
Vol.:(0123456789)

The Journal of Supercomputing (2022) 78:1961–1982
https://doi.org/10.1007/s11227-021-03929-8

1 3

End‑to‑end deep learning‑based autonomous driving
control for high‑speed environment

Cheol‑jin Kim1 · Myung‑jae Lee1 · Kyu‑hong Hwang1 · Young‑guk Ha1

Accepted: 2 June 2021 / Published online: 22 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2021

Abstract
With the recent emergence of artificial intelligence (AI) technology, autonomous
vehicle industry has rapidly adopted this technology to investigate self-driving sys-
tems based on AI technology. Although autonomous driving is frequently used in
high-speed environments, most studies are conducted on low-speed driving on com-
plex urban roads. Currently, most commercialized self-driving cars in SAE autono-
mous driving level 2 provide practical performance on high-speed roads using vari-
ous sensors. However, these systems have to process huge sensor data and apply
complex control algorithms. Recently, studies have been conducted on the use of
image-based end-to-end deep learning to control autonomous driving systems that
can be configured at a low cost without expensive sensors and complex processes. In
this study, we proposed an autonomous driving control system using a novel end-to-
end deep learning model for high-speed environments, and also compared the per-
formance of the proposed system with NVIDIA end-to-end driving system.

Keywords Autonomous driving · End-to-end learning · CNN · LSTM

 * Young-guk Ha
 ygha@konkuk.ac.kr

 Cheol-jin Kim
 cjfwls1070@naver.com

 Myung-jae Lee
 dualespresso@naver.com

 Kyu-hong Hwang
 gfvxgd2k@konkuk.ac.kr

1 Konkuk University, Seoul, South Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-021-03929-8&domain=pdf

1962 C. Kim et al.

1 3

1 Introduction

Deep neural networks have led to the development of various industries using
computer vision that provides much useful information from the visual data.
However, the development of computer vision has been gradual due to the short-
comings such as much information to process, until the development of the deep
neural network, particularly the convolutional neural network (CNN). The devel-
opment of the CNN has made it possible for artificial intelligence-based com-
puter vision to surpass humans in image recognition.

CNN operates using three-dimensional convolution vectors that extract fea-
tures from images because image data are generally represented in a three-dimen-
sional form with horizontal and vertical edges, and color types such as red, green,
and blue. In particular, the convolution operations of CNN can be implemented
in parallel graphics processing units (GPUs), which can significantly accelerate
training and inference. Using the CNN calculation method and GPUs, computer
vision technologies such as object recognition have developed significantly, and
various industries using this technology have developed together.

Among different types of industries, the autonomous driving systems that use
the advanced AI-based computer vision technology have been explicitly stud-
ied. For a long time, many car companies have been working to develop a fully
autonomous car, and Google has been experimenting and developing self-driving
vehicles for commercialization. The studies on NVIDIA platform for autonomous
driving have led to the development of DrivePX that uses the deep learning tech-
nology itself. These studies are mainly concerned with the low-speed (less than
60 km/h) driving scenarios in the city. However, in reality, the use of self driving
is more common on express vehicle-only roads than in the city where complex
intersections, person mobility, and pedestrians exist.

Currently, the SAE Level 2 self-driving system, commercialized for use on
express roads, controls autonomous driving using various sensors such as Radar,
LiDAR, and cameras. While the use of various sensors can ensure the autono-
mous driving control performance, the system is very expensive because com-
plex sensor data must be handled, control algorithms must be applied, and the
car, including the controller, must be configured. To address these shortcomings,
one of the concepts currently being studied is end-to-end learning. It is a way of
constructing a network that derives output values according to input values at on-
time, eliminating complex intermediate processes. When applied to autonomous
driving systems, the end-to-end deep learning system eliminates all complex
sensor data processing or control logic and infers driving control values from an
input image as the result of the end-to-end network. Because its data process-
ing is based on images without the use of other expensive sensors or processing
technologies, it can be configured at a lower cost than that required for currently
commercialized self-driving systems. Consequently, in this study, we propose a
self-driving control technology for a high-speed driving environment based on
end-to-end deep learning.

1963

1 3

End‑to‑end deep learning‑based autonomous driving control…

When controlling self-driving cars in a high-speed environment, it is important
that they do not face a situation of understeer or oversteer when they meet a curve
section. However, the recently studied end-to-end deep learning-based self-driving
control systems, such as NVIDIA, do not consider speed but are mainly focused
on steering wheel control only. Controlling the steering wheel without considering
speed in a high-speed environment can cause serious problems such as understeer or
oversteer. To solve these problems, in this study, we propose a method to control the
steering wheel of a self-driving vehicle while considering its speed in a stable man-
ner even in a high-speed driving environment.

Because the conventional autonomous driving system is equipped with many sen-
sors, it is most important to accurately and rapidly process various sensor data of the
vehicle. However, to imitate human driving more accurately, it is necessary to utilize
image data obtained from the front of the vehicle, instead of relying only on sensors
mounted on the vehicle. In addition, it is necessary to analyze how humans use this
image data for driving. Humans have the ability to recognize moving objects such
as vehicles and pedestrians, and non-moving objects such as traffic lights and roads
in front of them while driving. After recognizing these various objects in front, the
current vehicle control values such as the driving speed and the steering wheel angle
are combined with the situation in front of the vehicle to determine how to steer the
wheel and press the accelerator or the brake pedal.

However, there are some critical points to consider, which are not mentioned
above. Drivers do not analyze the situation using only a single forward view but
continuous views. CNN has the strength to extract spatial features because it calcu-
lates using three-dimensional vectors, but ineffective in temporal feature extraction
due to its structure. Therefore, it is impossible to develop an autonomous driving
system that imitates human driving using CNN only.

Previous studies have learned driving image and driving control value using
CNN-based end-to-end models. Through this, it is possible to infer the driving con-
trol value from the driving image. However, we thought that the process of driving
was difficult to judge by looking at only one fragmentary image. And we proposed
a network that combines CNN and LSTM to learn the driving process rather than a
fragmentary image. When human drives a vehicle, he does not drive only by looking
at the road screen at the moment. Humans are aware of driving information such as
current speed and road conditions ahead. And based on this, humans judge how to
drive next and drives. As such, it is not considered that an end-to-end model using
only CNN can perfectly learn about driving. Therefore, we designed a network that
can infer the next driving control value by learning the current driving information
and the previous driving information, and this model shows better performance.

In this study, we propose an end-to-end deep learning-based autonomous driv-
ing system using both CNN and long short-term memory (LSTM) to extract spatial
and temporal features. This study shows a novel end-to-end deep learning model for
autonomous driving in high-speed environments.

1964 C. Kim et al.

1 3

2 Related works

Similar to the system proposed in this study, various systems have been proposed to
infer the steering angle of autonomous vehicles based on CNN. NVIDIA proposed
an end-to-end learning system using CNN in 2016 [1]. This system infers the steer-
ing wheel angle value by receiving images from the front through three cameras. It
is much simpler and more accurate than the conventional methods of detecting lanes
or path planning. Their system is trained to minimize the mean squared error of the
recorded steering wheel angle and output of the network. The NVIDIA’s CNN net-
work has nine layers, approximately 27 million connections, and 250,000 param-
eters. It effectively infers the steering wheel angles, but do not consider the vehi-
cle speed. Furthermore, it uses CNN only and do not consider the time-series data.
Therefore, the angle control may be unstable at high speeds.

In 2017, Chen et al. proposed an end-to-end learning model for the lane keeping
of self-driving cars [2]. The experiment was conducted using a CNN. Their system
is similar to the NVIDIA’s architecture for inferring the steering angle values using
the features extracted from the images. It showed high performance, but did not con-
sider the current speed and time-series data like the NVIDIA’s system.

A CNN-based steering wheel inferring system is efficient to design an autono-
mous vehicle system. However, because it infers the steering angle value of the
vehicle without considering the vehicle speed, problems such as understeer or over-
steer may occur when the vehicle is actually driven. These problems are fatal for an
autonomous driving system.

Yang et al. suggested an end-to-end multi-modal multi-task vehicle control model
using CNN and LSTM in 2018 [3]. They proposed this CNN-based system that
infers the steering wheel angle value from the extracted image features. Unlike the
NVIDIA’s system, the system infers the vehicle speed value not only using the steer-
ing wheel angle, but also LSTM. It is similar to the system proposed in this study
because both the steering angles and the speed values are provided as the input for
the network, and both CNN and LSTM are used to draw the relevant inferences.
However, Yang et al. designed the system using separate neural networks to infer
the steering wheel angle and the vehicle speed. Moreover, unlike our work that uses
speed as an input to infer the steering angle value, the former system focused on
speed control using image features as an intermediate input to infer the speed value.

As shown in Table 1, other studies similar to ours have also used end-to-end
learning, but the steering wheel angle value was inferred based on a single CNN

Table 1 Comparison of related works

NVIDIA Chen et al. Yang et al. Our work

Input Image Image Image/speed Image/speed
Output Steering angle Steering angle Steering angle/speed Steering angle/speed
Network type CNN CNN CNN/LSTM CNN/LSTM
Considering speed

to infer angle
No No No Yes

1965

1 3

End‑to‑end deep learning‑based autonomous driving control…

while considering the speed value or the time-series data. Alternatively, the speed
and the steering wheel angle were used together in the network, but these studies did
not consider speed when inferring the steering wheel angle, focusing only on draw-
ing the speed inference.

In this study, we suggest a system for safe autonomous driving control at a high
speed using speed values that were not considered to infer the steering wheel angle
in the conventional studies.

Li, You, and Javier Ibanez-Guzman suggested ideas on how to use LiDAR tech-
nology in autonomous vehicle systems [4]. They proposed a method for Object
Detection, Object Tracking, and Object Intention Prediction by learning the range
view of LiDAR through DNN, such as RageNet. And also, Kim, Jinwoo, et al. have
proposed a technology that recognizes and tracks moving objects using various sen-
sors in an autonomous driving system [5]. The experiment was conducted on a lim-
ited embedded hardware platform, but showed high performance in real time at least
15 fps. In previous papers, various systems that are helpful for autonomous driving
systems have been proposed. In this paper, we propose a method of implementing
the various systems through end-to-end learning. Grigorescu Sorin, et al. proposed
on End-to-End Learning Control that takes various sensor data as input and out-
puts vehicle control values [6]. It is similar to our proposal in that the intermediate
processes, such as Perception, Localization, Path Plannign, Behavior Arbitration,
and Motion Control can be solved through End-to-End Learning. However, it differs
from this paper in that it is a survey paper without experiments and that it uses all of
various sensors, not just driving images. In this paper, there is a strength on imple-
menting an autonomous driving system at low cost by using only driving images
without using other sensor data.

3 Background

3.1 Understeer and oversteer

Figure 1 shows the understeer and oversteer scenarios. Understeer is a phenomenon
in which the rotation angle of the vehicle becomes smaller than the angle of the

Fig. 1 Visualization of understeer and oversteer

1966 C. Kim et al.

1 3

steering wheel when it turns around a corner. Furthermore, from the perspective of
the tire grip, understeer occurs when the front tire starts to lose grip before the rear
tire during cornering. The front tire already reaches the limit of its grip and cannot
increase the lateral acceleration further; therefore, it turns at a larger angle than the
intended angle. Conversely, oversteer occurs when the rear tire has less grip than the
front tire during cornering.

As shown in Fig. 2, understeer and oversteer can be explained using the concept
of the slip angle from the perspective of vehicle dynamics. The slip angle is defined
as the angle between the direction in which the wheel is actually going and the
direction in which it is currently pointing. The trend direction of the tire is reversed
in the direction of wheel rotation because of the friction on the grip surface of the
tire. Thus, understeer occurs when the front slip angle of the vehicle is greater than
its rear slip angle.

Preventing understeer and oversteer is simple: simply control the appropriate
speed of the vehicle before entering a corner. In this study, we propose a method to
infer the steering wheel value of an autonomous vehicle by considering the driving
speed.

3.2 Convolutional neural network (CNN)

The concept of CNN was first introduced by LeCun in 1989 [7]. At the time,
although the use of this concept in handwriting recognition showed significant
results, there was insufficient evidence to generalize it. After 9 years, in 1998,
LeCun proposed a network called LeNet [8] that became the first CNN. In his study,
he designed LeNet, the basis for CNNs, according to the following three ideas: local
receptive fields, shared weights, and sub-sampling. Later, in 2014, AlexNet [9] that
won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) was pro-
posed. AlexNet introduced a variety of ideas that are currently being studied in the
field of CNNs. Unlike LeNet-5, AlexNet uses a three-dimensional vector consider-
ing an RGB image, GPUs to perform several calculations, and ReLU as an acti-
vation function. Furthermore, overfitting was solved by applying Max pooling and
Dropout on AlexNet. ZFNet [10] that won the ILSVRC in 2013 is a method to find
the optimal CNN structure through visualization using deconvolution.

Fig. 2 Explanation of understeer and oversteer based on slip angle

1967

1 3

End‑to‑end deep learning‑based autonomous driving control…

Google’s GoogleNet [11] was proposed in 2014 and is a popularly known deep
neural network. GoogleNet consists of 152 layers through the inception structure
and won the ILSVRC 2014. It was the beginning of the deep CNN.

3.3 Long short‑term memory (LSTM)

A recurrent neural network (RNN) is a neural network that can effectively infer
time-series data. It uses a short pre-inference value as the input to draw the infer-
ence. Because it uses the pre-inference value as the input, it has an advantage in
inferring time-series data. However, as the network deepens and learns several pro-
cesses over time, it faces a vanishing gradient problem: the previously inferred value
gradually loses its meaning.

LSTM was proposed by Hochreiter et al. in 1997, and it solved the above-men-
tioned problem [12]. It is a type of RNN that can perform long learning sessions.
The core idea is the cell state; it can store the necessary data for the long-term using
an input gate, a forget gate, and an output gate. This cell state solved the vanishing
gradient problem. Thereafter, a gated recurrent unit (GRU) was proposed in 2014
[13], which has a simpler structure than LSTM.

As mentioned earlier, LSTM was created to address the vanishing gradient prob-
lem of RNN. The cell state plays the role of a conveyor belt, and thus, the gradient
is relatively well propagated even after the state has elapsed for a considerably long
period of time.

The detailed formula is as follows: ⊙ denotes the Hadamard product calculation
that means multiplication by element.

The forget gate ft is the gate to forget past information. It is activated by a sigmoid
function receiving ht−1 and xt as inputs. Because the output range of the sigmoid is
between 0 and 1, if the output of the forget gate is 0, the previous status information
is forgotten, and if it is 1, the previous status is completely remembered.

The input gate it ⊙ gt is the gate to remember the current information. It executes
the sigmoid function with ht−1 and tt as inputs, and then executes the tanh function

(1)ft = � ∗ (Wwhf
∗ xt +Whhf

∗ ht−1 + bhf)

(2)it = � ∗ (Wxh_i ∗ xt +Whh_i ∗ ht−1 + bh_i)

(3)ot = � ∗ (Wxh_o ∗ xt +Whh_o ∗ ht−1 + bh_o)

(4)gt = tanh(Wxh_g ∗ xt +Whh_g ∗ ht−1 + bh_g)

(5)ct = ft ⊙ ct−1 + it ⊙ gt

(6)ht = ot ⊙ tanh(ct)

1968 C. Kim et al.

1 3

with the same inputs. Thereafter, it performs the Hadamard product operation and
prints the output value of the input gate.

Through these operations, LSTM solves the vanishing gradient problem.

3.4 Long‑term recurrent convolutional networks (LRCNs)

CNN has certain advantages with respect to extracting features using a two-
dimensional vector, but is not efficient in obtaining both temporal and spatial
information. To solve this problem, many studies combined CNN that extracts
spatial information and RNN that extracts temporal information. The popularly
known LSTM is a fully connected LSTM structure in which both the input and
the output are one-dimensional vectors. To infer from the image on LSTM, which
is a three-dimensional vector including channel, it is necessary to transform the
model structure.

Xingjian et al. proposed the convolutional LSTM in 2015 [14]. It uses a three-
dimensional vector for the input and output of each cell, and its internal operation
was replaced by performing the convolution as a simple matrix multiplication.
Consequently, the spatial and temporal features can be extracted simultaneously
from the cell itself. It is also efficient, but in this study, we used the long-term
recurrent convolutional networks (LRCNs) proposed in 2015 [15]. This model
first extracts features from an image, converts them into one-dimensional vectors,
and inserts them into the input of LSTM.

In this study, the spatial and temporal features occurring during driving were
extracted using the LTRCN model to determine the driving plan.

Fig. 3 Overall system architecture

1969

1 3

End‑to‑end deep learning‑based autonomous driving control…

4 System design

Figure 3 shows the overall architecture of the proposed system. The training data
collection module collects the training data from the Euro truck simulator and
saves the data on the cloud-based training data manager. The end-to-end driving
plan training module trains the weights of the network via the CNN and LSTM
using a training set from the cloud server. The system infers a driving plan,
including the steering wheel angle and the vehicle speed.

4.1 Training data collection module

The training data collection module collects the driving data using the Euro truck
simulator for use in the training dataset. We designed the driving data collection
system, as shown in Fig. 4. The Euro truck simulator-based data collection module

Fig. 4 Driving data collection system

1970 C. Kim et al.

1 3

collects the raw data from the euro truck simulator. The raw data contain time-
seriesed image with timestamp and steering wheel value between − 1.0 and 1.0.
The driving data converter receives raw driving data from the euro truck simulator
and divides them into di erent types of data such as the steering wheel, speed, times-
tamp, and the driving image. The cloud-based training data manager receives the
converted data and synchronizes it with a timestamp- based synchronous module,
and saves the data to DataNode.

In the driving data converter, with the Python Image Library, we cropped a driv-
ing image for use in the training. As shown in Fig. 5, the driving image and the vehi-
cle speed have been extracted from a raw driving image. The system analyzed the
vehicle speed using a simple CNN.

4.2 End‑to‑end driving plan training module

As shown in Fig. 6, the overall architecture of the driving plan training module con-
sists of two parts: training dataset and driving plan training using the LRCN. The
training dataset is loaded from the driving data cloud server mentioned above. As
shown in the right panel of Fig. 6, the training module trains the weights of the

Fig. 5 Extracting driving image and vehicle speed

Fig. 6 Driving data collection system

1971

1 3

End‑to‑end deep learning‑based autonomous driving control…

network to minimize the mean square error between the ground-truth driving plan
and the computed one using the LRCN

4.2.1 End‑to‑end driving plan training module

The overall training model structure is shown in Fig. 7. The CNN extracted the fea-
tures of the images. After the concatenation of the speed data, the extracted features
became the input values of LSTM. The steering wheel value and the vehicle speed
were inferred through the LSTM cell and the fully connected layer. The feature maps
extracted from the CNN were reused to infer the driving plan of the next time series.
By reusing these feature maps, the system inferred a driving plan considering changes
over time.

Figure 8 shows the structure of the end-to-end deep learning training model. The
input driving image and speed required for learning were normalized before they were
entered as the inputs. First, the driving image underwent a simple feature extraction,
with a total of five convolution layers. The features of the image extracted through five

Fig. 7 Overall system flow of training driving plan

1972 C. Kim et al.

1 3

convolution layers were concatenated with the normalized speed value. The concate-
nated vector became an input to the LSTM and was passed through the LSTM cell to
produce a one-dimensional vector output with 256 sizes. Finally, the steering wheel
angle and speed were inferred from a fully connected layer. The inferred values were
converted using the Hanning smoothing algorithm for the smoothing of the continuous
angle and speed.

Fig. 8 Training model architecture

1973

1 3

End‑to‑end deep learning‑based autonomous driving control…

4.2.2 Extracting features from images using CN

Figure 9 shows the network structure of the CNN part, which extracts features
from the images. Before performing convolution, input image is resized to an
80 × 200 vector, and then normalized. The normalized vector was passed through
a total of five different layers for integration. The padding of the convolution layer
used in the experiment was 1, and the activation function was ReLU. A feature
vector of 255 sizes was created with seven layers, including the flatten and fully
connected layers. The extracted feature vector was concatenated with the normal-
ized speed vector, and then used as an input to the LSTM.

4.2.3 Angle and speed prediction using LSTM

As shown in Fig. 10, LSTM infers the final output vector by receiving a feature
extracted from the mentioned CNN and a speed vector as the input. For experiments,
40-frame sequences were used to draw the inference. The output vector was used as the
input to the next stage considering the changes over time.

4.2.4 Loss function for training

We used mean square error (MSE) as a loss function for training driving plan. The for-
mula of the loss function applied to this system is as follows.

Fig. 9 Feature extraction using CNN

1974 C. Kim et al.

1 3

(7)lossangle =

∑n

i=1
(Yangle_i − yangle_i)

2

n

(8)lossspeed =

∑n

i=1
(Yspeed_i − yspeed_i)

2

n

(9)loss =
lossangle + lossspeed

2

Fig. 10 Inferring angle and speed using LSTM

Fig. 11 Software architecture of the proposed system

1975

1 3

End‑to‑end deep learning‑based autonomous driving control…

4.2.5 Software architecture

The software architecture of the proposed system is shown in Fig. 11. To use the
GPUs, the CUDA and cuDNN were installed on the base, and the Python Library
and Python were installed. We used the Pytorch framework to develop the end-to-
end deep learning system.

5 Experiments

5.1 Dataset

We used the Euro truck simulator with the Logitech G29 steering wheel and ped-
als to collect the driving dataset. We collected approximately 400 GB of converted
training data to infer the steering wheel angle and the vehicle speed.

5.2 Training

We constructed a deep learning server for the end-to-end deep learning training.
And we used two GPUs with RTX2080ti, and AMD Ryzen 2950x CPU with 16
cores and 32 threads.

To use LSTM for the training, the sequence length of the images had to be fixed.
The experimental results revealed that the best sequence length was 40 frames. The
sequence of a frame was just over 1 s when we considered 30 fps, yielding the best
learning result when the sequence of this length was entered.

5.3 Evaluation

5.3.1 Performance evaluation with ground truth

As shown in Fig. 12 the steering wheel predictions are almost the same as the
ground truth. Because of the specificity of LSTM to use the pre-inference data to
infer the next step, some errors occurred in the early stage because of the lack of

Fig. 12 Accuracy of inferring a steering angle for 3000 frames

1976 C. Kim et al.

1 3

initial data. Similar to the steering angle value prediction, the vehicle speed predic-
tion was also observed, as shown in Fig. 13.

The errors of the steering angle and speed for 3000 frames are shown in Figs. 14
and 15, respectively.

Fig. 13 Accuracy of inferring a speed for 3000 frames

Fig. 14 Error in inferring the steering angle for 3000 frames

Fig. 15 Error of inferring a speed for 3000 frames

1977

1 3

End‑to‑end deep learning‑based autonomous driving control…

Considering that the steering angle ranged from − 450◦ to 450◦ and the speed
ranged from 0 to 120 km/h, this system yielded very accurate prediction results with
an average steering angle error of 0.028 and an average speed error of 0.65.

The graphs in Figs. 16 and 17 show the accuracy of inferring the steering
wheel angle and the speed on an S-curved road, respectively. Even though the
vehicle was driven on a curved road, our network inferred the appropriate angle
and speed for safe driving.

5.3.2 Performance evaluation by comparison with NVIDIA’s work

Under general driving conditions that do not involve a curve with a large angle, the
experimental results presented in this study and those obtained using the NVIDIA’s
network were similar. As shown in Fig. 18, the performance of both the networks is
similar.

Fig. 16 Accuracy of inferring the steering wheel angle on S-curved road

Fig. 17 Accuracy of inferring the speed on S-curved road

1978 C. Kim et al.

1 3

However, some differences occurred on the curved road while driving at a high
speed. The NVIDIA’s network predicted a steering angle close to the generated
understeer because, unlike our network, the NVIDIAs network was trained with-
out considering the vehicle speed. Figure 19 shows the results of the trajectory

Fig. 18 Error of steering angle prediction in two networks

Fig. 19 Self-driving simulation results on a left curved road

1979

1 3

End‑to‑end deep learning‑based autonomous driving control…

error and speed caused as a result of the control in the proposed network and the
NVIDIA’s network when a high-speed vehicle was driven on a left-curved road.
The NVIDIA’s network inferred the steering wheel angle without considering and
controlling the speed, whereas the proposed system inferred the appropriate speed
and the speed-considered steering wheel angle. Consequently, the trajectory data
inferred from the proposed network showed stable values and those from the
NVIDIA’s network showed gradual understeer and oversteer phenomena. The
time-series driving images are shown in Fig. 19. Furthermore, Figs. 20 and 21
show the other results for a right curved road and a right-left curved (S-curved)
road, respectively.

These results of these experiments showed that it was safer to infer the steering
wheel angle considering the time-series image and the current speed of the vehi-
cle under high-speed conditions than not.

Fig. 20 Self-driving simulation results on a right curved road

1980 C. Kim et al.

1 3

5.3.3 Implementation of results using smoothing algorithm

The angle values inferred from the end-to-end driving networks showed high
accuracy, but splashes occurred when compared to the ground truth because of
inferring the angle of each successive frame. It could be improved by applying
the smoothing algorithm using the Hanning window value, as shown in (10). As

Fig. 21 Self-driving simulation results on an S-curved road

1981

1 3

End‑to‑end deep learning‑based autonomous driving control…

shown in Fig. 22, the graphs with the smoothing algorithm have a smooth curve
and can be observed to be closer to the ground truth.

6 Conclusion

In this study, we proposed an end-to-end autonomous driving system by incorpo-
rating CNN and LSTM. This combination of CNN and LSTM allowed the extrac-
tion of both the temporal and the spatial features. In addition, the steering wheel
angle values and the speed values of the vehicle could be inferred by considering the
changes over time. It also demonstrated the effect of preventing dangerous situations
such as understeer in a high-speed environment by inferring the driving speed and
the steering wheel angle together, while considering the current speed when infer-
ring the steering wheel angle.

Acknowledgements This research was supported by the MSIT(Ministry of Science and ICT), Korea,
under the ITRC(Information Technology Research Center) support program(IITP-2021-2016-0-00465)
supervised by the IITP(Institute for Information & Communications Technology Planning & Evaluation).

References

 1. Bojarski M et al (2016) End to end learning for self-driving cars. arXiv preprint arXiv: 1604. 07316
 2. Chen Z, Huang X (2017) End-to-end learning for lane keeping of self-driving cars. In: 2017 IEEE

Intelligent Vehicles Symposium (IV). IEEE

(10)w(n) = 0.5 − 0.5 cos(
2�n

M − 1
), 0 ≤ n ≤ M − 1

Fig. 22 Accuracy of inferring steering angle using smoothing algorithm

http://arxiv.org/abs/1604.07316

1982 C. Kim et al.

1 3

 3. Yang Z et al (2018)End-to-end multi-modal multi-task vehicle control for self-driving cars with vis-
ual perceptions. In: 2018 24th International Conference on Pattern Recognition (ICPR). IEEE

 4. Li Y, Ibanez-Guzman (2020) Lidar for autonomous driving: the principles, challenges, and trends
for automotive lidar and perception systems. arXiv preprint arXiv: 2004. 08467

 5. Kim J et al (2019) Multi-sensor-based detection and tracking of moving objects for relative position
estimation in autonomous driving conditions. J Supercomput 76:8225–8247

 6. Grigorescu S et al (2020) A survey of deep learning techniques for autonomous driving. J Field
Robot 37(3):362–386

 7. LeCun Y et al (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput
1(4):541–551

 8. LeCun Y et al (1998) Gradient-based learning applied to document recognition. Proc IEEE
86(11):2278–2324

 9. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neu-
ral networks. In: Advances in neural information processing systems

 10. Zeiler MD, Rob F (2014) Visualizing and understanding convolutional networks. In: European Con-
ference on Computer Vision. Springer, Cham

 11. Szegedy C et al. (2015)Going deeper with convolutions. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition

 12. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
 13. Chung J et al (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling.

arXiv preprint arXiv: 1412. 3555
 14. Shi X et al (2015) Convolutional LSTM network: a machine learning approach for precipitation

nowcasting. In: Advances in neural information processing systems
 15. Donahue J et al (2015) Long-term recurrent convolutional networks for visual recognition and

description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/2004.08467
http://arxiv.org/abs/1412.3555

	End-to-end deep learning-based autonomous driving control for high-speed environment
	Abstract
	1 Introduction
	2 Related works
	3 Background
	3.1 Understeer and oversteer
	3.2 Convolutional neural network (CNN)
	3.3 Long short-term memory (LSTM)
	3.4 Long-term recurrent convolutional networks (LRCNs)

	4 System design
	4.1 Training data collection module
	4.2 End-to-end driving plan training module
	4.2.1 End-to-end driving plan training module
	4.2.2 Extracting features from images using CN
	4.2.3 Angle and speed prediction using LSTM
	4.2.4 Loss function for training
	4.2.5 Software architecture

	5 Experiments
	5.1 Dataset
	5.2 Training
	5.3 Evaluation
	5.3.1 Performance evaluation with ground truth
	5.3.2 Performance evaluation by comparison with NVIDIA’s work
	5.3.3 Implementation of results using smoothing algorithm

	6 Conclusion
	Acknowledgements
	References

