
Vol:.(1234567890)

The Journal of Supercomputing (2022) 78:4330–4357
https://doi.org/10.1007/s11227-021-04027-5

1 3

A parallel and accurate method for large‑scale image
segmentation on a cloud environment

Gangmin Park1 · Yong Seok Heo2 · Kisung Lee3 · Hyuk‑Yoon Kwon4

Accepted: 13 August 2021 / Published online: 30 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
In this paper, we present a parallel algorithm for SLIC on Apache Spark, which we
call PSLIC-on-Spark. To this purpose, we have extended the original SLIC algo-
rithm to use the operations in Apache Spark, supporting its parallel processing on
multiple executors in the Apache Spark cluster. Then, we analyze the trade-off rela-
tionship of PSLIC-on-Spark between its processing speed and accuracy due to parti-
tioning of the original image datasets. Through experiments, we verify the trade-off
relationship. Specifically, we show that PSLIC-on-Spark using 8 CPU cores reduces
the processing time of SLIC by 2.24–2.93 times while it reduces the boundary recall
(BR) of SLIC by 1.54–6.32% and increases under-segmentation error (UE) by 1.79–
6.2%. Then, we propose an improved algorithm of PSLIC-on-Spark that improves
the accuracy of PSLIC-on-Spark, which we call PASLIC-on-Spark. We employ two
important features for PASLIC-on-Spark. It contains two main features: (1) image
partitioning considering the shape and position of the clusters rather than a evenly
partitioning method and (2) controllable duplication for the boundary between
image partitions. Through experiments, we show the accuracy and efficiency of
PASLIC-on-Spark on an actual cloud environment configured with 8 worker nodes
using Amazon AWS. The experimental results indicate that PASLIC-on-Spark
improves the accuracy of PSLIC-on-Spark by 3.66–3.77% of BR and 1.39–1.96%
of UE. PASLIC-on-Spark still decreases that of processing time SLIC significantly
1.5–1.67 times on a single-node configuring using 8 CPU cores and 1.18–1.26 times
on a cloud environment using 8 computing nodes.

Keywords SLIC · Image segmentation · Apache spark · Parallel processing ·
Accuracy

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. 2021R1F1A1064050).

 * Hyuk-Yoon Kwon
 hyukyoon.kwon@seoultech.ac.kr

Extended author information available on the last page of the article

http://orcid.org/0000-0002-1125-6533
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-04027-5&domain=pdf

4331

1 3

A parallel and accurate method for large‑scale image…

1 Introduction

We are witnessing a huge amount of image data generated from various devices
such as smartphones, medical devices, satellites, and surveillance cameras. Such
image data are being stored and processed for many types of applications and
services including facial recognition, autonomous driving, and precision medi-
cine. Since an image can include multiple objects with their semantic informa-
tion, we often use image segmentation techniques to detect the objects by par-
titioning the image into several segments [1]. For image segmentation, we can
utilize several features of image data such as color, location, texture, and inten-
sity. Superpixel segmentation is the representative image segmentation technique
that produces clusters (called superpixels) of similar and spatially close pixels
[2]. Since superpixels can reduce the overhead of downstream tasks by provid-
ing summarized image data [3], they have been widely used for not only image
segmentation [4] but also centerline extraction [5], object localization [6], and
depth estimation [7]. Simple linear iterative clustering (SLIC) [2] is an efficient
technique to find superpixels with the time complexity of O(N). SLIC has been
applied to many kinds of computer vision tasks and applications such as segmen-
tation [8–10], depth estimation [11], optical flow estimation [12], saliency esti-
mation [13], hyperspectral image classification [14], object detection and clas-
sification in unmanned aerial vehicle (UAV) image data [15, 16], object detection
for glaucoma in medical image data [17], fault detection of solar energy system
in thermal image data [18], and a breast cancer classification in ultrasound image
data [19].

One critical challenge for image segmentation is the increasing usage of high-
resolution images thanks to the advancement of imaging equipment. For example,
one satellite image of DigitalGlobe has 256 million (16, 0002) pixels covering an
area greater than 64km2 [20]. SLIC requires about 1600 times more time to pro-
cess a satellite image with 256 million pixels than to process an image with 0.15
million pixels, which is the typical image size for evaluating image segmentation
[21]. To efficiently process such high-resolution images for image segmentation,
it is imperative that we extend SLIC for parallel and distributed processing using
multiple cores and machines. Even though there are a few proposed techniques
[22, 23] for parallel processing of SLIC, it is challenging to run SLIC in a parallel
manner for a single image because we need to effectively partition the image into
smaller blocks for parallelism. In other words, one image block may not include
all necessary pixels to generate optimal superpixels.

In this paper, we propose and develop a parallel and distributed version of
SLIC on top of Apache Spark, a state-of-the-art big data framework that provides
the MapReduce programming model [24] for processing large-scale data on a
cluster of machines. Spark has been widely used for various big data applica-
tions such as cloud-based log file analysis [25], mobile big data analysis [26],
and bioinformatics data analysis [27]. We present a parallel algorithm for SLIC
on Apache Spark, which we call PSLIC-on-Spark. To this purpose, we extend the
original SLIC algorithm to use the operations in Apache Spark, supporting its

4332 G. Park et al.

1 3

parallel processing on multiple executors in the Apache Spark cluster. Then, we
propose an improved algorithm of PSLIC-on-Spark that improves the accuracy
of PSLIC-on-Spark, which we call PASLIC-on-Spark. We employ two important
features for PASLIC-on-Spark. It contains two main features: (1) image partition-
ing considering the shape and position of the clusters rather than a evenly parti-
tioning method and (2) controllable duplication for the boundary between image
partitions.

The contributions of this paper are summarized as follows:

1. We analyze the trade-off relationship of PSLIC-on-Spark between its processing
speed and accuracy when performing segmentation for the original image data-
sets. Especially, we identify two limitations in PSLIC-on-Spark, which degrade
the accuracy of the original SLIC.

2. We verify the trade-off relationship between the processing speed and the accu-
racy of PSLIC-on-Spark. Specifically, we show that PSLIC-on-Spark using 8
CPU cores significantly reduces the processing time of SLIC by 2.24 ∼ 2.93 times
while it reduces the boundary recall (BR) of SLIC by 1.54–6.32% and increases
under-segmentation error (UE) by 1.79–6.2%. In contrast, PSLIC-on-Spark using
2 CPU cores reduces the processing time of SLIC only by 1.38–1.45 times while it
reduces the recall of SLIC only by 0.28–1.5%, and increases UE by 0.25 –1.77%.

3. We show the accuracy and efficiency of PASLIC-on-Spark on an actual cloud
environment configured with 8 worker nodes using Amazon AWS. The experi-
mental results indicate that PASLIC-on-Spark improves the accuracy of PSLIC-
on-Spark by 3.66–3.77% of BR and 1.39–1.96% of UE. PASLIC-on-Spark still
decreases that of processing time SLIC significantly 1.5–1.67 times on a single-
node configuring using 8 CPU cores and 1.18–1.26 times on a cloud environment
using 8 computing nodes.

The paper is organized as follows. In Sect. 2, we explain the related work. In Sect. 3,
we explain the background. In Sect. 4, we present the PSLIC-on-Spark algorithm
and analyze the result in terms of the parallelism and the accuracy. In Sect. 5, we
describe PASLIC-on-Spark algorithm to overcome the limitations of PSLIC-on-
Spark. In Section 6, we describe the experimental results to show the trade-off
between the processing speed and the accuracy and the effectiveness of PASLIC-on-
Spark. In Sect. 7, we conclude the paper.

2 Related work

In this section, we summarize the related works of this paper. It consists of three
parts: (1) superpixel segmentation, (2) the benchmark for superpixel segmentation,
and (3) parallel processing of superpixel segmentation algorithms.

4333

1 3

A parallel and accurate method for large‑scale image…

2.1 Superpixel segmentation

Various algorithms for superpixel segmentation have been proposed. We can clas-
sify them into two groups of algorithms: (1) graph-based algorithms and (2) gra-
dient-ascent-based algorithms. In the graph-based algorithms, Wu et al. [28] pro-
posed the Minstpixel algorithm based on the minimum spanning tree. The algorithm
applies the greedy optimization strategy to the adjacent pixels from the first minimal
gradient seed pixels. Liu et al. [29] proposed a superpixel segmentation algorithm
using entropy rate. Here, each pixel is mapped to a node of the graph and the edge
is defined between similar pixels. The entropy rate calculation takes into account
the similarity between nodes and forms a cluster. Shi et al. [30] proposed a super-
pixel segmentation method that models the image pixels as a graph. That is, they
mapped each pixel as the node and the similarity between pixels as the edge. Then,
to generate superpixels, they partitioned the graph so as to minimize the dissimi-
larity between groups and maximize the similarity within groups. In the gradient-
ascent-based algorithms, Wang et al. [31] proposed an adaptive non-local random
walk algorithm (ANRW). ANRW improves the accuracy of the superpixel by creat-
ing the initial cluster seeds based on the gradient of the pixels and by locating them
to be not at the object boundary. Li et al. [32] proposed a linear spectral clustering
(LSC) algorithm to map pixels of the image to a feature space in 10 dimensions.
LSC preserves the global properties of the image by managing those high-dimen-
sional features. Levinshtein et al. [33] proposed a superpixel segmentation method,
named turbo pixel, which calculates the gradient of the surrounding pixels for each
initial seed pixel and expands the seed pixel to the gradient flow to form a superpixel
until all pixels are assigned into one of superpixels.

Meanwhile, there have been research efforts that apply the superpixel segmenta-
tion algorithms to a specific dataset. Wang et al. [34] applied the SLIC algorithm
to the polarimetric synthetic aperture radar (PolSAR) image data. Specifically, the
gradient information in the PolSAR image used to reduce the number of repeti-
tions in SLIC and to improve the accuracy. Sun et al. [35] proposed SLFTIC that
modifies SLIC for the classification of coal images. SLFTIC algorithm produces
segments by combining color, space location, and texture information during the
clustering phase, enabling to detect the segment of minerals that is similar with the
background.

There have been studies using superpixel to solve problems in certain applica-
tions. Sharma and Biswas [36] used superpixel to classify hyper spectral images. In
particular, for the classification process of hyper spectral images, graph-based super-
pixel segmentation, which uses the entropy rate of the path in the graph to segment
pixels, is used to generate segments of HSI and to group extra homogeneous. Zhao
et al. [37] proposed an improved image semantic segmentation method using super-
pixels and conditional random fields (CRFs). In this work, superpixel-level semantic
features, which are created through SLIC superpixel, and pixel-level semantic fea-
tures, which are created through fully convolutional networks (FCN), are combined
to improve the segmentation results.

Recently, due to the development of deep learning techniques, there have also
been many research efforts to produce superpixels through deep neural networks.

4334 G. Park et al.

1 3

Jampani et al. [38] applied a convolutional neural network (CNN) model to extract
the features for obtaining superpixels, enabling the extraction of features tailored to
given superpixels, instead of fixed features. Yang et al. [39] proposed a superpixel
segmentation using a CNN model. They regarded the initial regular grids of the
image as the clusters and classified each pixel into one of the surrounding clusters
using a CNN model, resulting in each cluster becoming a superpixel.

2.2 The benchmark for superpixel segmentation

The performance of superpixel segmentation has been evaluated by various metrics.
Neubert et al. [40] evaluated the performance of eight superpixel segmentation algo-
rithms by using two metrics: the boundary recall and the under-segmentation error,
which are typical metrics to evaluate the error in superpixel. Radhakrishna et al. [2]
compared 5 superpixel algorithms using boundary recall, under-segmentation error,
segmentation speed, and segmentation accuracy.

2.3 Parallel processing of superpixel segmentation algorithms

There have been only a few existing methods to deal with parallel processing in
superpixel algorithms. Prajapati and Vij [41] classified parallel processing types into
three categories: (1) data parallelization, (2) task parallelization, and (3) pipeline
parallelization. Ren and Reid [22] proposed a gSLIC algorithm that expands the
SLIC algorithm to be parallelized for the Nvidia CUDA framework based on GPU.
Similarly, Quesada-Barriuso et al. [42] proposed a waterpixel algorithm to be paral-
lelized for the Nvidia CUDA framework for hyperspectral remote sensing images.
Derkson [23] partitioned the entire image with a tile-wise framework in SLIC, which
tries to preserve the original superpixel in each partitioned image block to reduce
the accuracy degradation by allowing overlapping between partitioned images.

A few studies [22, 23] have been proposed to extend SLIC for parallel algorithms.
However, they still have the limitation in applying them in a distributed environ-
ment. Derksen et al. [23] proposed their own parallel algorithm for SLIC; however,
there is a limitation in scalability and availability because the additional implemen-
tation for them is required. Ren and Reid [22] proposed a parallel superpixel algo-
rithm so as to leverage multiple GPUs. However, its scalability is limited to a pos-
sible maximum number of GPUs equipped in a single machine and it requires much
effort to extend it to a distributed environment.

Processing methods based on Apache Spark, including our methods, can natu-
rally support scalability and availability in dealing with large-scale images [43].
Without Apache Spark, we need to additionally develop those functionalities. More-
over, Apache Spark allows us to easily support parallel processing in a scalable dis-
tributed environment by constructing the algorithms with map and reduce opera-
tions. Without Apache Spark, we need to directly implement the parallelism of the
algorithms considering an underlying distributed configuration. As a result, we do
not directly compare the method proposed in this paper with the previous parallel
algorithms for SLIC [22, 42].

4335

1 3

A parallel and accurate method for large‑scale image…

It has been shown that a method based on Apache Spark is a feasible approach in the
image processing as well. Liu et al. [44] proposed distributed processing of the fuzzy
c-means algorithm based on Apache Spark to segment pixels in agricultural image
data. That is, they extended the existing fuzzy c-means algorithm to the Apache Spark
framework. However, to the best of our knowledge, there have been no attempts to pro-
duce superpixel on Apache Spark, and this paper is the first research effort to study a
parallel and distributed processing method for SLIC on Apache Spark.

A preliminary version of this work appeared in Proc. 2021 IEEE International
Conference on Big Data and Smart Computing, pp. January 5–12, 2021 [45]. This is a
fully rewritten and extended version of the preliminary version. The major extensions
include (1) a completely new algorithm, PASLIC-on-Spark, to improve the accuracy
than the algorithm in the preliminary version, (2) new experiments on an actual dis-
tributed environment using Amazon AWS, and (3) the detailed and extended study on
related work.

3 Background

In this section, we provide a brief background about SLIC and Apache Spark.

3.1 SLIC

SLIC utilizes two types of pixel information to generate superpixels: (1) pixel color
information and (2) pixel location in the given image [2]. It represents the pixel color
information as a three-dimensional vector (L, a, b) in the CIELAB color space. For the
pixel location, it uses a two-dimensional position (x, y) on the Euclidean space. SLIC
uses the vectors to calculate the distance between a pixel and a cluster center during
pixel clustering.

Given that there are N pixels in an input image, SLIC groups them into k (an input
parameter for running SLIC) clusters (or segments). Assuming roughly equally sized
clusters, the distance S between two cluster centers is approximately

√

N∕k , and the
size of a cluster is approximately S × S . Therefore, to find a cluster, SLIC assumes that
pixels related to this cluster are located within the range of 2S × 2S around the cluster
center, reducing the overhead of clustering. Then, SLIC calculates the distance between
a pixel i, which is represented in [li, ai, bi, xi, yi] , and a k-th superpixel cluster center,
which is represented as [lk, ak, bk, xk, yk] . To calculate the distance, SLIC uses two dis-
tance values: (1) color value distance dlab and (2) Euclidean distance dxy , as defined
in Eq. 1. The final distance is the sum of the color value distance and the normalized
Euclidean distance, as defined in Eq. 1.

(1)
dlab =

√

(lk − li)
2 + (ak − ai)

2 + (bk − bi)
2

dxy =
√

(xk − xi)
2 + (yk − yi)

2

Ds = dlab +
m

S
dxy

4336 G. Park et al.

1 3

To adjust the weight of each distance value, SLIC uses a parameter called m. By
increasing m, we can give higher weights to dxy . When we deal with the large size
of superpixels, dxy is considered much more importantly than dlab [2]. Initially, SLIC
splits the entire image into regular grids with a constant size where each grid is
mapped to a target segment. Then, it iteratively updates the segmentation label of
each pixel by computing Ds between the pixel and the cluster center Ck and finding
the nearest cluster.

3.2 Apache Spark

Apache Spark is a state-of-the-art open-source big data framework that supports
MapReduce-like operations on a cluster of machines and provides efficient large-
scale data processing through in-memory persistence and execution optimizations
[43]. Spark, as a unified processing engine, can be configured with one of several
resource management frameworks such as YARN and Kubernetes. A typical Spark
cluster consists of a master node (and potentially one standby node for high avail-
ability) and a set of worker nodes. Figure 1 shows working of a typical MapReduce
job on a Spark cluster. When the job is submitted to the master node, Spark distrib-
utes the job into multiple executors on multiple worker nodes for parallel process-
ing. There is no data shuffling among the executors in the map phase. Spark also

Fig. 1 The architecture of Apache Spark cluster

4337

1 3

A parallel and accurate method for large‑scale image…

supports various storage engines such as HDFS (Hadoop Distributed File System),
MongoDB, and Amazon S3 to store input and output data.

Resilient Distributed Datasets (RDDs) are the fundamental unit of data in Apache
Spark. RDDs are partitioned across multiple machines on a cluster for parallel pro-
cessing of large-scale data. Since RDDs are immutable, we can only create new ones
based on existing ones, instead of modifying existing RDD data. Spark supports two
types of operations: (1) transformations and (2) actions. We can create a new RDD
from an existing one using a transformation. For example, the map and filter
operations are frequently used transformations. On the other hand, an action trig-
gers actual data processing and returns a value to the driver program (or results are
written to the storage system). For example, the reduce and take operations are
actions. Figure 2 shows the working of a typical Spark job that consists of multiple
transformations followed by one action. After we create an input RDD, we process
the data and generate new RDDs through transformations. Because of the lazy eval-
uation in Spark, the transformations will not start actual data processing. The action
will trigger the actual processing and return a value.

4 Parallelization of SLIC on Apache Spark

In this section, we describe our parallel algorithm that can run SLIC on the top of
Apache Spark.

4.1 PSLIC‑on‑Spark: A parallel algorithm for SLIC

Given an input image, our algorithm partitions the image into smaller image blocks
to utilize the parallel processing capability of Spark. Our algorithm consists of two
core parts: (1) Algorithm 1 for the cluster master and (2) Algorithm 2 for the exec-
utors. As a first step, we determine how to partition the image and distribute the
partitioned image blocks to the executors. We assign one image block to executor i
with (1) pixel ranges in the image to be processed in i (PRi) and (2) the number of
target segments assigned to i (TSi). To calculate PRi , we horizontally partition the
input image to generate equally sized image blocks. To calculate TSi , we divide the
total number of segments by the number of executors to evenly distribute segments
among the executors. In the case of PRi , we assign the remaining pixels divided by

Fig. 2 Resilient distributed datasets on Apache Spark

4338 G. Park et al.

1 3

p, which is the target number of partitions, to some of the executors; in the case of
TSi , we simply cut the remaining segments off.

Algorithm 1 takes the inputs: (1) an array PRi(1 ≤ i ≤ p) , (2) TSi, (1 ≤ i ≤ p) , and
(3) the target number of partitions, p, which is equal to the number of executors. The
algorithm runs three Spark operations: (1) parallelize for assigning PRi and TSi
to each executor among p executors, (2) map(SLIC) for transferring function SLIC
(the original SLIC algorithm) to each executor, and (3) reduce for integrating the
results of all executors. The final results are represented in

∑p

i=1
Si . Algorithm 2 for

an executor i takes the inputs: 1) PRi , (2) TSi . Each executor i runs the given SLIC
algorithm on its assigned image block to generate superpixels Si.

Figure 3 shows the overall process of PSLIC-on-Spark using an example. In step
(A), PSLIC-on-Spark horizontally partitions the input image and assigns one image

Fig. 3 The overall process of PSLIC-on-Spark

4339

1 3

A parallel and accurate method for large‑scale image…

block to each executor using the parallelize operation. In step (B), PSLIC-on-
Spark transfers the original SLIC algorithm to all executors for parallel processing
using the map operation. In step (C), each executor runs the SLIC algorithm on its
assigned image block to generate sub-superpixels. In step (D), PSLIC-on-Spark
aggregates all sub-superpixels generated by all executors using the reduce opera-
tion to get final superpixels.

4.2 Limitations of PSLIC‑on‑Spark

Even though PSLIC-on-Spark can improve the processing speed of SLIC using
multiple executors, it may generate different segments, compared to those of SLIC,
because a partitioned image block is independently processed without having access
to other image blocks. In this section, we analyze the limitations of PSLIC-on-
Spark in terms of its accuracy by comparing it to that of SLIC. Specifically, we find
two limitations regarding the accuracy of PSLIC-on-Spark: (1) loss of some pix-
els required in calculating one superpixel and (2) boundary mismatch between sub-
superpixels in adjacent image blocks.

Limitation 1. As described in Sect. 3.1, SLIC assumes that pixels related to a
cluster are located within the range of 2S × 2S around its cluster center. Figure 4a
shows a cluster and its 2S × 2S range. However, since PSLIC-on-Spark partitions the
input image into smaller image blocks for parallel processing, one image block can-
not have all pixels located within the 2S × 2S range in the original input image, as
depicted in Fig. 4b. Therefore, the accuracy of PSLIC-on-Spark can degrade com-
pared to that of the original SLIC algorithm.

Limitation 2. Since each executor processes one image block independently
without having access to other image blocks in PSLIC-on-Spark, there can be
boundary mismatches between adjacent image blocks when PSLIC-on-Spark
integrates sub-superpixels generated by all executors. For example, Fig. 5a shows

Fig. 4 The loss of some pixels
required in calculating one
superpixel in PSLIC-on-Spark

Fig. 5 The boundary mismatch
in PSLIC-on-Spark

4340 G. Park et al.

1 3

the segmentation result of SLIC on an input image while Fig. 5b shows the result
of PSLIC-on-Spark on the partitioned image blocks with boundary mismatches
between the sub-superpixels.

We explain the limitations using a full image in detail. Figure 6a shows the
result of SLIC when the number of target segments is 300. Figure 6b shows the
integrated result of PSLIC-on-Spark when we run eight executors (i.e., eight
image blocks). Figure 6c highlights the segmentation difference between SLIC
and PSLIC-on-Spark for image block 5 in detail. The green area represents the
portion of a superpixels covering the object wall, while the red area shows the
region not overlapping with the object wall. This shows the effectiveness of SLIC
in detecting the object. It also shows that PSLIC-on-Spark preserves most parts
of the original superpixel but loses some parts because of Limitation 1. Fig-
ure 6d shows that the superpixels generated by PSLIC-on-Spark at the boundary
between image blocks 5 and 6 do not match smoothly because of Limitation 2.

The number of partitions in PSLIC-on-Spark determines the size of each par-
titioned image block when the number of target segments is fixed. As the size of
each image block becomes small, the effects of Limitation 1 and Limitation 2

Fig. 6 The comparison of the results by SLIC and PSLIC-on-Spark

4341

1 3

A parallel and accurate method for large‑scale image…

will increase. This implies that as the number of partitions increases, PSLIC-on-
Spark will generate smaller partitioned image blocks, degrading the segmentation
accuracy while increasing the parallelism of the algorithm. We verify this impli-
cation through the extensive experimental results in Sect. 6.

5 Improving segmentation accuracy

Section 4 describes the limitations of PSLIC-on-Spark in terms of segmentation
accuracy. In this section, we propose an improved algorithm, called Parallel-and-
Accurate SLIC-on-Spark (PASLIC-on-Spark in short), that maintains the benefit of
parallel processing of PSLIC-on-Spark while reducing the accuracy degradation
incurred by image partitioning. It contains two main features: (1) effective image
partitioning (in Sect. 5.1) and (2) duplication for the boundary between image parti-
tions (in Sect. 5.2).

5.1 Effective image partitioning

In this section, we devise a new image partitioning and allocation method for solv-
ing Limitation 2 described in Sect. 4.2 (i.e., boundary mismatch between sub-super-
pixels in adjacent image blocks). To reduce accuracy loss incurred by partitioning,
it is necessary to minimize the inconsistency between sub-superpixels. Since we run
SLIC on each partitioned image block, we can improve accuracy of segmentation if
we effectively partition the input image such that partitioned image blocks preserve
the superpixels in the entire input image. As described in Sect. 3.1, SLIC divides the
entire image into regular grids of the constant size, which is determined by a target
number of segments, k, along with the initial cluster center Ci(1 ≤ i ≤ k).

Then, the clusters are iteratively updated by computing the distance between clus-
ter centers Ck and the surrounding pixels. Here, the important observation is that the
final shape and position of the superpixel become different depending on the initial
cluster center Ck . Thus, if we split the image without considering a target number
of segment k and regular grids in the original image, such as PSLIC-on-Spark, the
position of cluster center Ck in each image block would be significantly different
from the result of the original SLIC.

In PASLIC-on-Spark, to resolve the superpixel mismatch problem, we propose
a method for partitioning the input image while preserving the regular grids in the
original image. In other words, by partitioning the image along the boundaries of
the regular grid, we can preserve the number and shape of superpixels as similar
as possible to the SLIC results from the original image. Specifically, while PSLIC-
on-Spark evenly distributes all pixels across all executors, PASLIC-on-Spark uses
the regular grids, instead of pixels, as the unit for partitioning the input image. For
example, for the input image in Fig.7, assuming that there are 27 rows of grids and
8 executors, PASLIC-on-Spark assigns three or four grids to each executor. Even
though the pixels are not evenly distributed unlike PSLIC-on-Spark, PASLIC-on-
Spark can preserve the original regular grids in the input image.

4342 G. Park et al.

1 3

Table 1 The notation for PASLIC-on-Spark

Variables Definition

S The initial distance between two adjacent cluster centers
p The number of target partitions
i The i-th image block out of partitioned image blocks in the height of the

image (1 ≤ i ≤ p)

pixelh The number of pixels in the height of the image
pixelw The number of pixels in the width of the image
pixel-partition(pixelh, p, i) i-th image block partitioned by p consisting of pixels ranged from (pixelh

p
× i)

to (pixelh
p

× (i + 1) − 1) where pixelh
p

 is rounded down to the first decimal
point

gridh The number of grids in the height of the image
gridh(i) The number of grids in the height of the i-th image block
gridw The number of grids in the width of the image
grid-partition(gridh, p, i) i-th image block partitioned by p consisting of grids ranged from (gridh

p
× i) to

(
gridh

p
× (i + 1) − 1) where the remainder grids of gridh

p
 are distributed one by

one from the top image blocks
overlaph The number of grids overlapped from one side of the image block

Fig. 7 The partitioned result comparison between PSLIC-on-Spark and PASLIC-on-Spark

4343

1 3

A parallel and accurate method for large‑scale image…

Table 1 shows the notations needed to explain how to partition images for
PASLIC-on-Spark. SLIC partitions the entire image in the unit of regular grids
where each one is S × S in size. Then, the image consists of the number of grids
calculated by gridh × gridw . In PSLIC-on-Spark and PASLIC-on-Spark, we define
gridh(i) for the i-th image block partitioned by p to differently represent the number
of grids for each image block. gridw is the same for all of SLIC, PSLIC-on-Spark,
and PASLIC-on-Spark because we partition the image in the height. SLIC uses the
number of grids, i.e., gridh × gridw , for a target number of segments k. In PSLIC-on-
Spark and PASLIC-on-Spark, we use

∑p

i=1
gridh(i) × gridw for k. gridh(i) for PSLIC-

on-Spark is calculated by pixel-partition(pixelh, p, i) in the unit of the pixel and that
for PASLIC-on-Spark by grid-partition(gridh, p, i) in the unit of the grid.

Figure7 shows the result of segmenting images of 321 × 481 pixels according to
PSLIC-on-Spark and that according to PASLIC-on-Spark. We can verify the effect
of preserving the initial regular grids in PASLIC-on-Spark compared to PSLIC-on-
Spark. In the example as in Fig.7, we have the number of target segments, k, is 500
and the number of partitions p is 8. First, let us consider the application of SLIC to
the example image. In SLIC, S = 18, gridh = 27 and gridw = 18 are obtained by the
definition for a given image based on the SLIC algorithm, resulting that a target k
is redefined as gridh × gridw = 486 . Then, let us compare this result with those of
PSLIC-on-Spark and PASLIC-on-Spark. In PSLIC-on-Spark, we partition the entire
image by p evenly in the unit of the pixel. Because gridh(i) of every image block i
is 3, each image block consists of 54 grids and k of the image becomes 432. This
implies that, PSLIC-on-Spark produces less superpixels than SLIC roughly 11.2%
(i.e., 1-432

486
), which degrades the overall accuracy. However, in PASLIC-on-Spark,

k is preserved as 486 as in SLIC because each image block can contain different
number of grids (i.e., 3 or 4 in this example). Furthermore, we can also preserve
the initial cluster centers by preserving the initial regular grids, which affects the
improvement of the accuracy of PASLIC-on-Spark.

As shown in Fig. 8, PSLIC-on-Spark has quite different segmentation results
compared to SLIC because the number of target segments and the position of cluster

Fig. 8 The final result comparison of SLIC, PSLIC-on-Spark, and PASLIC-on-Spark

4344 G. Park et al.

1 3

centers are different. In particular, even superpixels located in the middle of the
image block, which are less affected by partitioning, also differ from the superpixels
of the original SLIC. On the other hand, PASLIC-on-Spark produces superpixels of
relatively similar numbers and shapes compared to the original SLIC results. How-
ever, we can observe that the superpixels still have a different shape at the boundary
between image blocks.

5.2 Duplication for the boundary between image partitions

In this section, we devise a method to improve the segmentation accuracy by
addressing Limitation 1 (i.e., incomplete pixel information between partitioned
image blocks) discussed in Sect. 4.2. Although transferring the required pixels
via network communication between different nodes can preserve the original
accuracy of SLIC, network overhead can dramatically degrade processing effi-
ciency in a distributed environment. Therefore, in PASLIC-on-Spark, we aim
to minimize the accuracy degradation while maintaining the efficiency of dis-
tributed processing by storing partially redundant data on each node. Specifi-
cally, we store additional pixels that are required to construct superpixels in
adjacent executors redundantly, removing the network overhead and improving
the accuracy. Basically, SLIC can be influenced by pixels in the entire image
because cluster centers are repeatedly updated. Thus, the closer a image block in
each executor is to the size of the original image, the more accurate results can
be generated. Thus, a trade-off relationship is established between the degree
to which image blocks are stored in duplicate and accuracy as discussed in
Sect. 4.2. overlaph , defined in Table 1, refers to the number of grids expanding to
one side of the image block. We have the following three cases for overlaph . (1)
If overlapping does not occur between the image blocks as in PSLIC-on-Spark,
overlaph of the image block is zero. (2) For the first and last image blocks, the
grid can be expanded to only one side, and the number of expanded grid in the
image block increases by overlaph . (3) For the other image blocks, the grid can

Fig. 9 The area expanded by the overlapping in PASLIC-on-Spark

4345

1 3

A parallel and accurate method for large‑scale image…

be expanded in both sides, and the number of expanded grid in image blocks
increases by 2 × overlaph . We constraint a possible maximum overlaph of an
image block i as gridh(i) − 1 to prevent the overlapped area to be larger than the
image block. Figure 9 shows the expanded area obtained by PASLIC-on-Spark
when the number of target segments K = 500 and the number of partition p = 8
are given. In the image block of Fig.9, the red area represents an expanded grid.
For the first and last image blocks, gridh(i) increases by overlaph . For the other
image blocks, gridh(i) increases by 2 × overlaph.

When the image blocks obtained in the worker nodes are aggregated in the
cluster master, a method of the superpixel integration for the overlapped area
between image blocks needs to be carefully designed because it affects the accu-
racy of superpixels. Algorithm 3 shows the integration process of overlapped
regions between image blocks. Algorithm 3 takes the inputs: (1) an array of
image blocks, IBi , (2) an array of cluster label of IBi(Li). First, we initialize SBi
as the split boundary of IBi . Then, we initialize an array for a set of clusters
that cross with SBi , boundarySeg, as one of the overlapped image blocks (i.e.,
we choose the block above in the implementation). For the pixels in a region S
in SBi , we update the label of the pixel as the cluster of the image block above
if it belongs to boundarySeg, otherwise, we label it as the cluster of the other
image block (i.e., the block below). The algorithm repeats for each image block
i. Then, the entire label of the image, L, is updated by each cluster label Li.

Figure 10 shows the process to integrate the area overlapped between two
image blocks IB3andIB4 when k=500 and p=8 are given. The dotted line means
the split boundary between image blocks. In Fig. 10a, the red area under the
dotted line means the expanded area of IB3 . In Fig. 10b, we select a superpixel
generated from IB3 cross the split boundary. In Fig. 10c, the selected clusters are
preserved as the complete superpixels obtained in IB3 . In Fig. 10d, the remain-
ing pixels that are not included by superpixels of IB3 are selected from IB4.

4346 G. Park et al.

1 3

5.3 Algorithm

PASLIC-on-Spark consists of two core parts: (1) the algorithm for the cluster master,
Algorithm 4, and (2) the algorithm for the executors, Algorithm 5. Unlike PSLIC-
on-Spark, PASLIC-on-Spark needs to deal with expanded and overlapped pixels
and the number of target segments are required for each image block. We define
the pixels for each worker i, PR∗

i
 , the number of target segments for i, TSi . PR∗

i
 con-

sists of (1) a image block partitioned by p considering the regular grids explained in
Section 5.1, PRi , and (2) overlapped areas between image blocks explained in Sec-
tion 5.2, Oi.

Algorithm 4 takes the inputs: (1) an array PR∗
i
(1 ≤ i ≤ p) , (2) an array

TSi(1 ≤ i ≤ p) , and (3) the number of partition, p. The algorithm executes three
Spark operations: (1) parallelize for assigning PR∗

i
 and TSi for each executor

i, (2) map for transferring a variation of the SLIC algorithm, SLIC∗ , which is the
same as SLIC only removing the postprocessing (i.e., enforce connectivity), to each
worker, and (3) reduce for integrating the results of all executors. Then, for all the

Fig. 10 The process of integration of overlapped area between image blocks in PASLIC-on-Spark

4347

1 3

A parallel and accurate method for large‑scale image…

results transferred from all executors, we apply Algorithm 3 to integrate the sub-
results into one final result. Finally, we enforce the connectivity, which is the same
postprocessing as in SLIC.

Algorithm 5 for each executor i takes the inputs from the cluster master: 1) PR∗
i
 ,

2) TSi . The executor i runs the SLIC∗ algorithm transferred from the cluster master
on its assigned image block to generate superpixels Li . The outputs of Algorithm 5,
∑p

i=1
Li , are integrated as one output by the cluster master.

Figure 11 shows the final results of SLIC, PSLIC-on-Spark, and PASLIC-on-
Spark for the quantitative evaluation. The results are obtained when k=500 and p=8
are given. (1) is the result of SLIC. (2) is the result of PSLIC-on-Spark. Compared
to (1), we observe that the superpixel is cut according to the split boundary of the
image block in (2), which degrades the accuracy of SLIC. (3)∼(6) is the results of
PASLIC-on-Spark, varying overlaph from 0 to 3. In (3), i.e., overlaph = 0 , PASLIC-
on-Spark generates similar shapes and positions of superpixels with SLIC in (1)
due to the strategy proposed in Section 5.1, but superpixel is still cut along the split
boundary of the image. We can observe that PASLIC-on-Spark forms a superpixel
that becomes similar with SLIC in (1) as overlaph increases from (4) to (6) due to
the strategy proposed in Section 5.2.

6 Performance evaluation

In this section, we experimentally evaluate our proposed methods using various
configurations.

4348 G. Park et al.

1 3

6.1 Experimental environments and data

To evaluate our proposed method, we measure the processing time and accuracy of
SLIC, PSLIC-on-Spark, and PASLIC-on-Spark.

For measuring the segmentation accuracy, we use the error metrics defined in
a superpixel benchmark [40]: boundary recall (BR) and under-segmentation error
(UE). BR follows the precision-recall concept [46] and calculates the ratio of the
obtained superpixel contained in the ground truth with respect to the ground truth
segments. Therefore, the larger the BR, the higher the accuracy. UE calculates the
ratio of the obtained superpixels out of the ground truth with respect to the ground
truth segments. Therefore, the smaller the UE, the higher the accuracy.

We use the Berkeley benchmark dataset [21] for our evaluation. It provides the
images for segmentation evaluation and the ground truth on detected objects. It
contains two image types according to the size: 480 × 320 and 320 × 480 pixels,
consisting of a total of 500 images. We additionally use various sizes of images of
1032 × 682 , 1426 × 951 , 1738 × 1159 , and 2002 × 1335 pixels, which are collected
from the web, to measure the performance with a variety of image sizes. For all
the experiments, we use a value of 10 for m, which is the preference between color
proximity and space proximity, and a value of 10 for the maximum number of itera-
tions that stop if no pixels are changed their clusters, which is the same condition as
in SLIC.

We conduct our experiments using two different environments on AWS: (1) a sin-
gle-node configuration using an AWS EC2 instance equipped with multiple proces-
sors and (2) a cluster configuration using AWS EMR with YARN and Spark 2.4.5 in
which each node has 8 vCPU cores. For the cluster configuration, we use one vCPU
core and one executor per node to focus on the actual network overhead of distrib-
uted computing while we focus on the effect of parallel processing in a single-node
configuration with multiple cores. As a data repository for AWS, we use S3 services
working with AWS EMR. We use the source code for SLIC in Python package pro-
vided in Anaconda 2.4.5 and the source code for superpixel benchmark.1

6.2 Experimental results of PSLIC‑on‑spark

6.2.1 Processing time

Figure 12 shows the average processing time of SLIC and PSLIC-on-Spark when
we process the 500 images using the single-node configuration. The original in
the x-axis shows the processing time of SLIC, and from partition2 to partition8
show that of PSLIC-on-Spark by varying the number of partitions from 2 to 8 in
which each partition is assigned to an executor (i.e., single CPU core). We also vary
the number of the target segments, k, from 500 to 2000. The result indicates that
PSLIC-on-Spark significantly improves the processing speed of SLIC-based image

1 https://github.com/davidstutz/superpixel-benchmark

https://github.com/davidstutz/superpixel-benchmark

4349

1 3

A parallel and accurate method for large‑scale image…

segmentation as we increase the number of partitions because of the parallel pro-
cessing in Spark. Specifically, partition8 reduces the processing time of SLIC by
approximately 2.23–2.92 times.

Figure 13 shows the processing time of SLIC and PSLIC-on-Spark for dif-
ferent image sizes. We calculate the average of the processing times for different
numbers of target segments k (500, 1000, 1500, and 2000) for each image size. In
this experiment, We evaluate five image sizes: 480 × 320 , 1032 × 682 , 1426 × 951 ,
1738 × 1159 , and 2002 × 1335 pixels. We note that the effect of parallel processing
becomes more significant as the image size increases, which shows the effectiveness
of PSLIC-on-Spark when dealing with a large-scale image. Specifically, PSLIC-
on-Spark with 8 partitions reduces the processing time of SLIC only by about 2.23

Fig. 11 The final results of original SLIC, PSLIC-on-Spark, and PASLIC-on-Spark

4350 G. Park et al.

1 3

times for the image of 480 × 320 pixels while it reduces that of SLIC by about 5.59
times for the image of 2002 × 1335 pixels. We note that the effect of the parallel-
ism becomes more significant when the image size becomes larger. This result
implies the initial constant cost to prepare for the task between the cluster master
and executors.

Figure 14 shows the processing time of SLIC and PSLIC-on-Spark using our dis-
tributed cluster configuration on AWS. original in the x-axis shows the processing
time of SLIC, and from partition2 to partition8 show that of PSLIC-on-Spark by
varying the number of partitions from 2 to 8 in which each partition is assigned to
a computing node. Here, we fix the target segments k as 1000 to focus on the per-
formance change due to the different numbers of nodes in the cloud environment.
We use two types of images: 1) a pixel size of 321 × 481 , and 2) that of 481 × 321 .
We use 348 images for the former and 152 images for the latter and obtain the aver-
age time for the entire 500 images. The result shows that PSLIC-on-Spark can

Fig. 12 Processing time of SLIC and PSLIC-on-Spark as the number of partitions is varied

Fig. 13 Processing time of SLIC and PSLIC-on-Spark as the image size is varied

4351

1 3

A parallel and accurate method for large‑scale image…

significantly improve the processing speed of SLIC as the number of partitions
increases because of the distributed processing in Spark using multiple computing
nodes. Specifically, partition8 reduces the processing time of SLIC by approxi-
mately 1.63 times. We can observe more efficient processing of PSLIC-on-Spark
as the number of partitions increases on a cloud environment as well. However, the
improvement is rather limited compared to the case of in a single-node configura-
tion, which stems from the network overhead occurred in a distributed environment.

6.2.2 Segmentation accuracy

Figure 15 shows the segmentation accuracy of SLIC and PSLIC-on-Spark. Fig-
ure 15a and b shows the average BR and UE of SLIC and PSLIC-on-Spark, respec-
tively, by varying the number of the target segments. Overall, the accuracy of
PSLIC-on-Spark is degraded as the number of partitions increases because it splits
each image more finely, maximizing the effects of Limitation 1 and Limitation 2
explained in Sect. 4.2. In addition, we observe that the degree of accuracy degrada-
tion becomes different according to the number of target segments k. Specifically,

Fig. 14 Processing time of PSLIC-on-Spark as the number of partitions is varied on a distributed envi-
ronment

Fig. 15 Accuracy of SLIC and PSLIC-on-Spark as the number of partitions increases

4352 G. Park et al.

1 3

as the number of segments becomes smaller (i.e., larger superpixels), the accuracy
degradation becomes more significant. Because, by Eq. 1, the greater S, which is
the size of the superpixel, the less the effect of dxy , the superpixel forms an irregular
shape that adheres to the boundary of an object. Here, when an image is partitioned
by PSLIC-on-Spark, the loss of information in superpixels becomes more signifi-
cant. Specifically, when k is 500, BR of PSLIC-on-Spark decreases that of SLIC
by about 6.3% , and UE increases by about 6.2% . In contrast, when k is 2000, BR of
PSLIC-on-Spark decreases that of SLIC only by about 2.3% , and UE increases only
by about 3.7%.

6.3 Experimental results of PASLIC‑on‑Spark

6.3.1 Processing time

Figure 16 compares the processing time of PASLIC-on-Spark with p = 8 in a sin-
gle-node configuration using two image types from the Berkeley benchmark dataset
[21]: 481 × 321 pixels and 321 × 481 pixels. We also vary the number of the target
segments, k, for the same image size, that are represented in different lines in the fig-
ure. Because the degree of overlapping in PASLIC-on-Spark depends on the size of
the regular grid, a maximum possible degree of overlapping could be affected by the
number of target segments, k and image size. As a result, we have a different maxi-
mum degree of overlapping for each case of PASLIC-on-Spark. Figure 16a shows
the average processing time of PASLIC-on-Spark for 481 × 321 pixels as the degree
of overlapping (i.e., overlaph) is varied from 0 to 5; Fig. 16b that for 321 × 481 pixels
images as overlaph is varied from 0 to 7. overlap0 in the x-axis shows the process-
ing time when overlaph is 0, which is approximately similar with that of PSLIC-on-
Spark. Varying from overlap1 to the maximum degree of overlapping (i.e., overlap5
for 481 × 321 pixels images and overlap7 for 321 × 481 pixels images), we meas-
ure the processing time of PASLIC-on-Spark. The experimental results show that
PASLIC-on-Spark increases the processing time due to the increase in image block
size as the overlapping of the image block increases. We note that PASLIC-on-
Spark is obviously slower than PSLIC-on-Spark roughly 1.68–1.81 times due to the

Fig. 16 Processing time of PASLIC-on-Spark as the degree of overlapping is varied on a single-node
configuration

4353

1 3

A parallel and accurate method for large‑scale image…

overlapping to improve the accuracy, but it is still faster than SLIC roughly 1.5–1.67
times in the case of using the degree of overlapping is 1 or more.

Figure 17 compares the processing time of PASLIC-on-Spark with p = 8 in a dis-
tributed environment with multiple nodes using two image types from the Berkeley
benchmark dataset [21]: 481 × 321 pixels and 321 × 481 pixels. Figure 17a shows
the average processing time of PASLIC-on-Spark for 481 × 321 pixels images of
overlaph from 0 to 5; Fig. 17b for 321 × 481 pixels images of overlaph from 0 to 7.
The experimental results show that PASLIC-on-Spark also increases the processing
time as the degree of overlapping increases on a distributed environment. PASLIC-
on-Spark is slower than PSLIC-on-Spark roughly 2.22–2.29 times, but it is still
faster than SLIC roughly 1.18–1.26 times in the case of using the degree of overlap-
ping is 1 or more.

6.3.2 Accuracy measurement

Figure 18 shows the segmentation accuracy of SLIC and PASLIC-on-Spark. Fig-
ure 18a and b shows the average BR of SLIC and PASLIC-on-Spark for 481 × 321
pixels and 321 × 481 pixels, respectively, by varying the number of the target

Fig. 17 Processing time of PASLIC-on-Spark as the degree of overlapping is varied on a distributed
environment

Fig. 18 Boundary Recall of SLIC and PASLIC-on-Spark as the degree of overlapping is varied

4354 G. Park et al.

1 3

segments. Overall, the BR of PASLIC-on-Spark becomes similar to that of SLIC
when the degree of overlapping increases after decreasing it at overlap0 signifi-
cantly. Specifically, the difference of BR between PASLIC-on-Spark and SLIC is
only 0.01–0.1%. We note that PASLIC-on-Spark significantly improves the BR of
PSLIC-on-Spark in the case of p = 8 by 3.66–3.77% when overlaph from 1 to max.

Figure 19 shows the segmentation accuracy of SLIC and PASLIC-on-Spark. Fig-
ure 19a and b shows the average UE of SLIC and PASLIC-on-Spark for 481 × 321
pixels and 321 × 481 pixels, respectively, by varying the number of the target seg-
ments. The overall patterns for UE are similar to them for BR. Specifically, UE
of PASLIC-on-Spark becomes similar to SLIC when the degree of overlapping
increases after increasing at overlap0 compared to SLIC. The difference of UE
between PASLIC-on-Spark and SLIC becomes less than that of UE between PSLIC-
on-Spark and SLIC in the case of p = 8, from 6.29% to 4.19% when overlaph is
maximum.

7 Conclusions

In this paper, we have presented a parallel algorithm for SLIC on Apache Spark,
which we call PSLIC-on-Spark. To this purpose, we have extended the original SLIC
algorithm to use the operations in Apache Spark, supporting its parallel process-
ing on multiple executors in the Apache Spark cluster. Then, we have analyzed the
trade-off relationship of PSLIC-on-Spark between its processing speed and accuracy
due to partitioning of the original image datasets. Especially, we have identified two
limitations in PSLIC-on-Spark, which degrade the accuracy of the original SLIC.
Through experiments, we have verified the trade-off relationship. Specifically, we
have shown that PSLIC-on-Spark using 8 CPU cores significantly reduces the pro-
cessing time of SLIC by 2.24–2.93 times while it reduces the boundary recall (BR)
of SLIC by 1.54–6.32% and increases under-segmentation error (UE) by 1.79–6.2%.

Then, we have proposed an improved algorithm of PSLIC-on-Spark that
improves the accuracy of PSLIC-on-Spark, which we call PASLIC-on-Spark. We
have employed two important features for PASLIC-on-Spark. It contains two main
features: (1) image partitioning considering the shape and position of the clusters

Fig. 19 Under segmentation error of SLIC and PASLIC-on-Spark as the degree of overlapping is varied

4355

1 3

A parallel and accurate method for large‑scale image…

rather than a evenly partitioning method and (2) controllable duplication for the
boundary between image partitions. Through experiments, we have shown the accu-
racy and efficiency of PASLIC-on-Spark on an actual cloud environment configured
with 8 worker nodes using Amazon AWS. The experimental results indicate that
PASLIC-on-Spark improves the accuracy of PSLIC-on-Spark by 3.66–3.77% of BR
and 1.39–1.96% of UE. PASLIC-on-Spark still decreases that of processing time
SLIC significantly 1.5–1.67 times on a single-node configuring using 8 CPU cores
and 1.18–1.26 times on a cloud environment using 8 computing nodes.

In this paper, we have proposed parallel algorithms of SLIC based on the Apache
Spark framework with a purpose for effectively operating them on a distributed
environment. Recently, there have been research efforts to incorporate deep learning
models to generate superpixels as described in Sect. 2. Deep learning models have
advantages in terms of increasing accuracy for a target purpose because it allows
to extract features suitable for given superpixels. Therefore, we plan to investigate
deep learning-based superpixel segmentation algorithms based on the Apache Spark
framework. It is a challenging issue because the deep learning models require high-
performance processing power using GPUs in a single node while the Apache Spark
framework requires scalable computing nodes in a distributed environment. Here,
we aim to provide the high and robust accuracy obtained by deep learning mod-
els while maintaining the high scalability for large-scale images supported by the
Apache Spark framework.

References

 1. Dass P, Rajeshwar Devi S (2012) Image segmentation techniques 1. Int J Electron Commun
Technol 3(1):66–70

 2. Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S (2012) Slic superpixels compared to
state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2282

 3. Wang M, Liu X, Gao Y, Ma X, Soomro NQ (2017) Superpixel segmentation: a benchmark. Sig-
nal Process Image Commun 56:28–39

 4. Xie X, Xie G, Xu X, Cui L, Ren J (2019) Automatic image segmentation with superpixels and
image-level labels. IEEE Access 7:10–11

 5. Shen Y, Ai T, Yang M (2019) Extracting centerlines from dual-line roads using superpixel seg-
mentation. IEEE Access 7:967–979

 6. Yang A, Hurt JA, Veal CT, Scott GJ (2019) “Remote sensing object localization with deep heter-
ogeneous superpixel features,” in 2019 IEEE International Conference on Big Data (Big Data).
IEEE, pp. 5453–5461

 7. Chuchvara A, Barsi A, Gotchev A (2019) Fast and accurate depth estimation from sparse light
fields. IEEE Trans Image Process 29:2492–2506

 8. Hossain MD, Chen D (2019) Segmentation for object-based image analysis (obia): a review of
algorithms and challenges from remote sensing perspective. ISPRS J Photogramm Remote Sens
150:115–134

 9. Xie X, Xie G, Xu X (2018) High precision image segmentation algorithm using slic and neigh-
borhood rough set. Multimedia Tools Appl 77(24):525–543

 10. Boemer F, Ratner E, Lendasse A (2018) Parameter-free image segmentation with slic. Neuro-
computing 277:228–236

 11. Qiao Y, Jiao L, Hou B (2018) High-quality depth up-sampling based on multi-scale slic. Electron
Lett 54(8):494–496

4356 G. Park et al.

1 3

 12. Donné S, Aelterman J, Goossens B, Philips W (2015) “Fast and robust variational optical flow for
high-resolution images using slic superpixels,” in International Conference on Advanced Concepts
for Intelligent Vision Systems. Springer, pp. 205–216

 13. Zhang K, Li T, Liu B, Liu Q (2019) Co-saliency detection via mask-guided fully convolutional
networks with multi-scale label smoothing, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3095–3104

 14. Zhang Y, Liu K, Dong Y, Wu K, Hu X (2019) Semisupervised classification based on slic segmen-
tation for hyperspectral image. IEEE Geosci Remote Sens Lett. https:// doi. org/ 10. 1109/ LGRS. 2019.
29455 46

 15. Crommelinck S, Bennett R, Gerke M, Koeva M, Yang M, Vosselman G (2017) Slic superpixels for
object delineation from uav data. ISPRS Annal Photogram Remote Sens Spatial Inform Sci 4:9

 16. Martins J, Junior JM, Menezes G, Pistori H, Sant D, Gonçalves W et al (2019) Image segmen-
tation and classification with slic superpixel and convolutional neural network in forest context,
in IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE
6543–6546

 17. Vimal S, Robinson YH, Kaliappan M, Vijayalakshmi K, Seo S (2021) A method of progression
detection for glaucoma using k-means and the glcm algorithm toward smart medical prediction. J
Supercomput. https:// doi. org/ 10. 1007/ s11227- 021- 03757-w

 18. Alsafasfeh M, Abdel-Qader I, Bazuin B (2017) “Fault detection in photovoltaic system using slic
and thermal images,” in 2017 8th International Conference on Information Technology (ICIT).
IEEE, pp. 672–676

 19. Fang Z, Zhang W, Ma H (2019) “Breast cancer classification with ultrasound images based on slic,”
in International Conference on Frontier Computing. Springer, pp. 235–248

 20. Van Etten A (2019) “Satellite imagery multiscale rapid detection with windowed networks,” in 2019
IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, pp. 735–743

 21. Martin D, Fowlkes C, Tal D, Malik J (2001) “A database of human segmented natural images and
its application to evaluating segmentation algorithms and measuring ecological statistics,” in Pro-
ceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2. IEEE, pp.
416–423

 22. Ren CY, Reid I (2011) gslic: a real-time implementation of slic superpixel segmentation, University
of Oxford. Department of Engineering, Technical Report, pp 1–6

 23. Derksen D, Inglada J, Michel J (2019) Scaling up slic superpixels using a tile-based approach. IEEE
Trans Geosci Remote Sens 57(5):3073–3085

 24. Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun
ACM 51(1):107–113

 25. Mavridis I, Karatza H (2017) Performance evaluation of cloud-based log file analysis with apache
hadoop and apache spark. J Syst Softw 125:133–151

 26. Alsheikh MA, Niyato D, Lin S, Tan H-P, Han Z (2016) Mobile big data analytics using deep learn-
ing and apache spark. IEEE Netw 30(3):22–29

 27. Guo R, Zhao Y, Zou Q, Fang X, Peng S (2018) Bioinformatics applications on apache spark. GigaS-
cience 7, no. 8:giy098

 28. Wu X, Liu X, Chen Y, Shen J, Zhao W (2018) A graph based superpixel generation algorithm. Appl
Intell 48(11):4485–4496

 29. Liu M-Y, Tuzel O, Ramalingam S, Chellappa R (2011) Entropy rate superpixel segmentation, in
CVPR. IEEE 2011:2097–2104

 30. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach
Intell 22(8):888–905

 31. Wang H, Shen J, Yin J, Dong X, Sun H, Shao L (2019) Adaptive nonlocal random walks for image
superpixel segmentation. IEEE Trans Circ Syst Video Technol 30(3):822–834

 32. Li Z, Chen J (2015) Superpixel segmentation using linear spectral clustering, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1356–1363

 33. Levinshtein A, Stere A, Kutulakos KN, Fleet DJ, Dickinson SJ, Siddiqi K (2009) Turbopixels: fast
superpixels using geometric flows. IEEE Trans Pattern Anal Mach Intell 31(12):2290–2297

 34. Wang T, Yin J, Yang J, Liu X (2019) Image gradient-based fast superpixel segmentation algorithm
for polsar images, in 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR).
IEEE, pp. 1–6

https://doi.org/10.1109/LGRS.2019.2945546
https://doi.org/10.1109/LGRS.2019.2945546
https://doi.org/10.1007/s11227-021-03757-w

4357

1 3

A parallel and accurate method for large‑scale image…

 35. Sun Z, Xuan P, Song Z, Li H, Jia R (2019) A texture fused superpixel algorithm for coal mine waste
rock image segmentation. Int J Coal Preparation Util. https:// doi. org/ 10. 1080/ 19392 699. 2019. 16995
46

 36. Sharma M, Biswas M (2021) Classification of hyperspectral remote sensing image via rotation-
invariant local binary pattern-based weighted generalized closest neighbor. J Supercomput 77(7):1–
34. https:// doi. org/ 10. 1007/ s11227- 020- 03474-w

 37. Zhao W, Fu Y, Wei X, Wang H (2018) An improved image semantic segmentation method based on
superpixels and conditional random fields. Appl Sci 8(5):837

 38. Jampani V, Sun D, Liu M-Y, Yang M-H, Kautz J (2018) “Superpixel sampling networks,” in Pro-
ceedings of the European Conference on Computer Vision (ECCV), pp. 352–368

 39. Yang F, Sun Q, Jin H, Zhou Z (2020) Superpixel segmentation with fully convolutional networks, in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp.
13 964–13 973

 40. Neubert P, Protzel P (2012) “Superpixel benchmark and comparison,” in Proc. Forum Bildverarbei-
tung, vol. 6, pp. 1–12

 41. Prajapati HB, Vij SK (2011) “Analytical study of parallel and distributed image processing,” in 2011
International Conference on Image Information Processing. IEEE, pp. 1–6

 42. Quesada-Barriuso P, Heras DB, Argüello F (2021) Gpu accelerated waterpixel algorithm for super-
pixel segmentation of hyperspectral images. J Supercomput 1–13

 43. Salloum S, Dautov R, Chen X, Peng PX, Huang JZ (2016) Big data analytics on apache spark. Int J
Data Sci Analyt 1(3–4):145–164

 44. Liu B, He S, He D, Zhang Y, Guizani M (2019) A spark-based parallel fuzzy c-means segmentation
algorithm for agricultural image big data. IEEE Access 7:169–180

 45. Park G-M, Heo YS, Kwon H-Y (2021) Trade-off analysis between parallelism and accuracy of slic
on apache spark, in 2021 IEEE International Conference on Big Data and Smart Computing (Big-
Comp). IEEE, pp. 5–12

 46. Martin DR, Fowlkes CC, Malik J (2004) Learning to detect natural image boundaries using local
brightness, color, and texture cues. IEEE Trans Pattern Anal Mach Intell 26(5):530–549

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Authors and Affiliations

Gangmin Park1 · Yong Seok Heo2 · Kisung Lee3 · Hyuk‑Yoon Kwon4

 Gangmin Park
 wjdrmf314@seoultech.ac.kr

 Yong Seok Heo
 ysheo@ajou.ac.kr

 Kisung Lee
 lee@csc.lsu.edu

1 Department of Industrial Engineering, Seoul National University of Science and Technology,
Seoul, Republic of Korea

2 Department of Electrical and Computer Engineering, Department of Artificial Intelligence,
Ajou University, Suwon, Republic of Korea

3 Division of Computer Science and Engineering, Louisiana State University, Baton Rouge,
Louisiana, US

4 Department of Industrial Engineering, Seoul National University of Science and Technology,
Seoul, Republic of Korea

https://doi.org/10.1080/19392699.2019.1699546
https://doi.org/10.1080/19392699.2019.1699546
https://doi.org/10.1007/s11227-020-03474-w
http://orcid.org/0000-0002-1125-6533

	A parallel and accurate method for large-scale image segmentation on a cloud environment
	Abstract
	1 Introduction
	2 Related work
	2.1 Superpixel segmentation
	2.2 The benchmark for superpixel segmentation
	2.3 Parallel processing of superpixel segmentation algorithms

	3 Background
	3.1 SLIC
	3.2 Apache Spark

	4 Parallelization of SLIC on Apache Spark
	4.1 PSLIC-on-Spark: A parallel algorithm for SLIC
	4.2 Limitations of PSLIC-on-Spark

	5 Improving segmentation accuracy
	5.1 Effective image partitioning
	5.2 Duplication for the boundary between image partitions
	5.3 Algorithm

	6 Performance evaluation
	6.1 Experimental environments and data
	6.2 Experimental results of PSLIC-on-spark
	6.2.1 Processing time
	6.2.2 Segmentation accuracy

	6.3 Experimental results of PASLIC-on-Spark
	6.3.1 Processing time
	6.3.2 Accuracy measurement

	7 Conclusions
	References

