu-
tation.

• The different loss functions are parameterized to be able to train in a multi-GPU 
system using TensorFlow.

In the remainder of this article, we provide further detailed descriptions of the pro-
posed approach. Section 2 reviews related works and the state of the art of similar 
approaches to improve of GAN training. Section 3 presents the proposed methodol-
ogy and optimizations carried out. Section 4 introduces the evaluation of the meth-
odology. Finally, in Sect. 5, conclusions and ongoing and future works are discussed.

2  Related works

As for the problem of transforming images from one domain to another, there are 
a variety of solutions. One of the first solutions is Pix2Pix [15]. In this, it learns 
to perform the transformation between domains from a pair of images, so it is a 
supervised transformation (the target image exists). In the same way, BicycleGAN 
[18] from paired images can generate not only the target image, but it allows us to 
generate a set of target images with variations between them (for example in land-
scapes, varying light, sky and clouds). However, it may be the case that the dataset 
available to perform the transformation from one domain to another does not contain 
paired images, but images from both domains unrelated. In this case, CycleGAN 
[19], making use of two generative networks and two discriminator networks, allows 
it to perform such transformation. To do so, it makes use of a loss function called 
Cycle Consistency Loss. To calculate this error, the system transforms an image X 
of domain A into an image Y of domain B. In addition, the other generator network 
transforms the image Y into an image X’ of domain A. This function compares the 
difference between X and X’ in order to check that both generators perform trans-
formations between domain A and B in both directions. The incorporation of this 
function makes it possible to learn to perform the transformation between domains 
in an unsupervised way since there are no target images. In addition, the training 
of this solution, as there are 4 neural networks instead of 2, is more expensive than 



12227

1 3

Using a Multi‑GPU node to accelerate the training of Pix2Pix…

in Pix2Pix. Similar to CycleGAN, CyCADA [20] incorporates the cycle consist-
ency function. However, CyCADA pays more attention to pixel and feature level, 
improves the cycle consistency function and optimizes the transformation of syn-
thetic images into real images. Figure  1 shows the classification of the different 
GANs.

As discussed above, generative adversarial neural networks that perform image 
transformation tasks contain at least several neural networks, as well as several loss 
functions. This makes the training of these networks quite expensive. To reduce 
the training time, an evolutionary algorithm is proposed in [21] that stabilizes the 
weights in the first iterations to also avoid problems of collapse (the same output is 
always generated from the input image) and non-convergence (the transformation 
is never performed correctly). This method achieves faster convergence. However, 
this solution does not drastically improve the training speed of the system, since it 
does not exploit the hardware resources that mainly provide speed to the system. In 
[22] the authors train Lapras-GAN, an image super-resolution method that makes 
use of SSIM and L1 to obtain realistic images. To perform PyTorch training, several 
nodes with multiple GPUs are used, reducing the training time by up to 4 times. 
In VAE-GAN [23], TensorFlow is used to perform multi-GPU training. In short, 
the incorporation of multiple GPUs allows for a dramatic increase in training speed. 
However, the solutions mentioned above (Pix2Pix, CycleGAN, BicycleGAN) do not 
include multi-GPU training.

Thus, to take advantage of the speed in training, it is necessary to increase the 
size of the training batch. This parameter is very important in training, since a very 
large batch size makes the training faster, but may cause the model to overgeneral-
ize and not be able to transform image details. In several works, some strategies to 
vary the batch size depending on the epoch [24, 25] and network layer [26] in non-
generative adversarial networks are proposed.

However, the effects on the increase in the batch size in the GANs (neither on the 
Pix2Pix or CycleGAN) have not been previously studied. In these solutions, a batch 
size is established in the different papers, but increasing it is not suggested.

3  Methodology

3.1  Pix2Pix

In the original paper where Pix2Pix was introduced [15], a solution is obtained for 
image translation problems from one domain to another, and the proposed archi-
tecture is similar to Fig. 2 where the pair of images provided as input to the system 
consists of a thermal image (x) and its correspondence with an image in the vis-
ible spectrum of a person’s face (y). In addition, a neural network called generator, 
takes as input the thermal image and generates a visible image from it (x′). Subse-
quently, another discriminator neural network receives the visible image created by 
the generator and the input visible image, having to decide whether each of these 
images is true or false. Therefore, to train such neural networks, several loss func-
tions are defined. The first one is the adversarial loss, i.e., the degree to which the 



12228 M. Lupión et al.

1 3

discriminator network is wrong or not. The second is the L1 loss, which compares 
the error between the image made by the generator and the input visible image, so 
that the generating network generates transformations as similar as possible to the 
initial visible image.

However in this work, in order to improve the level of facial recognition of the 
images produced by the generator, new elements are added to the Pix2Pix solution 
(Fig. 3). The person included in the image is added at the input of the system (z). 
Subsequently, when the generator network produces the visible image, this image 
becomes the input of a new network called Face Recognizer Network. This net-
work is a pre-trained network on the visible images of the dataset whose objective 
is to recognize the person in the image (z′). Therefore, face recognition loss func-
tion (function number 3 in Fig. 3) is finally included which calculates the images in 
which the person has been correctly recognized. This loss is therefore incorporated 
in the generator network, generating as the system is trained images with the faces 
of the people better defined.

In general, this solution makes use of the Adam gradient optimization algorithm 
with a learning rate of 0.0002 and with the momentum parameters � 1 = 0.5, � 2 = 
0.999. In addition, the data batch size with which the training is performed is 1, fol-
lowing the original paper guidelines. By using several layers of Batch Normalization 
[27], when the batch size is 1, these layers have the behavior of Instance Normaliza-
tion [28] allowing a better transformation of the images between one domain and 

Fig. 2  Original Pix2Pix infrastructure

Fig. 3  Custom Pix2Pix infrastructure



12229

1 3

Using a Multi‑GPU node to accelerate the training of Pix2Pix…

another since it removes image-specific contrast information, simplifying the trans-
formation process.

However, in the original approach batch sizes of 1 and 4 are used on different 
datasets, demonstrating that the use of Instance Normalization is not essential for 
these networks to work well. Thus, in the following sections several optimizations 
are performed on the original solution, obtaining better results even at higher speed.

3.2  Early stopping method

One of the problems of generative adversarial networks is about the end of train-
ing. Normally, training is performed until the resulting images, to the naked eye, 
are indistinguishable from the images in the dataset. If training continues for a 
large number of epochs, training becomes off-target and starts to result in unwanted 
images, so attention must be paid to this. However, to compare different configura-
tions in the system (different batch sizes, learning rates, number of layers of neural 
networks) it is necessary to know when each of the models has been fully trained in 
order to compare them with each other.

Therefore, to detect when the training has to finish, in normal neural networks, 
the evolution of the loss in the training images and in the validation images is ana-
lyzed. Thus, validation loss is observed on new images and at the point where this 
starts to rise, training stops. The idea was to apply a similar approach to our prob-
lem. However, in Pix2Pix, the generator loss does not measure the quality of the 
generated images, so this metric cannot be used to stop when generated images seem 
to be real.

Therefore, it is necessary to establish metrics that allow us to know the visual 
quality of the different images that are generated. In generative conditional adver-
sarial networks, the evaluation of the generated images is an active topic of discus-
sion [17] due to its complexity and different possibilities. In this work, in order to 
compare the images created by the model with respect to the ground truth images, 
mean squared error (MSE) [29], peak signal noise ratio (PSNR) [30] and structural 
similarity index measure (SSIM) [31] were analyzed.

Finally, PSNR metric results to be the most descriptive metric but contains some 
noisy data. The values in each of the epochs oscillate so it is difficult to determine 
at which point the best images are obtained and therefore, stop the training at that 
point.

For this reason, to clearly see the evolution of the PSNR metric, the smoothing 
of the data is firstly proposed. Thus, being i an epoch and N the total number of 
epochs, the PSNR value of i is calculated as the average of the i-50 values, so the 
first value is obtained at epoch 50. In this way, the highest PSNR value will be given 
by the previous 50 epochs, when the training is stable and avoids a minimum and 
also instabilities.

In Fig. 4, the evolution of the smoothed PSNR metric on a 3000 epochs execution 
can be seen. The highest value is reached at epoch 405 and though similar PSNR 
values may exist for further epochs, the corresponding images do not improve on 
images from earlier epochs. Therefore, the stopping criterion for the training is to 



12230 M. Lupión et al.

1 3

stop when the highest value is obtained and no improvement is found during the 50 
following epochs.

In Fig. 5, different transformations can be observed at different points of the train-
ing. As can be seen, the best image is obtained in epoch 405, being quite similar to 
the image of epoch 1620 but almost 1200 epochs before.

In brief, the stopping method calculates the moving average between epochs and 
stops when the value of the greatest PSNR value is found and no improvements are 
made after 50 epochs. The 50 epochs results to be a param called patience which has 
to be defined by the user. Therefore, the training becomes unsupervised and only 50 
more training epochs in this case are performed from the point at which the system 
is fully trained, saving training time.

3.3  Optimizations

Starting from the original Pix2Pix solution and the early stopping method defined 
in the previous section, this section includes different optimizations to the original 
solution in order to reduce the training time of the system. In this case, only 1 GPU 
is used for training.

3.3.1  Varying batch size and learning rate

In neural networks, one parameter that can drastically increase the training speed is 
the batch size. When the batch size of images is 1, in the processing of each image, 
an update of the neural network weights occurs, which can lead to an overfitting 

Fig. 4  Smoothed PSNR evolution in validation data

Fig. 5  Image transformation evolution in the 3000 epochs execution



12231

1 3

Using a Multi‑GPU node to accelerate the training of Pix2Pix…

of the network. In case of increasing the number of images per batch, less model 
updates occur, but it generalizes better and increases the speed of training. However, 
there may come a point when increasing the batch size too much causes the network 
to undertrain.

In generative adversarial networks (GANs), the selection of hyperparameters is 
a task that requires domain knowledge and in most cases, it is a trial and error pro-
cess [32]. Therefore, there are no references where the impact of the most important 
hyperparameters such as batch size and learning rate [27] on this type of neural net-
works has been studied.

In this work, we define 9 configurations, with batch sizes that are powers of 2 
[33] (including the default configuration with batch of 1) and with a constant value 
of learning rate.

After analyzing the results with the different configurations (Table 1), PSNR val-
ues between 17 and 18 are obtained in the configurations with batch sizes that range 
between 4 and 256, allowing the acceleration of the training with respect to the ver-
sion with a batch of 1, which provide a value 10.71. It can be seen that the best con-
figuration is the one with a batch size of 64, reaching this value at epoch 385. These 
results differ from the original paper, where the batch size of 1 is used in a dataset of 
similar number of images.

Figure 6 shows the images corresponding to the epoch with the best PSNR value 
that are collected in Table 1.

In addition, in some works it is indicated that together with increasing the batch 
size to improve the training speed, it is necessary to increase the size of the learning 
rate [24] as well.

Thus, [34, 35] define that when the batch size is increased by k, it is necessary to 
increase the learning rate by 

√

k . On the other hand, in [25] it is stated that instead 
of multiplying the learning rate by 

√

k , it should be simply multiplied by k. In our 
work, both approaches have been followed to check which method is more suitable 
in our case.

Figure  7 shows the evolution of the PSNR metric in three configurations with 
a batch size of 4 with a different learning rate strategy in each. The configura-
tion Default has a static batch size, which is the one defined in [15]. In SQRT, the 

Table 1  Batch size comparison Batch Epoch Stop PSNR

1 131 10.71
2 251 9.89
4 264 17.22
8 224 17.39
16 265 17.52
32 225 17.69
64 385 17.80
128 476 17.57
256 950 17.38



12232 M. Lupión et al.

1 3

learning rate is multiplied by 
√

4 as defined in [34]. In Mult multiply, the learning 
rate by 4 as defined in [25].

In view of the results, the SQRT and Mult configurations increase the learning 
speed in the early epochs as the network weights change more strongly. However, 
they are too aggressive and deviate from the correct path in training later on.

Thus, the default configuration follows a progressive curve obtaining the best 
PSNR values, so it is concluded that in this case, it is not necessary to increase the 
learning rate when the batch size is increased.

3.3.2  Input pipeline

The GPU has a large number of cores that allows the image processing to be very 
fast because it can be performed in parallel between the different cores. The time 
it takes to process images on the GPU is much less than the time it takes to store 
the images and exchange the results between the CPU and GPU. For this reason, it 
is desirable to optimize the process of loading images and exchanging information 
between the CPU and GPU. This section includes several improvements to the Pix-
2Pix input process.

In the original solution, the CPU is in charge of obtaining all the images to be 
trained and performing their transformations (normalization, resizing) before 

Fig. 6  Generated images in the different configurations

Fig. 7  PSNR evolution with different learning rate strategies



12233

1 3

Using a Multi‑GPU node to accelerate the training of Pix2Pix…

loading them on the GPU. These tasks are repeated each epoch, wasting CPU 
resources. Thus, the cache is incorporated so that, once the images are processed, 
they are stored and available at the next epoch.

In addition, once the system is ready to process a batch, the CPU must process 
the images and load them to the GPU, so during this time, the GPU is unused and 
wasting its services. Therefore, a preloading of the images to the GPU has been 
incorporated into the system, so that the GPU does not have to wait to receive the 
images from the CPU to start processing.

3.3.3  Mixed precision

Currently, some architectures such as NVIDIA Volta and Turing architectures incor-
porate Tensor Cores. These are multiprocessors that optimize data processing on the 
GPU. Tensor Cores also allow calculations to be performed using mixed precision 
instead of single precision, increasing the processing speed by up to 8x.

Therefore, to take advantage of the potential of Tensor Cores, mixed precision, 
supported by TensorFlow, has been included in our system. In this precision, the 
operations are performed in a half-precision way (16 bits) while the models are 
stored in full precision (32 bits). The incorporation of mixed precision in the train-
ing of the system is done in a straightforward way thanks to the libraries provided by 
TensorFlow. However, some aspects must be taken into account.

First, when using mixed precision, the model weights are still stored in 32 bits, 
so it is necessary to specify this data type in the model architecture when using 
TensorFlow.

Secondly, when making use of mixed precision, the calculation of the neural net-
work weights update gradients is done with values in 16 bits. Since sometimes such 
values are very small, it may be the case that they cannot be represented using only 
16 bits, so they become 0. Therefore, it is necessary to incorporate a scaling function 
that obtains a value from which the gradients are calculated. Once the gradients have 
been calculated with the scaling factor, this value is de-scaled and applied to the net-
work. In this way, overflow is prevented.

3.4  Multi‑GPU training

In the previous section, we developed the improvements that were implemented over 
the original Pix2Pix configuration. These improvements focus on the optimization 
of the learning process using a GPU. In this section, the aim is to adapt the system 
so that the processing is performed on several GPUs in parallel.

3.4.1  Parallelism strategy

Currently, there are several approaches to parallelize training using multiple GPUs. 
Firstly, there is model parallelization and secondly, data parallelization. In the first 
case, the model is divided among the different GPUs, so that the model is distrib-
uted, processing the batch in a sequential way. In the second case, the model is 



12234 M. Lupión et al.

1 3

copied to each GPU, and the batch is divided into mini batches of equal size that 
are distributed over the different GPUs. In this way, each GPU processes a differ-
ent batch, and before backpropagation of the data, a reduction of the values of each 
GPU is performed so that there is only one model which is duplicated in all GPUs.

In our case, the second approach Data parallelism is better suited to the problem 
since the models used are not very large and also because it is the approach currently 
incorporated in TensorFlow. Specifically, we make use of the MirroredStrategy class 
of TensorFlow.

3.4.2  Losses

To train neural networks, different loss functions are available. These functions work 
well when single GPU training is used, since no data distribution is performed to 
train the model. This section explains the loss functions used to train the model and 
details the modifications made to support multi-GPU training.

Adversarial loss: In the case of the Pix2Pix networks, the generator produces 
images from the source (thermal) images which are provided to the discriminator 
as well as the corresponding ground truth (visible) images in order to differentiate 
between the images created by the generator and the images in the dataset.

Thus, the discriminator has to know how to identify which images do not belong 
to the Ground Truth, so it should label the images produced by the generator as 0 
(false) and the ground truth images as 1 (true). In this case, the discriminator net-
work has output dimensions of 30 ×30, since it is a [36] PatchGAN.

In GANs, the output of the discriminator network is used to train both the gen-
erator and the discriminator. The loss function used is binary cross-entropy. This 
function provides the error between each discriminator network output value and its 
desired value (0 or 1 depending on each case).

Thus, natively, TensorFlow’s binary cross-entropy function calculates the dimen-
sions of the input and batch tensors and averages the probabilities of the output 
of the discriminator network. However, when making use of multiple GPUs, this 
aggregation cannot be performed automatically and it is necessary to do the aggre-
gation manually.

To do this, the documentation states that the values must be added and divided by 
the global batch size. However, it is not taken into account that the output is 30*30. 
Therefore, to obtain the average value of the loss, it must also be divided by the 
number of dimensions. This can be seen in Fig. 8, where the comparison between 
the single and 2 GPUs approach is shown.

L1 loss: In the case of the generator, the loss of the GAN network is obtained 
through the function described before, as in the case of the discriminator. How-
ever, another loss function is included taking into account the MSE. In this case, an 
aggregation of the mean square errors of each of the pixels is produced and divided 
by the number of GPUs being used. Once the batch has been processed, the L1 val-
ues are summed across the CPU automatically with Keras.

Face recognition loss: In our system, an auxiliary neural network is incorpo-
rated to perform a recognition of people in the images generated by the genera-
tor. In this way, it is intended to guide the generator so that the images it generates 



12235

1 3

Using a Multi‑GPU node to accelerate the training of Pix2Pix…

are associated with the correct person in each case. For this purpose, a loss func-
tion is incorporated, which is applied on the auxiliary network of person recogni-
tion. In this case, instead of making use of binary cross-entropy, sparse categorical 
cross-entropy is used. The difference between them is that sparse categorical cross-
entropy calculates the loss when the number of output elements is greater than 1. In 
this case, the total number of people to be recognized is 12.

Thus, in the same way as with binary cross-entropy, in multi-GPU the aggrega-
tion and loss calculation cannot be performed automatically. Therefore, this function 
provides a loss value for each image, so in each GPU the sum of the errors of each 
image is added and divided by the batch size, as shown in Fig. 9.

4  Results

4.1  Infrastructure

The design and testing of the different neural networks have been carried out in the 
cluster of the University of Almería. In this cluster, a node with 2 NVIDIA TESLA 

Fig. 8  Adversarial loss

Fig. 9  Face recognition loss



12236 M. Lupión et al.

1 3

V10 GPUs was used. The operative system of the node is CentOS 8.2 (OpenHPC 
2), with DDR4 3200 MHz RAM, and using CUDA version 11.0.2 and TensorFlow 
version 2.4.1.

4.2  Experiments

Once the optimizations in the input data processing, the mixed precision and the 
incorporation of 2 GPUs have been made, different runs with different batch sizes 
have been performed in order to understand and visualize how much the system 
improves with each of the optimizations.

First, in Fig. 10 the improvement factor of the different optimizations is shown. 
These optimizations are: input (input pipeline optimization), MP (mixed precision 
optimization) and both (input and mixed precision optimization). Thus, each of the 
optimizations has been tested in a single and multi-GPU system. Thus, the improve-
ment factor is defined in Eq. 1. In this Equation, T

1
 is the time of the version without 

optimizations and T
opt

 is the time having the optimizations.

Regarding the input pipeline optimization, its speedup is almost negligible inde-
pendently of the batch size. However, the optimization of mixed precision implies an 
increase in the speedup when the batch size becomes bigger. Thus, when executing 
the system with input and mixed precision optimization, it can be seen that on both 
1 GPU and 2 GPUs, a value of 2 is obtained when having a batch size of 64, which 
means that these optimizations reduce the execution time by half on that batch size. 
In general, the optimizations are more noticeable the larger the batch size.

As for the runs making use of 1 GPU, the total time for the different batch sizes 
with the different configurations (default, with input pipeline optimization, with 
mixed precision and with both optimizations) is shown in Fig.  11. It can be seen 
that the default configuration of the Pix2Pix [15] job takes a total time of 177 sec-
onds each epoch. This time decreases as the batch size increases in each of the con-
figurations. On the other hand, upon reaching epoch 128, a runtime error occurs; 

(1)Improvement Factor = T
1
∕T

opt
.

Fig. 10  Improvement factor of the different optimizations



12237

1 3

Using a Multi‑GPU node to accelerate the training of Pix2Pix…

the default configuration and input pipeline optimization cannot be completed due 
to a memory failure, i.e., the 128 images cannot be loaded into the GPU for pro-
cessing. However, the mixed accuracy causes the in-memory size of the model and 
computations to be reduced, allowing processing. As for the batch size of 256, only 
the configuration using mixed precision provides training. This figure shows that the 
maximum optimization occurs with a batch size of 64, reducing the epoch execution 
from 177 to 48 seconds.

As for the runs using 2 GPUs, Fig. 12 shows the same information as in Fig. 11. 
In this one, it can be seen that as before, the highest optimization occurs at the batch 
size of 64, reducing from 114s with a batch size of 2 to 25s with a batch size of 64. 
In the case of a batch size of 256, the default configuration cannot be executed due 
to a memory failure.

To compare the executions in sequential and parallel and see the acceleration of 
each of the optimizations introduced, speedup, which is defined in Eq. 2, is used. 
In this equation, T

1
 is the time of the initial sequential algorithm and Tp the parallel 

algorithm.

Finally, Fig. 13 shows the speedup between the optimized runs of 1 and 2 GPUs. As 
can be appreciated, there is a maximum of 1.92 in batch size 64, reaching almost 
2 which is the ideal speedup (halving the execution time by doubling the number 
of GPUs). In this case, the ideal speedup is not reached because part of the time is 
spent on the communication between the GPUs and the host CPU.

Finally, comparing the default configuration with 1 GPU, with the batch size of 1 
defined in [15] and the optimized version with batch size 64 on 2 GPUs, a speedup 

(2)Sp = T
1
∕Tp.

Fig. 11  Epoch training time using 1 GPU

Fig. 12  Epoch training time using 2 GPUs



12238 M. Lupión et al.

1 3

of 7.08 is obtained, so it can be said that the built-in optimizations together with the 
adaptation to multi-GPU allow to successfully optimize the problem in question.

5  Conclusions and future works

Currently, generative adversarial networks (GANs) are being used in a multitude 
of applications. Specifically, one use deals with the transformation of images from 
one domain to another. One solution is Pix2Pix, which performs this transformation 
from pairs of images. Such a system performs the two-domain image transformation 
satisfactorily, but the training of such a system is complicated as it is quite expensive 
in terms of computational complexity and is eminently supervised.

In our work, firstly, an early stopping system has been proposed in which the 
dataset is divided into a training and evaluation set. At the end of each epoch, the 
PSNR value of each of the validation images is calculated. Starting from epoch 50, 
the moving average of these values is performed, saving the model when the PSNR 
value is higher. If such value does not improve in 50 epochs, it is concluded that 
such model is fully trained. Therefore, such a stopping method allows us to estab-
lish the end of the system training and to be able to compare between different 
configurations.

Unlike the original work, in our work, the batch size that generates the best PSNR 
value is 64, using the original learning rate. In addition, tests are performed by 
changing the learning rate but no improvement is found. Thus, it is concluded that 
the batch size does not have to be 1 or 4, but depends on the size of the dataset and 
the type of problem.

On the other hand, we included the use of the cache to store the processed input 
images before sending them to the GPU, as well as a preload of these images in the 
GPU. This optimization provides a slight improvement in the speed (speedup is near 
1.05).

In addition, mixed precision has been incorporated to exploit the Tensor Cores 
present in the NVIDIA Volta architecture. By incorporating such precision, it has 
been necessary to update the models and implement loss scaling of these models in 
order to avoid overflow. After performing several experiments, a speedup near 2 is 
obtained.

Thus, combining both optimizations, a speedup of up to 2 is obtained with respect 
to the default configuration.

Fig. 13  Speedup



12239

1 3

Using a Multi‑GPU node to accelerate the training of Pix2Pix…

On the other hand, multi-GPU processing has been incorporated following the 
data parallelism approach. To do so, it has been necessary to adapt the loss func-
tions of the system. By incorporating 2 GPUs, the speedup reaches a value of 
1.92 when having a batch size of 64.

Therefore, applying the optimizations of the input pipeline, mixed precision 
and multi-GPU, a speedup of 7.08 is obtained compared to the original paper 
configuration. Thus, all the optimizations that have been carried out allow con-
verting the training of the system into an unsupervised training, ensuring that it 
stops at the best epoch.

As future work, it is intended to incorporate a larger number of GPUs to 
increase the speed of the training and test how much the speedup is. In addition, 
the system will be adapted to a multi-machine system, each with a different num-
ber of GPUs.

Acknowledgements This research has been funded by the R+D+i project RTI2018-095993-B-I00, finan-
ciated by MCIN/AEI/10.13039/501100011033/ and FEDER “Una manera de hacer Europa”; by the Junta 
de Andalucía with reference P18-RT-1193; by the University of Almería with reference UAL18-TIC-
A020-B and by the Department of Computer Science of the University of Almería. Marcos Lupión Lor-
ente is a beneficiary of the program “Formación del Profesorado Universitario” with reference number 
(FPU19/02756).

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

 1. Mtshali P, Khubisa F (2019) A smart home appliance control system for physically disabled people. 
In: 2019 Conference on Information Communications Technology and Society (ICTAS), pp 1–5. 
https:// doi. org/ 10. 1109/ ICTAS. 2019. 87036 37

 2. Stefanov DH, Bien Z, Bang W-C (2004) The smart house for older persons and persons with physi-
cal disabilities: structure, technology arrangements, and perspectives. IEEE Trans Neural Syst 
Rehabil Eng 12(2):228–250. https:// doi. org/ 10. 1109/ TNSRE. 2004. 828423

 3. Ordó nez FJ, De Toledo P, Sanchis A (2013) Activity recognition using hybrid generative/discrimi-
native models on home environments using binary sensors. Sensors 13(5):5460–5477. https:// doi. 
org/ 10. 3390/ s1305 05460

 4. Lupión M, Medina-Quero J, Sanjuan JF, Ortigosa PM (2021) Dolars, a distributed on-line activity 
recognition system by means of heterogeneous sensors in real-life deployments—a case study in the 
smart lab of the University of Almería. Sensors 21(2). https:// doi. org/ 10. 3390/ s2102 0405

 5. Mehr HD, Polat H (2019) Human activity recognition in smart home with deep learning approach. 
In: 2019 7th International Istanbul Smart Grids and Cities Congress and Fair (ICSG), pp 149–153. 
https:// doi. org/ 10. 1109/ SGCF. 2019. 87822 90

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICTAS.2019.8703637
https://doi.org/10.1109/TNSRE.2004.828423
https://doi.org/10.3390/s130505460
https://doi.org/10.3390/s130505460
https://doi.org/10.3390/s21020405
https://doi.org/10.1109/SGCF.2019.8782290


12240 M. Lupión et al.

1 3

 6. Shojaei-Hashemi A, Nasiopoulos P, Little JJ, Pourazad MT (2018) Video-based human fall detec-
tion in smart homes using deep learning. In: 2018 IEEE International Symposium on Circuits and 
Systems (ISCAS), pp 1–5. https:// doi. org/ 10. 1109/ ISCAS. 2018. 83516 48

 7. Gochoo M, Tan T-H, Alnajjar F, Hsieh J-W, Chen P-Y (2020) Lownet: Privacy preserved ultra-low 
resolution posture image classification. In: 2020 IEEE International Conference on Image Process-
ing (ICIP), pp 663–667. https:// doi. org/ 10. 1109/ ICIP4 0778. 2020. 91909 22

 8. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y 
(2014) Generative adversarial nets. In: Proceedings of the 27th International Conference on Neural 
Information Processing Systems, vol 2, pp 2672–2680. MIT Press, Cambridge, MA, USA

 9. Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv: arXiv:1411.1784
 10. Xue X, Zhang X, Li H, Wang W (2020) Research on gan-based image super-resolution method. In: 

2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICA-
ICA), pp 602–605. https:// doi. org/ 10. 1109/ ICAIC A50127. 2020. 91826 17

 11. Miao F, Feng L (2020) Research on character image inpainting based on generative adversarial 
network. In: 2020 International Conference on Culture-oriented Science Technology (ICCST), pp 
137–140. https:// doi. org/ 10. 1109/ ICCST 50977. 2020. 00032

 12. Liang X, Lee L, Dai W, Xing EP (2017) Dual motion gan for future-flow embedded video predic-
tion. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp 1762–1770. https:// 
doi. org/ 10. 1109/ ICCV. 2017. 194

 13. Mishra P, Singh Rathore T, Shivani S, Tendulkar S (2020) Text to image synthesis using residual 
gan. In: 2020 3rd International Conference on Emerging Technologies in Computer Engineering: 
Machine Learning and Internet of Things (ICETCE), pp 139–144. https:// doi. org/ 10. 1109/ ICETC 
E48199. 2020. 90917 79

 14. Regmi K, Borji A (2018) Cross-view image synthesis using conditional gans. In: 2018 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR), pp 3501–3510. IEEE Computer 
Society, Los Alamitos, CA, USA. https:// doi. org/ 10. 1109/ CVPR. 2018. 00369

 15. Isola P, Zhu J-Y, Zhou T, Efros A (2017) Image-to-image translation with conditional adversarial 
networks, pp 5967–5976. https:// doi. org/ 10. 1109/ CVPR. 2017. 632

 16. Zhang T, Wiliem A, Yang S, Lovell B (2018) Tv-gan: Generative adversarial network based thermal 
to visible face recognition. In: 2018 International Conference on Biometrics (ICB), pp 174–181. 
https:// doi. org/ 10. 1109/ ICB20 18. 2018. 00035

 17. Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X (2016) Improved techniques 
for training gans. In: Proceedings of the 30th International Conference on Neural Information Pro-
cessing Systems. NIPS’16, pp 2234–2242. Curran Associates Inc., Red Hook, NY, USA

 18. Zhu J-Y, Zhang R, Pathak D, Darrell T, Efros AA, Wang O, Shechtman E (2017) Toward multi-
modal image-to-image translation. In: Proceedings of the 31st International Conference on Neural 
Information Processing Systems. NIPS’17, pp 465–476. Curran Associates Inc., Red Hook, NY, 
USA

 19. Zhu J-Y, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consist-
ent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp 
2242–2251. https:// doi. org/ 10. 1109/ ICCV. 2017. 244

 20. Hoffman J, Tzeng E, Park T, Zhu J-Y, Isola P, Saenko K, Efros A, Darrell T (2018) Cycada: Cycle-
consistent adversarial domain adaptation. In: International Conference on Machine Learning, pp 
1989–1998

 21. Korde CG, Reddy K M, M H, V, Y B, NK (2019) Training of generative adversarial networks with 
hybrid evolutionary optimization technique. In: 2019 IEEE 16th India Council International Confer-
ence (INDICON), pp 1–4. https:// doi. org/ 10. 1109/ INDIC ON472 34. 2019. 90303 52

 22. Huang J, Li K, Wang X (2019) Single image super-resolution reconstruction of enhanced loss func-
tion with multi-gpu training. In: 2019 IEEE Intl Conf on Parallel Distributed Processing with Appli-
cations, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing 
Networking (ISPA/BDCloud/SocialCom/SustainCom), pp 559–565. https:// doi. org/ 10. 1109/ ISPA- 
BDClo ud- Susta inCom- Socia lCom4 8970. 2019. 00085

 23. Larsen ABL, Sønderby SK, Larochelle H, Winther O (2016) Autoencoding beyond pixels using a 
learned similarity metric. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of The 33rd Inter-
national Conference on Machine Learning. Proceedings of Machine Learning Research, vol 48, pp 
1558–1566. PMLR, New York, USA

 24. Hu Z, Xiao J, Tian Z, Zhang X, Zhu H, Yao C, Sun N, Tan G (2019) A variable batch size strategy 
for large scale distributed dnn training. In: 2019 IEEE Intl Conf on Parallel Distributed Processing 

https://doi.org/10.1109/ISCAS.2018.8351648
https://doi.org/10.1109/ICIP40778.2020.9190922
https://doi.org/10.1109/ICAICA50127.2020.9182617
https://doi.org/10.1109/ICCST50977.2020.00032
https://doi.org/10.1109/ICCV.2017.194
https://doi.org/10.1109/ICCV.2017.194
https://doi.org/10.1109/ICETCE48199.2020.9091779
https://doi.org/10.1109/ICETCE48199.2020.9091779
https://doi.org/10.1109/CVPR.2018.00369
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1109/ICB2018.2018.00035
https://doi.org/10.1109/ICCV.2017.244
https://doi.org/10.1109/INDICON47234.2019.9030352
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00085
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00085


12241

1 3

Using a Multi‑GPU node to accelerate the training of Pix2Pix…

with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social 
Computing Networking (ISPA/BDCloud/SocialCom/SustainCom), pp 476–485. https:// doi. org/ 10. 
1109/ ISPA- BDClo ud- Susta inCom- Socia lCom4 8970. 2019. 00074

 25. Goyal P, Dollár P, Girshick RB, Noordhuis P, Wesolowski L, Kyrola A, Tulloch A, Jia Y, He K 
(2017) Accurate, large minibatch SGD: training imagenet in 1 hour. arXiv arXiv: 1706. 02677

 26. You Y, Gitman I, Ginsburg B (2017) Scaling SGD batch size to 32k for imagenet training. arXiv 
arXiv: 1708. 03888

 27. Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing 
internal covariate shift. In: Bach, F., Blei, D. (eds.) Proceedings of the 32nd International Con-
ference on Machine Learning. Proceedings of Machine Learning Research, vol 37, pp 448–456. 
PMLR, Lille, France

 28. Ulyanov D, Vedaldi A, Lempitsky VS (2016) Instance normalization: The missing ingredient for 
fast stylization. arXiv: arXiv:1607.08022

 29. Sammut C, Webb GI (eds.) (2010) Mean Squared Error, pp. 653–653. Springer, Boston, MA. 
https:// doi. org/ 10. 1007/ 978-0- 387- 30164-8_ 528

 30. Horé A, Ziou D (2010) Image quality metrics: Psnr vs. ssim. In: 2010 20th International Conference 
on Pattern Recognition, pp 2366–2369. https:// doi. org/ 10. 1109/ ICPR. 2010. 579

 31. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibil-
ity to structural similarity. IEEE Trans Image Process 13(4):600–612. https:// doi. org/ 10. 1109/ TIP. 
2003. 819861

 32. Ghosh B, Dutta IK, Carlson A, Totaro M, Bayoumi M (2020) An empirical analysis of generative 
adversarial network training times with varying batch sizes. In: 2020 11th IEEE Annual Ubiquitous 
Computing, Electronics Mobile Communication Conference (UEMCON), pp 0643–0648. https:// 
doi. org/ 10. 1109/ UEMCO N51285. 2020. 92980 92

 33. Radiuk P (2017) Impact of training set batch size on the performance of convolutional neu-
ral networks for diverse datasets. Inf Technol Manag Sci 20:20–24. https:// doi. org/ 10. 1515/ 
itms- 2017- 0003

 34. Krizhevsky A (2014) One weird trick for parallelizing convolutional neural networks. arXiv arXiv: 
1404. 5997

 35. Keskar N, Nocedal J, Tang P, Mudigere D, Smelyanskiy M (2017) On Large-batch Training for 
Deep Learning: Generalization Gap and Sharp Minima. 5th International Conference on Learning 
Representations, ICLR 2017 ; Conference date: 24-04-2017 Through 26-04-2017

 36. Li C, Wand M (2016) Precomputed real-time texture synthesis with markovian generative adver-
sarial networks. In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer vision—ECCV 2016. 
Springer, Cham, pp 702–716

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00074
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00074
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1708.03888
https://doi.org/10.1007/978-0-387-30164-8_528
https://doi.org/10.1109/ICPR.2010.579
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/UEMCON51285.2020.9298092
https://doi.org/10.1109/UEMCON51285.2020.9298092
https://doi.org/10.1515/itms-2017-0003
https://doi.org/10.1515/itms-2017-0003
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1404.5997

	Using a Multi-GPU node to accelerate the training of Pix2Pix neural networks
	Abstract
	1 Introduction
	2 Related works
	3 Methodology
	3.1 Pix2Pix
	3.2 Early stopping method
	3.3 Optimizations
	3.3.1 Varying batch size and learning rate
	3.3.2 Input pipeline
	3.3.3 Mixed precision

	3.4 Multi-GPU training
	3.4.1 Parallelism strategy
	3.4.2 Losses


	4 Results
	4.1 Infrastructure
	4.2 Experiments

	5 Conclusions and future works
	Acknowledgements 
	References




