
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:3883–3904
https://doi.org/10.1007/s11227-021-04011-z

1 3

DAACS : a Decision Approach for Autonomic Computing
Systems

Imen Abdennadher1

Accepted: 4 August 2021 / Published online: 17 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
Systems running in ubiquitous environments are characterized by a context that
changes frequently. The adaptation of this kind of systems according to the context
is a complex task. Autonomic computing has received a great attention as a solu-
tion for this increasing complexity, through an architecture based on the MAPE-K
loop. Decisions within the phases of the MAPE-K loop have an important impact on
the success of systems adaptation. In the literature, many research activities propose
decision approaches and frameworks for autonomic applications adaptation. Never-
theless, there is a lack of guidelines for the adaptation decisions design task. In this
work, we propose a Decision Approach for Autonomic Computing Systems, called
DAACS, which includes recommendations and steps that should be followed by the
autonomic applications designers. DAACS was implemented in a Smart Building
case study, and it was evaluated in term of the processing time dedicated for the
adaptation decisions.

Keywords Ubiquitous applications · Adaptation · Autonomic computing ·
MAPE-K · Decision guidelines · Smart building

1 Introduction

The high progress [17] of wireless network and new information technologies leads
to the apparition of a new challenging concept: the ubiquitous computing. As intro-
duced by Mark Weiser [27], the ubiquitous computing means that computers are
omnipresent and integrated in our everyday life and assist us in our daily tasks in
an invisible manner. Ubiquitous environments are characterized by a context that
changes frequently. The concept context was defined by Schilit and Teimer [25]
as a combination of the localization of the user and the identities and states of his

 * Imen Abdennadher
 imen.abdennadher@redcad.org

1 ReDCAD, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia

http://orcid.org/0000-0002-4940-6541
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-04011-z&domain=pdf

3884 I. Abdennadher

1 3

surrounding persons and objects. The context includes relevant aspects of the sur-
rounding physical and computing environments, such as the ambient temperature,
the users locations and activities, etc. Context-awareness is an essential character-
istic of systems running in ubiquitous environments, often called ubiquitous sys-
tems. This kind of systems must be able to discover, react to changes of the environ-
ments where they are situated [25] and adapt themselves to changes. Adaptations to
changes could be classified into behavioral or architectural according to the adapta-
tion modification that affects either the behavior or the architecture of the applica-
tion of a considered ubiquitous system [4, 10, 12, 15].

The autonomic computing paradigm was arisen to tackle the complexity of
designing systems that cope autonomously with their changing environments [12].
The autonomic computing brings systems with self-management capabilities that
include self-configuration, self-optimization, self-healing and self-protection [11].
Making decisions is an important task in the adaptation process of autonomic appli-
cations. From one side, a faulty decision automatically leads to a faulty adaptation.
From the other side, a suitable or a successful decision participates in making a suc-
cessful adaptation.

The adaptation decisions receive a great attention by the research community and
several research activities propose decision approaches and frameworks. Neverthe-
less, as far as we know, there is a lack of guidelines to design adaptation decisions.
We believe that such guidelines provide a considered assistance to the autonomic
applications designers and unify the existing decision approaches.

A review of research activities dealing with adaptation decisions shows that there
are three main decision approaches: the Situation-actions decision approach, the
Goal-oriented decision approach and the Utility-oriented decision approach [14, 21,
29]. The Situation-actions decision approach needs a definition of a set of decision
rules at design-time to specify the system’s transition from the current state to the
next one. In the Goal-oriented decision approach, the responsibility of calculation
of the necessary actions to move from a system’s current state to a desired one is
given to the system itself [9]. The principle of the Utility-oriented decision approach
consists on the calculation of the utility value of each alternative based on a utility
function, then the selection of the alternative that has the highest utility value (con-
sidered as the most suitable alternative).

In this paper, we provide a study that includes a discussion and recommenda-
tions for the choice of the decision approaches. Then, we presented our decision
approach that includes guidelines that should be followed by autonomic applications
designers to assist them in the adaptation decisions design task. Our approach is
implemented through a reusable decision module1 that assists the autonomic appli-
cations developers. Our decision approach is applied in a Smart Building case study
to adapt the energetic profile of the building, and the implementation of our deci-
sion approach is evaluated by calculating the overhead of the time processing of the
adaptation decisions.

1 https:// github. com/ imenG ithub/ Decis ionMo dule. git

https://github.com/imenGithub/DecisionModule.git

3885

1 3

DAACS : a Decision Approach for Autonomic Computing Systems

2 State of the art

We have studied research activities that deal with decisions for applications
adaptation. From this study, we concluded that there are three principle decision
approaches: the Situation-actions decision approach, the Goal-oriented decision
approach and the Utility-oriented decision approach. In this section, we show
some representative research activities for each approach and research activities
that combine between decision approaches. Then, we end this section by a discus-
sion and recommendations about the decision approaches.

2.1 Research activities dealing with the situation‑actions decision approach

Elmalaki et al. [6] present the design and implementation of an adaptation frame-
work, called CAreDroid, for android context-aware applications. The decision in
this framework is based on application-specific rules which ensure the mapping
of methods to the context. The alternatives of decision correspond to the set of
implementations for the same method which either provide the same functionality
with different performances or alternative functionality to the same method. The
CAreDroid framework switches between methods’ implementations at run-time
according to a set of context parameters (Battery state, Connectivity state, Loca-
tion and Mobility state) and based on the specified rules.

Zhao [29] proposes an approach for the planning process of requirements
driven self-adaptation that follows the Situation-actions (or the rule-based)
approach. The author confirms that the Situation-actions approach provides an
efficient offline planning method. However, it is not able to react neither to unex-
pected environment changes nor changeable requirements. For this reason, the
authors suggest a solution that enhances the Situation-actions approach with a
rule generation and a rule evolution process.

2.2 Research activities dealing with the goal‑oriented decision approach

Peng et al. [23] present a self-tuning method for software systems, based on goal-
oriented reasoning and feedback control theory. A goal model includes hard goals
that model requirements with clear satisfaction criteria, and softgoals that are for-
mally evaluated through reasoning. The authors propose a preference-based algo-
rithm which configures the hard goals in order to guide the following architecture
reconfiguration. The goal-oriented reasoning considers the goal model as a set
of logic constraints. The proposed algorithm initially tries to find a configura-
tion which respects all the constraints related to softgoals. If no configuration is
found, the lowest ranked softgoals will be removed from the encoding, so as to
find a configuration which respects the remaining softgoals’ constraints and so
on. The decision in the proposed algorithm is based on the ranks of the softgoals.
In addition, preference ranks are also assigned to softgoals to express dynamic

3886 I. Abdennadher

1 3

quality tradeoff decisions (to differentiate between the softgoals that have a same
rank).

Lei et al. [16] propose an agent-oriented self-adaptive software development
method which is based on the Goal-oriented approach. The proposed method uses
the original Tropos goal model and extends it with external context conditions and
internal event conditions, in order to model the adaptive software requirements.

2.3 Research activities dealing with the utility‑oriented decision approach

Moreno et al. [19] propose an architecture-based approach for self-adaptive systems.
The authors use probabilistic model checking for adaptation decisions. The proposed
approach fits the architectures which are based on explicit control loop such as the
MAPE-K loop. The self-adaptation is based on maximizing a utility function. In a
first step, the adaptation decisions determine whether an adaptation of the system
is required. Then, they select the configuration that provides the highest utility and
generate the set of adaptation tactics that must be executed (in the execution phase
of the MAPE-K loop).

Pascual et al. [21] suggest an approach for self-adaptive mobile system. The pro-
posed approach consists in automatically generating the application configurations
and the reconfiguration plans at run-time. The authors use a genetic algorithm, called
DAGAME, which optimizes a utility function in order to decide which architectural
configuration provides the best functionality and respects available resources.

2.4 Research activities dealing with a combination of decision approaches

In the work of Klös et al. [13], an extension of the IBM’s MAPE-K loop architec-
ture is proposed to allow systems to cope with situations that are not anticipated at
design time. The adaptation decision in this work is based on a combination between
the Situation-actions and the Goal-oriented approaches. The authors impose a struc-
ture on the knowledge which includes, in addition to the abstract system model and
the abstract environment model, a global goal model and a set of adaptation rules.

Vrbaski et al. [18] propose a context-aware reasoning approach, called CARGO,
which combines Situation-actions and Goal-oriented approaches. The authors use
the User Requirements Notation (URN), the international requirements engineering
standard that integrates goal-oriented and workflow-based modeling. CARGO uses
specific extensions to URN that provide the ability to specify and execute context-
aware systems.

Gauvrit et al. [8] propose a framework to bring self-adaptability to service-based
distributed applications. The proposed framework, called SAFDIS, enables the
dynamic evolution of the service-base architectures since it provides the functionali-
ties of the MAPE-k loop. The implementation of the SAFDIS framework includes
two reasoners to make decisions. The first reasoner makes short-term decisions, and
it is based on the Situation-actions decision approach. The second reasoner handles
long-term decisions, and it is based on the Utility-oriented approach.

3887

1 3

DAACS : a Decision Approach for Autonomic Computing Systems

2.5 Synthesis and positioning of the decision in the MAPE‑K loop

Table 1 summarizes the studied research activities dealing with decisions for appli-
cations adaptation. Decisions are needed for both architectural and behavioral adap-
tations and could be based either on the Situation-actions or the Goal-oriented or the
Utility-oriented decision approaches or a combination among these approaches.

As shown in Table 1, most of the research activities provide curative decisions for
applications adaptation. Furthermore, the decision implementation could vary from
a set of algorithms to a framework or middleware or service for decision.

We have studied the positioning of the decision in the MAPE-K loop. A decision
is required in the Analysis phase [7, 8]. In fact, the analyzer specifies either it is nec-
essary to adapt the system to the context changes or not. If an adaptation is needed,
the request of change is sent to the planner that decides and selects the most suitable
reconfiguration actions [5, 8]. Then, a decision in the Execution phase selects the
most suitable concrete actions [8].

2.6 Discussion and decision approaches recommendations

The majority of the existing research activities use either one of the decision
approaches that we presented (i.e., the Situation-actions, the Goal-oriented and
the Utility-oriented decision approaches) or a combination between these decision
approaches [22]. Moreover, there are few research activities that define ad hoc deci-
sions, such as the work of Zimmermann [30]. The ad hoc decision approach is spe-
cific to an application and fits well its requirements. Nevertheless, it lacks of reus-
ability since it is too customized to the application that it is proposed for.

In general, as observed from the literature, each decision approach has its advan-
tages and its drawbacks [9]. For this reason, many researchers use a combination
between decision approaches in order to benefit from the advantages of each one.
The Situation-actions approach has a short duration of decision but it is not able
to find necessary reactions to unexpected contextual situations. This problem is
resolved by the Goal-oriented and the Utility-oriented approaches. The Goal-ori-
ented approach does not require the specification of the possible situations and their
associated adaptation actions, but the decision is taken by the system that generates
a rational reasoning according to a specified goal model. Nevertheless, the Goal-
oriented approach needs, in general, some additional methods to select between a set
of possible alternatives, such as adding a priority between goals or rank preferences
[23]. The Utility-oriented approach is considered as a special case or an extension
to the Goal-oriented approach [21]. The Utility-oriented approach is based on util-
ity functions that calculate the satisfaction degree of the user and aims to choose the
alternative that maximizes the overall utility or satisfaction degree.

The choice of the most suitable decision approach depends on the case study. The
Situation-actions approach is efficient for case studies that require offline decisions
and when there is not unpredictable changes in the context. However, for the highly
dynamic case studies, especially those that face unexpected contextual situations,

3888 I. Abdennadher

1 3

Ta
bl

e
1

 S
yn

th
es

is
 o

f r
es

ea
rc

h
ac

tiv
iti

es
 d

ea
lin

g
w

ith
 d

ec
is

io
ns

 fo
r a

pp
lic

at
io

ns
 a

da
pt

at
io

n

Re
se

ar
ch

 a
ct

iv
ity

Ty
pe

 o
f a

da
pt

at
io

n
D

ec
is

io
n

ap
pr

oa
ch

Ty
pe

 o
f d

ec
is

io
n

D
ec

is
io

n
im

pl
em

en
ta

tio
n

So
ftw

ar
e

pa
rt

re
sp

on
si

bl
e

fo
r d

ec
is

io
n

D
ec

is
io

n
in

 th
e

M
A

PE
-K

lo

op

El
m

al
ak

i e
t a

l.
[6

]
B

eh
av

io
ra

l
Si

tu
at

io
n-

ac
tio

ns
C

ur
at

iv
e

Fr
am

ew
or

k
A

da
pt

at
io

n
en

gi
ne

Pl
an

ni
ng

 (P
)

Zh
ao

 e
t a

l.
[2

9]
N

ot
 m

en
tio

ne
d

Si
tu

at
io

n-
ac

tio
ns

C
ur

at
iv

e
A

lg
or

ith
m

N
ot

 m
en

tio
ne

d
Pl

an
ni

ng
 (P

)
W

ei
 e

t a
l.

[2
6]

A
rc

hi
te

ct
ur

al
U

til
ity

-o
rie

nt
ed

C
ur

at
iv

e
M

id
dl

ew
ar

e
D

ec
is

io
n

m
ak

er
 c

om
-

po
ne

nt
Pl

an
ni

ng
 (P

)

G
au

vr
it

et
 a

l.
[8

]
A

rc
hi

te
ct

ur
al

Si
tu

at
io

n-
ac

tio
ns

 a
nd

U

til
ity

-o
rie

nt
ed

C
ur

at
iv

e
A

lg
or

ith
m

s
D

ec
is

io
n

M
ak

er
 c

om
-

po
ne

nt
A

na
ly

si
s (

A
),

Pl
an

ni
ng

 (P
)

an
d

Ex
ec

ut
io

n(
E)

V
rb

as
ki

 e
t a

l.
[1

8]
N

ot
 m

en
tio

ne
d

Si
tu

at
io

n-
A

ct
io

ns
 a

nd

G
oa

l-o
rie

nt
ed

C
ur

at
iv

e
N

ot
 m

en
tio

ne
d

N
ot

 m
en

tio
ne

d
N

ot
 m

en
tio

ne
d

Le
i e

t a
l.

[1
6]

B
eh

av
io

ra
l

G
oa

l-o
rie

nt
ed

C
ur

at
iv

e
A

lg
or

ith
m

s
Ja

de
x

ag
en

ts
N

ot
 m

en
tio

ne
d

Pe
ng

 e
t a

l.
[2

3]
A

rc
hi

te
ct

ur
al

G
oa

l-o
rie

nt
ed

C
ur

at
iv

e
A

lg
or

ith
m

s
G

oa
l r

ea
so

ne
r

N
ot

 m
en

tio
ne

d
M

or
en

o
et

 a
l.

[1
9]

A
rc

hi
te

ct
ur

al
U

til
ity

-o
rie

nt
ed

Pr
ev

en
tiv

e
A

lg
or

ith
m

s
Pr

ob
ab

ili
sti

c
m

od
el

ch

ec
ke

r
A

na
ly

si
s (

A
) a

nd
 P

la
nn

in
g

(P
)

Pa
sc

ua
l e

t a
l.

[2
1]

A
rc

hi
te

ct
ur

al
U

til
ity

-o
rie

nt
ed

C
ur

at
iv

e
G

en
et

ic
 a

lg
or

ith
m

D
yn

am
ic

 re
co

nfi
gu

ra
tio

n
se

rv
ic

e
(D

R
S)

Pl
an

ni
ng

 (P
)

K
lö

s e
t a

l.
[1

3]
B

eh
av

io
ra

l
Si

tu
at

io
n-

ac
tio

ns
 a

nd

G
oa

l-o
rie

nt
ed

C
ur

at
iv

e
A

lg
or

ith
m

s
N

ot
 m

en
tio

ne
d

A
na

ly
si

s (
A

) a
nd

 P
la

nn
in

g
(P

)
Za

rg
ha

m
i e

t a
l.

[2
8]

B
eh

av
io

ra
l

Si
tu

at
io

n-
ac

tio
ns

C
ur

at
iv

e
D

ec
is

io
n

se
rv

ic
e

D
ec

is
io

n
se

rv
ic

e
N

ot
 m

en
tio

ne
d

3889

1 3

DAACS : a Decision Approach for Autonomic Computing Systems

we recommend the use of either the Goal-oriented or the Utility-oriented approach.
Since the Goal-oriented and the Utility-oriented approaches are often computationally
expensive (in term of runtime overhead cost), we recommend the use of a combina-
tion between these approaches and the Situation-actions approach. In our opinion, deci-
sions are classified into two categories: the decisions that have a time constraint in their
duration compared to the duration of the adaptation and the decisions that do not (i.e.,
they could have enough time without affecting the adaptation). The first category of
decisions is often used in critical situations which need rapid reactions, for this reason
we recommend the use of Situation-actions approach. For the second category of deci-
sions, we recommend either the Goal-oriented approach or the Utility-approach. In the
case where conflicts between goals can appear, we think that it is recommended to use
the Utility-oriented decision approach (rather than the Goal-oriented approach) or to
use an extended Goal-oriented approach (such as the work of Peng et al. [23] which is
based on the goal-reasoning with “dynamic quality tradeoff decisions”).

3 The decision approach for autonomic computing systems

Our work consists on the proposition of a decision approach for designing and develop-
ing autonomic applications able to detect or predict context and adapt itself to context
changes. Figure 1 presents a general view of our decision approach. Three phases of

Fig. 1 General view of the decision approach

3890 I. Abdennadher

1 3

the life cycle of the application are presented: the design-time, the implementation time
and the run-time of the application. The stakeholders who act in the application life
cycle are also presented:

• Decision assistant: represents our role, which consists of providing an assistance for
the designer of the application (an assistance to design the application adaptation
decisions) and an assistance for the application developer by providing a reusable
decision module

• Application designer is responsible for the design of the autonomic application
• Application developer is responsible for the implementation of the autonomic appli-

cation
• Administrator controls the execution of the application at run-time and enhances its

functioning when it is possible
• User represents the end user of the autonomic application

The decision assistant provides a decision guideline to the application designer to assist
him in the design of the decisions that must be taken for the application adaptation.
Then, the application designer provides the design of the application according to the
decision guideline. The application developer implements the application according
to the design and provides a specification that includes the description of information
related to the decision.

The decision assistant provides a decision module to the application developer. The
decision module facilitates the development of the decisions for the application adapta-
tion. At Run-time, the decision module uses the specification and the notifications of
the Monitoring module as input parameters. The notifications of the Monitoring mod-
ule correspond either to context changes or predictions of context changes. Moreover,
the decision module interacts with the application’s modules to guide the decisions.
The administrator has the possibility to add or modify some details in the specification
to enhance the functioning of the application.

3.1 A design guideline for adaptation decisions

The design of the decision as a part of the adaptation process is a difficult and com-
plex task. To overcome this complexity, we propose a decision guideline to assist the
designer of autonomic applications. Figure 2 presents the high-level guideline for deci-
sion. The designer should follow the steps numbered from 1 to 7 to design a decision
for his application adaptation. The arrows in Fig. 2 present input/output relations.

The main role of a decision is to choose among a set of possible alternatives, the
most suitable one according to the contextual situation. Each alternative has the type
“decision object”.

3.1.1 The decision object definition

The first step of the guideline is the definition of the decision object. The latter is
the object that the decision is based on, in other words, the set of alternatives are

3891

1 3

DAACS : a Decision Approach for Autonomic Computing Systems

considered as instances of the decision object. The decision object could be the
application’s architecture or the application itself or the network, etc.

3.1.2 The decision object property definition

A decision object has a set of properties that characterize it. In this step, the appli-
cation designer defines the property of the decision object that is directly related to
the considered decision. Some examples of decision objects and their properties are
presented in Table 2.

3.1.3 The decision objective definition

A decision could have a unique or a set of objectives. In this step, the designer must
define the main objective of the decision.

Fig. 2 The design guideline for adaptation decisions

Table 2 Examples of decision
objects properties

Decision object Properties

Architecture of an
application

Consumption of resources, dispersion of the
components [24], number of reconfigurations
[24]

Application Behavior, structure
Network Availability, reliability

3892 I. Abdennadher

1 3

3.1.4 The decision parameters definition

From the already defined objective, the designer defines the decision parameters
in the fourth step. For example, if the decision objective is to respect the available
resources of machines when deploying the software components of the application,
then the decision parameters in this case are the resources of the machines (such as
the RAM and the CPU).

3.1.5 The decision rules definition

The property of the decision object as well as the objective and the decision param-
eters are used to define the decision rules. Before the definition of the decision rules,
the designer needs to define the notifications of the monitoring step (of the adapta-
tion process). The monitoring notifications correspond either to the current values
of context changes or the predicted values of context changes. Then, the designer
defines the type of decision, which could be either curative or preventive. The deci-
sion is curative if it is based on the current values of context changes as monitoring
notifications. The decision is preventive if it is based on the predicted values of con-
text changes. Once the monitoring notifications and the decision type are specified,
the designer should define the decision approach (it could be either the Situation-
actions approach or the Goal-oriented approach or the Utility-oriented approach or a
combination between these decision approaches).

The definition of the decision rules is highly related to the chosen decision
approach. If the Situation-actions approach is chosen, the designer defines a set of
rules that determine for each contextual situation the actions that must be executed
for the application adaptation. In the case where the Goal-oriented approach is cho-
sen, the designer defines a set of goal policies as decision rules. In the case where
the Utility-oriented approach is chosen, the designer specifies a set of utility func-
tions as decision rules.

3.1.6 The decision notifications definition

The notifications of a decision represent the output that will be generated at run-time
after making the decision. In the following, we present some examples of decision
notifications:

• The ID or the description of the most suitable alternative
• The adaptation actions (that must be applied to set up the most suitable alterna-

tive)
• The duration of the decision-making process

3.1.7 The decision evaluation definition

The designer defines the evaluation of the decision according to specified metrics
related to the performance and/or the efficiency of the decision results. In the fol-
lowing, we give some propositions of decision evaluation:

3893

1 3

DAACS : a Decision Approach for Autonomic Computing Systems

• Evaluation of the efficiency of the decision results The evaluation of the decision
results efficiency could be based on experience from previous application execu-
tions. We propose that the application developer should implement a Knowledge
module and integrates it with the Decision module and the software components
of the application. The Knowledge module should store the pairs <Contextual
situation, best alternative> in a database. Within this Knowledge module, the
application administrator can compare the result of a current decision with the
previous similar decisions stored in the database in order to evaluate its effi-
ciency.

• Evaluation of the decision duration The decision duration is the time taken by
the decision-making process, which begins with the reading of the set of decision
parameters and finish when the most suitable alternative is selected. The decision
duration is evaluated by the application administrator according to the critical-
ity degree of the decision. We propose a recommendation to reduce the decision
duration that consists on preceding the decision by a preprocessing step. In the
preprocessing step, some alternatives are filtered. For example, duplicated alter-
natives should be filtered and only one of them should be kept for the selection
step. Moreover, invalid alternatives or those that do no respect the constraints
should be filtered.

4 Smart building case study presentation

The Smart Building case study is presented in details in our previous work [3]. In
this paper, we use this case study to evaluate our decision approach. The Smart
Building case study includes a set of entities that have different hardware and soft-
ware capabilities. In this section, we present the hardware elements, then the soft-
ware elements of this case study.

4.1 Hardware elements of the smart building case study

The building’s equipments are classified into seven classes: Controller, Sensor,
Actuator, Interface, Smart Meter, Renewable energy source and Energy storage [3,
20].

Figure 3 shows the devices or the hardware elements of our Smart Building case
study. The hardware elements of our Smart Building case study are classified as
follows:

• Controller of the building
• Sensors Presence sensors, Luminosity Sensors, Smart Plug, Thermometer
• Actuators Air conditioners, Lamps, Dishwasher
• Interface User Agent (responsible for the communication with the user)
• Smart Meter Power Smart Meter
• Renewable energy sources Photovoltaic Panel
• Energy storage media a Battery (to store the surplus of the energy)

3894 I. Abdennadher

1 3

A Photovoltaic Panel is responsible for the production of energy to the building
through converting the solar energy to an electrical energy. A Battery stores the
surplus of the produced electrical energy during low consumption periods and
resupplies the building during high consumption periods. A Power Smart Meter
measures the electrical energy consumed by the devices of the building (and
interacts with a public electrical network in order to inject the surplus of pro-
duced energy and pump energy if necessary). A Dishwasher, Air Conditioners
and Lamps could adjust their characteristics and functioning modes according
to the user’s requirements. A Thermometer regularly measures the temperature
of the environment. Luminosity sensors generate a signal indicating the light
intensity. Presence Sensors detect the presence of proximate objects without any
physical contact. Data captured by the sensors is sent to the Controller that eval-
uates the state of the building and makes assessments.

In the actual implementation of the Smart Building case study, we use six
machines that play the roles of the Controller, the Dishwasher, the Power Smart
Meter, two Air Conditioners, the User device, respectively. For simplicity rea-
sons, we call each machine by the name of the hardware element. For example,
the Power Smart Meter means the machine that we use to play the role of the
Power Smart Meter.

In order to manage the devices of the building, we developed an application,
called Smart Building Application (SBA), composed of a set of software com-
ponents. The software components of the SBA are presented in the following
section.

Fig. 3 The smart building case study

3895

1 3

DAACS : a Decision Approach for Autonomic Computing Systems

4.2 Software elements of the smart building case study

The Smart Building Application (SBA) includes a set of software components2.
Each hardware element of the Smart Building case study (Controller, Sensors,
Actuators, Interfaces, Smart Meter, Energy storage media and Renewable energy
source) has its corresponding software element. If the device or the hardware ele-
ment has enough computing and memory capabilities, its corresponding software
component can be deployed on it (For example a software component that manages
a Dishwasher could be deployed on this Dishwasher). Otherwise, the component
is deployed on the Controller (For example, a software component that manages a
Lamp could not be deployed on it, hence it is deployed on the Controller).

The main software component of the SBA is the Smart Building Manager
deployed on the Controller and responsible for managing the other software compo-
nents: Lamp, Air conditioner, Power Smart Meter, Smart Plug, Photovoltaic Panel,
Presence Sensor, Luminosity Sensor, Thermometer, Dishwasher and User Agent.
The user can access the SBA by using an interface from his device (smartphone,
laptop,etc). The application behind this interface is called User Agent.

The software components of the SBA are deployed as follows:

• The Smart Building Manager software component, the Lamp software compo-
nents, the Smart Plug software components, the Photovoltaic Panel software
component, the Presence Sensor software components, the Luminosity Sensor
software components and the Thermometer software component are deployed in
the Controller

• The Dishwasher software component is deployed in the Dishwasher
• The Power Smart Meter software component is deployed in the Power Smart

Meter
• The Air conditioner software components are deployed in the Air Conditioners

(each Air conditioner component is deployed on the Air Conditioner that it man-
ages)

• The User Agent software component is deployed in the user device (smartpnone,
laptop,etc.)

The Smart Building Manager software component centralizes the SBA’s data and
communicates with the other software components of the application to provide
smart and comfortable services to the user. Figure 4 shows the interactions between
the software components of the SBA.

• The Smart Building Manager software component sends interrogation
requests to the other software components to know the values of the charac-
teristics of the devices or the environment (For example, the Smart Building
Manager could send a request to an Air Conditioner software component to
know the temperature value of the considered Air Conditioner). The Smart

2 https:// github. com/ imenG ithub/ Smart Build ing. git

https://github.com/imenGithub/SmartBuilding.git

3896 I. Abdennadher

1 3

Building Manager could also send update requests to the Lamp, Air Condi-
tioner and Dishwasher software components to adjust their characteristics
(For example, the Smart Building Manager could send a request to an Air
Conditioner software component to decrease the temperature of the consid-
ered Air Conditioner).

• The Photovoltaic Panel software component sends the values of produced
energy (W_prod in Fig. 4) to the Smart Building Manager software compo-
nent periodically.

• The Lamp software component adjusts its characteristics, i.e., its state (ON/
OFF) and its intensity value, according to the building’s occupant preferences
and the Smart Building Manager software component requests.

• The Air Conditioner software component adjusts its state (ON/OFF) and its
temperature value according to the building’s occupant preferences and the
Smart Building Manager software component requests.

• The Dishwasher software component adjusts its state (ON/OFF) and its func-
tioning mode (for example High performance mode or Economical mode)
according to the building’s occupant preferences and the Smart Building Man-
ager software component requests.

• The Thermometer software component periodically sends the measured tem-
perature value (Temp in Fig. 4) to the Smart Building Manager software com-
ponent.

• The Presence Sensor software component periodically sends the rooms’ state
i.e., empty or not (PresenceInfo in Fig. 4) to the Smart Building Manager com-
ponent.

• The Luminosity Sensor software component periodically sends the intensity of
light (LumInfo in Fig. 4) to the Smart Building Manager component.

• The Smart Plug software component periodically sends the consumption of the
device attached to it (DeviceCons in Fig. 4) to the Smart Building Manager com-
ponent.

Fig. 4 Interaction between the software components of the Smart Building Application

3897

1 3

DAACS : a Decision Approach for Autonomic Computing Systems

• The Power Smart Meter software component periodically sends the value of
the energy consumed by the building’s devices (W_cons in Fig. 4) to the Smart
Building Manager component.

• The User Agent software component sends the occupant’s preferences (for exam-
ple the required intensity of luminosity and the required temperature of the Air
Conditioners) to the Smart Building Manager component.

5 Experimentation and validation of the decision approach
implementation

The goal of this section is to show the applicability of our decision approach and
to evaluate its implementation. Our decision approach is first applied in the Smart
Building case study to adapt the energetic profile of the building. Then, we present
some experiments to evaluate our implementation in term of the processing time
dedicated for making the decisions for the building energetic profile adaptation.

5.1 Application of our decision approach for the adaptation of the energetic
profile of the smart building

An energetic profile of the building is defined as a collection of the devices behav-
iors of this building. The decision for the energetic profile adaptation of the building
aims to choose the most suitable energetic profile according to the contextual situ-
ation related to the electrical energy. In our Smart Building case study, we use two
examples of energetic profiles: the “High performance mode energetic profile” and
the “Economical mode energetic profile”. The High performance mode energetic
profile consists on switching on the Dishwasher with its high performance mode as
requested by the user, the Air Conditioners with the temperature values requested
by the user and the Lamps with the intensity requested by the user. The Economical
mode energetic profile consists on switching on the Dishwasher with its economical
mode, the Air Conditioners with an increase of the required temperature values by
a flexibility value � (� corresponds to the value of sensitivity of the human epider-
mis to the temperature) and the Lamps with a decrease of the intensity values by a
flexibility value � (� corresponds to the value of sensitivity of the human eye to the
luminosity).

In fact, in a Smart Building, it is possible to define several Economical mode
energetic profiles according to the set of devices functioning in the high perfor-
mance mode and those functioning in the economical mode. However, for simplicity
reasons, we made the choice of using a single Economical mode energetic profile in
our case study Smart Building, which consists on switching on all the devices of the
building with the economical mode (i.e., the Dishwasher with the economical mode,
all the Air Conditioners with the required temperature values +� and all the Lamps
with the required intensity values −�).

3898 I. Abdennadher

1 3

5.1.1 Decision guideline instance for the adaptation of the energetic profile
of the building

Figure 5 presents an instance of the design guideline presented in Fig. 2. The
decision object is the energetic profile of the building (Step 1). Hence, each
alternative has as a type energetic profile, i.e., the set of alternatives corre-
spond to the set of possible energetic profiles of the building. The property of
the energetic profile related for this decision is the consumption of energy (Step
2). Consequently, the energetic profiles will be compared according to their con-
sumption of energy. The main objective of the decision consists on reducing
the consumption of energy in the building (Step 3). Therefore, the parameters
defined for this decision are the energy consumed (Cons) and the energy pro-
duced (Prod) by the building (Step 4). The monitoring notifications necessary
for this decision are the current values of the parameters Cons and Prod. The
type of decision is curative (i.e.., when there is an increase of the energy con-
sumption in the building, the decision will try to decrease this consumption).
The chosen decision approach is the Utility-oriented approach. The choice of the
Von-Neumann Morgenstern (VNM) utility function as a decision rule (Step 5) is
done by following the guidelines for the choice of the utility functions presented
in our previous work [2]. The details and the mathematic formula of this utility
function are presented in the following paragraph. The notification of decision
is the ID of the most suitable energetic profile (Step 6). The decision evaluation

Fig. 5 Instance of the decision guideline for the building energetic profile adaptation

3899

1 3

DAACS : a Decision Approach for Autonomic Computing Systems

is defined according to the decision duration metric. The decision duration
should not exceed Tmax which is a duration threshold specified by the application
designer/administrator (Step 7).

5.1.2 Decision example for the adaptation of the building energetic profile

The SBA ensures the selection of the most suitable energetic profile of the build-
ing based on the Von-Neumann Morgenstern utility function, presented by the
Eq. 1 (The description of the Von-Neumann Morgenstern utility function is
detailed in our previous work [2]).

Three situations could appear after making the decision that consists on choosing
the most suitable energetic profile: S1 , S2 and S3 . pk is the probability that the situa-
tion Sk occurs after making the decision, and u(Sk) is the utility that the situation Sk
provides to the user.

The first situation S1 is the situation where the value of the energy consumed
by the building’s devices (Cons) exceeds the value of the energy produced by
the photovoltaic panel of the building (Prod). S2 is the situation where Cons is
equal to Prod. S3 is the situation where Cons is lower than Prod. The utility val-
ues of these three situations must be defined by an expert according to satisfac-
tion degree of the Application User related to each situation. In this example, we
consider that the utilities of the situations S1 , S2 and S3 are u(S1) = −20 , u(S2) = 5
and u(S3) = 20 , respectively.

The monitoring notifications (generated from the Monitoring module) indi-
cate that in the current situation of the building the value of the consumed
energy exceeds the value of the produced energy, and the current requirements
of the user are: switching on the Dishwasher and the Air Conditioners AC1
(required temperature=21◦ C) and AC2 (required temperature=20◦C). A deci-
sion is needed to choose the most suitable energetic profile. As mentioned in the
Sect. 5.1, we consider only two energetic profiles to simplify the presentation of
the decision example: the High performance mode energetic profile (A1) and the
Economical mode energetic profile (A2).

To calculate the utility of each energetic profile, the probability of occur-
rence of the situations S1 , S2 and S3 must be defined by an expert for each
energetic profile. For the energetic profile A1 , we consider that the probabili-
ties of S1 , S2 and S3 are p1 = 0, 5 , p2 = 0, 4 and p3 = 0, 1 , respectively. Hence,
the utility of A1 is UVNM(A1) = 0, 5 × (−20) + 0, 4 × 5 + 0, 1 × (20) = − − 6 .
For the energetic profile A2 , the probabilities of S1 , S2 and S3 are
p1 = 0, 2 , p2 = 0, 3 and p3 = 0, 5 , respectively. Hence, the utility of A2 is
UVNM(A2) = 0, 2 × (− − 20) + 0, 3 × 5 + 0, 5 × (20) = 7, 5 . Therefore, the ener-
getic profile selected in this example is A2 since UVNM(A2) exceeds UVNM(A1).

(1)UVNM =

3
∑

k=1

pk × u(Sk)

3900 I. Abdennadher

1 3

5.2 Evaluation of our decision approach implementation

In this section, we present some experiments conducted to evaluate our decision
approach implementation. Notably, we evaluate the processing time of our deci-
sion module, presented in the Sect. 3. All of the experiments were conducted on
a laptop equipped with 8GB of RAM and an Intel Core i7 processor rated at 2.2
GHz. The operating system used is Ubuntu, and the Java Virtual Machine version
used is 1.6.0.

These experiments consist in calculating the processing time taken by our
decision module to make the decision of choosing the most suitable energetic
profile of the building based on the Von-Neumann Morgenstern utility function.
The experiments consist on the calculation of the processing time while varying
the number of alternatives from 20 to 1000 (given as input data to our decision
module), for a set of three, five and ten decision parameters, respectively.

For each alternatives number, we repeated the measurement of the decision
module processing time many times. By making repeated measurements, we
remark that the results of calculation of the processing time values are not the
same. This is due to the random error that varies randomly in repeated measure-
ments throughout the conduct of a test [1].

To have a proximate value of the true value of the processing time of each
alternatives number, we repeated the experiment Nb times, and we calculated
the mean of the processing time measured values M. The resulting population of
measurements could be described statistically in terms of the population mean
M and the standard deviation S. The random error of these measurements is
described by the random standard uncertainty of the mean. The higher the num-
ber of repetitions of an experiment Nb is, the lower the random standard uncer-
tainty of the mean is and the more reliable the value of the mean M (that corre-
sponds to the decision module processing time) is [1]. For an infinite number of
experiment repetitions, the random standard uncertainty of the mean is equal to
zero.

The random standard uncertainty of the mean MU is calculated by the Eq. 2.

We repeated the measurement of each experiment Nb times until MU is equal to 0.1,
which we consider as an acceptable error value.

Figure 6 presents the evolution of the processing time of our decision module
according to the number of possible alternatives. As expected, the experimental
results show an increase of the processing time while progressively increasing the
number of alternatives. The rate of processing time increase is nearly linear for
the three curves (with three, five and ten parameters). Moreover, the results show
that the time overhead of the decision module is reasonable, considering the fact
that the number of alternatives of most adaptation decisions is unlikely to exceed
1000, and the number of parameters is generally lower than 10.

(2)MU =
S

√

Nb

3901

1 3

DAACS : a Decision Approach for Autonomic Computing Systems

6 Discussion and threats to validity

The purpose of this section is to discuss and analyse the different threats to valid-
ity regarding our recommendations for the choice of the main existing decision
approaches. We also discuss the threats to validity of the implementation of our
decision approach.

Our recommendations for the choice of the decision approaches (presented in
the Sect. 2.6) are based on the characteristics of each decision approach as well
as other characteristics, such as the adaptation frequency, the available resources
and the time constraints. The proposed recommendations are able to assist the
Application Designer by giving him some generic guidelines. However, they are
not able to reduce considerably his effort to choose the most suitable decision
approach, since this task needs a deep comprehension of the case study.

The current implementation of our decision approach treats one decision at a
considered time, i.e., it does not treat overlapped decision-making processes. We
consider that two decision-making processes d1 and d2 are overlapped in the case
where d2 needs to be triggered during the execution of d1 . To handle such situa-
tions, the decision module can for example choose between:

• Interrupting the execution of d1 and triggering the execution of d2 (for exam-
ple in the case where the decision of d2 is more critical than the decision of d1)

Fig. 6 The evolution of the decision module processing time according to the number of alternatives

3902 I. Abdennadher

1 3

• Carrying on the execution of d1 , then triggering the execution of d2 (for example
in the case where the decision of d1 is more critical than the decision of d2)

These two management ways of overlapped decision-making processes are not the
only ones. In the current version of our decision approach implementation, we sup-
pose that there are no overlapped decision-making processes. However, we expect
that our decision module needs an implementation of strategies based on a deep
study to handle this kind of situations, especially when our decision module is used
by highly dynamic applications.

7 Conclusion

In this work, a novel decision approach for developing context-aware applications
in ubiquitous environments was presented. In the literature, we noticed the lack of
guidelines that provide a support for applications designers while they are design-
ing the adaptation decisions. Our proposed approach, called DAACS, includes a set
of decision recommendations and guidelines to assist the applications designers.
DAACS is implemented through a reusable decision module that assists the ubiqui-
tous application developers.

To illustrate the usefulness of our decision approach, we presented a case study,
called Smart Building, in which we have applied the guidelines that we proposed
in our decision approach. We developed a Smart Building Application for this case
study that interacts with our decision module. We showed an illustrative example
that demonstrates how to use our decision approach in order to adapt the energetic
profile of the building. We also conducted some experiments that show that the
processing time overheads introduced by our decision approach implementation to
make the adaptation decisions is reasonable, taking into consideration the character-
istics (notably the number of alternatives and the number of decision parameters) of
most adaptation decisions in a smart building .

As future work, we aim to extend our decision approach implementation by com-
pleting the Situation-actions and the Goal-oriented decision approaches implemen-
tation, and test adaptation decisions in both Analysis and Execution phases of the
MAPE-K loop. We also aim to conduct a thorough study of the decision evaluation
and apply more tests of our decision guideline and our decision module, in different
case studies, to explore more evaluation metrics.

References

 1. American society of mechanical engineers, the performance test standard ptc test uncertainty. Tech.
rep. (2005)

 2. Abdennadher I, Bouassida Rodriguez I, Jmaiel M. A Utility-Based Approach for Self-Adaptive Sys-
tems: Application to a Smart Building. In: 14th IEEE/ACS International Conference on Computer
Systems and Applications, AICCSA 2017, Hammamet, Tunisia, October 30 - Nov. 3, 2017, pp.
76–82

3903

1 3

DAACS : a Decision Approach for Autonomic Computing Systems

 3. Abdennadher I, Khabou N, Bouassida Rodriguez I, Jmaiel M. Designing Energy Efficient Smart
Buildings in Ubiquitous Environments. In: 2015 15th International Conference on Intelligent
Systems Design and Applications (ISDA), pp. 122–127 (2015)

 4. Aldini A (2018) Design and verification of trusted collective adaptive systems. Trans Model
Computer Simul 28(2):1–27

 5. Ben Alaya M, Matoussi S, Monteil T, Drira K. Autonomic computing system for self-manage-
ment of machine-to-machine networks. In: Proceedings of the 2012 International Workshop on
Self-aware Internet of Things, pp. 25–30 (2012)

 6. Elmalaki S, Wanner L, Srivastava M. Caredroid: Adaptation Framework for Android Context-
Aware Applications. In: Proceedings of the 21st Annual International Conference on Mobile
Computing and Networking, pp. 386–399 (2015)

 7. Francoise A, Erwan D, Guillaume G. Towards a Generic Context-Aware Framework for Self-
Adaptation of Service-Oriented Architectures. In: Internet and Web Applications and Services
(ICIW), 2010 Fifth International Conference on, pp. 309–314 (2010)

 8. Gauvrit G, Daubert E, André F. Safdis: A Framework to Bring Self-Adaptability to Service-
Based Distributed Applications. In: Proceedings of the 2010 36th EUROMICRO Conference on
Software Engineering and Advanced Applications, SEAA ’10, pp. 211–218 (2010)

 9. Kakousis K, Paspallis N, Papadopoulos GA (2010) A survey of software adaptation in mobile
and ubiquitous computing. Enterp Inf Syst 4(4):355–389

 10. Kallel S, Charfi A, Mezini M, Jmaiel M. Combining Formal Methods and Aspects for Specify-
ing and Enforcing Architectural Invariants. In: Proceedings of the 9th International Conference
on Coordination Models and Languages COORDINATION, Lecture Notes in Computer Science,
vol. 4467, pp. 211–230 (2007)

 11. Kephart JO, Chess DM (2003) The vision of autonomic computing. Computer 36(1):41–50
 12. Klein C, Schmid R, Leuxner C, Sitou W, Spanfelner B. A Survey of Context Adaptation in Auto-

nomic Computing. In: Fourth International Conference on Autonomic and Autonomous Systems
(ICAS’08), pp. 106–111 (2008)

 13. Klös V, Göthel T, Glesner S. Adaptive Knowledge Bases in Self-Adaptive System Design. In:
2015 41st Euromicro Conference on Software Engineering and Advanced Applications, pp. 472–
478 (2015)

 14. Krupitzer C, Roth FM, VanSyckel S, Schiele G, Becker C (2015) A survey on engineering
approaches for self-adaptive systems. Pervasive Mobile Comput 17:184–206

 15. Kuze N, Kominami D, Kashima K, Hashimoto T, Murata M (2018) Self-organizing control
mechanism based on collective decision-making for information uncertainty. ACM Trans Auton
Adapt Syst 13(1):1–21

 16. Lei Y, Ben K, He Z. A Model Driven Agent-Oriented Self-Adaptive Software Development
Method. In: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery
(FSKD), pp. 2242–2246 (2015)

 17. Lesk M, Kernighan B. Computer Typesetting of Technical Journals on UNIX. In: Proceedings of
American Federation of Information Processing Societies: 1977 National Computer Conference,
pp. 879–888. Dallas, Texas (1977)

 18. Mira Vrbaski Dorina Petriu D.A. Tool Support for Combined Rule-Based and Goal-Based Rea-
soning in Context-Aware Systems. In: 2012 IEEE 20th International Requirements Engineering
Conference (RE), pp. 335–336 (2012)

 19. Moreno GA, Cámara J, Garlan D, Schmerl B. Proactive Self-Adaptation Under Uncertainty:
A Probabilistic Model Checking Approach. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, pp. 1–12 (2015)

 20. Morvaj B, Lugaric L, Krajcar S. Demonstrating Smart Buildings and Smart Grid Features in a
Smart Energy City. In: Proceedings of the 2011 3rd International Youth Conference on Energet-
ics (IYCE), pp. 1–8 (2011)

 21. Pascual GG, Pinto M, Fuentes L (2015) Self-adaptation of mobile systems driven by the com-
mon variability language. Fut Gener Computer Syst 47:127–144 (Special Section: Advanced
Architectures for the Future Generation of Software-Intensive Systems)

 22. Paucar L, Bencomo N. A Survey on Preferences of Quality Attributes in the Decision-Making
for Self-Adaptive Systems: The Bad, the Good and the Ugly. In: CIbSE 2017 - XX Ibero-Ameri-
can Conference on Software Engineering, pp. 1–14 (2017)

3904 I. Abdennadher

1 3

 23. Peng X, Chen B, Yu Y, Zhao W. Self-Tuning of Software Systems Through Goal-Based Feedback
Loop Control. In: 2010 18th IEEE International Requirements Engineering Conference, pp. 104–
107 (2010)

 24. Sancho G. Adaptation d’architectures Logicielles Collaboratives Dans Les Environnements Ubiqui-
taires. Contribution à l’interopérabilité par la sémantique. Ph.D. thesis, Université Toulouse 1 Capi-
tole (UT1 Capitole) (2010)

 25. Schilit BN, Theimer MM (1994) Disseminating active map information to mobile hosts. IEEE Netw
8(5):22–32

 26. Wei EJ, Chan AT (2013) Campus: a middleware for automated context-aware adaptation decision
making at run time. Pervasive Mobile Comput 9(1):35–56

 27. Weiser M (1991) The computer for the 21st century. Scientif Am 265:66–75
 28. Zarghami A, Sapkota B, Eslami MZ, van Sinderen M. Decision As a Service: Separating Decision-

Making from Application Process Logic. In: 2012 IEEE 16th International Enterprise Distributed
Object Computing Conference, pp. 103–112 (2012)

 29. Zhao T. The Generation and Evolution of Adaptation Rules in Requirements Driven Self-Adaptive
Systems. In: 2016 IEEE 24th International Requirements Engineering Conference (RE), pp. 456–
461 (2016)

 30. Zimmermann O. Architectural Decision Identification in Architectural Patterns. In: Proceedings of
the WICSA/ECSA 2012 Companion Volume, pp. 96–103 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	DAACS : a Decision Approach for Autonomic Computing Systems
	Abstract
	1 Introduction
	2 State of the art
	2.1 Research activities dealing with the situation-actions decision approach
	2.2 Research activities dealing with the goal-oriented decision approach
	2.3 Research activities dealing with the utility-oriented decision approach
	2.4 Research activities dealing with a combination of decision approaches
	2.5 Synthesis and positioning of the decision in the MAPE-K loop
	2.6 Discussion and decision approaches recommendations

	3 The decision approach for autonomic computing systems
	3.1 A design guideline for adaptation decisions
	3.1.1 The decision object definition
	3.1.2 The decision object property definition
	3.1.3 The decision objective definition
	3.1.4 The decision parameters definition
	3.1.5 The decision rules definition
	3.1.6 The decision notifications definition
	3.1.7 The decision evaluation definition

	4 Smart building case study presentation
	4.1 Hardware elements of the smart building case study
	4.2 Software elements of the smart building case study

	5 Experimentation and validation of the decision approach implementation
	5.1 Application of our decision approach for the adaptation of the energetic profile of the smart building
	5.1.1 Decision guideline instance for the adaptation of the energetic profile of the building
	5.1.2 Decision example for the adaptation of the building energetic profile

	5.2 Evaluation of our decision approach implementation

	6 Discussion and threats to validity
	7 Conclusion
	References

