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Abstract
Power is essential in nonferrous arc furnace plants for burning and melting scraps, 
as well as for the composition of raw materials to produce the furnace product. To 
ensure high-quality operation, the electric energy is controlled by changing the tap 
positions. However, there is no standard working pattern to determine the most 
effective option for changing the tap positions to obtain optimal power and product 
quantity. This study proposes a method to analyze and determine the working pat-
terns in nonferrous arc furnace plants by adopting dynamic programming. To find 
the best objective value candidates, statistical methods were utilized to obtain the 
optimal values of the total elemental power and total product quantity. Moreover, 
if the maximum product quantity minimum electric consumption are known, the 
least power per product quantity (PPQ) can be easily obtained. Thus, it is reason-
able to analyze the sequences of tap positions and then obtain the best PPQ using an 
approach of solving a recurrence problem with the widely used dynamic program-
ming approach. We demonstrated that the proposed method suggested the working 
pattern of tap positions, thereby providing relatively good PPQs in comparison with 
the conventional method.
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1 Introduction

Iron and steel are well-known materials; however, their manufacturing processes 
are still questionable. For the last long time, many steelmakers compromised on a 
longer manufacture time with high temperature to melt iron and ore for producing 
steel. To tackle these difficulties, electric arc furnaces (EAFs) were developed to 
support the establishment of metal [1]. According to a report by the World Steel 
Association in 2019 [2, 3], the EAF market is expected to witness an increase of 
6.7% with respect to the revenue from 2019 (USD 1.03 billion) to 2024 (USD 1.42 
billion). Notably, the steelmaking industry significantly contributes to the economy 
and advanced manufacturing. However, it also consumes a considerable amount of 
energy owing to the use of electric power for burning chemical materials and scraps. 
Therefore, we aim to understand how the power consumption can be efficiently con-
trolled to increase the production as well as maintain high quality.

Several research works have attempted to find solutions for the power consump-
tion problem to protect the EAF environment through various methods [4–7]. In the 
history of ferrous and non-ferrous industries, submerged-arc furnace (SAF), which 
is a type of EAF, uses the heat generated from the material resistance as the cur-
rent passes through the material, along with the heat from the electric arc between 
the electrode and material [6–9]. Thus, SAFs have been considered a key factor for 
developing melted metal products. This indicates a need to understand the back-
ground and advantages of SAF. Thus far, one of the most important features of SAF 
is a subcategory of EAF, i.e., the developments in the recycling of chemical materi-
als, such as coke and slag, to produce specific products. In addition, SAF is recog-
nized as the best method to generate metal substances [7].

Numerous researches have been conducted on topics such as tap temperature, 
current consumption, and power consumption in EAF including SAF. Power in 
EAF plants is highly essential and consumed in significant quantities in comparison 
to other industries [7]. Therefore, it is important to determine a method to deliver 
energy from the electricity source to ensure efficient furnace operations. Several rel-
evant studies have been conducted to determine the solution to this problem. The 
prediction of Minoru et al. [10] introduced three methods to reduce electricity con-
sumption in a ferroalloy firm. (1) It started from cutting off the use of the amount of 
slag per ton of alloy by providing different volumes of components. (2) The work-
ers monitored the process of inserting the electrode inside the furnace. (3) Before 
subjecting the main and sub materials to the heating operation, each material must 
be checked to ensure that they are being used correctly because sensors cannot be 
installed in such environments owing to the high heat settings. However, the depth 
of the electrodes cannot be accurately known.

Kovacic et  al. [11, 12] proposed a linear regression approach to define the 
strong relationship between materials and gases with focus on energy consump-
tion. Moreover, genetic programming was employed based on the analysis of the 
most promising parameters. Consequently, this model estimated that the average 
energy usage could be minimized by approximately 1.16% if sufficient mainte-
nance work is performed. Cano-Plata et al. [13] proposed a method to reduce the 
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loading time of scraps to the furnace container. This process was known as tap 
to tap of the operating time. To achieve this objective, the authors considered 
dynamic programming because this method can be used to boost the processes of 
EAFs. Fernandez et al. [14] proposed a modeling method for predicting the tap-
ping temperature using a fuzzy interference function. Gajic et al. [15] proposed 
a deep learning approach to control the presence and amount of mixed materi-
als to predict the usage of electric energy in a steelmaking industry. The data of 
this study were trained and tested via an artificial neural network with five-five-
one hidden layers. Shyamal and Swartz [16] introduced a method to predict the 
changes in electricity cost to ensure the optimal utilization of electricity, gas, and 
melt materials. Accordingly, they proposed an online energy control approach to 
monitor the fluctuations in the cost of electric energy.

It is evident from the above review that most of the studies attempted to manage 
the input materials in a normal manner and monitor the good operation conditions 
with minimum energy consumption [16–23]. Normally, there are three electrodes 
in a nonferrous arc furnace that operate along with the transfer of energy to support 
the submerged-arc container while melting the scraps. For example, a good opera-
tion practice in a furnace is to maintain the tips of the three electrodes (installed 
inside an SAF) at the same level. However, it is difficult to obtain any information 
about the inside of the electric or nonferrous arc furnace environment owing to the 
high temperature; thus, embedded sensors or devices cannot be installed in such 
environments. Some researches proposed a method to adjust the position of elec-
trodes to ensure the delivery of energy as well as the efficiency and effectiveness 
of the melting process. However, this method cannot be applied to all cases in a 
factory. The input pattern of the electric energy, quantity of materials, sequence of 
electrode pods, and tap positions are the factors responsible for high-quality opera-
tions [16–23]. Specifically, the workers control the tap positions while expecting 
minimal energy consumption because the tap positions significantly affect the power 
consumed in the electric furnace. This study deals with controlling the tap posi-
tions because, to the best of our knowledge, no previous study has investigated the 
sequence of tap positions to provide the minimum value of power per product quan-
tity (PPQ).

However, there are no good working patterns to determine an effective option 
for changing the tap positions to ensure less power and high product quantity. To 
determine good working patterns for the tap positions, this study utilized informa-
tion regarding a long sequence of tap positions obtained by performing for almost 
three years.

Accordingly, we focused on finding a working pattern that could enable the work-
ers to achieve the goal by applying a dynamic programming approach [24, 25] and 
big data analytics [26]. Consequently, the proposed method obtained an effective 
working pattern of the tap sequence with minimum PPQ and short computing time.

The remainder of this paper is organized as follows. Section 2 describes the prob-
lem of this study, which practically occurs in arc furnace working environments. 
Section  3 explores the analysis results of the sequences of working tap positions 
gathered in real time from a nonferrous furnace plant. Based on the analysis of large 
amount of data obtained through actual field work, in Sect. 4, we propose a dynamic 
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programming method that provides an effective working pattern of tap positions to 
ensure optimal power and product quantity, and also discuss the methods for select-
ing a good next tap position from the current tap position considering dynamic pro-
gramming. The results of our implementation are presented and analyzed in Sect. 5. 
The last section discusses the limitation of the proposed method and suggests future 
work directions.

2  Working environment and problem definition

Figure 1 illustrates an overview of the working environment and goal of the arc fur-
nace process for producing melted metal products in the history of ferrous and non-
ferrous industry [16]. The arc furnace system aims to produce large quantities of 
high-quality output products with less power and input materials. In other words, 
it should provide minimum PPQ, that is, high productivity through the operation 
of the system. The operation will be performed by controlling the tap positions and 
adjusting the material supply by the operator.

Generally, because the input materials, including the main and auxiliary raw 
materials, are supplied automatically through the input device, adjusting the tap 
greatly affects the PPQ. The core objective of this study is related to finding a 
sequence of tap positions to guarantee optimal PPQ. Therefore, it is important to 
know the definition of tap. A tap in an arc furnace is a conceptual logic that has no 
actual physical appearance. To some extent, the tap is essential for steelmakers to 
adjust the electrical current for stabilizing the performance of the burning material 
in the arc furnace container. Generally, the total number of tap positions is known 
in an arc furnace. Moreover, the tap number is different for different arc furnaces. 
In this study, 14 tap positions were used, which were provided by the furnace maker 
(labeled from 1 to 14). Naturally, the maximum value (in this case, 14) can vary 
depending on the furnace device.

Controlling the tap positions is the primitive actor that participates in generating 
the tap sequences. While a worker controls the tap positions, the process of burning 
raw materials and composition of electrical factors such as current, resistance, and 

Fig. 1  Working environment and problem definition
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voltage will be performed. The three electric pods in an arc furnace, as shown in 
Fig. 1, work as a delivery agent to transfer the power to the furnace container. Even-
tually, amount of products can be obtained in close dependence on the tap sequence 
control. These products are manufactured periodically. In this paper, a cycle is 
referred to as a working cycle, and the sequence of tap positions controlled by the 
operator during each working cycle is called a tap working pattern.

Three observations were made owing to the tap working pattern [7, 13, 16]. (1) A 
tap position can stay for a certain period and it significantly impacts the power con-
sumption. (2) Tap sequence is vital for investigating the tap position control within 
a time series. (3) The amount of power and output products are crucial for achiev-
ing the optimal value of PPQ. These three observations contribute to high produc-
tivity. The tap sequence control aims to determine a tap sequence that can help in 
obtaining the minimum PPQ, which is defined as the total electric power required 
to produce the total amount of output products. Therefore, the operators performed 
their tasks considering the working conditions that can achieve this purpose. How-
ever, owing to different work situations such as amount of materials and the total 
consumed power, the operators adjust the tap positions differently. To consider all 
work situations in this study, we attempted to analyze the information related to the 
numerous tap sequence controls performed by operators thus far. Based on the anal-
ysis results, we proposed a dynamic programming method to obtain the optimal tap 
sequence, i.e., an optimal tap working pattern.

3  Analysis of tap working patterns

The movement of tap positions in an electric furnace has some constraints. Fig-
ure 2 demonstrates the possible movements of a tap position after 1 s. For instance, 
assume that the current tap is in position i. Accordingly, there are three possible 
directions that can be attained after 1 s. First, the current tap can move to the previ-
ous tap position, i.e., position (i−1). Second, the current tap can move to the next 
tap position, i.e., position (i + 1). Finally, the current tap is likely to stay still at the 
same position after 1 s. Thus, the tap position movement pattern is different for each 
working cycle.

The tap position sequence is presented to provide a general overview of the tap 
movement trend with respect to the time series data from the firm. Before further 
examining this sequence, some key terms must be introduced. The sequence, here, 

Fig. 2  Constraints of tap movement
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refers to the cycle of working in an electric furnace to produce a specific product. 
Therefore, the terms sequence, job cycle, and working cycle are interchangeable. 
However, the term “working cycle” will be used in this paper consistently. Usually, 
there are 3–5 working cycles in a day within different time slots.

Figure  3 gives information regarding the working cycles for a one-day period 
from 8:00 AM of the current day to 8:00 AM of the next day. From the left, the first 
box is used to represent a tapping period during which the melted output will be 
discharged. The tapping period consists of the starting and ending time. The tapping 
period is a terminology defined by the manufacturer to determine a period of the 
working cycle. Further, the gap constituted by the ending time to the next starting 
time minus 1 s is called a non-tapping period. The combination of both the tapping 
and non-tapping durations can formulate one working cycle time (WCT). As shown 
in Fig. 3, the first working cycle is from 8:07 until 12:59:59 (13:00 minus 1 s). It 
should be noted that the first working cycle is defined as sequence number one. The 
following sequences are categorized accordingly (two, three, four, etc.).

The sequence provides information regarding the operating time as well as the 
production, such as the amount of material used, product quantity, voltage, current, 
impedance, electric pod index (EPI), energy consumed, and changes in the tap. The 
next section further discusses these parameters.

Let us now examine the tap sequence. Generally, the tap is manually set to a spe-
cific level that allows the steelmaking operator to control the electrical current that 
affects the power for delivering electricity to the furnace. Correspondingly, the tap 
sequence plays a crucial role in obtaining optimal power consumption. To make it 

Fig. 3  Working cycle for one day

Fig. 4  Tap position sequences in one day
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easier to understand the tap sequence in each working cycle, the visualization of the 
tap sequences is drawn as shown in the Fig. 4.

Figure 4 presents the tap sequences of a specific product (Product A) manufac-
tured in one day. The first column presents information regarding the sequence 
number. There are four sequences in this example (from 1 to 4) for the product 
name specified in the second column. The third and fourth columns denote the 
start time and end time of the working cycle, respectively. The WCT is defined 
as the end time minus the start time. The fifth column represents the total electric 
power (TEP) consumed during one working cycle with respect to the changes 
and control of tap by the operator in the working area. The sixth column is the 
amount of total product quantity (TPQ), which is the output of the WCT. The 
next column is the PPQ, which is the result of the total power divided by TPQ. 
The final column consists of the tap sequence, which serves as the tap movement 
pattern in the conceptual framework.

Figure 5 reveals the big picture that demonstrates the characteristics of the tap 
sequence such that the visualization of the objects can be utilized to represent 
the main objective of the tap working patterns. For instance, the circles denote 
the tap number. The size of each circle is not the same because the stay time and 
duration of each tap position are different. Therefore, the bigger the circle, the 
longer the stay time of the tap position. Interestingly, the different colors also 
help in effectively distinguishing the tap position number. Each tap in the tap 
sequence number has three values (the tap position number, stay time, and elec-
tric power). Here, the stay time denotes the time spent at a tap position and elec-
tric power denotes the amount of power consumed during the stay time at the tap 
position. The values at each tap position can be obtained from the data gathered 
in real time in seconds from the programmable logic controller (PLC) in an arc 
furnace. The real-time large amount of data from the time series are employed to 
obtain the tap information every second from the starting time to the ending time 
within one working cycle. Moreover, the inclusion of electrical consumption and 
product amount in the historical data works as the source for constructing the 
model of this study.

Fig. 5  Tap sequences of numerous working cycles
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For analysis purposes, the tap sequence plays a crucial role in demonstrating 
the initial step for analyzing the tap working patterns from several methods, such 
as statistical analysis and advanced computer algorithms. The analysis was veri-
fied by considering a working cycle that should have at least one tap position. 
Thus far, the criteria for selecting the tap positions were determined by the opera-
tor manually. Moreover, the data were gathered from multiple sources at various 
time points during and after the operation. For instance, the tap position numbers 
were received from the PLC in an arc furnace, while the number of products and 
raw materials were recorded by the steel worker. It should be noted that a critical 
part of this analysis is determining how to match the data recorded by users on 
paper with the digital real-time data obtained from the PLC.

To analyze the tap sequence pattern, first, the nature of the tap position should 
be investigated with respect to the frequency of the tap position, stay time of the tap 
position, connection between each tap, and the amount of consumed electric energy 
with respect to the output of product quantity and specific time frame of operation. 
The tap sequence has a unique characteristic related to the movements. There can be 
three movements after 1 s, i.e., the next tap position (i + 1), previous tap position (i-
1), and the same position i. The notation i denotes the number of tap position.

Figure  6 illustrates several tap positions in a tap position sequence within one 
working cycle. In the top part of the figure, the straightforward visualization draws 
attention to the series of tap position nodes presented by circles with various colors 
for different tap position numbers. This figure also provides information regarding 
the source of tap sequence analysis. The first row presents a list of time (in seconds), 
denoted by j. For instance, these times, represented in seconds, start from one, until 
the final time for one working cycle. The second row denotes the tap position num-
ber that is used to represent the tap number from 1 to 14; its notation is TPi,j, where 
TP stands for tap position, and i and j are the tap position number and the time 
elapsed from the starting time, respectively. The third row denotes the elemental 
power, EPi,j, consumed by tap position i at jth second from the starting time. The 
data related to the tap position, TPi,j, and elemental power, EPi,j, were retrieved in 
real time from an arc furnace machine. The last row denotes the product quantity, 
PQi,j, obtained by tap position i at jth second from the starting time. Because the 
product quantity cannot be obtained in real time, in this study, we calculated the 
product quantity using the total amount produced during the working cycle. Because 

Fig. 6  Tap sequence and constraints of movement
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the consumed electric power EPi,j for tap position i at jth second from the starting 
time is obtained from an arc furnace in real time, the obtained product quantity PQi,j 
at this time can be calculated as follows:

Figure 6 also highlights the characteristic of tap movement with the normal situ-
ation. If there is another movement that is different from the previous one, the new 
movement is considered to be abnormal. For example, assume that tap position nine 
moves to tap number twelve after 1 s. In such a case, a system error may occur in 
some part while generating the data. Together from results of the analysis relating 
to the working tap position sequence, we will provide a preliminary idea to support 
the selection of the best working patterns in the next step. It should be noted that the 
number of working cycles per day can be between 1 and 5. In this study, a total of 
1055 working cycles were recorded within a period of 11 months for data collection. 
The dataset was extracted from October 2018 to August 2019.

4  Finding an effective tap working pattern using dynamic 
programming

4.1  Proposed dynamic programming

After analyzing the working patterns from large amount of previous real-time data, 
the analysis results were stored in a relational database for future use. As shown in 
Fig. 7, for a tap sequence in a working cycle, the movement of a tap position can 
be formulated in the form of a table, which is vital for accessing specific elements 
to track the pattern. The starting tap position number is 10 and the duration of the 
working cycle is 23,339 s. The red polyline represents the tap sequence. The table 
has multiple elements that contain useful information. The top horizontal row shows 
the sequence of time series in seconds, while the leftmost vertical column presents 
the tap position number. Each tap sequence has the starting time and ending time. 

(1)PQi,j = TPQ ∗ EPi,j∕TEP

Fig. 7  Original trend of a working pattern with a working cycle time, WCT = 23,339 s
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To provide a universal method at a level that does not lack generality, the starting 
time is rewritten to the number of times in seconds in ascending order, from zero to 
the final time of one working cycle.

This study considered all tap sequences for more than 1,055 working cycles 
within a period of 11 months for data collection. The data obtained in real time 
constituted large amount of data that underwent processing techniques of the 
data, such as outlier and missing value processing [24]. Eventually, the data 
information including the electric power and product quantity was stored in an 
element in the table, i.e., tap position i and second j. Here, i denotes the value of 
tap positions from 1 to 14, and j is one of total seconds from the starting time 0.

Now, let us consider the objective of the problem. We aim to determine a 
working pattern for the tap sequence that minimizes the following function:

where wpi denotes a working pattern of a tap sequence to give the optimal PPQ; 
TWP is the total number of possible working patterns; TEPwpi

 and TPQwpi
 represent 

the TEP and TPQ at wpi , respectively; and PPQwpi
 is defined to be 

TEPwpi

TPQwpi

 at wpi.

Assume a WCT of 23,339 s and TapSize is the number of tap positions in an 
electric furnace. There are a total of TapSize*3(WCT=23,339) possible tap sequences 
because that the constraint of tap position movement is needed to consider going 
along the way. In other words, tap position i can either become (i + 1), (i-1), or i 
in the next step. Figure 7 shows the case when WCT  = 23,339; the red polyline 
represents one case among the  323,339 working tap position sequences. Because 
it takes exponential time to perform the best working tap position sequence, it 
is interesting to check the possibility of selecting different paths from 1 s to the 
next. By doing that, the optimal methodology is needed to solve this problem.

In this study, we proposed a dynamic programming approach to find the opti-
mal tap working pattern that can provide high efficiency in terms of energy usage 
and the maximum product quantities. Dynamic programming is a design method 
that is generally used to solve a given problem owing to a series of decisions [25, 
26]. This problem, i.e., the inability of making a series of stepwise decisions that 
result in an optimal decision order, can be solved by implementing every possible 
decision order. In other words, after enumerating all decisions in each step, we 
can select the best among them. In dynamic programming, the optimal decision 
order has the characteristic that the decision at the current time should constitute 
the optimal decision order with respect to the state due to the previous decision, 
irrespective of the initial state and decision. Therefore, it can be observed that the 
optimal solution to a given problem via dynamic programming is always obtained 
by considering all cases sufficiently. The most outstanding theme of the approach 
is dividing the problem into many sub problems. Importantly, the outputs of the 
subproblems have been stored and reused next time. Thus, various optimization 
problems, such as the shortest path and 0–1 knapsack, can be solved via dynamic 
programming approach [25].

(2)min
wpi ,i=1,…,TWP

PPQwpi
=

TEPwpi

TPQwpi
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With respect to the problem of this study, we attempted to use this approach to 
select a universal pattern for the working tap sequence to investigate tap position 
movements in an EAF environment. Before implementing the dynamic program-
ming approach, we analyzed several tap working patterns in an electric furnace, 
and the amount of power consumed at each tap position was stored in the analysis 
database (TAD).

To apply the dynamic programming approach, the following notations were 
defined as listed in Table 1.

To obtain the minimum PPQ[i,j] at tap position i from the starting time to time j, 
first, TEP[i,j] and TPQ[i,j] must be calculated by considering three previous results 
and three tap positions ((i-1), i, and (i-1)) from time j-1 after 1 s, as shown in Fig. 8. 
The value of k in Eqs. (3) and (4) indicates either of the tap positions i, i-1, or i + 1.

Before obtaining the best PPQ[i,j] = TEP[i,j]/ TPQ[i,j], two values, i.e., TEP[i,j] 
and TPQ[i,j] must be calculated by the following recursive equations (Eqs.  (3) 
and (4) from the TEP and TPQ obtained from previous stages, respectively). Basi-
cally, when an initial tap position is located at initial_tap, TEQ[initial_tap][0] = 0, 
TPQ[initial_tap][0] = 0, PPQ[initial_tap][0] = 0, and STP[initial_tap][0] = initial_tap 
will be assinged. In other cases, TEQ[i][j] = Infinity_Value, TPQ[i][j] = Small_value, 
PPQ[i][j] = TEP[i][j]/TPQ[i][j], and STP[i][j] = NaN will be assigned.

Table 1  Notations

Term Description

PPQ[i,j] PPQ calculated at tap position i from the starting time to time j
TEP[i,j] TEP at tap position i from the starting time to time j
TPQ[i,j] TPQ at tap position i from the starting time to time j
WCT A working cycle time
BC_EP[i, j] The best candidate of elemental power at tap position i and time j
BC_PQ[i, j] The best candidate of product quantity at tap position i and time j
STP[i,j]
TAD

Tap position at time j-1 to be moved to tap position i and time j
A database storing the analysis results of tap working patterns

Fig. 8  Decision making to select 
the best PPQ[i,j] at tap position 
i from the starting time to time j 
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The pseudocode to solve our given problem by applying dynamic programming 
approach is provided, as shown in the Finding_Optimal_Tap_Working_Pattern algo-
rithm. The algorithm is based on the bottom-up approach to investigate the appro-
priate candidates that align with the objective of determining the minimum TEP 
and maximum product quantity to provide better PPQ results. The input parameters 
include the initial tap position (initial_tap), WCT, and total tap position number 
(TapSize), provided by an arc furnace. Additionally, a database (TAD) that stored 
the analysis results of several working patterns was provided as the input. These 
input parameters are crucial for implementing the algorithm. The output of the algo-
rithm includes the TEP, TPQ, and PPQ from the start time to every second in the 
given WCT; finally, the best PPQ and best tap sequence (STP) during the WCT can 
be obtained.

Figure 8 demonstrates the steps for producing the outputs from the input param-
eters. The related data structures are assigned an initial value through steps 1–8 for 
every tap position (TapSize) during a WCT. Next, we focus on obtaining the outputs 
at tap position i and time j (steps 9–10). Steps 11–25 of the algorithm determine the 
best from the three possible candidates at tap position i and time j; these three candi-
dates are processed in step 11 (for k =  − 1 to 1). First, the best product quantity and 
best elemental power were selected from the numerous candidates at tap position 
(i−1) with time (j−1) at step 12 and step 13, respectively. Subsequently, steps 14–20 
were used to check the minimum, localMinPPQ, from the three PPQs to get the 
minimum index, localMinIndex. The localMinIndex will be used to repre-
sent the final best product quantity and best elemental power to add with the TPQ at 
tap position (i-1) with time (j−1), as well as TEP at tap position (i-1) with time (j-1), 
respectively. The work will be done by considering the last two cases. The first case 
(k = 0 in step 11) is doing the same for tap position i and time j-1, the second case 
(k = 1 in step 11) for tap position (i + 1) and time (j−1). After determining the best 
candidates (steps 14–20), steps 22 and 23 add the results with the previous TPQ and 
TEP, respectively. Then, the optimal PPQ at step 24 denotes the result of the TEP 
divided by TPQ. Further, the selection tap position is stored (step 25).

This operation is repeated for all remaining tap positions and times. The details of 
the algorithm are described in Finding_Optimal_Tap_Working_Pattern.

(3)

TEP
[
i, j
]
=

{
Infinity Value otherwise

TEP
[
k, j − 1

]
+ BC_EP

[
k, j − 1

]
if j > 0andk = i − 1, i, i + 1

(4)

TPQ
[
i, j
]
=

{
epsilon otherwise

TPQ
[
i + k, j − 1

]
+ BC_PQ

[
i + k, j − 1

]
if j > 0andk = i − 1, i, i + 1
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4.2  Selecting best candidate in proposed dynamic programming

The Finding_Optimal_Tap_Working_Pattern algorithm in Sect.  4.1 highlights an 
important point related to the selection of the best PPQ by finding the best product 
quantity (BC_PQ) and best elemental power (BC_EP) from the several candidates 
stored in the tap working pattern analysis database, i.e., TAD.

Now, consider BC_PQ[i][j] and BC_EP[i][j] at tap position i and time j. To select 
BC_PQ[i][j] and BC_EP[i][j], we must explore the elemental powers and product 
quantities stored at the tap position and time. The values can be obtained by ana-
lyzing the experimental candidates, which were obtained through real works until 
now. Assume that a tap working pattern WP = (TP0, TP1, …, TPwct) during a WCT  is 
given, where TPj is a tap position at jth second. As mentioned in Sect. 4.1, note that 
the TPQ produced during the WCT  is provided manually; however, the tap positions 
and elemental powers are gathered in real time every second. Let ep[i][j] and pq

[
i][j

]
 

be the elemental power and product quantity at tap position i and time j , respec-
tively. Then, pq

[
i][j

]
 is calculated according to Eq. (5). The analysis results of the 

tap working patterns are stored in an analysis table, TAD.

As illustrated, many tap working patterns are used to ensure better results in 
selecting BC_EP and BC_PQ. When the tap working patterns are considered, sev-
eral tap analysis results at tap position i and time j may be stored in the TAD. Fig-
ure 9 illustrates the matrix containing the elemental powers and product quantities 
at tap position i and time j , highlighted in the interception of x-axis i and y-axis j 
in the matrix. Every candidate for BC_EP and BC_PQ may be stored in the analysis 
table of large amount of data. Table 2 presents information regarding the analysis 
at tap position 11 and 100 s on 19 elemental powers, 19 product quantities, and 19 
PPQs. It is important to select the best ones from TAD[i][j].

(5)pq
[
i][j

]
=

ep
[
i][j

]
∗ TPQ

TEP

Fig. 9  Decision making to select BC_EP and BC_PQ
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Next, we examine Eq. (2). Our objective is to get the minimum PPQ in each step 
by applying the dynamic programming approach. Accordingly, we first attempted to 
use the most basic statistical methods [27], i.e., min, max, average, and deviation. All 
relevant factors were considered as the input parameters to find the best path of tap 
position movement. This research aims to realize the least power usage along with the 
maximum output values. Thus, the calculation of the minimum of elemental power, 
minimum deviation of tap position, and maximum product quantity were considered.

BC_MinMax(i,j), which is the first statistical method, determines the best candi-
dates of elemental power and product quantity using min and max approaches. First, 
the input parameters include the tap position number, number of seconds, tap analysis 
data, and number of elements. The algorithm executes a query to filter the observa-
tion that contains the minimum elemental power and maximum product quantity, and 
is eventually subjected to the least value of PPQ. Thus, the minimum elemental power 
and maximum product quantity in TAD[i,j] are extracted successfully.

Table 2  Sample data stored in TAD for tap position 11 and 100 s

No Tap position Time (s) Elemental power 
(ep[i = 11,j = 100])

Product quantity 
(pq[i = 11,j = 100])

Power per product quan-
tity (ppq[i = 11,j = 100])

1 11 100 12,065 11,544.3 1.05
2 11 100 11,899 13,708.9 0.87
3 11 100 12,460 19,481 0.64
4 11 100 12,023 14,864.9 0.81
5 11 100 12,491 11,891.9 1.05
6 11 100 11,065 14,864.9 0.74
7 11 100 11,975 13,750 0.87
8 11 100 12,258 13,095.2 0.94
9 11 100 12,029 14,404.8 0.84
10 11 100 12,036 11,700 1.03
11 11 100 12,188 13,000 0.94
12 11 100 12,951 14,300 0.91
13 11 100 12,546 15,151.9 0.83
14 11 100 12,809 15,151.9 0.85
15 11 100 11,887 12,623.4 0.94
16 11 100 12,331 11,922.1 1.03
17 11 100 12,826 15,428.6 0.83
18 11 100 12,471 14,026 0.89
19 11 100 12,517 14,054.8 0.89
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The second statistical method is BC_Average(i,j), which finds the best candi-
dates of elemental power and product quantity by selecting the average approach. 
Primarily, the input parameters include the tap position number, number of seconds, 
tap analysis data, and number of elements. Second, the algorithm runs an average 
function to get the average elemental power and average product quantity. Next, the 
selected record must fulfill two criteria; first, the elemental power value should be 
less than or equal to the average elemental power; the second criterion focuses on 
the product quantity value that is greater than or equal to the average product quan-
tity. Most importantly, the record must guarantee the minimum PPQ.
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The third statistical method is BC_Deviation(i,j), which employs the deviation 
approach to find the best candidates for the elemental power and product quantity. 
First, the tap position number, number of seconds, tap analysis data, and number of 
elements serve as the input parameters. Further, ppq, which is recorded by the steel-
workers, is used as a key indicator to find the smallest deviation. Therefore, the algo-
rithm calculates ppq in TAD[i,j]. Then, daily_ppq subtracts ppq to get the deviation 
value. The record with the smallest deviation and positive value is selected.

From now, let us analyze the computation complexity of our proposed Find-
ing_Optimal_Tap_Working_Pattern algorithm. Since Step (1) through Step 
(6) are repeated two for loops, the computational complexity of the steps is 
O(WCT*TapSize). From Step (9) to Step (27), three for loops are repeated, but 
because k (= -1.,0,1) is repeated three times, so that it is repeatedly executed as 
much as 3*WCT*TapSize. In each loop, BC_PQ[i,j] and BC_EQ[i,j] must be 
selected. The selection time complexity is dependent on the number of items stored 
in TAD[i,j]. Assuming that the number is n, the BC_PQ[i,j] and BC_EQ[i,j] can 
be obtained in O(n) time even if any of the three proposed methods is used. So the 
total computation complexity of the algorithm is O(WCT*TapSize*N), where N is 
the maximum number of items in TAD[,]’s.

5  Experimental results and performance evaluation

5.1  System environment

This paper describes the methods and techniques used in this study to select an 
appropriate working pattern that is subjected to the optimal value of PPQ. We 
used a computer with the following specifications for the experiments: CPU Intel® 
Core™ i7-6700, 3.40 GHz, RAM 32 GB, NVIDIA GeForce 9800 GT graphics card, 
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Windows 10 operating system, and Jupyter Notebook, an integrated development 
environment for Python and IntelliJ for Java [28–30]. Moreover, MariaDB was used 
to store the enormous amount of data.

5.2  Data preparation

The data contained in the dataset were generated by a steelmaking firm. A total of 
24.59 million records, from October 2018 to August 2019, were utilized. Interest-
ingly, the data were obtained from two types of sources. The first type of data was 
extracted from daily reports available in the form of hard copies. It consisted infor-
mation related to the product name (PN), production date, quantity of output, mixed 
material name, quantity of raw materials, tapping periods, and amount of power 
consumption in one day. However, the data recorded by humans may have inconsist-
ency issues; for instance, the number of products, amount of power, and production 
time. This is responsible for the numerous steps involved in this process. Therefore, 
the data must be preprocessed and verified with the data operators. The second type 
of data was obtained from a PLC. The PLC transfers the data from the machines in a 
factory to the database at the end of the day, approximately midnight. All records are 
arranged according to their timestamps every second.

Tables 3 and 4 present 21 datasets from the 1,397 working cycles with respect 
to specific products. The data were collected from October 20, 2018 to August 31, 
2019. As evident in the tables, there are 3–5 working cycles in a day, and each WCT  
is calculated by subtracting the working start time (WST) from the working end 
time (WET). Generally, the minimum, maximum, and average of the working cycle 
duration are 6839, 65,990, and 23,238  s, respectively. During each working dura-
tion with the sequence number (SN), the TEP is consumed to produce the TPQ for 
a specific PN such that the PPQ is obtained by dividing TEP by TPQ. These opera-
tions are performed according to the STP during the WCT, which is controlled by an 
employee. The STP is called a working pattern. In our experimental data, we used 
a tap controller that can locate a tap at one of the TapSize = 14 positions. According 
to the tap control by the operator, the electric furnace provides the tap number and 
the element power consumed at the tap number at each second in a WCT. With this 
information, we provided three values [a, b, c] for each tap in a working pattern, 
where a denotes the tap number, b is the time remaining on the tap, and c is the PPQ 
on the tap using Eq. (6). Table 4 presents the detailed tap sequence information of 
the 21 working patterns summarized in Table 3.

5.3  Proposed working pattern results

With respect to the analysis results of large amount of data illustrated in the previ-
ous section, the Finding_Optimal_Tap_Working_Pattern algorithm was applied to 
find an effective working pattern while reflecting its profound effect on the PPQ. 
Before applying the proposed algorithm, the working patterns with the data, as dem-
onstrated in Tables 3 and 4, were preprocessed according to each PN. The details of 
the preprocessing are described in Sect. 3. Based on the preprocessing results, the 
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proposed dynamic programming algorithm was implemented with input parameters 
such as the PN, initial tap position (initial_tap), WCT, and one of the three proposed 
methods for selecting good BCs in Sect. 4.2. Consequently, the proposed algorithm 
yielded TPQ, TEP, and PPQ as the outputs in Table 5, and an effective tap sequence 
in Table 6. Additionally, the execution time (ET) of this algorithm is presented.

For example, consider the data in the first and seventh rows of Tables 5 and 6. 
In the first row, the input data include Product A, 11 initial tap position, 4,000  s 
as a WCT, and BC_Deviation(). The output results are 9365.10 TPQ and 3745.12 
TEP; thus, the PPQ is 2.50. Additionally, the ET is 148 s. The effective tap sequence 
obtained from the algorithm with the row data in Table 5 is presented in the first 
row of Table 6. Let us interpret the tap sequence output in detail. Let us begin at 
tap position 11, stay at the same tap position for 5 s, and then move to tap position 
12. After staying at tap position 12 for 1 s, move to tap position 11 again. It can be 
observed that after staying at tap position 11 for 61 s, it moves to tap position 12 
again. The movement of this tap will repeat for 4,000 s, as shown in the first row in 
Table 6. Here, the data [5, 11] in the tap sequence implies that the tap stays at tap 
position 11 for 5 s.

Similarly, when interpreting the contents of the seventh row of Table 5, Prod-
uct C, initial tap position 11, WCT of 8,000  s, and BC_MinMax() are given as 
inputs. The output results are 3500.59 TPQ and 1263.89 TEP; thus the PPQ is 
2.77. Additionally, the ET is 546 s. Initially, the tap stays at tap position 11 for 

Table 3  Information regarding the working patterns

No PN SN WST WET TEP TPQ PPQ

1 Product D 1 2019–06-01 9:59:00 2019–06-01 16:02:59 61,348.50 11,049.94 5.55
2 Product D 2 2019–06-01 16:03:00 2019–06-01 22:05:59 62,235.65 9099.92 6.84
3 Product D 3 2019–06-01 22:06:00 2019–06-01 23:59:59 18,321.75 9100.01 2.01
4 Product D 1 2019–06-03 9:20:00 2019–06-04 0:10:59 62,292.87 10,400.07 5.99
5 Product D 2 2019–06-04 0:11:00 2019–06-04 6:07:59 58,594.97 9600.09 6.10
6 Product D 1 2019–06-04 6:08:00 2019–06-05 0:16:59 93,001.25 9843.82 9.45
7 Product D 2 2019–06-05 0:17:00 2019–06-05 6:04:59 54,464.51 11,156.22 4.88
8 Product A 1 2019–07-12 6:17:00 2019–07-12 23:56:59 101,294.87 30,779.13 3.29
9 Product A 2 2019–07-12 23:57:00 2019–07-13 6:19:59 71,284.38 37,221.24 1.92
10 Product A 1 2019–07-13 6:20:00 2019–07-13 12:06:59 61,752.64 28,556.19 2.16
11 Product A 2 2019–07-13 12:07:00 2019–07-13 18:01:59 60,940.31 22,715.24 2.68
12 Product A 3 2019–07-13 18:02:00 2019–07-13 23:59:59 60,314.74 23,364.22 2.58
13 Product A 1 2019–07-15 6:15:00 2019–07-15 12:03:59 66,242.02 28,838.27 2.30
14 Product A 2 2019–07-15 12:04:00 2019–07-15 18:00:59 64,615.54 26,155.63 2.47
15 Product A 3 2019–07-15 18:01:00 2019–07-16 0:53:59 74,942.93 28,167.70 2.66
16 Product A 4 2019–07-16 0:54:00 2019–07-16 6:19:59 65,663.62 28,838.39 2.28
17 Product A 1 2019–07-16 6:20:00 2019–07-16 23:28:59 100,721.56 33,877.54 2.97
18 Product A 2 2019–07-16 23:29:00 2019–07-17 6:11:59 77,778.51 49,122.44 1.58
20 Product A 1 2019–07-17 6:12:00 2019–07-18 0:03:59 114,003.58 30,778.66 3.70
21 Product A 2 2019–07-18 0:04:00 2019–07-18 6:32:59 72,712.63 43,221.12 1.68
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Table 4  Tap position sequences per working cycle

No STP

1 [10, 481, 3.057], [9, 2153, 2.46], [10, 202, 2.885], [11, 11,883, 3.155], [10, 2953, 3.021], [9, 3834, 
3.018]

2 [9, 133, 3.22], [10, 171, 2.956], [9, 232, 2.47], [10, 2342, 2.701], [11, 7746, 2.849], [10, 10,823, 
3.432]

3 [10, 459, 3.062], [9, 1833, 2.394], [10, 108, 2.927], [11, 4336, 2.833]
4 [3, 2257, 1.103], [2, 28, 1.018], [1, 25,221, 0.985], [2, 14, 1.079], [3, 1371, 1.186], [2, 542, 1.081], 

[1, 54, 0.993], [2, 300, 1.092], [1, 1542, 0.978], [2, 186, 1.078], [3, 1183, 1.194], [2, 31, 1.098], 
[1, 5518, 1.033], [2, 10, 1.137], [3, 10,361, 1.202], [4, 8, 1.302], [5, 13, 1.392], [6, 14, 1.488], [7, 
17, 1.598], [8, 198, 2.171], [9, 133, 2.315], [10, 1593, 2.769], [9, 25, 2.521], [10, 41, 2.76], [9, 
18, 2.711], [10, 1962, 2.981]

5 [10, 2963, 2.692], [11, 12,012, 3.119], [10, 6118, 3.214]
6 [10, 2706, 2.531], [11, 337, 2.663], [10, 6630, 2.533], [9, 41, 2.321], [8, 31, 2.158], [7, 29, 2.081], 

[6, 50, 1.841], [5, 28, 1.629], [4, 34, 1.673], [3, 1225, 1.147], [4, 24, 1.207], [5, 21, 1.303], [4, 10, 
1.209], [3, 2469, 1.138], [2, 12, 1.054], [1, 25,224, 1.236], [2, 12, 1.194], [3, 20,965, 1.246], [4, 
13, 1.359], [5, 27, 1.45], [6, 29, 1.582], [7, 52, 1.71], [8, 1553, 2.137], [9, 1288, 2.808], [10, 13, 
2.956], [9, 1497, 2.861], [10, 22, 3.053]

7 [10, 2864, 2.381], [11, 815, 2.514], [10, 2185, 2.327], [11, 10,150, 2.726], [10, 78, 2.646], [11, 
1117, 3.062], [10, 539, 2.73], [11, 943, 3.104], [10, 1869, 3.005]

8 [14, 354, 3.261], [13, 1197, 3.135], [12, 1246, 3.235], [13, 76, 3.55], [14, 1561, 3.403], [13, 4936, 
3.047], [12, 6, 3.058], [11, 17, 2.708], [10, 9, 2.717], [9, 8, 2.428], [8, 26, 2.028], [7, 7, 1.933], 
[6, 18, 1.758], [5, 15, 1.489], [4, 23, 1.468], [3, 18, 1.329], [2, 16, 1.211], [1, 49,629, 1.24], [2, 8, 
1.354], [3, 18, 1.479], [4, 12, 1.586], [5, 10, 1.724], [6, 18, 1.815], [7, 14, 1.941], [8, 17, 2.081], 
[9, 21, 2.198], [10, 143, 2.287], [11, 199, 2.54], [12, 165, 3.064], [13, 2668, 2.987]

9 [13, 1207, 3.154], [12, 1554, 3.078], [11, 413, 2.981], [12, 345, 3.285], [13, 212, 3.532], [12, 287, 
3.321], [11, 332, 3.259], [12, 1899, 3.295], [13, 16,379, 3.137]

10 [13, 1693, 3.552], [12, 606, 2.927], [11, 1570, 3.011], [12, 2772, 2.813], [11, 901, 2.937], [12, 
1867, 3.106], [13, 272, 3.37], [12, 8617, 2.988], [11, 1867, 2.829], [12, 93, 3.053], [11, 242, 
2.834]

11 [11, 1199, 3.016], [10, 1321, 2.79], [11, 50, 3.023], [12, 749, 3.126], [11, 1813, 2.931], [10, 157, 
2.749], [11, 46, 2.978], [10, 89, 2.788], [11, 642, 3.023], [10, 1240, 2.713], [11, 144, 2.996], [12, 
871, 3.116], [11, 1030, 2.973], [12, 434, 3.102], [11, 433, 2.776], [12, 2316, 3.037], [11, 730, 
2.809], [12, 1011, 3.003], [11, 209, 2.718], [12, 803, 3.098], [11, 245, 2.838], [12, 1328, 3.067], 
[11, 1181, 2.968], [12, 476, 2.884], [11, 2, 2.88], [10, 22, 2.694], [11, 2433, 2.827]

12 [11, 2847, 2.997], [10, 926, 2.73], [9, 254, 2.358], [10, 237, 2.674], [11, 2804, 2.887], [12, 90, 
2.884], [11, 5716, 2.827], [12, 2492, 2.997], [11, 154, 2.822], [12, 362, 2.828], [11, 1897, 2.777], 
[12, 31, 2.936], [13, 3342, 3.121]

13 [13, 9630, 3.09], [12, 4765, 3.047], [13, 893, 3.306], [12, 632, 3.043], [13, 96, 3.045], [12, 685, 
2.967], [11, 160, 2.901], [12, 1619, 3.172], [13, 44, 3.38], [12, 1993, 3.009], [11, 101, 3.019]

14 [11, 874, 3.023], [10, 119, 2.686], [11, 402, 2.937], [10, 566, 2.608], [11, 1176, 2.835], [12, 337, 
3.086], [11, 169, 2.827], [12, 85, 2.877], [11, 71, 2.834], [12, 2331, 3.168], [13, 172, 3.087], [12, 
33, 3.27], [13, 4187, 3.257], [12, 2145, 3.142], [11, 30, 2.929], [12, 1333, 3.067], [11, 90, 2.862], 
[12, 151, 3.099], [11, 28, 2.862], [12, 2765, 3.106], [11, 488, 2.939], [12, 3010, 3.256], [11, 455, 
2.869], [12, 76, 3.047]

15 [12, 99, 3.141], [11, 54, 2.988], [12, 704, 3.116], [11, 1777, 2.955], [12, 4382, 3.034], [11, 597, 
2.902], [12, 39, 3.084], [11, 996, 2.879], [12, 594, 2.941], [11, 117, 2.844], [12, 1047, 3.11], [11, 
492, 2.856], [12, 318, 3.204], [11, 1339, 2.966], [10, 173, 2.764], [11, 2584, 2.868], [12, 2096, 
3.087], [11, 376, 2.867], [12, 87, 3.096], [13, 111, 3.281], [14, 3890, 3.624], [13, 2529, 3.21]

16 [13, 696, 3.315], [14, 2969, 3.595], [13, 227, 3.261], [14, 793, 3.271], [13, 1107, 3.287], [14, 1294, 
3.598], [13, 201, 3.332], [14, 2881, 3.601], [13, 248, 3.309], [14, 4039, 3.469], [13, 218, 3.229], 
[14, 2552, 3.338], [13, 2035, 3.191]
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268 s, and then moves to tap position 10, where it stays for 10 s. The tap position 
movements continue until the final tap position 12 is achieved. The final tap stays 
for 1,086 s.

To further understand this, we explain the meaning of the effective tap 
sequence obtained through the proposed algorithm. Figure 10 shows two different 
tap working patterns between the original pattern and the pattern of the BC_Min-
Max() algorithm. The average PPQ value for the original tap working pattern is 
6.57, while the PPQ value for the algorithm is 3.28. Moreover, the ET is 1,483 s.

Figure 11 reveals two different tap working patterns between the original pat-
tern and the pattern of the BC_Average() algorithm. The average PPQ value for 
the original tap working pattern is 6.57, while the PPQ value for the algorithm is 
3.31. Moreover, the ET is 1,842 s.

Figure  12 highlights two different tap working patterns between the original 
pattern and the pattern of the BC_Deviation() algorithm. The average PPQ value 
for the original tap working pattern is 6.57, while the PPQ value for the algorithm 
is 3.27. Moreover, the ET is 1,859 s.

Table 4  (continued)

No STP

17 [13, 9219, 3.117], [12, 6, 2.932], [11, 11, 2.707], [10, 9, 2.51], [9, 7, 2.346], [8, 10, 2.184], [7, 
7, 2.021], [6, 31, 1.915], [5, 35, 1.791], [4, 13, 1.649], [3, 11, 1.518], [2, 7, 1.396], [1, 49,802, 
1.349], [2, 10, 1.472], [3, 12, 1.609], [4, 9, 1.726], [5, 9, 1.882], [6, 15, 2.174], [7, 14, 2.314], [8, 
7, 2.297], [9, 28, 2.612], [10, 52, 2.583], [11, 155, 2.797], [12, 171, 2.935], [13, 1147, 3.029]

18 [13, 4962, 3.208], [14, 18,848, 3.23]
20 [14, 604, 3.354], [13, 1784, 3.353], [14, 7037, 3.367], [13, 266, 3.131], [12, 9, 2.89], [11, 10, 

2.686], [10, 14, 2.512], [9, 7, 2.351], [8, 9, 2.199], [7, 5, 2.043], [6, 15, 1.893], [5, 20, 1.744], [4, 
35, 1.601], [3, 13, 1.464], [2, 11, 1.337], [1, 30,884, 1.353], [2, 54, 1.617], [3, 19,184, 1.521], 
[4, 13, 1.793], [5, 9, 1.786], [6, 12, 1.916], [7, 15, 2.055], [8, 13, 2.216], [9, 17, 2.344], [10, 115, 
2.587], [11, 154, 2.473], [12, 210, 3.025], [13, 2815, 3.025]

21 [13, 733, 3.265], [12, 996, 3.082], [11, 1153, 2.936], [12, 48, 3.317], [13, 2006, 3.403], [14, 26, 
3.56], [13, 9097, 3.205], [14, 8924, 3.215]

Table 5  Input and results of the proposed algorithm

No PN Initial_Tap WCT Method ET TPQ TEP PPQ

1 Product A 11 4000 BC_Deviation() 148 9365.10 3745.12 2.50
2 Product A 11 6000 BC_Deviation() 201 15,360.97 6172.20 2.49
3 Product A 11 8000 BC_Deviation() 275 21,600.47 8588.68 2.51
4 Product A 11 10,000 BC_Deviation() 345 27,816.90 11,024.29 2.52
5 Product B 11 8000 BC_Average() 287 21,695.28 19,790.49 1.10
6 Product B 11 10,000 BC_Average() 365 27,620.33 22,185.41 1.24
7 Product C 11 8000 BC_MinMax() 546 3500.59 1263.89 2.77
8 Product C 11 10,000 BC_MinMax() 686 9932.36 3595.58 2.76
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The PPQ is obtained by applying the proposed dynamic programming tech-
nique to four products with different WCT and selection methods, as shown in 
Fig. 13. Similar to the original results, it was found that different products have 
different levels of PPQs, i.e., the lowest PPQ was obtained for product A, while 
the highest PPQ was obtained for product C. The PPQ results using the selection 

Table 6  Tap sequence results obtained by the proposed algorithm

No Tap sequence obtained by the proposed algorithm

1 [1, 5, 11, 12], [11, 61], [2, 12], [11, 76], [3, 12], [11, 84], [1–4, 6, 10–13, 15, 19], [11, 73], [2–4, 11, 
12, 14, 29], [11, 40], [2, 3, 11, 12], [11, 39], [2–4, 11, 12], [11, 65], [2, 3, 11, 12, 21], [11, 42], [2, 
3, 5, 10–12, 14], [11, 37], [1, 2, 7, 11, 12], [12, 41], [1, 10, 12, 23], [10, 54], [11, 67], [1–4, 11, 12, 
17, 22], [11, 37], [1, 12], [11, 94], [1, 2, 4, 11, 12], [11, 117], [10, 556], [14, 549], [11, 359], [12, 
34], [11, 262], [12, 337], [11, 169], [12, 85], [11, 71], [12, 201]

2 [1, 5, 11, 12], [11, 61], [2, 12], [11, 76], [3, 12], [11, 84], [1–4, 6, 10–13, 15, 19], [11, 73], [2–4, 11, 
12, 14, 29], [11, 40], [2, 3, 11, 12], [11, 39], [2–4, 11, 12], [11, 65], [2, 3, 11, 12, 21], [11, 42], [2, 
3, 5, 10–12, 14], [11, 37], [1, 2, 7, 11, 12], [12, 41], [1, 10, 12, 23], [10, 54], [11, 67], [1–4, 11, 12, 
17, 22], [11, 37], [1, 12], [11, 94], [1, 2, 4, 11, 12], [11, 117], [10, 556], [14, 549], [11, 359], [12, 
34], [11, 262], [12, 337], [11, 169], [12, 85], [11, 71], [12, 2201]

3 [1, 5, 11, 12], [11, 61], [2, 12], [11, 76], [3, 12], [11, 84], [1–4, 6, 10–13,15, 19], [11, 73], [2–4, 11, 
12, 14, 29], [11, 40], [2, 3, 11, 12], [11, 39], [2–4, 11, 12], [11, 65], [2, 3, 11, 12, 21], [11, 42], [2, 
3, 5, 10–12,14], [11, 37], [1, 2, 7, 11, 12], [12, 41], [1, 10, 12, 23], [10, 54], [11, 67], [1–4, 11, 12, 
17, 22], [11, 37], [1, 12], [11, 94], [1, 2, 4, 11, 12], [11, 117], [10, 556], [14, 549], [11, 359], [12, 
34], [11, 262], [12, 337], [11, 169], [12, 85], [11, 71], [12, 2331], [2, 13], [11, 170], [1, 12, 13, 
33], [11, 447], [13, 102], [11, 503], [12, 612]

4 [1, 5, 11, 12], [11, 61], [2, 12], [11, 76], [3, 12], [11, 84], [1–4, 6, 10–13, 15, 19], [11, 73], [2–4, 11, 
12, 14, 29], [11, 40], [2, 3, 11, 12], [11, 39], [2–4, 11, 12], [11, 65], [2, 3, 11, 12, 21], [11, 42], [2, 
3, 5, 10–12, 14], [11, 37], [1, 2, 7, 11, 12], [12, 41], [1, 10, 12, 23], [10, 54], [11, 67], [1–4, 11, 12, 
17, 22], [11, 37], [1, 12], [11, 94], [1, 2, 4, 11, 12], [11, 117], [10, 556], [14, 549], [11, 359], [12, 
34], [11, 262], [12, 337], [11, 169], [12, 85], [11, 71], [12, 2331], [2, 13], [11, 170], [1, 12, 13, 
33], [11, 447], [13, 102], [11, 503], [12, 2612]

5 [11, 291], [12, 1154], [11, 841], [12, 81], [6, 11, 12, 14], [11, 2086], [12, 3527]
6 [11, 291], [12, 1154], [11, 841], [12, 81], [6, 11, 12, 14], [11, 2086], [12, 5335], [13, 192]
7 [11, 268], [1, 4, 10, 12], [11, 78], [10, 3435], [11, 44], [10, 160], [11, 257], [10, 626], [1, 11, 13], 

[12, 1939], [10, 99], [1, 11], [12, 1086]
8 [11, 268], [1, 4, 10, 12], [11, 78], [10, 3435], [11, 44], [10, 160], [11, 257], [10, 626], [1, 11, 13], 

[12, 1939], [10, 99], [1, 11], [12, 3086]

Fig. 10  Comparison of tap working patterns between the original pattern and BC_MinMax()’s pattern
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methods BC_MinMax() and BC_Average() exhibited similar patterns, whereas 
the BC_Deviation() method demonstrated different patterns for the PPQ.

5.4  Performance evaluation

To evaluate and measure the model, the mean absolute error (MAE) and root 
mean square error (RMSE) were used as the metric indicators to validate the 
model performance. One of the most commonly used performance metrics is the 
MAE, which enables the computation of errors. The continuous variables were 
measured to determine the error in the prediction of the model. It is well-known 
that the prediction error denotes the actual value minus the predicted value.

Fig. 11  Comparison of tap working patterns between the original pattern and BC_Average()’s pattern

Fig. 12  Comparison of tap working patterns between the original pattern and BC_Deviation()’s pattern

Fig. 13  Comparison of PPQs according to the products and selection methods
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where yi is the real data, ŷi is the predicted data, and n denotes the number of obser-
vations in the model. The result of subtraction should be an absolute value. In this 
case, the smaller the error, the better the model.

Another performance measure is the RMSE; it denotes the performance of the 
model based on the result of prediction error.

It should be noted that the MAE is different from the RMSE; the latter takes 
the square of residuals instead of similar weight. Consequently, the standard devi-
ation of prediction with respect to errors has mutual correlation with the changes 
in the occurrence of distribution errors.

To compare the performances of these selection methods, a base case was cre-
ated according to the effective result of PPQ with the same significant values, 
such as duration of sequence, initial tap position, and PN. Product A had a base 
case value of 4.82. A summary of the RMSE and MAE is presented in Table 7.

Finally, we present the ET of the proposed algorithm. As shown in Fig.  14, 
the ET for all cases increased linearly based on the WCT. These results indicate 
the theoretical time complexity of the dynamic programming algorithm based on 
the tap position movement constraint. (The tap only moves to the immediately 
adjacent position.) In other words, the results are attributable to the tap position 
at each second during the WCT, determined from the three adjacent tap positions.

(6)MAE =

∑n

i=1
��yi − ŷi

��
n

(7)RMSE =

�
∑n

i=1

�
yi − ŷi

�2

n

Table 7  Summary of 
performance metrics

Method BC_MinMax BC_Average BC_Deviation

Number of data 82.164 82.164 82.164
RMSE 6.321 5.928 5.318
MAE 4.611 3.281 3.142

Fig. 14  Comparison of ETs according to the products and selection methods
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6  Conclusions

In conclusion, this study contributes to the reduction in elemental power in an 
EAF environment by analyzing the working patterns. It should be noted that the 
power consumption burden can be solved by considering the tap position con-
trols. In addition, this study presented evidence of the benefit of implementing 
a dynamic programming approach to determine the optimal value of PPQ with 
respect to the input parameters of tap position number and duration of the previ-
ous large amount of data, which stores the analysis result of tap position sequence 
and elemental power every second. However, the research has some limitations in 
terms of data correctness and data validation regarding the manual daily working 
pattern information. In future work, we plan to investigate the weighting factor 
and EPI to validate the use of power in EAFs. Furthermore, machine learning 
[31] and deep learning [32, 33] techniques will be implemented to obtain effec-
tive working tap positions in real time.
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