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Abstract
In this paper, we present a multichannel nonnegative matrix factorization (MNMF) 
system for the task of source separation. We propose a novel signal model using 
spatial covariance matrices (SCM) where the mixing filter encodes the spatial infor-
mation and the source variances are modeled using a NMF structure. Moreover, the 
proposed model is initialized with the estimated source direction of arrival (DoA) 
in order to mitigate the strong sensitivity to parameter initialization. The proposed 
system has been evaluated for the task of music source separation using a multichan-
nel classical chamber music dataset showing that it is possible to reach real time in 
the tested scenarios by combining multi-core architectures with parallel and high-
performance techniques.
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1 Introduction

Source separation is a challenging task in the context of audio signal processing. 
Separating the sound sources of an audio mixture captured with one or multi-
ple microphones can be useful for a great variety of subsequent audio process-
ing tasks. Some examples of these tasks include spatial audio coding (SAC) [8, 
25], music applications [6, 9, 11], 3D sound analysis and synthesis [18], localiza-
tion [12] and signal enhancement for various purposes, such as automatic speech 
recognition (ASR) [17, 29].

Over the last two decades, the scientific community has dedicated many efforts 
to develop approaches that achieve this separation. Typical approaches rely on 
decomposing a time–frequency representation of the mixture signal using meth-
ods such as nonnegative matrix factorization (NMF), independent component 
analysis (ICA), or probabilistic latent component analysis (PLCA). Among these 
factorization techniques, NMF has been widely used for speech and music audio 
signals, as it allows to describe the signal as a nonsubstractive combination of 
sound objects (or “atoms” ) over time. However, without any prior information, 
the quality of the separation using the aforementioned statistical methods is lim-
ited. In fact, source separation methods can be classified based on the availabil-
ity of prior information about the sources. Blind source separation (BSS) refers 
to the situation in which information about the specific sources of the mixture 
are unknown. On the contrary, informed source separation (ISS) refers to such 
methods in which information about the specific sources is used to improve the 
separation [15]. Many ISS approaches exploit the spectro-temporal properties of 
the sources. For example, spectral harmonicity and temporal continuity can be 
assumed for several musical instruments while percussive instruments are char-
acterized by short bursts of broadband energy [2]. Speech source spectrogram 
can be modeled using a source-filter model [5]. Other approaches also used 
spatial localization of the sources [19, 32]. Recently, the deep neural networks 
(DNN) have been extensively used for this purpose. The existing methods mostly 
use DNN with either the spectrogram as the input signal representation [24] or 
directly the time-domain representation [4] to train such a system.

The aforementioned approaches are developed for single channel signals. In 
the case of multichannel mixtures, separation can be improved by taking into 
account the spatial locations of sources or the mixing process. Recent meth-
ods have extended NMF to the multichannel case by modeling the latent source 
magnitude- or power-spectrograms with NMF and estimating the mixing system 
without the nonnegativity constraint  [22, 26]. This strategy is often referred to 
as MNMF in the literature. For modeling the spatial properties of the sources, 
many of these approaches use a spatial covariance matrix (SCM) which accounts 
to the relative inter-microphone phase and amplitude information of the recorded 
channels. Authors in  [26] proposed to estimate unconstrained SCM mixing fil-
ters together with a NMF magnitude model to identify and separate repetitive 
frequency patterns corresponding to a single spatial location. To mitigate the 
effect of the spatial aliasing, Nikunen and Virtanen [22] proposed a SCM model 
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based on DoA kernels to estimate the inter-microphone time delay given a look-
ing direction. Carabias et  al.  [3] proposed a SCM kernel based model where 
the mixing filter is decomposed into two direction-dependent SCMs to represent 
and estimate disjointly both time and level differences between array channels. 
Alternatively, recent works have tried to exploit multichannel audio with deep 
neural network (DNN) based approaches. Several works  [21, 24, 28] combine 
DNN-based source spectrogram estimation with multichannel NMF-inspired 
spatial models.

The main drawback of these strategies is the large number of parameters 
which have to be estimated, and thus, without any prior information, these meth-
ods are prone to converge to local minima, especially in reverberant environ-
ments. Moreover, the computational burden of the MNMF-based approaches is 
heavy and current implementations do not allow a real-time performance. This 
is because many operations related to matrix inversions and eigenvalue decom-
positions are involved in the NMF updates. Under moderate echoic conditions, 
SCMs can be restricted to be rank-1 in a determined scenario, merging-inde-
pendent vector analysis (IVA) and NMF within a framework called independent 
low-rank matrix analysis (ILRMA) [13]. Several studies have recently proposed 
restricting the SCMs of sources to jointly diagonalize the full-rank matrices 
for multichannel blind source separation [10, 27]. While FastMNMF [27] pro-
jects the signals with an optimizable transform matrix, the authors in [20] adopt 
a fixed projection, namely a discrete Fourier transform (DFT) matrix. In this 
work, we propose a projection-based multichannel source separation method 
using SCM and the MNMF algorithm. In particular, we propose a novel MNMF 
scheme that allows to perform the separation frame by frame. Similar to [23], 
we propose to initialize the model parameters using prior information from the 
sources DoA obtained with the Steered Response Power (SRP) with phase trans-
form (PHAT) [30] algorithm in order to reduce the computational complexity 
and increase the robustness.

In this paper, we make the following technical contributions: (i) a projection-
based SCM signal model for the task of multichannel source separation, (ii) an 
online system that outperforms the state-of-the-art system, and (iii) a novel pro-
totype using a mixed parallelism scheme that allow to perform the separation in 
real time.

According to the best of our knowledge, there has not yet been presented a 
holistic, flexible and free system that addresses this problem on parallel shared-
memory systems. As a proof of concept, several experiments have been per-
formed using a multichannel dataset of classical chamber music with different 
polyphony level. The proposed approach has been compared with other online 
state-of-the-art method showing reliable results in terms of sound quality.

The paper is organized as follows. The introduction is presented in Sect.  1. 
Section   2 presents the problem formulation of MNMF. The proposed MNMF 
framework is described in Sect. 3. Section 4 presents the experimental results of 
the proposal. Finally, the conclusions are outlined in Sect. 5.
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2  Problem formulation

The problem considered in this work is to separate each source signal from a set 
of audio mixtures recorded from a microphone array. The observed signal can be 
expressed as

where the mixture xm(n) consists of s ∈ [1, S] sources captured by microphones 
m ∈ [1,M] , and the time-domain sample index is denoted by n. The spatial response 
from source s to microphone m is represented by a mixing filter hms(�) and the sin-
gle-channel source signals are denoted by ys(n).

Considering the convolutive mixing problem in Eq. 1, the short-time Fourier 
transform (STFT) of xm(n) can be written as

where �f (t) = [xf1(t),… , xfM(t)]
T is the time–frequency spectrograms of xm(n) , 

�fs = [hfs1,… , hfsM]
T denotes the frequency-domain mixing filter and yfs(t) rep-

resents the time–frequency spectrograms of source signals. Here, f ∈ [1,F] and 
t ∈ [1, T] . As signal representation, the proposed method uses the spatial covariance 
matrix (SCM) domain [3, 22, 26]. This representation computes the phase and the 
amplitude difference between every pair of microphones in the multichannel mix-
ture avoiding using the absolute phase of the observed signal.

To obtain the SCM, the magnitude square-rooted matrix �̂f (t) for a 
time–frequency point (f,  t) of the captured signal at each microphone 
�f (t) = [xf1(t),… , xfM(t)]

T is firstly computed as

where sgn(z) = z∕|z| is the signum function for complex numbers. Then, the SCM 
for each single time–frequency point is defined from the multichannel captured vec-
tor �̂f (t) as the following outer product

where H stands for Hermitian transpose. Matrices �f (t) ∈ ℂ
M×M for each time–fre-

quency point (f, t) encode the magnitude spectrum |�f (t)| = [|xf1(t)|,… , |xfM(t)|]T in 
the main diagonal and the magnitude correlation and phase difference 
|xfn(t)xfm(t)|1∕2sgn(xfn(t)x∗fm(t)) between each microphone pair (n, m) in the off-diago-
nal values.

(1)xm(n) =

S∑
s=1

∑
�

hms(�)ys(n − �)

(2)�f (t) =

S∑
s=1

�fsyfs(t)

(3)�̂f (t) = [|x̃f1(t)|1∕2sgn(x̃f1(t)), ..., |x̃fM(t)|1∕2sgn(x̃fM(t))]T ,

(4)�f (t) = x̂f (t)x̂
H
f
(t) =

⎡
⎢⎢⎣

�xf1(t)� ⋯ xf1(t)x
∗
fM
(t)

⋮ ⋱ ⋮

xfM(t)x
∗
f1
(t) ⋯ �xfM(t)�

⎤
⎥⎥⎦
,



12147

1 3

Parallel multichannel blind source separation using a spatial…

The convolutive mixing model in Eq. 2 can be expressed in terms of the SCM 
domain as

where ȳfs(t) denotes the magnitude spectrogram for each source s and �fs ∈ ℂ
M×M is 

the SCM representation of the spatial frequency response �fs.

3  Proposed MNMF algorithm for multichannel source separation

In this work, we propose a multichannel source separation system based on the SCM 
domain and MNMF algorithm. In particular, we propose a practical and versatile 
framework that can perform the multichannel separation in real time. For this pur-
pose, we have developed a beamforming inspired efficient and fast implementation 
that able to estimate the source variances using a projection based MNMF proce-
dure where the source DoAs is estimated a priori. As a result, we have developed a 
software solution that satisfies two essential requirements: mobility and real time. 
Therefore, our design takes the low memory resources and low computational power 
of cheap and handheld devices into account. This has been possible using and deeply 
exploiting the possibilities offered by parallel architectures.

The block diagram of the proposed framework is depicted in Fig. 1. As can be 
observed, the full system combines different stages: (1) signal representation, (2) 
signal model parameter estimation, and (3) signal reconstruction. In the following 
subsections, we detail and describe the main function of each stage.

3.1  Proposed MNMF signal model

In this section, we introduce the signal model that enables to estimate the spectro-
gram of the sources using the MNMF algorithm  [26]. Although the SCM mixing 
filter �fs in Eq. 5 takes amplitude and phase differences between channels into con-
sideration, it does not have any explicit relation to spatial locations. To overcome 
this, [22] proposed a beamforming-inspired SCM model based on DoA kernels. The 
main idea relies on decomposing the mixing filter �fs as a linear combination of 

(5)�f (t) ≈ �̃f (t) =

S∑
s=1

�fsȳfs(t)

Fig. 1  Block diagram of the proposed system
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DoA kernels �fo ∈ ℂ
M×M multiplied by a spatial weights matrix � ∈ ℝ

S×O
+

 which 
relates sources S with spatial directions O.

In this work, we propose a projection-based SCM model that enables to esti-
mate directly the spectrogram of the sources using their spatial location as prior 
information. The proposed signal model for SCM observation is defined in Eq. 6 
and illustrated in Fig. 2.

Here, the spatial weights matrix � is initialized a priori in order to reduce the num-
ber of free parameter. In this way, the SCM DoA kernel matrix � is computed for 
the source spatial positions as

where �nm(f , o) = 2�f �nm(�o) is the phase difference computed from the TDoA 
between sensors n and m for the frequency in Hz at bin f and the spatial position o. 
Remember that the number of spatial position O is equal to the number of sources S 
and is known a priori. Each spatial position �o can be translated to a TDoA (in sec-
onds) for a pair of microphones (n, m) using the following expression

where || ⋅ ||2 denotes the �2-norm, �o is the source spatial position, �m and �n are the 
microphone m and n locations, all of them expressed in the Cartesian coordinate 
system, and c is the speed of sound.

As in [26], after computing �fo , some post-processing is required to make it 
Hermitian and positive semidefinite. For the sake of brevity, this processing has 
been omitted here, regardless refer to [26] for more details. After that, �fo is kept 
fixed during the factorization.

(6)
�f (t) ≈ �̂f (t) =

S∑
s=1

O∑
o=1

�fozso

�������
�fs

ȳfs(t)

(7)
[
�fo

]
nm

= ej�nm(f ,o)

(8)�nm(�o) =
||�o − �n||2 − ||�o − �m||2

c

Fig. 2  Proposed MNMF signal model parameters. Complex values are displayed in red, positive real val-
ues in gray and zero values in white



12149

1 3

Parallel multichannel blind source separation using a spatial…

3.2  MNMF parameter estimation

For the estimation of the source magnitude spectrograms �̄ , we used the majori-
zation-minimization algorithm proposed in  [3, 22, 26]. Using this approach, the 
cost function can be described using both Euclidean and Itakura Saito (IS) diver-
gence. In this work, we use the IS divergence, since it is better suited for audio 
modeling in comparison to EUC [7].

The IS divergence of the observed and estimated multichannel signal using the 
SCM domain can be expressed as

where tr(�) =
∑M

m=1
xmm is the trace of a square matrix � . Then, the source spectro-

gram can be obtained from the projection of the fixed averaged DoA-kernels over 
the observed SCM signal mixture using

and repeating Eq. 6 followed by Eq. 10 until convergence. Further information about 
the derivation of Eq. 10 can be found in [23, 26].

Finally, once the source magnitude spectrograms are estimated, the spectro-
gram of each source can be computed using a soft-filter strategy.

3.3  Source reconstruction

The reconstruction of the source signals is performed using a generalized Wiener 
filtering strategy. Firstly, the estimated MNMF magnitude spectrogram for each 
sound source s and microphone m can be defined from our proposed model in 
Eq. 6 as

Then, we apply the generalized Wiener mask to reconstitute different sources of the 
mixture based on the power spectrum ratio between the reference signals as

where xfm(t) ∈ ℂ is the time–frequency spectrogram of the input multichannel mix-
ture (see Sect.  2). Finally, the multichannel time-domain signals are obtained by the 
inverse STFT of ỹfsm(t) and frames are combined by weighted overlap-add.

The procedure of the whole system is summarized in Algorithm 1.

(9)DIS(�, �̃) =
∑
ft

tr(�f (t)�̃f (t)
−1) − log det(�f (t)�̃f (t)

−1) −M

(10)ȳfs(t) ← ȳfs(t)

����
∑

so zso tr(�̂f (t)
−1�f (t)�̂f (t)

−1�fo)∑
so zso tr(�̂f (t)

−1�fo)

(11)y̆fsm(t) =
∑
o

tr(�fo)mzsoȳfs(t)

(12)ỹfsm(t) =
y̆fsm(t)∑

os tr(�fo)mzsoyfs(t)
⋅ xfm(t)
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Algorithm 1 Pseudo Code of the Proposed MNMF system algorithm
1: Initialize Z with the position of the sources.
2: Initialize W using Eq. 7.
3: Apply post-processing to enforce W to be hermitian and semipositive definite.
4: while audio stream do
5: Read an audio frame.
6: Compute the input signal phase SCM using Eq. 4.
7: Compute the signal model using 6.
8: for iter = 1 to Niter do
9: Update Ȳ according to Eq. 10.
10: Recompute the signal model using Eq. 6.
11: end for
12: for S = 1 to S do
13: for m = 1 to M do
14: Compute y̆fsm(t) using the Eq. 11.
15: Compute the time-frequency spectrogram estimation of ỹfsm(t) using Eq. 12.
16: Reconstruct the source signal using the inverse STFT of ỹfsm(t).
17: end for
18: end for
19: end while

4  Evaluation and experimental results

This section presents the experimentation carried out in the evaluation of the pro-
posed system in Sect. 3. In this evaluation, we have exploited a subset of the Uni-
versity of Rochester Multimodal Music Performance (URMP) dataset presented 
in [14]. We have selected some classical chamber music pieces ranging from duets 
to quartets and played by 9 different common instruments in orchestra. Note that the 
musical score, the audio recordings of the individual tracks, the audio recordings of 
the assembled mixture and ground-truth annotation files are available for each piece. 
The multichannel mixtures were generated by simulating the spatial position of the 
sources. In this regard, mixing filters were simulated with the Roomsim Toolbox [1] 
for a rectangular room and a linear array of eight omnidirectional microphones. The 
reverberation time RT60

1 of the room was set to either 10 ms or 400 ms.
Regarding the used testbed, we have focused our interest on two different sys-

tems. Firstly, we have used a server with an  Intel®  Xeon® Silver 4110 processor 
with 8 cores. It operates at 2.1 GHz and HyperThreading and Turbo Boost are both 
deactivated. Secondly, the experiments were conducted on a NVIDIA Jetson AGX 
Xavier development kit, which is an embedded system-on-chip (SoC) with an ARM 
v8.2 64-bit CPU. Xavier supports different kinds of running modes (configurable 
with the NVPModel command tool). This setup allows to simulate a wide range of 
mobile devices such as smartphones, laptops, tablets and other embedded systems 
under controlled conditions.

Concerning the used software, Xavier runs Ubuntu Linux 18.04.1 LTS and the 
server runs CentOS Linux 7. Both systems use the OpenBlas2 library (release 0.3.9, 

1 RT60 is the time required for reflections of a direct sound to decay by 60 dB below the level of the 
direct sound.
2 https:// www. openb las. net

https://www.openblas.net
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March 2020), the FFTW3 library (release 3.3.8, May 2018) and the GNU C Com-
piler 7 with the specification 4.5 of OpenMP. OpenBLAS is an optimized BLAS 
library based on GotoBLAS2 1.13 BSD. Note that both packages have been built in 
our system from source codes. Finally, it should be remarked that the used data type 
is “double” (i.e., IEEE 754 double-precision binary floating-point format).

4.1  Results

Firstly, we have tested the reliability of our separation system in terms of sound 
quality by using the BSS_Eval toolbox [31]. These metrics are commonly accepted 
and represent a standard approach in the specialized scientific community for test-
ing the quality of separated signals, allowing a fair comparison with other methods. 
In this paper, we compare the separation performance of our beamforming-inspired 
proposal with a well-known spatial beamforming  [30] method from the literature. 
In particular, we have implemented a Delay and Sum Beamforming (DSB) design 
which consists of time aligning and summing the microphone signals. This tech-
nique uses the geometrical information of the microphone array to filter and enhance 
the sources coming from a specific direction. To allow a fair comparison with our 
NMF-based approach, a postprocessing Wiener filtering stage is applied to the out-
put of DSB [16] as well.

Fig. 3  Objective results using the BSS_EVAL metrics  [31] for the proposed dataset. Results for two 
channels are displayed in the upper row, for three channels in the middle row and for four channels in the 
lower row. Each bar indicates the median values of the obtained results

3 http:// www. fftw. org

http://www.fftw.org


12152 A. J. Muñoz-Montoro et al.

1 3

Figure 3 depicts the median values of SDR and SIR obtained in the evaluation of 
the proposed database for each approach. We start by analyzing the values obtained 
in the semianechoic room. As can be seen, the proposed framework provides supe-
rior results in terms of SDR and SIR compared with the DSB+Wiener method for all 
cases. As expected, the separation performance decreases as the number of sources 
increases. On the other hand, better results are obtained when the number of chan-
nels increase, since the DoA estimation performed by SRP-PHAT algorithm is more 
accurate and, therefore, the initialization of the source location is more reliable.

Concerning the reverberant room, a similar performance can be observed. The 
proposed framework slightly outperforms the DSB+Wiener method for most 
of the cases. However, under higher reverberant conditions, the results dramati-
cally decrease due to localization errors. Note that despite the simplicity of the 
DSB+Wiener algorithm (which allows its implementation in real time), the method 
suffers from the leakage of other sources into the extracted source resulting in a poor 
interference-related metrics (SIR) with respect to the proposed method.

Secondly, we have explored the limits of our proposed system. In this second 
experiment, we have measured the complexity per frame and the efficiency of the 
algorithm as a function of the number of computing cores used simultaneously, the 
number of sources of the mixture and the number of channels of the input signal. 
The results obtained using an  Intel®  Xeon® Silver 4110 are depicted in Fig. 4.

As can be observed, the computational complexity of the algorithm increases 
as the number of channels and sources increases. For two-channels mixtures, real 
time is achieved regardless of the number of simultaneous computing cores used, 
including the sequential version. Note that real time is guaranteed when the execu-
tion time per frame is lower than 23.2 ms (displayed as a dashed red line). However, 

Fig. 4  Execution times measured in milliseconds per frame and efficiency on the  Intel®  Xeon® Silver 
4110. Results for two channels are displayed in the upper row, for three channels in the middle row and 
for four channels in the lower row
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as observed in Fig. 3, the separation results increase considerably as a function of 
the number of channels. In the cases of three and four channels, the sequential ver-
sion of the algorithm does not run in real time. In the three-channels case, parallel 
computing allows execution times in real time regardless of the number of sources 
and computing cores. Finally, real time is only achieved in four-channel mixtures for 
six and eight cores.

Regarding the efficiency, again better results are obtained when the number of 
channels increases. Note that some memory-bound operations of the system are 
performed as matrix–vector, such as the Wiener filter. Therefore, the sequential 
approach maximizes the performance, taking advantage of the whole memory band-
width, while a parallel approach is limited by this fact.

As for the NVIDIA Jetson AGX Xavier, the experimental results obtained in the 
evaluation are provided in Fig. 5. In this case, real time is not reached for four-chan-
nels mixtures in any case. For the three-channels case, the separation is performed 
in less than 23.2 ms when four and six cores are used. Finally, note that the results 
obtained for the efficiency are always above 75% for three and four channels.

5  Conclusion

In this paper, we proposed a projection-based multichannel source separation 
method using SCM and the MNMF algorithm. In particular, we proposed a novel 
MNMF prototype using a mixed parallelism scheme that allow to perform the sepa-
ration frame-by-frame in real time. The proposed signal model uses SCM to encodes 
the spatial information and the source variances are modeled using a NMF structure. 

Fig. 5  Execution times measured in milliseconds per frame and efficiency on the NVIDIA Jetson AGX 
Xavier. Results for two channels are displayed in the upper row, for three channels in the middle row and 
for four channels in the lower row
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Moreover, the signal model is initialized with the estimated source DoA in order to 
mitigate the strong sensitivity to parameter initialization.

The proposed framework has been implemented for multi-core architectures 
allowing that the application can be executed in a wide range of devices. Further-
more, we have shown the robustness of the proposed algorithm in comparison 
with other state-of-the-art method using various types of microphone array setups. 
Results showed that real time is reached in most of the cases. To our best knowl-
edge, our proposal is the first MNMF implementation in real time that obtains reli-
able results in terms of sound quality.
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