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Abstract
In this paper, we present a parallel algorithm for SLIC on Apache Spark, which we 
call PSLIC-on-Spark. To this purpose, we have extended the original SLIC algo-
rithm to use the operations in Apache Spark, supporting its parallel processing on 
multiple executors in the Apache Spark cluster. Then, we analyze the trade-off rela-
tionship of PSLIC-on-Spark between its processing speed and accuracy due to parti-
tioning of the original image datasets. Through experiments, we verify the trade-off 
relationship. Specifically, we show that PSLIC-on-Spark using 8 CPU cores reduces 
the processing time of SLIC by 2.24–2.93 times while it reduces the boundary recall 
(BR) of SLIC by 1.54–6.32% and increases under-segmentation error (UE) by 1.79–
6.2%. Then, we propose an improved algorithm of PSLIC-on-Spark that improves 
the accuracy of PSLIC-on-Spark, which we call PASLIC-on-Spark. We employ two 
important features for PASLIC-on-Spark. It contains two main features: (1) image 
partitioning considering the shape and position of the clusters rather than a evenly 
partitioning method and (2) controllable duplication for the boundary between 
image partitions. Through experiments, we show the accuracy and efficiency of 
PASLIC-on-Spark on an actual cloud environment configured with 8 worker nodes 
using Amazon AWS. The experimental results indicate that PASLIC-on-Spark 
improves the accuracy of PSLIC-on-Spark by 3.66–3.77% of BR and 1.39–1.96% 
of UE. PASLIC-on-Spark still decreases that of processing time SLIC significantly 
1.5–1.67 times on a single-node configuring using 8 CPU cores and 1.18–1.26 times 
on a cloud environment using 8 computing nodes.
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1  Introduction

We are witnessing a huge amount of image data generated from various devices 
such as smartphones, medical devices, satellites, and surveillance cameras. Such 
image data are being stored and processed for many types of applications and 
services including facial recognition, autonomous driving, and precision medi-
cine. Since an image can include multiple objects with their semantic informa-
tion, we often use image segmentation techniques to detect the objects by par-
titioning the image into several segments [1]. For image segmentation, we can 
utilize several features of image data such as color, location, texture, and inten-
sity. Superpixel segmentation is the representative image segmentation technique 
that produces clusters (called superpixels) of similar and spatially close pixels 
[2]. Since superpixels can reduce the overhead of downstream tasks by provid-
ing summarized image data [3], they have been widely used for not only image 
segmentation [4] but also centerline extraction [5], object localization [6], and 
depth estimation [7]. Simple linear iterative clustering (SLIC) [2] is an efficient 
technique to find superpixels with the time complexity of O(N). SLIC has been 
applied to many kinds of computer vision tasks and applications such as segmen-
tation [8–10], depth estimation [11], optical flow estimation [12], saliency esti-
mation [13], hyperspectral image classification [14], object detection and clas-
sification in unmanned aerial vehicle (UAV) image data [15, 16], object detection 
for glaucoma in medical image data [17], fault detection of solar energy system 
in thermal image data [18], and a breast cancer classification in ultrasound image 
data [19].

One critical challenge for image segmentation is the increasing usage of high-
resolution images thanks to the advancement of imaging equipment. For example, 
one satellite image of DigitalGlobe has 256 million (16, 0002) pixels covering an 
area greater than 64km2 [20]. SLIC requires about 1600 times more time to pro-
cess a satellite image with 256 million pixels than to process an image with 0.15 
million pixels, which is the typical image size for evaluating image segmentation 
[21]. To efficiently process such high-resolution images for image segmentation, 
it is imperative that we extend SLIC for parallel and distributed processing using 
multiple cores and machines. Even though there are a few proposed techniques 
[22, 23] for parallel processing of SLIC, it is challenging to run SLIC in a parallel 
manner for a single image because we need to effectively partition the image into 
smaller blocks for parallelism. In other words, one image block may not include 
all necessary pixels to generate optimal superpixels.

In this paper, we propose and develop a parallel and distributed version of 
SLIC on top of Apache Spark, a state-of-the-art big data framework that provides 
the MapReduce programming model [24] for processing large-scale data on a 
cluster of machines. Spark has been widely used for various big data applica-
tions such as cloud-based log file analysis [25], mobile big data analysis [26], 
and bioinformatics data analysis [27]. We present a parallel algorithm for SLIC 
on Apache Spark, which we call PSLIC-on-Spark. To this purpose, we extend the 
original SLIC algorithm to use the operations in Apache Spark, supporting its 
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parallel processing on multiple executors in the Apache Spark cluster. Then, we 
propose an improved algorithm of PSLIC-on-Spark that improves the accuracy 
of PSLIC-on-Spark, which we call PASLIC-on-Spark. We employ two important 
features for PASLIC-on-Spark. It contains two main features: (1) image partition-
ing considering the shape and position of the clusters rather than a evenly parti-
tioning method and (2) controllable duplication for the boundary between image 
partitions.

The contributions of this paper are summarized as follows: 

1.	 We analyze the trade-off relationship of PSLIC-on-Spark between its processing 
speed and accuracy when performing segmentation for the original image data-
sets. Especially, we identify two limitations in PSLIC-on-Spark, which degrade 
the accuracy of the original SLIC.

2.	 We verify the trade-off relationship between the processing speed and the accu-
racy of PSLIC-on-Spark. Specifically, we show that PSLIC-on-Spark using 8 
CPU cores significantly reduces the processing time of SLIC by 2.24 ∼ 2.93 times 
while it reduces the boundary recall (BR) of SLIC by 1.54–6.32% and increases 
under-segmentation error (UE) by 1.79–6.2%. In contrast, PSLIC-on-Spark using 
2 CPU cores reduces the processing time of SLIC only by 1.38–1.45 times while it 
reduces the recall of SLIC only by 0.28–1.5%, and increases UE by 0.25 –1.77%.

3.	 We show the accuracy and efficiency of PASLIC-on-Spark on an actual cloud 
environment configured with 8 worker nodes using Amazon AWS. The experi-
mental results indicate that PASLIC-on-Spark improves the accuracy of PSLIC-
on-Spark by 3.66–3.77% of BR and 1.39–1.96% of UE. PASLIC-on-Spark still 
decreases that of processing time SLIC significantly 1.5–1.67 times on a single-
node configuring using 8 CPU cores and 1.18–1.26 times on a cloud environment 
using 8 computing nodes.

The paper is organized as follows. In Sect. 2, we explain the related work. In Sect. 3, 
we explain the background. In Sect. 4, we present the PSLIC-on-Spark algorithm 
and analyze the result in terms of the parallelism and the accuracy. In Sect. 5, we 
describe PASLIC-on-Spark algorithm to overcome the limitations of PSLIC-on-
Spark. In Section  6, we describe the experimental results to show the trade-off 
between the processing speed and the accuracy and the effectiveness of PASLIC-on-
Spark. In Sect. 7, we conclude the paper.

2 � Related work

In this section, we summarize the related works of this paper. It consists of three 
parts: (1) superpixel segmentation, (2) the benchmark for superpixel segmentation, 
and (3) parallel processing of superpixel segmentation algorithms.
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2.1 � Superpixel segmentation

Various algorithms for superpixel segmentation have been proposed. We can clas-
sify them into two groups of algorithms: (1) graph-based algorithms and (2) gra-
dient-ascent-based algorithms. In the graph-based algorithms, Wu et  al. [28] pro-
posed the Minstpixel algorithm based on the minimum spanning tree. The algorithm 
applies the greedy optimization strategy to the adjacent pixels from the first minimal 
gradient seed pixels. Liu et al. [29] proposed a superpixel segmentation algorithm 
using entropy rate. Here, each pixel is mapped to a node of the graph and the edge 
is defined between similar pixels. The entropy rate calculation takes into account 
the similarity between nodes and forms a cluster. Shi et al. [30] proposed a super-
pixel segmentation method that models the image pixels as a graph. That is, they 
mapped each pixel as the node and the similarity between pixels as the edge. Then, 
to generate superpixels, they partitioned the graph so as to minimize the dissimi-
larity between groups and maximize the similarity within groups. In the gradient-
ascent-based algorithms, Wang et al. [31] proposed an adaptive non-local random 
walk algorithm (ANRW). ANRW improves the accuracy of the superpixel by creat-
ing the initial cluster seeds based on the gradient of the pixels and by locating them 
to be not at the object boundary. Li et al. [32] proposed a linear spectral clustering 
(LSC) algorithm to map pixels of the image to a feature space in 10 dimensions. 
LSC preserves the global properties of the image by managing those high-dimen-
sional features. Levinshtein et al. [33] proposed a superpixel segmentation method, 
named turbo pixel, which calculates the gradient of the surrounding pixels for each 
initial seed pixel and expands the seed pixel to the gradient flow to form a superpixel 
until all pixels are assigned into one of superpixels.

Meanwhile, there have been research efforts that apply the superpixel segmenta-
tion algorithms to a specific dataset. Wang et al. [34] applied the SLIC algorithm 
to the polarimetric synthetic aperture radar (PolSAR) image data. Specifically, the 
gradient information in the PolSAR image used to reduce the number of repeti-
tions in SLIC and to improve the accuracy. Sun et al. [35] proposed SLFTIC that 
modifies SLIC for the classification of coal images. SLFTIC algorithm produces 
segments by combining color, space location, and texture information during the 
clustering phase, enabling to detect the segment of minerals that is similar with the 
background.

There have been studies using superpixel to solve problems in certain applica-
tions. Sharma and Biswas [36] used superpixel to classify hyper spectral images. In 
particular, for the classification process of hyper spectral images, graph-based super-
pixel segmentation, which uses the entropy rate of the path in the graph to segment 
pixels, is used to generate segments of HSI and to group extra homogeneous. Zhao 
et al. [37] proposed an improved image semantic segmentation method using super-
pixels and conditional random fields (CRFs). In this work, superpixel-level semantic 
features, which are created through SLIC superpixel, and pixel-level semantic fea-
tures, which are created through fully convolutional networks (FCN), are combined 
to improve the segmentation results.

Recently, due to the development of deep learning techniques, there have also 
been many research efforts to produce superpixels through deep neural networks. 
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Jampani et al. [38] applied a convolutional neural network (CNN) model to extract 
the features for obtaining superpixels, enabling the extraction of features tailored to 
given superpixels, instead of fixed features. Yang et al. [39] proposed a superpixel 
segmentation using a CNN model. They regarded the initial regular grids of the 
image as the clusters and classified each pixel into one of the surrounding clusters 
using a CNN model, resulting in each cluster becoming a superpixel.

2.2 � The benchmark for superpixel segmentation

The performance of superpixel segmentation has been evaluated by various metrics. 
Neubert et al. [40] evaluated the performance of eight superpixel segmentation algo-
rithms by using two metrics: the boundary recall and the under-segmentation error, 
which are typical metrics to evaluate the error in superpixel. Radhakrishna et al. [2] 
compared 5 superpixel algorithms using boundary recall, under-segmentation error, 
segmentation speed, and segmentation accuracy.

2.3 � Parallel processing of superpixel segmentation algorithms

There have been only a few existing methods to deal with parallel processing in 
superpixel algorithms. Prajapati and Vij [41] classified parallel processing types into 
three categories: (1) data parallelization, (2) task parallelization, and (3) pipeline 
parallelization. Ren and Reid [22] proposed a gSLIC algorithm that expands the 
SLIC algorithm to be parallelized for the Nvidia CUDA framework based on GPU. 
Similarly, Quesada-Barriuso et al. [42] proposed a waterpixel algorithm to be paral-
lelized for the Nvidia CUDA framework for hyperspectral remote sensing images. 
Derkson [23] partitioned the entire image with a tile-wise framework in SLIC, which 
tries to preserve the original superpixel in each partitioned image block to reduce 
the accuracy degradation by allowing overlapping between partitioned images.

A few studies [22, 23] have been proposed to extend SLIC for parallel algorithms. 
However, they still have the limitation in applying them in a distributed environ-
ment. Derksen et al. [23] proposed their own parallel algorithm for SLIC; however, 
there is a limitation in scalability and availability because the additional implemen-
tation for them is required. Ren and Reid [22] proposed a parallel superpixel algo-
rithm so as to leverage multiple GPUs. However, its scalability is limited to a pos-
sible maximum number of GPUs equipped in a single machine and it requires much 
effort to extend it to a distributed environment.

Processing methods based on Apache Spark, including our methods, can natu-
rally support scalability and availability in dealing with large-scale images [43]. 
Without Apache Spark, we need to additionally develop those functionalities. More-
over, Apache Spark allows us to easily support parallel processing in a scalable dis-
tributed environment by constructing the algorithms with map and reduce opera-
tions. Without Apache Spark, we need to directly implement the parallelism of the 
algorithms considering an underlying distributed configuration. As a result, we do 
not directly compare the method proposed in this paper with the previous parallel 
algorithms for SLIC [22, 42].
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It has been shown that a method based on Apache Spark is a feasible approach in the 
image processing as well. Liu et al. [44] proposed distributed processing of the fuzzy 
c-means algorithm based on Apache Spark to segment pixels in agricultural image 
data. That is, they extended the existing fuzzy c-means algorithm to the Apache Spark 
framework. However, to the best of our knowledge, there have been no attempts to pro-
duce superpixel on Apache Spark, and this paper is the first research effort to study a 
parallel and distributed processing method for SLIC on Apache Spark.

A preliminary version of this work appeared in Proc. 2021 IEEE International 
Conference on Big Data and Smart Computing, pp. January 5–12, 2021 [45]. This is a 
fully rewritten and extended version of the preliminary version. The major extensions 
include (1) a completely new algorithm, PASLIC-on-Spark, to improve the accuracy 
than the algorithm in the preliminary version, (2) new experiments on an actual dis-
tributed environment using Amazon AWS, and (3) the detailed and extended study on 
related work.

3 � Background

In this section, we provide a brief background about SLIC and Apache Spark.

3.1 � SLIC

SLIC utilizes two types of pixel information to generate superpixels: (1) pixel color 
information and (2) pixel location in the given image [2]. It represents the pixel color 
information as a three-dimensional vector (L, a, b) in the CIELAB color space. For the 
pixel location, it uses a two-dimensional position (x, y) on the Euclidean space. SLIC 
uses the vectors to calculate the distance between a pixel and a cluster center during 
pixel clustering.

Given that there are N pixels in an input image, SLIC groups them into k (an input 
parameter for running SLIC) clusters (or segments). Assuming roughly equally sized 
clusters, the distance S between two cluster centers is approximately 

√

N∕k , and the 
size of a cluster is approximately S × S . Therefore, to find a cluster, SLIC assumes that 
pixels related to this cluster are located within the range of 2S × 2S around the cluster 
center, reducing the overhead of clustering. Then, SLIC calculates the distance between 
a pixel i, which is represented in [li, ai, bi, xi, yi] , and a k-th superpixel cluster center, 
which is represented as [lk, ak, bk, xk, yk] . To calculate the distance, SLIC uses two dis-
tance values: (1) color value distance dlab and (2) Euclidean distance dxy , as defined 
in Eq. 1. The final distance is the sum of the color value distance and the normalized 
Euclidean distance, as defined in Eq. 1.

(1)
dlab =

√

(lk − li)
2 + (ak − ai)

2 + (bk − bi)
2

dxy =
√

(xk − xi)
2 + (yk − yi)

2

Ds = dlab +
m

S
dxy



4336	 G. Park et al.

1 3

To adjust the weight of each distance value, SLIC uses a parameter called m. By 
increasing m, we can give higher weights to dxy . When we deal with the large size 
of superpixels, dxy is considered much more importantly than dlab [2]. Initially, SLIC 
splits the entire image into regular grids with a constant size where each grid is 
mapped to a target segment. Then, it iteratively updates the segmentation label of 
each pixel by computing Ds between the pixel and the cluster center Ck and finding 
the nearest cluster.

3.2 � Apache Spark

Apache Spark is a state-of-the-art open-source big data framework that supports 
MapReduce-like operations on a cluster of machines and provides efficient large-
scale data processing through in-memory persistence and execution optimizations 
[43]. Spark, as a unified processing engine, can be configured with one of several 
resource management frameworks such as YARN and Kubernetes. A typical Spark 
cluster consists of a master node (and potentially one standby node for high avail-
ability) and a set of worker nodes. Figure 1 shows working of a typical MapReduce 
job on a Spark cluster. When the job is submitted to the master node, Spark distrib-
utes the job into multiple executors on multiple worker nodes for parallel process-
ing. There is no data shuffling among the executors in the map phase. Spark also 

Fig. 1   The architecture of Apache Spark cluster
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supports various storage engines such as HDFS (Hadoop Distributed File System), 
MongoDB, and Amazon S3 to store input and output data.

Resilient Distributed Datasets (RDDs) are the fundamental unit of data in Apache 
Spark. RDDs are partitioned across multiple machines on a cluster for parallel pro-
cessing of large-scale data. Since RDDs are immutable, we can only create new ones 
based on existing ones, instead of modifying existing RDD data. Spark supports two 
types of operations: (1) transformations and (2) actions. We can create a new RDD 
from an existing one using a transformation. For example, the map and filter 
operations are frequently used transformations. On the other hand, an action trig-
gers actual data processing and returns a value to the driver program (or results are 
written to the storage system). For example, the reduce and take operations are 
actions. Figure 2 shows the working of a typical Spark job that consists of multiple 
transformations followed by one action. After we create an input RDD, we process 
the data and generate new RDDs through transformations. Because of the lazy eval-
uation in Spark, the transformations will not start actual data processing. The action 
will trigger the actual processing and return a value.

4 � Parallelization of SLIC on Apache Spark

In this section, we describe our parallel algorithm that can run SLIC on the top of 
Apache Spark.

4.1 � PSLIC‑on‑Spark: A parallel algorithm for SLIC

Given an input image, our algorithm partitions the image into smaller image blocks 
to utilize the parallel processing capability of Spark. Our algorithm consists of two 
core parts: (1) Algorithm 1 for the cluster master and (2) Algorithm 2 for the exec-
utors. As a first step, we determine how to partition the image and distribute the 
partitioned image blocks to the executors. We assign one image block to executor i 
with (1) pixel ranges in the image to be processed in i ( PRi ) and (2) the number of 
target segments assigned to i ( TSi ). To calculate PRi , we horizontally partition the 
input image to generate equally sized image blocks. To calculate TSi , we divide the 
total number of segments by the number of executors to evenly distribute segments 
among the executors. In the case of PRi , we assign the remaining pixels divided by 

Fig. 2   Resilient distributed datasets on Apache Spark
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p, which is the target number of partitions, to some of the executors; in the case of 
TSi , we simply cut the remaining segments off.

Algorithm 1 takes the inputs: (1) an array PRi(1 ≤ i ≤ p) , (2) TSi, (1 ≤ i ≤ p) , and 
(3) the target number of partitions, p, which is equal to the number of executors. The 
algorithm runs three Spark operations: (1) parallelize for assigning PRi and TSi 
to each executor among p executors, (2) map(SLIC) for transferring function SLIC 
(the original SLIC algorithm) to each executor, and (3) reduce for integrating the 
results of all executors. The final results are represented in 

∑p

i=1
Si . Algorithm 2 for 

an executor i takes the inputs: 1) PRi , (2) TSi . Each executor i runs the given SLIC 
algorithm on its assigned image block to generate superpixels Si.

Figure 3 shows the overall process of PSLIC-on-Spark using an example. In step 
(A), PSLIC-on-Spark horizontally partitions the input image and assigns one image 

Fig. 3   The overall process of PSLIC-on-Spark
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block to each executor using the parallelize operation. In step (B), PSLIC-on-
Spark transfers the original SLIC algorithm to all executors for parallel processing 
using the map operation. In step (C), each executor runs the SLIC algorithm on its 
assigned image block to generate sub-superpixels. In step (D), PSLIC-on-Spark 
aggregates all sub-superpixels generated by all executors using the reduce opera-
tion to get final superpixels.

4.2 � Limitations of PSLIC‑on‑Spark

Even though PSLIC-on-Spark can improve the processing speed of SLIC using 
multiple executors, it may generate different segments, compared to those of SLIC, 
because a partitioned image block is independently processed without having access 
to other image blocks. In this section, we analyze the limitations of PSLIC-on-
Spark in terms of its accuracy by comparing it to that of SLIC. Specifically, we find 
two limitations regarding the accuracy of PSLIC-on-Spark: (1) loss of some pix-
els required in calculating one superpixel and (2) boundary mismatch between sub-
superpixels in adjacent image blocks.

Limitation 1. As described in Sect.  3.1, SLIC assumes that pixels related to a 
cluster are located within the range of 2S × 2S around its cluster center. Figure 4a 
shows a cluster and its 2S × 2S range. However, since PSLIC-on-Spark partitions the 
input image into smaller image blocks for parallel processing, one image block can-
not have all pixels located within the 2S × 2S range in the original input image, as 
depicted in Fig. 4b. Therefore, the accuracy of PSLIC-on-Spark can degrade com-
pared to that of the original SLIC algorithm.

Limitation 2. Since each executor processes one image block independently 
without having access to other image blocks in PSLIC-on-Spark, there can be 
boundary mismatches between adjacent image blocks when PSLIC-on-Spark 
integrates sub-superpixels generated by all executors. For example, Fig. 5a shows 

Fig. 4   The loss of some pixels 
required in calculating one 
superpixel in PSLIC-on-Spark

Fig. 5   The boundary mismatch 
in PSLIC-on-Spark
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the segmentation result of SLIC on an input image while Fig. 5b shows the result 
of PSLIC-on-Spark on the partitioned image blocks with boundary mismatches 
between the sub-superpixels.

We explain the limitations using a full image in detail. Figure  6a shows the 
result of SLIC when the number of target segments is 300. Figure 6b shows the 
integrated result of PSLIC-on-Spark when we run eight executors (i.e., eight 
image blocks). Figure  6c highlights the segmentation difference between SLIC 
and PSLIC-on-Spark for image block 5 in detail. The green area represents the 
portion of a superpixels covering the object wall, while the red area shows the 
region not overlapping with the object wall. This shows the effectiveness of SLIC 
in detecting the object. It also shows that PSLIC-on-Spark preserves most parts 
of the original superpixel but loses some parts because of Limitation 1. Fig-
ure 6d shows that the superpixels generated by PSLIC-on-Spark at the boundary 
between image blocks 5 and 6 do not match smoothly because of Limitation 2.

The number of partitions in PSLIC-on-Spark determines the size of each par-
titioned image block when the number of target segments is fixed. As the size of 
each image block becomes small, the effects of Limitation 1 and Limitation 2 

Fig. 6   The comparison of the results by SLIC and PSLIC-on-Spark
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will increase. This implies that as the number of partitions increases, PSLIC-on-
Spark will generate smaller partitioned image blocks, degrading the segmentation 
accuracy while increasing the parallelism of the algorithm. We verify this impli-
cation through the extensive experimental results in Sect. 6.

5 � Improving segmentation accuracy

Section  4 describes the limitations of PSLIC-on-Spark in terms of segmentation 
accuracy. In this section, we propose an improved algorithm, called Parallel-and-
Accurate SLIC-on-Spark (PASLIC-on-Spark in short), that maintains the benefit of 
parallel processing of PSLIC-on-Spark while reducing the accuracy degradation 
incurred by image partitioning. It contains two main features: (1) effective image 
partitioning (in Sect. 5.1) and (2) duplication for the boundary between image parti-
tions (in Sect. 5.2).

5.1 � Effective image partitioning

In this section, we devise a new image partitioning and allocation method for solv-
ing Limitation 2 described in Sect. 4.2 (i.e., boundary mismatch between sub-super-
pixels in adjacent image blocks). To reduce accuracy loss incurred by partitioning, 
it is necessary to minimize the inconsistency between sub-superpixels. Since we run 
SLIC on each partitioned image block, we can improve accuracy of segmentation if 
we effectively partition the input image such that partitioned image blocks preserve 
the superpixels in the entire input image. As described in Sect. 3.1, SLIC divides the 
entire image into regular grids of the constant size, which is determined by a target 
number of segments, k, along with the initial cluster center Ci(1 ≤ i ≤ k).

Then, the clusters are iteratively updated by computing the distance between clus-
ter centers Ck and the surrounding pixels. Here, the important observation is that the 
final shape and position of the superpixel become different depending on the initial 
cluster center Ck . Thus, if we split the image without considering a target number 
of segment k and regular grids in the original image, such as PSLIC-on-Spark, the 
position of cluster center Ck in each image block would be significantly different 
from the result of the original SLIC.

In PASLIC-on-Spark, to resolve the superpixel mismatch problem, we propose 
a method for partitioning the input image while preserving the regular grids in the 
original image. In other words, by partitioning the image along the boundaries of 
the regular grid, we can preserve the number and shape of superpixels as similar 
as possible to the SLIC results from the original image. Specifically, while PSLIC-
on-Spark evenly distributes all pixels across all executors, PASLIC-on-Spark uses 
the regular grids, instead of pixels, as the unit for partitioning the input image. For 
example, for the input image in Fig.7, assuming that there are 27 rows of grids and 
8 executors, PASLIC-on-Spark assigns three or four grids to each executor. Even 
though the pixels are not evenly distributed unlike PSLIC-on-Spark, PASLIC-on-
Spark can preserve the original regular grids in the input image.
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Table 1   The notation for PASLIC-on-Spark

Variables Definition

S The initial distance between two adjacent cluster centers
p The number of target partitions
i The i-th image block out of partitioned image blocks in the height of the 

image (1 ≤ i ≤ p)

pixelh The number of pixels in the height of the image
pixelw The number of pixels in the width of the image
pixel-partition(pixelh, p, i) i-th image block partitioned by p consisting of pixels ranged from ( pixelh

p
× i) 

to ( pixelh
p

× (i + 1) − 1) where pixelh
p

 is rounded down to the first decimal 
point

gridh The number of grids in the height of the image
gridh(i) The number of grids in the height of the i-th image block
gridw The number of grids in the width of the image
grid-partition(gridh, p, i) i-th image block partitioned by p consisting of grids ranged from ( gridh

p
× i) to 

(
gridh

p
× (i + 1) − 1) where the remainder grids of gridh

p
 are distributed one by 

one from the top image blocks
overlaph The number of grids overlapped from one side of the image block

Fig. 7   The partitioned result comparison between PSLIC-on-Spark and PASLIC-on-Spark



4343

1 3

A parallel and accurate method for large‑scale image…

Table  1 shows the notations needed to explain how to partition images for 
PASLIC-on-Spark. SLIC partitions the entire image in the unit of regular grids 
where each one is S × S in size. Then, the image consists of the number of grids 
calculated by gridh × gridw . In PSLIC-on-Spark and PASLIC-on-Spark, we define 
gridh(i) for the i-th image block partitioned by p to differently represent the number 
of grids for each image block. gridw is the same for all of SLIC, PSLIC-on-Spark, 
and PASLIC-on-Spark because we partition the image in the height. SLIC uses the 
number of grids, i.e., gridh × gridw , for a target number of segments k. In PSLIC-on-
Spark and PASLIC-on-Spark, we use 

∑p

i=1
gridh(i) × gridw for k. gridh(i) for PSLIC-

on-Spark is calculated by pixel-partition(pixelh, p, i) in the unit of the pixel and that 
for PASLIC-on-Spark by grid-partition(gridh, p, i) in the unit of the grid.

Figure7 shows the result of segmenting images of 321 × 481 pixels according to 
PSLIC-on-Spark and that according to PASLIC-on-Spark. We can verify the effect 
of preserving the initial regular grids in PASLIC-on-Spark compared to PSLIC-on-
Spark. In the example as in Fig.7, we have the number of target segments, k, is 500 
and the number of partitions p is 8. First, let us consider the application of SLIC to 
the example image. In SLIC, S = 18, gridh = 27 and gridw = 18 are obtained by the 
definition for a given image based on the SLIC algorithm, resulting that a target k 
is redefined as gridh × gridw = 486 . Then, let us compare this result with those of 
PSLIC-on-Spark and PASLIC-on-Spark. In PSLIC-on-Spark, we partition the entire 
image by p evenly in the unit of the pixel. Because gridh(i) of every image block i 
is 3, each image block consists of 54 grids and k of the image becomes 432. This 
implies that, PSLIC-on-Spark produces less superpixels than SLIC roughly 11.2% 
(i.e., 1-432

486
 ), which degrades the overall accuracy. However, in PASLIC-on-Spark, 

k is preserved as 486 as in SLIC because each image block can contain different 
number of grids (i.e., 3 or 4 in this example). Furthermore, we can also preserve 
the initial cluster centers by preserving the initial regular grids, which affects the 
improvement of the accuracy of PASLIC-on-Spark.

As shown in Fig.  8, PSLIC-on-Spark has quite different segmentation results 
compared to SLIC because the number of target segments and the position of cluster 

Fig. 8   The final result comparison of SLIC, PSLIC-on-Spark, and PASLIC-on-Spark
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centers are different. In particular, even superpixels located in the middle of the 
image block, which are less affected by partitioning, also differ from the superpixels 
of the original SLIC. On the other hand, PASLIC-on-Spark produces superpixels of 
relatively similar numbers and shapes compared to the original SLIC results. How-
ever, we can observe that the superpixels still have a different shape at the boundary 
between image blocks.

5.2 � Duplication for the boundary between image partitions

In this section, we devise a method to improve the segmentation accuracy by 
addressing Limitation 1 (i.e., incomplete pixel information between partitioned 
image blocks) discussed in Sect. 4.2. Although transferring the required pixels 
via network communication between different nodes can preserve the original 
accuracy of SLIC, network overhead can dramatically degrade processing effi-
ciency in a distributed environment. Therefore, in PASLIC-on-Spark, we aim 
to minimize the accuracy degradation while maintaining the efficiency of dis-
tributed processing by storing partially redundant data on each node. Specifi-
cally, we store additional pixels that are required to construct superpixels in 
adjacent executors redundantly, removing the network overhead and improving 
the accuracy. Basically, SLIC can be influenced by pixels in the entire image 
because cluster centers are repeatedly updated. Thus, the closer a image block in 
each executor is to the size of the original image, the more accurate results can 
be generated. Thus, a trade-off relationship is established between the degree 
to which image blocks are stored in duplicate and accuracy as discussed in 
Sect. 4.2. overlaph , defined in Table 1, refers to the number of grids expanding to 
one side of the image block. We have the following three cases for overlaph . (1) 
If overlapping does not occur between the image blocks as in PSLIC-on-Spark, 
overlaph of the image block is zero. (2) For the first and last image blocks, the 
grid can be expanded to only one side, and the number of expanded grid in the 
image block increases by overlaph . (3) For the other image blocks, the grid can 

Fig. 9   The area expanded by the overlapping in PASLIC-on-Spark
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be expanded in both sides, and the number of expanded grid in image blocks 
increases by 2 × overlaph . We constraint a possible maximum overlaph of an 
image block i as gridh(i) − 1 to prevent the overlapped area to be larger than the 
image block. Figure 9 shows the expanded area obtained by PASLIC-on-Spark 
when the number of target segments K = 500 and the number of partition p = 8 
are given. In the image block of Fig.9, the red area represents an expanded grid. 
For the first and last image blocks, gridh(i) increases by overlaph . For the other 
image blocks, gridh(i) increases by 2 × overlaph.

When the image blocks obtained in the worker nodes are aggregated in the 
cluster master, a method of the superpixel integration for the overlapped area 
between image blocks needs to be carefully designed because it affects the accu-
racy of superpixels. Algorithm  3 shows the integration process of overlapped 
regions between image blocks. Algorithm  3 takes the inputs: (1) an array of 
image blocks, IBi , (2) an array of cluster label of IBi(Li ). First, we initialize SBi 
as the split boundary of IBi . Then, we initialize an array for a set of clusters 
that cross with SBi , boundarySeg, as one of the overlapped image blocks (i.e., 
we choose the block above in the implementation). For the pixels in a region S 
in SBi , we update the label of the pixel as the cluster of the image block above 
if it belongs to boundarySeg, otherwise, we label it as the cluster of the other 
image block (i.e., the block below). The algorithm repeats for each image block 
i. Then, the entire label of the image, L, is updated by each cluster label Li.

Figure  10 shows the process to integrate the area overlapped between two 
image blocks IB3andIB4 when k=500 and p=8 are given. The dotted line means 
the split boundary between image blocks. In Fig.  10a, the red area under the 
dotted line means the expanded area of IB3 . In Fig. 10b, we select a superpixel 
generated from IB3 cross the split boundary. In Fig. 10c, the selected clusters are 
preserved as the complete superpixels obtained in IB3 . In Fig. 10d, the remain-
ing pixels that are not included by superpixels of IB3 are selected from IB4.
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5.3 � Algorithm

PASLIC-on-Spark consists of two core parts: (1) the algorithm for the cluster master, 
Algorithm 4, and (2) the algorithm for the executors, Algorithm 5. Unlike PSLIC-
on-Spark, PASLIC-on-Spark needs to deal with expanded and overlapped pixels 
and the number of target segments are required for each image block. We define 
the pixels for each worker i, PR∗

i
 , the number of target segments for i, TSi . PR∗

i
 con-

sists of (1) a image block partitioned by p considering the regular grids explained in 
Section 5.1, PRi , and (2) overlapped areas between image blocks explained in Sec-
tion 5.2, Oi.

Algorithm  4 takes the inputs: (1) an array PR∗
i
(1 ≤ i ≤ p) , (2) an array 

TSi(1 ≤ i ≤ p) , and (3) the number of partition, p. The algorithm executes three 
Spark operations: (1) parallelize for assigning PR∗

i
 and TSi for each executor 

i, (2) map for transferring a variation of the SLIC algorithm, SLIC∗ , which is the 
same as SLIC only removing the postprocessing (i.e., enforce connectivity), to each 
worker, and (3) reduce for integrating the results of all executors. Then, for all the 

Fig. 10   The process of integration of overlapped area between image blocks in PASLIC-on-Spark



4347

1 3

A parallel and accurate method for large‑scale image…

results transferred from all executors, we apply Algorithm  3 to integrate the sub-
results into one final result. Finally, we enforce the connectivity, which is the same 
postprocessing as in SLIC.

Algorithm 5 for each executor i takes the inputs from the cluster master: 1) PR∗
i
 , 

2) TSi . The executor i runs the SLIC∗ algorithm transferred from the cluster master 
on its assigned image block to generate superpixels Li . The outputs of Algorithm 5, 
∑p

i=1
Li , are integrated as one output by the cluster master.

Figure  11 shows the final results of SLIC, PSLIC-on-Spark, and PASLIC-on-
Spark for the quantitative evaluation. The results are obtained when k=500 and p=8 
are given. (1) is the result of SLIC. (2) is the result of PSLIC-on-Spark. Compared 
to (1), we observe that the superpixel is cut according to the split boundary of the 
image block in (2), which degrades the accuracy of SLIC. (3)∼(6) is the results of 
PASLIC-on-Spark, varying overlaph from 0 to 3. In (3), i.e., overlaph = 0 , PASLIC-
on-Spark generates similar shapes and positions of superpixels with SLIC in (1) 
due to the strategy proposed in Section 5.1, but superpixel is still cut along the split 
boundary of the image. We can observe that PASLIC-on-Spark forms a superpixel 
that becomes similar with SLIC in (1) as overlaph increases from (4) to (6) due to 
the strategy proposed in Section 5.2.

6 � Performance evaluation

In this section, we experimentally evaluate our proposed methods using various 
configurations.
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6.1 � Experimental environments and data

To evaluate our proposed method, we measure the processing time and accuracy of 
SLIC, PSLIC-on-Spark, and PASLIC-on-Spark.

For measuring the segmentation accuracy, we use the error metrics defined in 
a superpixel benchmark [40]: boundary recall (BR) and under-segmentation error 
(UE). BR follows the precision-recall concept [46] and calculates the ratio of the 
obtained superpixel contained in the ground truth with respect to the ground truth 
segments. Therefore, the larger the BR, the higher the accuracy. UE calculates the 
ratio of the obtained superpixels out of the ground truth with respect to the ground 
truth segments. Therefore, the smaller the UE, the higher the accuracy.

We use the Berkeley benchmark dataset [21] for our evaluation. It provides the 
images for segmentation evaluation and the ground truth on detected objects. It 
contains two image types according to the size: 480 × 320 and 320 × 480 pixels, 
consisting of a total of 500 images. We additionally use various sizes of images of 
1032 × 682 , 1426 × 951 , 1738 × 1159 , and 2002 × 1335 pixels, which are collected 
from the web, to measure the performance with a variety of image sizes. For all 
the experiments, we use a value of 10 for m, which is the preference between color 
proximity and space proximity, and a value of 10 for the maximum number of itera-
tions that stop if no pixels are changed their clusters, which is the same condition as 
in SLIC.

We conduct our experiments using two different environments on AWS: (1) a sin-
gle-node configuration using an AWS EC2 instance equipped with multiple proces-
sors and (2) a cluster configuration using AWS EMR with YARN and Spark 2.4.5 in 
which each node has 8 vCPU cores. For the cluster configuration, we use one vCPU 
core and one executor per node to focus on the actual network overhead of distrib-
uted computing while we focus on the effect of parallel processing in a single-node 
configuration with multiple cores. As a data repository for AWS, we use S3 services 
working with AWS EMR. We use the source code for SLIC in Python package pro-
vided in Anaconda 2.4.5 and the source code for superpixel benchmark.1

6.2 � Experimental results of PSLIC‑on‑spark

6.2.1 � Processing time

Figure 12 shows the average processing time of SLIC and PSLIC-on-Spark when 
we process the 500 images using the single-node configuration. The original in 
the x-axis shows the processing time of SLIC, and from partition2 to partition8 
show that of PSLIC-on-Spark by varying the number of partitions from 2 to 8 in 
which each partition is assigned to an executor (i.e., single CPU core). We also vary 
the number of the target segments, k, from 500 to 2000. The result indicates that 
PSLIC-on-Spark significantly improves the processing speed of SLIC-based image 

1  https://github.com/davidstutz/superpixel-benchmark

https://github.com/davidstutz/superpixel-benchmark
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segmentation as we increase the number of partitions because of the parallel pro-
cessing in Spark. Specifically, partition8 reduces the processing time of SLIC by 
approximately 2.23–2.92 times.

Figure  13 shows the processing time of SLIC and PSLIC-on-Spark for dif-
ferent image sizes. We calculate the average of the processing times for different 
numbers of target segments k (500, 1000, 1500, and 2000) for each image size. In 
this experiment, We evaluate five image sizes: 480 × 320 , 1032 × 682 , 1426 × 951 , 
1738 × 1159 , and 2002 × 1335 pixels. We note that the effect of parallel processing 
becomes more significant as the image size increases, which shows the effectiveness 
of PSLIC-on-Spark when dealing with a large-scale image. Specifically, PSLIC-
on-Spark with 8 partitions reduces the processing time of SLIC only by about 2.23 

Fig. 11   The final results of original SLIC, PSLIC-on-Spark, and PASLIC-on-Spark
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times for the image of 480 × 320 pixels while it reduces that of SLIC by about 5.59 
times for the image of 2002 × 1335 pixels. We note that the effect of the parallel-
ism becomes more significant when the image size becomes larger. This result 
implies the initial constant cost to prepare for the task between the cluster master 
and executors.

Figure 14 shows the processing time of SLIC and PSLIC-on-Spark using our dis-
tributed cluster configuration on AWS. original in the x-axis shows the processing 
time of SLIC, and from partition2 to partition8 show that of PSLIC-on-Spark by 
varying the number of partitions from 2 to 8 in which each partition is assigned to 
a computing node. Here, we fix the target segments k as 1000 to focus on the per-
formance change due to the different numbers of nodes in the cloud environment. 
We use two types of images: 1) a pixel size of 321 × 481 , and 2) that of 481 × 321 . 
We use 348 images for the former and 152 images for the latter and obtain the aver-
age time for the entire 500 images. The result shows that PSLIC-on-Spark can 

Fig. 12   Processing time of SLIC and PSLIC-on-Spark as the number of partitions is varied

Fig. 13   Processing time of SLIC and PSLIC-on-Spark as the image size is varied
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significantly improve the processing speed of SLIC as the number of partitions 
increases because of the distributed processing in Spark using multiple computing 
nodes. Specifically, partition8 reduces the processing time of SLIC by approxi-
mately 1.63 times. We can observe more efficient processing of PSLIC-on-Spark 
as the number of partitions increases on a cloud environment as well. However, the 
improvement is rather limited compared to the case of in a single-node configura-
tion, which stems from the network overhead occurred in a distributed environment.

6.2.2 � Segmentation accuracy

Figure  15 shows the segmentation accuracy of SLIC and PSLIC-on-Spark. Fig-
ure 15a and b shows the average BR and UE of SLIC and PSLIC-on-Spark, respec-
tively, by varying the number of the target segments. Overall, the accuracy of 
PSLIC-on-Spark is degraded as the number of partitions increases because it splits 
each image more finely, maximizing the effects of Limitation 1 and Limitation 2 
explained in Sect. 4.2. In addition, we observe that the degree of accuracy degrada-
tion becomes different according to the number of target segments k. Specifically, 

Fig. 14   Processing time of PSLIC-on-Spark as the number of partitions is varied on a distributed envi-
ronment

Fig. 15   Accuracy of SLIC and PSLIC-on-Spark as the number of partitions increases
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as the number of segments becomes smaller (i.e., larger superpixels), the accuracy 
degradation becomes more significant. Because, by Eq.  1, the greater S, which is 
the size of the superpixel, the less the effect of dxy , the superpixel forms an irregular 
shape that adheres to the boundary of an object. Here, when an image is partitioned 
by PSLIC-on-Spark, the loss of information in superpixels becomes more signifi-
cant. Specifically, when k is 500, BR of PSLIC-on-Spark decreases that of SLIC 
by about 6.3% , and UE increases by about 6.2% . In contrast, when k is 2000, BR of 
PSLIC-on-Spark decreases that of SLIC only by about 2.3% , and UE increases only 
by about 3.7%.

6.3 � Experimental results of PASLIC‑on‑Spark

6.3.1 � Processing time

Figure 16 compares the processing time of PASLIC-on-Spark with p = 8 in a sin-
gle-node configuration using two image types from the Berkeley benchmark dataset 
[21]: 481 × 321 pixels and 321 × 481 pixels. We also vary the number of the target 
segments, k, for the same image size, that are represented in different lines in the fig-
ure. Because the degree of overlapping in PASLIC-on-Spark depends on the size of 
the regular grid, a maximum possible degree of overlapping could be affected by the 
number of target segments, k and image size. As a result, we have a different maxi-
mum degree of overlapping for each case of PASLIC-on-Spark. Figure 16a shows 
the average processing time of PASLIC-on-Spark for 481 × 321 pixels as the degree 
of overlapping (i.e., overlaph ) is varied from 0 to 5; Fig. 16b that for 321 × 481 pixels 
images as overlaph is varied from 0 to 7. overlap0 in the x-axis shows the process-
ing time when overlaph is 0, which is approximately similar with that of PSLIC-on-
Spark. Varying from overlap1 to the maximum degree of overlapping (i.e., overlap5 
for 481 × 321 pixels images and overlap7 for 321 × 481 pixels images), we meas-
ure the processing time of PASLIC-on-Spark. The experimental results show that 
PASLIC-on-Spark increases the processing time due to the increase in image block 
size as the overlapping of the image block increases. We note that PASLIC-on-
Spark is obviously slower than PSLIC-on-Spark roughly 1.68–1.81 times due to the 

Fig. 16   Processing time of PASLIC-on-Spark as the degree of overlapping is varied on a single-node 
configuration
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overlapping to improve the accuracy, but it is still faster than SLIC roughly 1.5–1.67 
times in the case of using the degree of overlapping is 1 or more.

Figure 17 compares the processing time of PASLIC-on-Spark with p = 8 in a dis-
tributed environment with multiple nodes using two image types from the Berkeley 
benchmark dataset [21]: 481 × 321 pixels and 321 × 481 pixels. Figure 17a shows 
the average processing time of PASLIC-on-Spark for 481 × 321 pixels images of 
overlaph from 0 to 5; Fig. 17b for 321 × 481 pixels images of overlaph from 0 to 7. 
The experimental results show that PASLIC-on-Spark also increases the processing 
time as the degree of overlapping increases on a distributed environment. PASLIC-
on-Spark is slower than PSLIC-on-Spark roughly 2.22–2.29 times, but it is still 
faster than SLIC roughly 1.18–1.26 times in the case of using the degree of overlap-
ping is 1 or more.

6.3.2 � Accuracy measurement

Figure  18 shows the segmentation accuracy of SLIC and PASLIC-on-Spark. Fig-
ure 18a and b shows the average BR of SLIC and PASLIC-on-Spark for 481 × 321 
pixels and 321 × 481 pixels, respectively, by varying the number of the target 

Fig. 17   Processing time of PASLIC-on-Spark as the degree of overlapping is varied on a distributed 
environment

Fig. 18   Boundary Recall of SLIC and PASLIC-on-Spark as the degree of overlapping is varied
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segments. Overall, the BR of PASLIC-on-Spark becomes similar to that of SLIC 
when the degree of overlapping increases after decreasing it at overlap0 signifi-
cantly. Specifically, the difference of BR between PASLIC-on-Spark and SLIC is 
only 0.01–0.1%. We note that PASLIC-on-Spark significantly improves the BR of 
PSLIC-on-Spark in the case of p = 8 by 3.66–3.77% when overlaph from 1 to max.

Figure 19 shows the segmentation accuracy of SLIC and PASLIC-on-Spark. Fig-
ure 19a and b shows the average UE of SLIC and PASLIC-on-Spark for 481 × 321 
pixels and 321 × 481 pixels, respectively, by varying the number of the target seg-
ments. The overall patterns for UE are similar to them for BR. Specifically, UE 
of PASLIC-on-Spark becomes similar to SLIC when the degree of overlapping 
increases after increasing at overlap0 compared to SLIC. The difference of UE 
between PASLIC-on-Spark and SLIC becomes less than that of UE between PSLIC-
on-Spark and SLIC in the case of p = 8, from 6.29% to 4.19% when overlaph is 
maximum.

7 � Conclusions

In this paper, we have presented a parallel algorithm for SLIC on Apache Spark, 
which we call PSLIC-on-Spark. To this purpose, we have extended the original SLIC 
algorithm to use the operations in Apache Spark, supporting its parallel process-
ing on multiple executors in the Apache Spark cluster. Then, we have analyzed the 
trade-off relationship of PSLIC-on-Spark between its processing speed and accuracy 
due to partitioning of the original image datasets. Especially, we have identified two 
limitations in PSLIC-on-Spark, which degrade the accuracy of the original SLIC. 
Through experiments, we have verified the trade-off relationship. Specifically, we 
have shown that PSLIC-on-Spark using 8 CPU cores significantly reduces the pro-
cessing time of SLIC by 2.24–2.93 times while it reduces the boundary recall (BR) 
of SLIC by 1.54–6.32% and increases under-segmentation error (UE) by 1.79–6.2%.

Then, we have proposed an improved algorithm of PSLIC-on-Spark that 
improves the accuracy of PSLIC-on-Spark, which we call PASLIC-on-Spark. We 
have employed two important features for PASLIC-on-Spark. It contains two main 
features: (1) image partitioning considering the shape and position of the clusters 

Fig. 19   Under segmentation error of SLIC and PASLIC-on-Spark as the degree of overlapping is varied
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rather than a evenly partitioning method and (2) controllable duplication for the 
boundary between image partitions. Through experiments, we have shown the accu-
racy and efficiency of PASLIC-on-Spark on an actual cloud environment configured 
with 8 worker nodes using Amazon AWS. The experimental results indicate that 
PASLIC-on-Spark improves the accuracy of PSLIC-on-Spark by 3.66–3.77% of BR 
and 1.39–1.96% of UE. PASLIC-on-Spark still decreases that of processing time 
SLIC significantly 1.5–1.67 times on a single-node configuring using 8 CPU cores 
and 1.18–1.26 times on a cloud environment using 8 computing nodes.

In this paper, we have proposed parallel algorithms of SLIC based on the Apache 
Spark framework with a purpose for effectively operating them on a distributed 
environment. Recently, there have been research efforts to incorporate deep learning 
models to generate superpixels as described in Sect. 2. Deep learning models have 
advantages in terms of increasing accuracy for a target purpose because it allows 
to extract features suitable for given superpixels. Therefore, we plan to investigate 
deep learning-based superpixel segmentation algorithms based on the Apache Spark 
framework. It is a challenging issue because the deep learning models require high-
performance processing power using GPUs in a single node while the Apache Spark 
framework requires scalable computing nodes in a distributed environment. Here, 
we aim to provide the high and robust accuracy obtained by deep learning mod-
els while maintaining the high scalability for large-scale images supported by the 
Apache Spark framework.
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